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Abstract. We discuss the determination of the radius of the total graph of
a commutative ring R in the case when this graph is connected. Typical
extensions such as polynomial rings, formal power series, idealization of the
R-module M and relations between the total graph of the ring R and its
extensions are also dealt with.

1. Introduction

Every ring R in this paper is assumed to be commutative with 1. Let Z(R)
denote the set of its zero-divisors, Z(R)∗ = Z(R) � {0} the set of its non-zero
zero-divisors, Reg(R) = R � Z(R) its set of regular elements and Nil(R) the ideal
of its nilpotent elements. Let R[x], R[[x]] and R(+)M , where M is an R-module,
represent standard notation for the polynomial ring, formal power series ring and
idealization of the module M . The set of annihilators of elements of an R-module
M is denoted by Z(M). Basic definitions and results concerning commutative rings
may be found in any standard textbook on commutative algebra, e.g. [14].

The idea to associate a graph to a commutative ring, where all elements of the
ring are vertices of that graph, first appears in [7] which deals with graph coloring.
In [2], Anderson and Livingstone take the nonzero zero-divisors for the vertices of
the graph, and two vertices x, y ∈ Z(R)∗ are adjacent iff xy = 0. The resulting
graph Γ(R) is the zero-divisor graph of the ring R. The authors have, among other
results, proved that this graph is always connected and that diam Γ(R) � 3 [2,
Theorem 2.3]. Papers [2, 3, 15, 5, 6, 16, 17] deal with various properties of this
graph.
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In [1] Anderson and Badawi define, for a commutative ring R with 1, its total
graph T (Γ(R)). The set of vertices of this graph is R and two different elements
x, y ∈ R are adjacent iff x + y ∈ Z(R). The rich and complex structure of this
graph makes it an interesting object for study. For example, one may, for any
n ∈ N, construct a ring Rn such that the corresponding graph has diameter n [1,
Example 3.8]; this is rather different than the case of zero-divisor graphs. Unlike
Γ(R), the graph T (Γ(R)) is connected only under certain conditions. The properties
of this graph naturally depend on the fact whether Z(R) is an ideal of R or not; so
there are two separate cases to discuss. Nevertheless, in both cases, the total graph
contains induced subgraphs Reg(Γ(R)), Z(Γ(R)) and Nil(Γ(R)) whose vertices lie
in Reg(R), Z(R) and Nil(R). These subgraphs add to the understanding of the
total graph itself.

Vertices x and y of the graph Γ are connected if there is a path in Γ beginning
at one of them and ending at the other. If every vertex is connected to every
other vertex, the graph Γ is connected. For two different vertices x, y ∈ V (Γ), one
defines the distance d(x, y) as the length of the shortest path between x and y if
the vertices in question are connected, and one puts d(x, y) = ∞ in case they are
not. The diameter of the graph Γ is diam(Γ) = sup{d(x, y) | x, y ∈ Γ}, and the
eccentricity of the vertex x is the distance between x and the vertex which is at the
greatest distance from x, e(x) = max{d(x, y) | y ∈ Γ}. The radius of the graph Γ,
r(Γ), is defined by r(Γ) = min{e(x) | x ∈ Γ}, and the center of the graph is the
set of all of its vertices whose eccentricity is minimal, i.e., it is equal to the radius.
So, the radius of the graph is equal to the smallest eccentricity and diameter to the
largest eccentricity of a vertex in this graph. It is well known that for connected
graphs of diameter d and radius r, one has r � d � 2r.

2. Radius of the total graph of a commutative ring

2.1. The set of zero-divisors Z(R) is an ideal of R. Since Z(R) is always
a union of prime ideals of the ring R [14], if Z(R) is an ideal, it has to be a
prime ideal. Note that in this case the induced subgraph Z(Γ(R)) is complete; so
r(Z(Γ(R)))=diam(Z(Γ(R))) = 1. However, in this case the total graph T (Γ(R))
is not connected since no vertex from Z(R) is adjacent to a vertex from Reg(R).
Therefore, it does not make sense to discuss a radius of T (Γ(R)), but one may
check the radius of its subgraph of regular elements. The structure of this graph
is given in [1, Theorem 2.2]. A corollary to this theorem is the following result [1,
Theorem 2.4]: Reg(Γ(R)) is connected if and only if R/Z(R) ∼= Z2 or R/Z(R) ∼= Z3.
In the first case, Reg(Γ(R)) is the complete graph Kα, where α = |Z(R)|; therefore

r(Reg(Γ(R))) = diam(Reg(Γ(R))) = 1 .

