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ALGEBRO-GEOMETRIC APPROACH

TO THE YANG–BAXTER EQUATION

AND RELATED TOPICS

Vladimir Dragović

Abstract. We review the results of algebro-geometric approach to 4× 4 so-
lutions of the Yang–Baxter equation. We emphasis some further geometric
properties, connected with the double-reflection theorem, the Poncelet porism
and the Euler–Chasles correspondence. We present a list of classifications in
Mathematical Physics with a similar geometric background, related to pencils

of conics. In the conclusion, we introduce a notion of discriminantly factoriz-
able polynomials as a result of a computational experiment with elementary
n-valued groups.

1. Introduction

The aim of this paper is to present a circle of questions which arise in con-
temporary Mathematical Physics and Mechanics, in quite different contexts, but,
as we observe, they all share the same geometric background. The central sub-
ject of our presentation is the Yang–Baxter equation, one of the main objects in
Quantum inverse scattering method (see [33]) and in exactly solvable models in
Lattice Statistical Mechanics (see [4]). The approach we follow here is an algebro-
geometric one, and it goes back 30 years in the past, to a paper of Krichever [29].
The classification of so-called rank one solutions in the first nontrivial case of 4× 4
matrices has been performed there, for the case of general position. Later, it has
been completed in works of the author, [13], [15].

Here, we want to emphasis geometric ideas, which lie behind that classification,
and which lead us to the Euler–Chasles correspondence and to the study of pencils
of conics.

We notice a similar situation in two more recent subjects: in the classification
of integrable quad-graphs by Adler, Bobenko and Suris, see [2], and a new classi-
fication of discriminantly separable polynomials of degree two in each of the three
variables from [22].
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Yet another, fourth case, goes more in the past, to 1954: this is the well-known
Petrov classification (see [31], [32]) in the study of exact solutions of Einstein’s
field equations. Mathematically, it describes the possible algebraic symmetries of
the Weyl tensor at a point in a Lorentzian manifold. A relationship between the
Petrov classification and the pencils of conics has been elaborated in [9]. The
Penrose diagram (see [30], and the diagrams (8.1) and (8.3) below) is a simple but
effective illustration of the Petrov classification.

The Penrose type scheme (see (8.1) and (8.3)) may serve as a perfect light motif
for all four stories of modern Mathematical Physics, we are going to talk about.

We conclude the paper with a piece of Experimental Mathematics. A general
case of discriminantly separable polynomials has one more interpretation in terms
of 2-valued groups associated with elliptic curves (see [19], [22]). In [19] it has
been shown that an elementary 2-valued group p2 from [6] also has discriminant
separability property. In the last section we examine, as a simple computational
experiment, the discriminants of higher elementary n-valued groups. It appears
that the discriminants are not separable any more, but they are still factorizable. We
hope to reach a better understanding of this interesting phenomena, and possibly
find some dynamical applications.

2. The Euler–Chasles correspondence. Baxter’s R-matrix

Symmetric (2− 2)-correspondences, of the form

(2.1) E : ax2y2 + b(x2y + xy2) + c(x2 + y2) + 2dxy + e(x+ y) + f = 0

play an important role in geometry, especially in connection with classical theorems
of Poncelet and Darboux, as well as in the theory of ordinary differential equations,
and addition theorems. The first crucial step in the understanding of the last
relation in later contexts goes back to Euler, while the geometric part is associated
to Chasles and Darboux.

In 1766 Euler proved the following theorem, as the starting point of the addition
theory for elliptic functions.

Theorem 2.1 (Euler 1766). For the general symmetric (2− 2)-correspondence
(2.1) there exists an even elliptic function φ of the second degree and a constant

shift c such that u = φ(z), v = φ(z ± c).

Thus, the usual name for relation (2.1) is the Euler–Chasles correspondence.
In the modern science, the Euler–Chasles correspondence occupies an impor-

tant place in a yet another context related to statistical and quantum mechanics.
It has been a cornerstone in a remarkable book of Baxter (see [4, p. 471]).

The aim of this paper is to elaborate connections between these various ideas
coming from geometry, classical mechanics and statistical and quantum mechanics.
It parallels and develops the ideas we presented in our book [23].

Baxter derived an elliptic parametrization of a symmetric biquadratic in his
book, by reproving the Euler theorem. By using a projective Möbius transformation
both on x and y, the given biquadratic reduces to the canonical form

x2y2 + c1(x
2 + y2) + 2d1xy + 1 = 0.
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The last quadratic equation in x can be solved:

y = −dx±
√

−c1 + (d21 − 1− c21)x
2 − c1x4

c1 + x2
.

