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Abstract. We give some inequalities relating the number of edges that two
graphs of the same order may have in common with their degree sequences
and their spectra. We then give some examples and related inequalities, and
present applications to independence number and coloration.

1. Introduction

We consider graphs (or directed graphs). Taking two of them with the same
number of vertices, we want to find how many common edges (or arcs) they may
have. In other words, any bijection between the two sets provide a set of common
edges, or arcs, and we want to compute its cardinality (that clearly may depend
on the bijection), or at least give bounds. A generalization comes to mind: with
weighted edges or arcs, how to bound the sum of the products of the weights on
common edges?

We indicate bounds from the degree sequences. Of course, since nonisomorphic
graphs with the same degree sequence exist, the bound may differ from the actual
value. We indicate some results from spectra. Of course, these results cannot say
everything, since there exist pairs of graphs with the same spectrum. We then
apply the results to give upper bounds on the independence number and lower
bounds on the chromatic number of a graph; these quantities have been related to
spectra by many authors.

Good bases on these questions can be found in Haemers [3], Godsil [2], Karger,
Motwani and Sudan [5] among many other works.

2. Inequalities

We give here some inequalities about finite real sequences.

Lemma 2.1. Let ai, 1 � i � n, and bi, 1 � i � n be two nondecreasing sequences
of real numbers. Then for any permutation σ of {1, . . . , n} we have
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∑
1�i�n

aibi �
∑

1�i�n

aibσ(i)

∑
1�i�n

min(ai, bi) �
∑

1�i�n

min(ai, bσ(i))

∑
1�i�n

aibn+1−i �
∑

1�i�n

aibσ(i)

Proof. If bσ(j) < bσ(i) and ai < aj , then aibσ(i) + ajbσ(j) < aibσ(j) + ajbσ(i)
and min(ai, bσ(i)) + min(aj , bσ(j)) � min(ai, bσ(j) + min(aj , bσ(i)). Thus the per-
mutation σ ◦ τ , where τ is the transposition swapping i and j gives two larger
sums than σ. Since any permutation is a product of transpositions, we see that the
maximum is obtained when σ is the identity. The last inequality is easily deduced
from the first one, using the sequences ai and −bi. �

3. Tools from degree sequences

We consider only simple graphs, without loops.
Clearly the number of common edges in graphs on n vertices with sizes m1 and

m2 is at most inf{m1, m2}, and at least sup
{

0, m1 + m2 − 1
2 n(n − 1)

}
, if the sets

of vertices are equal. But this does not take at all into account the structure of the
graphs. A step to the use of the structure is the consideration of degree sequences.

Proposition 3.1. Let G and H be two graphs with n vertices. If d1, d2, . . . , dn

is the (increasing) sequence of degrees of G and e1, e2, . . . , en the one of H, then
the number of common edges is at least 1

2
∑

1�i�n sup{0, di + en+1−i − (n − 1)} and
at most 1

2
∑

1�i�n inf{di, ei}.

Proof. If we label the vertices of G and those of H with the integers from 1
to n such that the degrees are increasing, and choose a bijection φ : V (G) → V (H)
between their sets of vertices, we obtain a table of pairs of degrees, say d(v) = dG(v)
and e(v) = dH(φ(v)). For each vertex v of G there are at most min(d(v), e(v)) com-
mon edges incident to vertex v. Thus there are at most 1

2
∑

v∈V (G) min(d(v), e(v))
edges in common.

According to Lemma 2.1, we see that the maximum number of common edges
is at most 1

2
∑

1�i�n inf{di, ei}.
To obtain the other bound, we may consider that the number of edges common

to G and H plus the number of edges common to G and the complement of H is
the number of edges of G. �

Clearly this technique does not distinguish graphs with the same degree se-
quences.

For the two graphs of Figure 1, there is at most 5 edges in common (not 6)
and at least 2 (this bound is the actual minimum).

Remark 3.1. The upper bound remains valid for graphs with multiple edges
and without loops.
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Figure 1. Two graphs with the same degree sequence 3, 3, 2, 2, 2

Similar bounds appear for directed graphs: the number of common arcs of two
directed graphs G, H with n vertices is at most

∑
1�i�n inf{d+

i , e+
i }, where d+

i and
e+

i are the out-degrees in G and H sorted in increasing order, and also at most∑
1�i�n inf{d−

i , e−
i } (in-degrees).