In the second case, Reg(Γ(R)) is the complete bipartite graph Kα,α; consequently
r(Reg(Γ(R))) = diam(Reg(Γ(R))) = 2 .

2.2. The set of zero-divisors Z(R) is not an ideal of R. When the zero-
divisors do not form an ideal, the structure of the total graph T (Γ(R)) can not
be completely determined as in the previous case. Namely, the subgraphs Z(Γ(R))
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and Reg(Γ(R)) are not separated from each other since there exist x, y ∈ Z(R)
such that x + y /∈ Z(R); therefore the vertices −x ∈ Z(R) and x + y ∈ Reg(R)
are adjacent. Note that |Z(R)| � 3. Since in this case there exist rings whose
total graphs have arbitrary large diameter, it is natural to ask what happens to the
radius of the total graph. The answer is somewhat unexpected, namely we show
that the radius is always equal to the diameter. As a motivating example, we may
consider a finite commutative ring R such that Z(R) is not an ideal of R. The
diameter of the total graph of such a ring is always 2 [1, Theorem 3.4].

Theorem 2.1. Let R be a finite commutative ring with 1 such that Z(R) is
not an ideal of R. Then r(T (Γ(R))) = 2.

Proof. Since d = diam(T (Γ(R))) = 2, one has r = r(T (Γ(R))) � 2; so we
only have to show that r �= 1. Assume that r = 1. In this case there exists x ∈ R
such that e(x) = 1, i.e., x is adjacent to every other vertex. It follows that x ∈ Z(R)
(x is adjacent to 0); moreover x �= 0 (otherwise 1 is adjacent to 0 and it would follow
that R is the zero ring). Since Z(R) is not an ideal, there are a, b ∈ Z(R) such
that a + b ∈ Reg(R). So, x �= a, x �= b and x �= a + b. The vertex c = −x + a + b
does not belong to {a, b, 0} and it is adjacent to x. We conclude that a + b ∈ Z(R)
which is impossible. Therefore, the radius must be 2. �

Suppose that R is an arbitrary commutative ring with 1 such that Z(R) is
not an ideal of R. By [1, Theorem 3.3], T (Γ(R)), is connected if and only if
R is generated by zero-divisors, 〈Z(R)〉 = R, i.e., R = 〈z1, z2, . . . , zn〉 for some
z1, z2, . . . , zn ∈ Z(R). Moreover, if n � 2 is the minimal number of zero-divisors
which generate R, then diam(T (Γ(R))) = n = d(0, 1) [1, Theorem 3.4]. Let us
now prove that under these conditions the radius of the total graph is equal to its
diameter.

Theorem 2.2. Let R be a commutative ring with 1 such that Z(R) is not an
ideal of R, and let n � 2 be the smallest integer such that R = 〈z1, . . . , zn〉, for
some z1, . . . , zn ∈ Z(R). Then r(T (Γ(R))) = n.

Proof. We know that diam(T (Γ(R))) = n; so we only have to prove that
r � n − 1 is not possible. Assume that r � n − 1. So, there exists x ∈ R such that
e(x) � n − 1, i.e.,

(∀y ∈ R) d(x, y) � n − 1.

In particular, d(x, 1 + x) � n − 1 and d(x, 1 − x) � n − 1. Let
x—s1—s2— · · · —sk−2—1 + (−1)k−1x

be a path of length k − 1 � n − 1 in T (Γ(R)). We get k − 1 zero-divisors
x + s1 , s1 + s2 , . . . , sk−3 + sk−2 , sk−2 + 1 + (−1)k−1x

for which it holds that
〈x + s1, s1 + s2, . . . , sk−3 + sk−2, sk−2 + 1 + (−1)k−1x〉 ⊆ 〈Z(R)〉 = R.

Since
1 ∈ 〈x + s1 , s1 + s2 , . . . , sk−3 + sk−2 , sk−2 + 1 + (−1)k−1x〉,
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we must have

〈x + s1 , s1 + s2 , . . . , sk−3 + sk−2 , sk−2 + 1 + (−1)k−1x〉 = R.