The square root is a polynomial of fourth degree in x, which can be transformed
to a perfect square by use of Jacobian elliptic functions. In the change of variables
x = k1/2 snu, the modulus k satisfies k + k−1 = (d21 − c21 − 1)/c1. Well-known
identities of the Jacobian functions and the addition formula for sn(u− v) are used
to transform the argument of the discriminant

−c1(1− (k + k−1)x2 + x4) = −c1(1− sn2 u)(1− k2 sn2 u) = −c cn2 u · dnu.
Taking a parameter η such that c1 = −1/k sn2 η, one gets d1 = cn η dn η/(k sn2 η)
and finally, the formula for y:

y = k1/2
snu · cn η · dn η ± sn η · cnu · dnu

1− k2 sn2 u · sn2 η = k1/2 sn(u± η).

Baxter comes to a parametrization of the canonical form of a biquadratic:

x = k1/2 snu, y = k1/2 sn v,

where v = u− η or v = u+ η. The final form of parametrization:

x = φ(u), y = φ(u± η)

with an elliptic function φ, is obtained from the Jacobian sn function by use of the
projective transformations.

Baxter came along this way to his celebrated R-matrix, which played a crucial
role in his solutions of the XY Z and the Eight Vertex Model. The Baxter R-matrix
is a 4× 4 matrix Rb(t, h) of the form

(2.2) Rb(t, h) =









a 0 0 d
0 b c 0
0 c b 0
d 0 0 a









,

where a = sn(t + 2h), b = sn t, c = sn2h, d = k sn 2h · sn t · sn(t + 2h). It is a
solution of the Yang–Baxter equation

R12(t1 − t2, h)R
13(t1, h)R

23(t2, h) = R23(t2, h)(R
13(t1, h)R

12(t1 − t2, h).

Here t is the so called spectral parameter and h is the Planck constant. Here we
assume that R(t, h) is a linear operator from V ⊗ V to V ⊗ V and

Rij(t, h) : V ⊗ V ⊗ V → V ⊗ V ⊗ V

is an operator acting on the i-th and j-th components as R(t, h) and as identity
on the third component. For example R12(t, h) = R ⊗ Id. In the first nontrivial
case, the matrix R(t, h) is 4× 4 and the space V is two-dimensional. Even in this
case, the quantum Yang–Baxter equation is highly nontrivial. It represents strongly
over-determined system of 64 third degree equations on 16 unknown functions. It
is not obvious at all why the solutions exist.



28 DRAGOVIĆ

The Yang–Baxter equation is a paradigm of a modern addition formula, and it
is a landmark of Mathematical Physics in the last 25 years.

If the h dependence satisfies the quasi-classical property R = I + hr + O(h2),
then the classical r-matrix r = r(t) satisfies the co-called classical Yang–Baxter

equation. Classification of the solutions of the classical Yang–Baxter equation was
done by Belavin and Drinfeld in 1982. The problem of classification of the quantum
R matrices is still unsolved. However, some classification results have been obtained
in the basic 4×4 case by Krichever (see [29]) and following his ideas in [13, 14, 15].
Before we pass to the exposition of Krichever’s ideas, let us briefly recall the basic
definitions of the Heisenberg XY Z model, and the double reflection theorem.

3. Heisenberg quantum feromagnetic model

The Heisenberg ferromagnetic model [27] is defined by its Hamiltonian

H = −
N
∑

i=1

(

Xσx
i+1σ

x
i + Y σy

i+1σ
y
i + Zσz

i+1σ
z
i

)

,

where the operator H maps V ⊗N to V ⊗N , V = C2 and σx
i denotes the operator

which acts as the Pauli matrix on i-th V and as the identity on the other com-
ponents. Following Heisenberg’s definition of the model in 1928, Bethe solved the
simplest case X = Y = Z in 1931. The next step was done by Yang in 1967 by
solving the XXZ case, obtained by putting X = Y . The final step was done by
Baxter, who solved the general XY Z problem in 1971 (see [4]).

Both, Yang and Baxter exploited the connection with statistical mechanics on
the plane lattice. The first one used the six-vertex model and the second one the
eight-vertex model. Denote by L and L′ local transition matrices

L,L′ : W ⊗ V → W ⊗ V,

and by R a solution of the Yang–Baxter equation acting on V ⊗ V . The key role
is played by the matrix R. In Yang case, that was Ry, the XXZ-R matrix of the
form

Ry(t, h) =









a 0 0 0
0 b c 0
0 c b 0
0 0 0 a









,

where a, b, c are trigonometrical functions obtained when k tends to 0 from corre-
sponding functions in the Baxter matrix (see equation (2.2)).