4. Tools from linear algebra

Our main remark is the following.

Proposition 4.1. Given two graphs G, H with the same set of n vertices,
and adjacency matrices AG and AH , the number of edges common to G and H is
1
2 tr(AGAH).

For directed graphs, the arc from i to j is represented by a 1 in position i, j.
The number of common arcs is then tr(A∗

GAH),

Proof. The entry ii of the product is just the number of edges common to G
and H and incident to vertex i.

A similar observation holds for the arcs of directed graphs. �
Therefore, any information on the trace coming from the spectra or other finer

invariants gives information on the number of common edges after a permutation
of the vertices. Our main tools will be the inequalities, that can be found in [4].

tr(A) is at most the sum of the singular values of A

the sum of the singular values of AB is at most
∑

1�i�n

aibi

where the ai’s and bi’s are the singular values of the matrices A and B written in
increasing order (with enough 0’s added in front).

We recall that the singular values of a real or complex matrix M (not necessarily
a square one) are the positive square roots of the eigenvalues of MM∗ (or M∗M as
well) where ∗ is the adjunction (transpose and conjugate). See [4, p. 154, eq. 3.1.10a]
and [4, p. 177, th. 3.3.14].

For a hermitian-symmetric matrix (in particular for a real symmetric matrix),
the singular values are the absolute values of its eigenvalues.

5. Using the tools

Since we are interested in the maximum and minimum traces of AP ∗BP , where
A and B are the adjacency matrices of two graphs (with the same sets of vertices)
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and P a permutation matrix, we relax the question with P being now an orthogonal
or unitary matrix such that the all-1 column Jn,1 is preserved, (i.e., P Jn,1 = Jn,1).

Therefore, we will change the base, with a first new vector collinear to Jn,1,
in other words, we replace A by A′ = Q∗AQ with Q an orthogonal matrix whose
first column is Jn,1/

√
n, and operate a similar replacement for B, and use now

instead of the orthogonal P a matrix with first row (1, 0, . . . . , 0) and first column
(1, 0, . . . , 0)∗, the remaining block of Q being an orthogonal or unitary matrix of
size (n − 1) × (n − 1).

The upper left entry of A′ is the average d̄ of the entries of A, the end of the
first column of A′′ satisfies:

∑n
i=2(a′

i,1)2 is the variance of the sums of entries in the
rows of A, that is to say the variance of the out-degrees d+

i of the graph represented
by A, that is v+ = 1

n

∑
1�i�n(d+

i )2 − d̄2. Similarly, the end of the first row of A′

satisfies:
∑n

i=2(a′
1,i)2 is the variance of the in-degrees d−

i .
Thus the trace of A∗B is the sum of four terms, namely

• the product of the average in-degrees (or out-degrees as well) of the graphs
• the scalar product of the ends of the two first columns, that is between√

v+(A)v+(B) and its opposite
• the scalar product of the ends of the first rows,of A′ and B′, that is

between
√

v−(A)v−(B) and its opposite
• the trace of (A′′)∗(B′′), that is between the sum of products of the singular

values of A′′ and B′′ taken in increasing order and its opposite, where A′′

and B′′ are the lower right blocks of size (n − 1) × (n − 1) of A′ and B′.

5.1. Example. Let A be the undirected path on three vertices with matrix
⎡
⎣

0 1 0
1 0 1
0 1 0

⎤
⎦

let us use the following orthogonal matrix P
⎡
⎣

1/
√

3 1/
√

2 1/
√

6
1/

√
3 0 −2/

√
6

1/
√

3 −1/
√

2 1/
√

6

⎤
⎦

Then A′ is the matrix ⎡
⎣

4/3 0 −√
2/3

0 0 0
−√

2/3 0 −4/3

⎤
⎦

The singular values of the lower right block are 0 and 4/3. Using S = 2/9 +
2/9 + 16/9, the number m of edges that this graph may share with a copy of
itself (obviously the actual possible values are 1 and 2 in this case) is bounded by
1
2 (16/9 − S) and 1

2 (16/9 + S), which evaluate to −0.22 and 2.