It follows that R may be generated by k − 1 zero-divisors, which is a contradiction
(k − 1 < n). �

3. Total graph of some typical ring extensions

3.1. Polynomial rings. Let R[x] be the polynomial ring over R. First of all,
Z(R) ⊆ Z(R[x]) ⊆ Z(R)[x] always holds. The second inclusion may be proper, for
example, 2 + 3x ∈ Z(Z6)[x] � Z(Z6[x]). It is clear that the first inclusion may be
proper as well. The well-known McCoy’s theorem gives a desription of the set of
zero-divisors in a polynomial ring: f(x) ∈ Z(R[x]) iff there exists r ∈ R∗ such that
rf(x) = 0. Therefore, not only the coefficients have to be zero-divisors, but the
ideal generated by these coefficients should have a nonzero annihilator. A ring R
is a McCoy ring if and only if for every finitely generated ideal I ⊆ Z(R) it is true
that Ann(I) �= 0. It is well known that a polynomial ring R[x] is always a McCoy
ring.

The structure of the total graph T (Γ(R[x])) of a polynomial ring depends on
the fact whether Z(R[x]) is an ideal of R[x] or not. According to [15, Theorem 3.3],
Z(R[x]) is an ideal of R[x] if and only if R is a McCoy ring such that Z(R) is an
ideal of R. This result allows us to characterize the structure of the total graph of
polynomial rings.

Let us first suppose that Z(R[x]) is an ideal of R[x]. It is evident that in this
case the subgraph of zero-divisors Z(Γ(R[x])) is complete. One has Z(R[x]) =
Z(R)[x]; consequently

R[x]/Z(R[x]) = R[x]/Z(R)[x] ∼= (R/Z(R)) [x].

On the right-hand side is a polynomial ring which clearly cannot be isomorphic to
Z2 or to Z3 and we conclude that Reg(Γ(R[x])) is not connected [1, Theorem 2.4].
From the previous discussion, one can characterize the structure of the total graph
of a polynomial ring in which zero-divisors form an ideal.

Theorem 3.1. Let R be a McCoy ring such that Z(R) is an ideal of R. In this
case the total graph T (Γ(R[x])) is not connected. The induced subgraph Z(Γ(R[x]))
is complete, while Reg(Γ(R[x])) is not connected as well.

Remark 3.1. Since R[x] is always a McCoy ring and R[x, y] = R[x][y], from
the hypothesis that R is a McCoy ring and Z(R) is an ideal of R, it follows that
Reg(Γ(R[x, y])) is not connected.

Let us now concentrate on the case when Z(R[x]) is not an ideal of R[x]. We
first prove the following useful lemma.

Lemma 3.1. Let R be a ring such that Z(R) is not an ideal of R. Then:

〈Z(R[x])〉 = R[x] iff 〈Z(R)〉 = R .
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Proof. Suppose that 〈Z(R[x])〉 = R[x]. Therefore, there exist polynomials
f1(x), . . . , fn(x) ∈ Z(R[x]) such that f1(x) + · · · + fn(x) = 1. It follows that z1 +
· · · + zn = 1, where z1, . . . , zn are constant coefficients of the previous polynomials.
Since Z(R[x]) ⊆ Z(R)[x], all coefficients of these polynomials are zero-divisors.
Therefore, z1, . . . , zn ∈ Z(R) as well. So, R = 〈Z(R)〉 = 〈z1, . . . , zn〉. The other
implication is trivial. �

Using this lemma, [1, Theorem 3.3 and Theorem 3.4], as well as Theorem 2.2,
we arrive at the following result.

Theorem 3.2. Let R be a ring such that Z(R) is not an ideal of R. Then
T (Γ(R[x])) is connected if and only if T (Γ(R)) is connected, i.e., there exist
z1, . . . , zn ∈ Z(R) such that R = 〈Z(R)〉 = 〈z1, . . . , zn〉. If n is the minimal
number of such generators then

diam T (Γ(R[x])) = r(Γ(R[x])) = n .