The fundamental point, in both Yang’s and Baxter’s approaches, was the rela-
tion between two tensors Λ1 and Λ2 in W ⊗ V ⊗ V , which we are going to call the
Yang equation:

(3.1) Λ1 = Λ2,

where

(3.2)
Λ1 = Λijα

1pqβ = L′kγ
pβ Llα

qγR
ij
kl

Λ2 = Λijα
2pqβ = Rkl

pqL
iγ
kβL

′jα
lγ .
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We assume summation over repeated indices and we use the convention that Latin
indices indicate the space V , while the Greek ones are reserved for W . In the
simplest case, when W and V are two-dimensional, the Yang equation is again
overdetermined system of 64 equations of degree three in 48 unknowns.

Denote by T =
∏N

n=1 Ln, where Ln : W⊗N ⊗ V → W⊗N ⊗ V , acts as L on
the n-th W and V and as identity otherwise. From the Yang equation (3.1, 3.2) it
follows R(T ⊗ T ′) = (T ′ ⊗ T )R. Therefore, all the operators trV T commute. The
connection between the Heisenberg model and the vertex models mentioned above
lies in the fact that the Hamiltonian operator H commutes with all the operators
trV T . Thus, they have the same eigenvectors.

The Algebraic Bethe Ansatz (ABA) is a method of a formal construction of
those eigenvectors. There is a very nice presentation of the Algebraic Bethe Ansatz
in the work of Takhtadzhyan and Faddeev (see [33]). Starting with matrices Ry

and Rb they found vectors X,Y, U, V which satisfy the relation

(3.3) RX ⊗ U = Y ⊗ V.

They calculated the vectors X,Y, U, V in terms of theta-functions, and using com-
putational machinery of theta-functions, they produced the eigenvectors of the
Heisenberg model.

We are going to present here a sort of converse approach to the Algebraic Bethe
Ansatz, see [16] and references therein. Our presentation of the Algebraic Bethe
Ansatz applies uniformly to all 4 × 4 solutions of rank 1 of the Yang equation.
It does not involve computations with theta functions, but uses geometry of the
Euler–Chasles correspondence. It can be interpreted, as we are going to show in the
next section, in terms of the billiard dynamics within ellipses and of the Poncelet
geometry, see also [23].

4. Double reflection configuration

In this section, following [12], see also [23], we introduce a fundamental projec-
tive geometry configuration of double reflection in d-dimensional projective space
over an arbitrary field of characteristic not equal to 2.

We assume a pencil of quadrics to be given.
First, we define a notion of reflection projectively, without metrics.
Let Q1 and Q2 be two quadrics, from the given pencil, or in other words,

defining a pencil. Denote by u the tangent plane to Q1 at point x and by z the
pole of u with respect to Q2. Suppose lines l1 and l2 intersect at x, and the plane
containing these two lines meet u along l.

Definition 4.1. If lines l1, l2, xz, l are coplanar and harmonically conjugated,
we say that rays l1 and l2 obey the reflection law at the point x of the quadric Q1

with respect to the confocal system which contains Q1 and Q2.

If we introduce a coordinate system in which quadrics Q1 and Q2 are confocal
in the usual sense, reflection defined in this way is the same as the standard, metric
one.
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Theorem 4.1 (One Reflection Theorem). Suppose rays l1 and l2 obey the re-

flection law at x of Q1 with respect to the confocal system determined by quadrics

Q1 and Q2. Let l1 intersects Q2 at y′1 and y1, u is a tangent plane to Q1 at x, and z
its pole with respect to Q2. Then lines y′1z and y1z respectively contain intersecting

points y′2 and y2 of ray l2 with Q2. The converse is also true.

Corollary 4.1. Let rays l1 and l2 obey the reflection law of Q1 with respect

to the confocal system determined by quadrics Q1 and Q2. Then l1 is tangent to

Q2 if and only if is tangent l2 to Q2; l1 intersects Q2 at two points if and only if

l2 intersects Q2 at two points.

The next assertion is crucial for our further considerations.

Theorem 4.2 (Double Reflection Theorem). Suppose that Q1, Q2 are given

quadrics and l1 line intersecting Q1 at the point x1 and Q2 at y1. Let u1, v1 be

tangent planes to Q1, Q2 at points x1, y1 respectively, and z1, w1 their with respect

to Q2 and Q1. Denote by x2 second intersecting point of the line w1x1 with Q1, by

y2 intersection of y1z1 with Q2 and by l2, l
′
1, l

′
2 lines x1y2, y1x2, x2y2. Then pairs

l1, l2; l1, l
′
1; l2, l

′
2; l

′
1, l

′
2 obey the reflection law at points x1 (of Q1), y1 (of Q2), y2

(of Q2), x2 (of Q1) respectively.