5.2. Example. The directed 4-circuit can be similarly treated with its adja-
cency matrix A, and the orthogonal matrix P
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A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ P =

⎡
⎢⎢⎣

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2

⎤
⎥⎥⎦

giving

P −1AP =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 −1
0 0 −1 0
0 1 0 0

⎤
⎥⎥⎦

The singular values of the lower right block are 1, 1, 1.
The star with 3 rays going out of the center gives similarly

A =

⎡
⎢⎢⎣

0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

and with the use of the same orthogonal matrix

P −1AP =

⎡
⎢⎢⎣

3/4 −1/4 −1/4 −1/4
3/4 −1/4 −1/4 −1/4
3/4 −1/4 −1/4 −1/4
3/4 −1/4 −1/4 −1/4

⎤
⎥⎥⎦

The lengths of the end of first row and column (i.e., the standard deviations of
the degrees) are

√
3/4 and 3

√
3/4, the singular values of the lower right block are

0, 0, 3/4.
Using S = 0 · √

3/4 + 0 · 3
√

3/4 + 1 · 0 + 1 · 0 + 1 · 3/4, the number of common
arcs is between 3/4 · 1 − S and 3/4 · 1 + S, these bounds are 0 and 3/2, and the
actual number is 1.

6. Optimization

The gap between the lower and upper bounds on the number of common edges
comes from the irregularity of degrees, and from the singular values of the lower
right block. One may thus try to reduce it by maneuvers that take into account
that the adjacency matrices have a null diagonal.

We may for example replace A by A + aI and B by B + bI, where a and b are
numbers, and I the identity matrix. The trace of (A+aI)∗(B+bI) is tr(A∗B)+a∗bn.

We may also add in one of the matrices (not both !) a diagonal with null trace;
if D is such a diagonal, then (A + aI + D)∗(B + bI) is again tr(A∗B) + a∗bn.

6.1. Example. Taking again the graph K1,2 of example 5.1, we replace A by
A + (2/3)I. The new matrix A′ is thus

⎡
⎣

4/3 + 2/3 0 −√
2/3

0 2/3 0
−√

2/3 0 −2/3

⎤
⎦ .
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The singular values of the lower right block are now 2/3, 2/3, and, setting S =
2/9 + 2/9 + 4/9 + 4/9 = 4/3, the number of common edges is now found to be
between 1

2 (2 · 2 − S − 4/3) and 1
2 (2 · 2 + S − 4/3), that is to say between 2/3 and 2.

6.2. Example. Taking again the digraphs of example 5.2, adding aI to the
matrix A of the circuit and bI to the matrix B of the star, and setting S = a1b1 +
a2b2+a3b3 we have to optimize (1+a)(3/4+b)−4ab+S and (1+a)(3/4+b)−4ab−S,
where the ai’s and bi’s are the singular values of

⎡
⎣

a 0 −1
0 a − 1 0
1 0 a

⎤
⎦ and

⎡
⎣

b − 1/4 −1/4 −1/4
−1/4 b − 1/4 −1/4
−1/4 −1/4 b − 1/4

⎤
⎦

in increasing order. Up to order the ai’s are
√

a2 + 1,
√

a2 + 1, |a − 1| and the bi’s
are |b|, |b|, |b − 3/4|. Hence the upper bound is minimized for a = 0, b = 0, and then
is 3/2, the lower bound is maximized for a = −∞, b = 3/4 and its value is then
3/4. These two bounds suffice to prove that the number of common arcs is 1.

6.3. A poor example. The graph is the directed star with 2 rays coming out
of the center and 1 ray in the other direction. The out-degrees are 2,1,0,0, with
average 3/4 and variance 11/16, and the in-degrees are 0,1,1,1, with average 3/4
and variance 3/16. We make an orthogonal change of basis with the first vector
collinear to Jn,1. The lower-right block has singular values 0, 3+

√
41

8 ,
√

41−3
8 . This

graph and a copy of itself have at most
( 3

4
)2+ 11

16 + 3
16 +

(3+
√

41
8

)2+
(√

41−3
8

)2 = 3 arcs
in common (this is good) and at least

( 3
4
)2 − 11

16 − 3
16 −( 3+

√
41

8
)2 −( √

41−3
8

)2 = −30
16

ones (this is not very informative), the actual minimum is 0.

7. Graphs

Here the adjacency matrices are symmetric. The singular values are thus the
absolute values of the eigenvalues. Thus, we can get without extra computations
the upper and lower bounds from the spectra.

Proposition 7.1. Let A and B be two symmetric real matrices with n rows
and columns, and null trace. The trace of A∗B is at most

∑
1�i�n λi(A)λi(B), and

at least
∑

1�i�n λi(A)λn+1−i(B), where the λi’s are the eigenvalues in increasing
order.