3.2. Rings of formal power series. Although rings of formal power series
share some properties with polynomial rings, they do differ when it comes to zero-
divisors. For example, McCoy’s theorem does not hold for R[[x]]. In [10], Fields has
presented an example of formal power series, with an invertible coefficient, which
is nonetheless proper zero-divisor. This example shows that Z(R[[x]]) ⊆ Z(R)[[x]]
need not hold. It is clear that the reverse inclusion may not hold. The reason for
this lies in the nilpotent elements. Namely, if the ring R is reduced, it has been
shown in the paper [11] that f(x) ∈ Z(R[[x]]) if and only if there exists z ∈ Z(R)∗

such that zf(x) = 0. The papers [5, 15] deal with the problem of determining
the diameter of the graphs Γ(R[x]) and Γ(R[[x]]). The authors have presented the
complete result for diam Γ(R[x]) for an arbitrary ring R, and diam Γ(R[[x]]) when a
ring R is reduced. For nonreduced rings the problem of determining this diameter
remains open.

We now concentrate on the case of a reduced ring, and we analyze the total
graph T (Γ(R[[x]])). The obvious question one might ask is whether Z(R[[x]]) is
an ideal of R[[x]]. Let us suppose that Z(R) is an ideal of R. It is clear that
Z(R[[x]]) ⊆ Z(R)[[x]]. The equality in this case holds if and only if the ring R is
a countably McCoy ring, i.e., if every countably generated ideal I ⊆ Z(R) has a
nonzero annihilator. We present this as the following lemma.

Lemma 3.2. Let R be a reduced, countably McCoy ring such that Z(R) is an
ideal of R. Then Z(R[[x]]) is an ideal of R[[x]] and Z(R[[x]]) = Z(R)[[x]].

Under these conditions
R[[x]]/Z(R[[x]]) = R[[x]]/Z(R)[[x]] ∼= (R/Z(R)) [[x]].

The right-hand side is not isomorphic to Z2 or to Z3, so one has the result analogous
to the one for polynomial rings.

Theorem 3.3. Let R be a reduced, countably McCoy ring such that Z(R) is an
ideal of R. Then the total graph T (Γ(R[[x]])) is not connected, the induced subgraph
Z(Γ(R[[x]])) is complete and Reg(Γ(R[[x]])) is not connected.
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Using the same reasoning as in the polynomial case one can prove that for the
reduced ring R such that Z(R) is an ideal of R one has

〈Z(R[[x]])〉 = R[[x]] iff 〈Z(R)〉 = R .

So, we have the following theorem.

Theorem 3.4. Let R be a reduced ring such that Z(R) is not an ideal of R.
Then T (Γ(R[[x]])) is connected if and only if T (Γ(R)) is connected, i.e., there exist
z1, . . . , zn ∈ Z(R) such that R = 〈Z(R)〉 = 〈z1, . . . , zn〉. If n � 2 is the smallest
number of such generators we have

diam T (Γ(R[[x]])) = r(Γ(R[[x]])) = n .

3.3. Idealization. The idealization method is rather important for construc-
tions of rings with zero-divisors. Let R be a commutative ring and M an R-module.
Operations on R×M are defined as follows: (r1, m1)+(r2, m2) = (r1 +r2, m1 +m2)
and (r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1). The commutative ring obtained us-
ing this construction is called the idealization of a module M and is denoted by
R(+)M . The module M can now be seen as the ideal 0(+)M of the ring R(+)M .
Since (0, m1)(0, m2) = (0, 0) this ideal is nilpotent of index 2. Note also that, by
identifying m ∈ M with (0, m) ∈ R(+)M , all elements of the module M are zero-
divisors in the idealization. Different aspects of the idealization are thoroughly
investigated in [4], while the papers [6, 3] deal with Γ(R(+)M). We consider the
total graph T (Γ(R(+)M)). Zero-divisors in the idealization are given by (see [13,
Theorem 25.3]): Z(R(+)M) = {(r, m) | r ∈ Z(R) ∪ Z(M), m ∈ M}. Let us first
discuss a few motivating examples.

Example 3.1. The idealization R(+)R of a module R for an arbitrary com-
mutative ring R.

We prove that the properties of the graph of the ring and its idealization remain
the same.

Let us first assume that Z(R) is an ideal of R. We know that T (Γ(R)) is not
connected, Z(Γ(R)) is complete, while Reg(Γ(R)) is connected if and only if R/Z(R)
is isomorphic to Z2 or to Z3. Since Z(R) is an ideal of R, Z(R(+)R) = Z(R)(+)R
is an ideal of R(+)R. So T (Γ(R(+)R)) is not connected and Z(Γ(R(+)R)) is
complete. From (R(+)R)/(Z(R(+)R)) = (R(+)R)/(Z(R)(+)R) ∼= R/Z(R)(+)0 ∼=
R/Z(R), it follows that Reg(Γ(R(+)R)) is connected if and only if Reg(Γ(R)) is
connected.