Corollary 4.2. If the line l1 is tangent to quadric Q′ confocal with Q1 and

Q2, then rays l2, l
′
1, l

′
2 also touch Q′.

Now, we give a definition of a certain configuration which is going to play a
central role in the paper. It is connected with so-called real and virtual reflections,
but its properties remain in the projective case, too.

Let points X1, X2; Y1, Y2 belong to quadrics Q1, Q2 in Pd.

Definition 4.2. We will say that the quadruple of points X1, X2, Y1, Y2 con-
stitutes a virtual reflection configuration if pairs of lines X1Y1, X1Y2; X2Y1, X2Y2;
X1Y1, X2Y1; X1Y2, X2Y2 satisfy the reflection law at points X1, X2 of Q1 and Y1,
Y2 of Q2 respectively, with respect to the confocal system determined by Q1 and
Q2.

If, additionally, the tangent planes to Q1,Q2 at X1, X2; Y1, Y2 belong to a
pencil, we say that these points constitute a double reflection configuration.

Let us also recall the classical notion of the Darboux coordinates in a projective
plane.

Definition 4.3. Given a conic K in the plane, with a fixed rational parametr-
ization. For a given point P in the plane, there are two tangents from P to the
conic K. Denote the values of the rational parameter of the two points of tangency
of the tangent lines with the conic K by (x1, x2). Then, we call the pair (x1, x2)
the Darboux coordinates of the point P associated with the parametrized conic K.

Using the Darboux coordinates, we can visualize the Euler–Chasles correspon-
dence (2.1) by the Figure 1.

This connects the Euler–Chasles correspondence with a billiard dynamic within
a conic. In such a dynamics, for a given billiard trajectory, there is always a caustic,
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Figure 1. The Euler–Chasles correspondence

an additional “internal” conic, such that each segment of the trajectory, or a line
supporting it, is tangent to the caustic. This caustic plays a role of the conic K in
the definition of the Darboux coordinates.

In a case where caustic and the boundary are two confocal conics in an Eu-
clidean plane, then the associated billiard dynamics is the classical one, where the
angles of impact and reflection are equal.

For a relationship between the Euler–Chasles correspondence and 2-valued
group action, see [8] and [19].

Given a pencil of conics in a projective plane, and four conics from the pencil
K,C,C1, C2. If there is a triangle with sides tangent to K with vertices on C, C1

and C2, then, according to a general Poncelet theorem (see [5], [23]), there are
infinitely many such triangles. We will call such triangles Poncelet triangles. We
recall that by applying the double reflection theorem, one passes from one Poncelet
triangle, to another one.

5. Krichever’s algebro-geometric approach

Our, converse approach to the Algebraic Bethe Ansatz is based on ideas of
Krichever (see [29]), on his classification of rank 1 4 × 4 solutions of the Yang
equation in general situation and on classification of remaining cases, developed in
[13, 14, 15]. Then, we connect these ideas with projective-geometry constructions
from the previous Section.

5.1. Vacuum vectors and vacuum curves. Having in mind Baxter’s con-
siderations leading to the discovery of the Baxter R matrix and Faddeev–Takhta-
dzhyan study of the vectors of the form given by the equation (3.3), Krichever in
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[29] suggested a sort of inverse approach, following the best traditions of the theory
of the “finte-gap” integration (see [25]).

Krichever’s method is based on the vacuum vector representation of an arbi-
trary 2n× 2n matrix L. Such a matrix is understood as a 2× 2 matrix with blocks
of n×n matrices. In other words, L = Liα

jβ is a linear operator in the tensor product

Cn ⊗ C2. The vacuum vectors X,Y, U, V satisfy, by definition, the relation

LX ⊗ U = hY ⊗ V,

or in coordinates
Liα
jβXiUα = hYjVβ ,

where we assume now that the Latin indices run from 1 to n while the Greek ones
from 1 to 2. We assume additionally the following convention for affine notation

Xn = Yn = U2 = V2 = 1, U1 = u, V1 = v, and Ṽ = (1 − v).

The vacuum vectors are parametrized by the vacuum curve ΓL, which is defined
by the affine equation

ΓL : PL(u, v) = det(Li
j) = det(V βLiα

jβUα) = 0.

The polynomial PL(u, v), called the spectral polynomial of the matrix L is of degree
n in each variable. In general position, the genus of the curve ΓL is equal g =
g(ΓL) = (n − 1)2 and Krichever proved that X understood as a meromorphic
function on ΓL is of degree N = g + n− 1. And, following ideology of “finite-gap”
integration, Krichever proved the converse statement.