If moreover A and B admit Jn,1 as an eigenvector, with eigenvalues a and b we
have better bounds, namely tr(AB) � ab +

∑
1�i�n−1 λi(A′′)λi(B′′) and tr(AB) �

ab +
∑

1�i�n−1 λi(A′′)λn−i(B′′), where A′′ and B′′ are the restrictions of A and B
to the space orthogonal to Jn,1.

Proof. Let us add diagonals cI to A and B, with c a large real, such that
the eigenvalues of A + cI and B + cI are positive. Then tr(AB) + nc2 �

∑n
i=1(c +

λi(A))(c+λi(B)) = nc2 +
∑n

i=1 λi(A)λi(B), since the traces of cA and cB are null.
If we take apart the subspace of Rn generated by Jn,1 and its orthogonal sub-

space, the same trick as above is applied. �
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Table 1. Petersen graph and the complete bipartite Kd,10−d

degrees actual values bounds bounds with diagonal
1, 9 3, 3 1.8, 4.5 3, 3
2, 8 4, 6 3.2, 8 3.2, 8
3, 7 5, 9 4.2, 10.5 4.2, 10.5
4, 6 6, 12 4.8, 12 4.8, 12
5 5,11 5, 12.5 5, 12.5

We get a corollary

Proposition 7.2. Let G and H be two graphs, with adjacency matrices A
and B. The number of common edges is at most 1

2
∑n

n=1 λi(A)λi(B). If the graphs
are regular, then a lower bound is given by 1

2 λn(A)λn(B) +
∑n−1

i=1 λi(A)λn−i(B).

Using the separation of the space generated by Jn,1 and its orthogonal gives

Proposition 7.3. Let G and H be two graphs, with adjacency matrices A and
B. Let d̄(G) and d̄(H) their average degrees, v(G) and v(H) the variances of degrees
and A′′, B′′ the restrictions to the space orthogonal to Jn,1. Then the number of
common edges is at most 1

2
(
d̄(G)d̄(H) + 2

√
v(G)v(H) +

∑n−1
i=1 λi(A′′)λi(B′′)

)
and

at least 1
2
(
d̄(G)d̄(H) − 2

√
v(G)v(H) +

∑n−1
i=1 λi(A′′)λn−i(B′′)

)
.

7.1. Example. Petersen graph (with spectrum
{

(−2)[4], 1[5], 3
}

, where brack-
eted superscripts indicate multiplicities) and Kd,10−d (it has e = d(10−d) edges and
with spectrum {−√

e, 0[8],
√

e }) have at most 5
√

e/2 and at least −5
√

e/2 common
edges (quite uninteresting), but if d = 5 the regularity of K5,5 allows to increase
the lower bound to 5 edges.

The separation of the space generated by J10,1 and its orthogonal gives indeed
slightly better bounds. The restriction of the adjacency matrix of Kd,10−d has
spectrum {0[8], −2d(10 − d)/10}, this last eigenvalue is the opposite of the average
degree d̄; the variance is (d − 5)2/25, hence the bounds (3 − (−2))d̄ and (3 − 1)d̄
presented with actual values, in Table 1. This table also gives the results obtained
by adding a suitable diagonal of null trace to the adjacency matrix of Kd,10−d.

8. Independence number

We may examine a graph G (resp. with weighted edges) with n vertices and
the graph H with n vertices, made from a complete subgraph K of order t and
n − t isolated vertices. If the number (resp. the sum of weights) of edges common
to G and H is more than 0, then G has no independent set with t elements.

8.1. Example. The graph G is Petersen graph, it is regular, has spectrum
{(−2)[4], 1[5], 3}, and has 15 edges. The graph H , with n = 10, t = 5 has average
degree 2. Adding on the diagonal 1

2 for the 5 vertices in K and −1
2 for the other 5

vertices to its adjacency matrix gives the spectrum {(−1/2)[8], 2} for the restriction.
This, provide a lower bound for the number of common edges that is 5/4. Thus
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Petersen graph has its independence number at most 4 (it is well known that its
independence number is 4) and every induced subgraph on 5 vertices has at least
2 edges (this is the actual value).

8.2. Example. The same technique almost proves that the Petersen graph
has not two disjoint independent subsets on 4 vertices.