Suppose that Z(R) is not an ideal of R. Then Z(R(+)R) = Z(R)(+)R is not an
ideal of R(+)R. So, T (Γ(R(+)R)) is connected if and only if T (Γ(R)) is connected
and diam(T (Γ(R(+)R))) = diam(T (Γ(R)). This may be proved by comparing
the path x—s1— · · · —sn—y in T (Γ(R)) with (x, 0)—(s1, t1)— · · · —(sn, tn)—(y, 0)
and (x, a)—(s1, 0)— · · ·− (sn, 0)—(y, b), which are paths in T (Γ(R(+)R)), and one
can find it in [1, Theorem 3.16].

Example 3.2. The idealization Z[x]/(x2)(+)Z10.
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We show that the properties of the graphs T (Γ(R)) and T (Γ(R(+)M)) sub-
stantially differ in this case. The first one is not connected, while the second one
is connected.

Let R = Z[x]/(x2) = {a + bx | a, b ∈ Z}, M = Z10. It is easy to check
that M is an R-module if the action is defined by (a + bx)m = am. The set
Z(R) = {ax | a ∈ Z} of zero-divisors of the ring R is the (principal) ideal of R, so
T (Γ(R)) is not connected and Z(Γ(R)) is complete. We also have R/Z(R) ∼= Z.
Therefore, Reg(Γ(R)) is not connected.

On the other hand, Z(M) = P ∪ Q, where P = 2Z + (x) and Q = 5Z + (x)
are prime ideals, is not an ideal of R. Note that Z(R) ⊆ Z(M). It is easy to
see that the set of zero-divisors Z(R(+)M) = {(z, m) | z ∈ P ∪ Q, m ∈ Z10},
also fails to be an ideal of R(+)M . Let us, for example, take z1 = (2, 0), z2 =
(5, 0). Then z1, z2 ∈ Z(R(+)M), but z1 + z2 = (7, 0) ∈ Reg(R(+)M). Since
(3, 5)z1+(−1, 0)z2 = (1, 0), we have 〈Z(R)〉 = 〈z1, z2〉 = R(+)M , and T (Γ(R(+)M)
is connected with diameter 2. The subgraph Z(Γ(R(+)M) is also connected with
diameter 2 as well. The subgraph Reg(Γ(R(+)M) is actually complete, since for
(s1, m1), (s2, m2) ∈ Reg(Γ(R(+)M) it holds that s1 +s2 ∈ P and therefore (s1 +s2,
m1 + m2) ∈ Z(Γ(R(+)M).

These examples motivate us to check under what conditions the properties
of the total graph of the ring R pass onto the total graph of the idealization
R(+)M . Since clearly Z(R)(+)M ⊆ Z(R(+)M), we first need to check under
what conditions the equality holds, as well as the conditions ensuring that this
set is an ideal. In the proofs we use the general result concerning ideals in the
idealization [4, Theorem 3.1]: for an ideal I of the ring R and submodule N of
the R-module M , I(+)N is an ideal of R(+)M if and only if IM ⊆ N . Then
(R(+)M)/(I(+)N) ∼= (R/I)(+)(M/N). We have the following theorem.

Theorem 3.5. Let M be an R-module such that Z(M) ⊆ Z(R). Then the
following conditions are equivalent:

(i) Z(R(+)M) is an ideal of R(+)M . (ii) Z(R) is an ideal of R.

In addition to that Z(R)(+)M = Z(R(+)M).

Proof. Let us first suppose that Z(R) is an ideal of R. Since Z(M) ⊆ Z(R),
we have Z(R) ∪ Z(M) = Z(R) and therefore Z(R(+)M) = Z(R)(+)M . The set
on the right-hand side is an ideal according to [4, Theorem 3.1].