The average degree of a graph H on 10 vertices, made from 2 disjoint 4-cliques
and 2 isolated vertices is 2.4. Adding to its diagonal a for vertices in the two cliques
and −4a for the other two vertices gives a restriction with spectrum (up to order)
{(a−1)[6], −4a, a+3, −3a+0.6}, the lower bound for the number of edges common
to H and the Petersen graph is 0 for 0.2 � a � 0.4.

This means that the eigenvector of H , with coordinates −1, 1, 0[8] associated
to the eigenvalue 4a should be in the eigenspace of the Petersen graph associated
to eigenvalue 1, and this is not the case.

Thus looking more closely at the eigenspaces (not only the eigenvalues) com-
pletes the proof.

9. Coloration

To color properly a graph G with at most k colors c1, c2, . . . , ck occurring
n1, n2, . . . , nk times (with n1 + n2 + · · · + nk = n) is the same thing as to find
a subgraph isomorphic to G in the graph obtained from Kk by multiplicating its
vertices n1, n2, . . . , nk times, that is to say Kn1,n2,...,nk

; it also means that it is
possible to find a graph Kn1 ∪ Kn2 ∪ · · · ∪ Knk

with no edge in common with G,
while sharing its n vertices.

Thus to show that a graph G has chromatic number larger than t, it suffices
for each partition of n in t parts, say n = n1, n2, . . . , nt to check that Kn1,n2,...,nt

and G have less edges in common than the number of edges of G. It can be done
also by checking that the disjoint union of complete graphs Kn1 , Kn2 , . . . , Knt ,
with the same vertices as G has at least one edge in common with G.

9.1. Example. The graph Kd,n−d has spectrum {−u, 0[n−2], u}, where the
eigenvalue u is

√
d(n − d. Hence a graph G of order n with 1

2

√
d(n − d)(λn(G) −

λ1(G)) < |E(G)| (where |E(G)| is the number of the edges of G) for each value of
d from 1 to �n/2� cannot be bipartite (clearly the inequality for d = �n/2� is the
strongest one). This happens for example for the Petersen graph, where n = 10,
λ1 = −2, λ10 = 3.

Of course, this could be improved a bit with the mechanism involving Jn,1, the
average degree is d̄ = 2

n d(n − d) and the variance of degrees is 1
n2 (n − d)d(n − 2d)2

and the spectrum of the restriction to the orthogonal of Jn,1 is {0[n−2], −d̄}.

9.2. Example. We prove that the circulant graph G8 where the vertices are
labeled with the elements of Z/8Z, each vertex x being adjacent to x ± 1 and
x ± 2, cannot be colored with 3 colors. The graph is 4-regular, it has 16 edges,
its spectrum is

{
(−2)[2], (−√

2)[2], 0,
√

2[2]
, 4

}
. See Figure 2. The graph H , that is

Kn1,n2,n3 with n1 +n2 +n3 = 8 and gives (with just the separation of J8,1) bounds,
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Table 2. Cutting 8 into 3 positive integers

[3, 3, 2] 15.75 [3, 4, 1] 14.25 [2, 4, 2] 15
[2, 5, 1] 12.75 [1, 6, 1] 9.75

1 1 1 1

aa
3–a3–a

3–a 3–a

2a–2

a=1+√⎯2/2

Figure 2. Three graphs with χ > 3

Table 3. Cutting 7 into 3 positive integers

G7 G7a G7 G7a

[3, 3, 1] 18.625 26.110 [3, 2, 2] 19.867 27.504
[2, 4, 1] 17.384 24.345 [1, 5, 1] 13.658 19.115

all smaller than 16, on the number of properly colored edges, (Table 2) so that the
graph is not 3-colorable.

9.3. Example. The same simple technique is not sufficient for the circulant
graph G7, where the vertices are labeled with the elements of Z/7Z, each vertex
x being adjacent to x ± 1 and x ± 2. The graph is 4-regular, it has 14 edges, its
spectrum is

{
(−2.2)[2], −(−0.55)[2], 0.80[2], 4

}
, and the combination 7 = 3 + 2 + 2

gives average degree 32/7, and eigenvalues of restriction {−2.6, −2, 0[3], 4.6}, and
we see 1

2 (4 · 4.6 + (−2.2)(−2.6 − 2)) > 14. However, one can check that replacing
the edges by weighted edges (weight 1 for the edges {x, x + 2} and 2 for the edges
{x, x + 1}) we get a regular graph. See Figure 2.