Suppose that Z(R(+)M) is an ideal of R(+)M and let z1, z2 ∈ Z(R). Then
(z1, 0), (z2, 0) ∈ Z(R(+)M); so, (z1 + z2, 0) ∈ Z(R(+)M). From this we conclude
that z1 + z2 ∈ Z(R) ∪ Z(M) = Z(R). Likewise, if r ∈ R and z ∈ Z(R) then (r, 0) ∈
R(+)M and (z, 0) ∈ Z(R(+)M). Consequently, (r, 0)(z, 0) = (rz, 0) ∈ Z(R(+)M),
and we have rz ∈ Z(R) ∪ Z(M) = Z(R). �

Theorem 3.6. Let R be a commutative ring such that Z(R) is an ideal and
let M be an R-module such that Z(M) ⊆ Z(R). Then T (Γ(R(+)M)) is discon-
nected, Z(Γ(R(+)M)) is complete, while Reg(Γ(R(+)M)) is connected if and only if
Reg(Γ(R)) is connected.
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Proof. From the previous theorem and [1, Theorem 2.1], it follows that
T (Γ(R(+)M)) is disconnected and Z(Γ(R(+)M)) is complete. Furthermore,

(R(+)M)/(Z(R(+)M)) = (R(+)M)/(Z(R)(+)M) ∼= R/Z(R)(+)0 ∼= R/Z(R).
Therefore, Reg(Γ(R(+)M)) is connected if and only if Reg(Γ(R)) is connected. �

The case when Z(R) is not an ideal of R has been discussed in [1]. The
authors have shown that the connectedness of T (Γ(R)) implies the connectedness
of T (Γ(R(+)M)) and that diam(T (Γ(R(+)M))) � diam(T (Γ(R))) [1, Theorem
3.17]. Under the additional assumption Z(R)(+)M = Z(R(+)M), we have that
the graph T (Γ(R(+)M)) is connected if and only if T (Γ(R)) is connected and
diam(T (Γ(R(+)M))) = diam(T (Γ(R))) [1, Theorem 3.16].

3.4. Matrices. Although in this section we venture into the noncommutative
algebra, the case of the total graph of the matrix ring Mn(R) for an arbitrary com-
mutative ring R is worth mentioning. The zero-divisor graph for a noncommutative
ring may be defined in various ways, but we follow [18]. For the case of the ring of
matrices over commutative rings see [8].

For a ring R, ZL(R) = {x ∈ R | xa = 0, for some a ∈ R∗} is the set of its left
zero-divisors, ZR(R) = {x ∈ R | bx = 0, for some b ∈ R∗} is the set of its right
zero-divisors, while Z(R) = ZL(R) ∪ ZR(R) is the set of all zero-divisors in this
ring. Redmond defines directed and undirected graphs, Γ(R) and Γ(R). In both
cases vertices are nonzero zero-divisors, and x → y in Γ(R) iff xy = 0, while x—y
in Γ(R) iff xy = 0 or yx = 0. According to [18, Theorem 2.3], the graph Γ(R) is
connected if and only if ZL(R) = ZR(R) and then diam(Γ(R)) � 3, while Γ(R) is
always connected and diam(Γ(R)) � 3, [18, Theorem 3.2].

We define the total (undirected) graph T (Γ(R)) of a noncommutative ring R
in the same way as for the commutative case. The vertices are all elements of the
ring R and two elements x, y ∈ R are adjacent iff x + y ∈ Z(R). It is easy to show
that in the case when Z(R) is an ideal of R, one has the same properties as in the
case of commutative rings.

Let us now suppose that R is an arbitrary commutative ring and Mn(R) is the
ring of square matrices of order n � 2 over the ring R. It is known that in this
case we have A ∈ Z(Mn(R)) if and only if det(A) ∈ Z(R) [9], so ZL(Mn(R)) =
ZR(Mn(R)) = Z(Mn(R)). Of course, this set is not an ideal of Mn(R). Let
A, B ∈ Mn(R) be arbitrary matrices. Then there exists a matrix C ∈ Mn(R)
such that A—C—B is a path in T (Γ(Mn(R))). Namely, for A = [A↓1, . . . , A↓n],
B = [B↓1, . . . , B↓n] (A↓j stands for the jth column of the matrix A) we choose
C = [−A↓1, −B↓2, 0, . . . , 0]. It is clear that (A + C)↓1 = 0, (C + B)↓2 = 0. So,
A + C, C + B ∈ Z(Mn(R)). Therefore we have the following theorem.

Theorem 3.7. Let R be a commutative ring. The total graph T (Γ(Mn(R))) is
connected and diam(T (Γ(Mn(R)))) = 2.
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