Its spectrum is
{

(−2.69)[2], (−2.35)[2], 2.04[2], 6
}

. It appears that the total
weight of edges inside Kn1,n2,n3 with n1 + n2 + n3 = 7 is less than the total weight
(namely 21) of the edges of G (see Table 3).

Thus the graph is not 3-colorable.

9.4. Example. Giving the indicated weights to the 11 edges the graph on 7
vertices (Figure 2) we have the spectrum {−.2.257, (−1.707)[3], 0.828, 2.55, 4}, hence
the upper bounds in Table 3. Since they are all < 28, the graph has its chromatic
number at least 4. By the way, it is a subgraph of the preceding graph G7.

10. Morphisms

Finding a morphism from a graph G to a graph H is embedding the graph G
in a graph derived from H by multiplying some vertices by numbers that represent
the cardinality of the fibres.
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Figure 3. Two multiples of C5

Table 4. Possible types of surjection and the resulting upper bounds

[2, 2, 2, 2, 2] 13.70 [3, 2, 2, 2, 1] 13.28 [3, 2, 2, 1, 2] 13.56
[3, 3, 2, 1, 1] 13.85 [3, 3, 1, 2, 1] 13.70 [3, 1, 3, 1, 2] 12.06
[3, 2, 3, 1, 1] 12.93 [4, 3, 1, 1, 1] 13.81 [4, 1, 3, 1, 1] 11.24
[4, 2, 2, 1, 1] 13.07 [4, 2, 1, 1, 2] 13.81 [4, 2, 1, 2, 1] 13.13
[4, 1, 2, 2, 1] 11.75
[5, 2, 1, 1, 1] 13.04 [5, 1, 2, 1, 1] 11.41 [6, 1, 1, 1, 1] 11.44

10.1. Example. The Petersen graph has spectrum
{

(−2)[4], 1[5], 3
}

.
Let us show first that it has no morphism towards C5 with all fibres of cardi-

nality 2. The multiplied graph obtained from C5 has eigenvalues 0 (5 times) and
the doubles of the eigenvalues of C5. We thus have the majoration of the number
of common edges m � 1

2 (−2 · 4 · c2 − 2 · 4 · c2 + 1 · 4 · c1 + 1 · 4 · c1 + 3 · 4), where
c1 = cos 2π

5 and c2 = cos 4π
5 , that is m � 13.71 < 15. Figure 3 shows the graphs

derived from C5 by multiplication by [2, 2, 2, 2, 2] and [4, 1, 2, 2, 1].
Up to symmetry of C5, there are 16 kinds of surjective mappings to C5, none of

them is a morphism (see table 4), and the nonsurjective ones cannot be morphisms,
since the Petersen graph has no morphism to a bipartite graph.

Of course, since the independence number of the Petersen graph is 4, the last
line of Table 4 was not useful.

11. Relaxation of morphisms

In order to avoid a lengthy enumeration of cases, one could replace morphisms
from a graph G to a graph H on k vertices and the comparison of G to the various
graphs H ′ by the comparison between the matrix A of G and P ∗BP , where B is
the adjacency matrix of H and P is a matrix with n columns and k rows, such that
the columns are orthogonal and the sum of squares of the entries in each row is 1.
The usual morphisms correspond to the matrices of that kind, with furthermore
entries 1 or 0 only.

However, the search for extrema is not made easier, because the function ob-
tained has in general no convexity with respect to the sums of squares in the rows
of P .
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Table 5. Bounds for well-colored edges in K3,3

p, q 0, 0 1, 1 1.5, 1.5 2, 2 2.5, 2.5 3, 3 1, 2
without 0 8.61 9.27 9 9.46 9 9.37

with 0 7.5 9 9 9.37 9 9.15
actual maximum 0 6 8 9 9

11.1. Example. The coloration of G of order n with 3 colors can be ap-
proached by the comparison of G and a matrix P ∗BP whose n eigenvalues are the
solutions of s3 − (pq + qr + pr)s − 2pqr with p + q + r = n, and n − 3 times 0, thus
μn > 0, μ1 � μ2 � 0 and μ1 + μ2 + μn = 0

But the bound made from a sum of products of sorted eigenvalues, that we
have already used, is not convex in general with respect to the values p, q, r.

Indeed for G isomorphic to the K3,3, (spectrum {−3, 0[4], 3}), we have the upper
bounds of the maximum number of properly colored edges with p, q, r = 6 − p − q
(with or without separation) and the actual values (for p, q, r integers of course) in
Table 5.

12. Test for the k-colorability

We have however a positive result for k-colorability.

Proposition 12.1. If the k − 1 smallest eigenvalues λ1(G), . . . , λk(G) of G

are equal and (k−1)n
2k (λn − λ1) is less than the number of edges of G (or the sum of

their weights, if they bear positive weights), then G is not k-colorable.

This will be a consequence of the lemma

Lemma 12.1. Let F be the product of the diagonal matrix diag(p1, p2, . . . , pk),
where the pi’s are positive, and the matrix Jk,k − Ik. Then F has 1 positive and
k − 1 negative eigenvalues, and the maximal value is at most k−1

k

∑k
i=1 pi, and at

least the geometric mean of the pi’s, with equality if the pi’s are all equal,

Proof. The characteristic polynomial of F is P (X) = Xk −∑k−1
i=1 Xk−it(i)σi,

where σi is the elementary symmetric polynomial in the pi’s, and t(i) the difference
(with appropriate sign) of the number of even and odd derangements of i elements.
For example t(2) = 1 since there is one odd and no even derangement, t(3) = 2
since there are two even and no odd derangement, t(4) = 3 (6 odd and 3 even
derangements) and so on.

Clearly, if all pi’s are equal to p, then P (X) = (X − (k − 1)p)(X + p)k−1. Since
σi is then

(
k
i

)
pi, it can be seen that t(i) = i − 1, since the coefficient of Xk−i is

pi
(

k−1
k−i

) − (k − 1)
(

k−1
k−i−1

)
= (i − 1)

(
k

k−i

)
.

Now the pi’s are all positive. If pi and pj , with pi 	= pj are both replaced by (pi+
pj)/2, each σi increases except for σ1 that is unchanged, and P (k−1

k σ1) decreases.
Since it is null if the pi’s are all equal, it is positive in the other case. We observe
that the matrix F is similar to diag(√p1, . . . ,

√
pk)(Jk,k − Ik) diag(√p1, . . . ,

√
pk),
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and has therefore k − 1 negative and one positive eigenvalue. Thus the highest
eigenvalue of P is at most k−1

k σ1.
On the other hand, the inequality between arithmetic and geometric means

implies σi �
(

k
i

)
gi, and thus P ((k − 1)g) � 0, and the highest root of P is at

least g. �
By the way, the Rayleigh principle gives other lower bounds for this positive

eigenvalue, one is 2
k

∑
1�i<j�k

√
pipj (higher than g because of the inequality be-

tween arithmetic and geometric mean), and another one is 2σ2/σ1 (i.e., the average
degree of Kp1,...,pk

) that is sometimes above and sometimes below 2
k

∑
1�i<j�k

√
pipj .

One may note that
∑

1�i�n λiμi � λnμn + λ1(μ1 + · · · μk−1) = (λn − λ1)μn �
(λn − λ1) (k−1)n

k , hence a (weaker) lower bound for the chromatic number χ of G,
namely χ � λn−λ1

λn−λ1−d̄
, where d̄ is the average degree of G. If G is regular, this is

just χ � 1 − λn

λ1
.

This result is not far from the ones cited by Haemers [3, p. 22] (where eigenval-
ues are sorted in decreasing order). But our result provides a lower bound on the
number (or sum of weights) of edges that one should remove to get a k-colorable
graph.

12.1. Example. For the graph of section 9.3 with 7 vertices and 14 weighted
edges, whose sum of weights is 21, we have λ1 = λ2 = −2.69 and λ7 = 6, the bound
is 7

3 (6+2.69) = 20.27 < 21 and this suffices to see that the graph is not 3-colorable.

13. Conclusion

We have proposed some techniques from degree sequences and from spectra,
but of course not everything can be obtained from these methods, since there exist
pairs of cospectral regular graphs, like the Shrikhande graph and the cartesian
sum K4 × K4, both regular of degree 6 and spectrum

{
(−2)[9], 2[6], 6

}
. Besides

the presence of K4 (only in the second one), or the structure of neighbourhoods of
vertices (C6 and K3 ∪K3 respectively) they can be distinguished by their chip-firing
group: see [1].
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