Theorem 5.1 (Krichever, [29]). In the general position, the operator L is

determined uniquely up to a constant factor by its spectral polynomial and by the

meromorphic vector-functions X and Y on the vacuum curve with pole divisors DX

and DY of degree n(n− 1) which satisfy DX +DU ∼ DY +DV .

5.2. General rank 1 solutions in (4 × 4) case. Now we specialize to the
basic 4 × 4 case. The question is to describe analytical conditions, vacuum curves
and vacuum vectors of three 4×4 matrices R, L and L′ in order to satisfy the Yang
equation, see equations (3.1, 3.2).

Denote by P = P (u, v) and P1 = P1(u, v) the spectral polynomial of given
4 × 4 matrices L and L′. They are polynomials of degree 2 in each variable and
they define the vacuum curves Γ = ΓL : P (u, v) = 0 and Γ1 = ΓL′ : P1(u, v) = 0.
The vacuum curves are of genus not greater than 1.

Let us make one general observation concerning vacuum curves in 4×4 case. As
one can easily see, each of them can naturally be understood as the intersection of
two quadrics in P3. The first one is the Segre quadric, seen as embedding of P1×P1

represented by Y ⊗V . The second one is the image of the Segre quadric represented
by X ⊗ U by a linear map, induced by the linear operator under consideration.

In this subsection, following Krichever, we are going to consider only the general
case, when those curves are elliptic ones. Thus, we have

(5.1)
L(X(u, v)⊗ U) = h(u, v)(Y (u, v)⊗ V ),

L′(X(u1, v1)⊗ U1) = h1(u
1, v1)(Y 1(u, v)⊗ V 1).
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Each of the tensors Λi which represents one of the sides of the Yang equation (see
equations (3.1,3.2), is by itself a 2 × 2 matrix of blocks of 4 × 4 matrices. Denote
corresponding spectral polynomials of degree four in each variable asQ1 andQ2 and
the vacuum curves as Γ̂1 and Γ̂2. Krichever’s crucial observation is the following

Theorem 5.2 (Krichever). If 4×4 matrices L,L′, R satisfy the Yang equation,

then (2− 2) relations defined by the polynomials P and P1 commute.

From our experience with Euler–Chasles correspondences, we know that com-
position of two commuting ones is reducible. Although, we haven’t considered
symmetry of spectral polynomials yet, the same can be proven for their composi-
tion.

Lemma 5.1. [29] The polynomial Q(u,w) = Q1(u,w) = Q2(u,w) is reducible.

If the spectral polynomial Q is a perfect square, then the triplet (R,L, L′) of
solutions of the Yang equation is of rank two. Otherwise, it is a solution of rank 1.

In this subsection we proceed to consider rank 1 solutions. Let us consider the
elliptic component Γ̂′ of the vacuum curve Γ̂ of the matrix Λ which contains pairs
(u,w1) and (u,w4), using terminology of the proof of the last lemma. The curve Γ̂′

is isomorphic to the vacuum curves Γ and Γ1 and using uniformizing parameter x
of the elliptic curve.

Denote by (u(z), w(z)), (u(z), v(z)) and (u(z), v̂(z)) parametrizations of the

curves Γ̂′, Γ and Γ1 respectively. Taking into account that (v(z), w(z)) also para-
metrizes Γ1, we get

Proposition 5.1. There exist shifts η and η1 on the elliptic curve, such that

v(z) = u(z − η), v̂(z) = u(z − η1).

From the equations (5.1) now we have

(5.2)

R(X(z − η1)⊗X1(z)) = g(z)(X1(z − η)⊗X(z)),

Y (z) = X(z − η2),

Y 1(z) = X1(z − η2),

L(X(z)⊗ U(z)) = h(z)(X(z + η2)⊗ U(z − η)),

L1(X1(z)⊗ U(z)) = h1(z)(X1(z + η2)⊗ U(z − η1)),

where η2 is a shift, which, as well as the shift η1, differs from η by a half-period of
the elliptic curve.

If we denote by GX , GX1 , GU arbitrary invertible (2 × 2) matrices, then they
define a weak gauge transformations which transform a triplet (R,L, L1) solution

of the Yang equation to a triplet (R̃, L̃, L̃1) by the formulae

L̃ = (GX ⊗GU )L(G
−1
X ⊗G−1

U ),

L̃1 = (GX1 ⊗GU )L1(G
−1
X1 ⊗G−1

U ),

R̃ = (GX1 ⊗GX)R(G−1
X ⊗G−1

X1),
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which are again solutions of the Yang equation.
Denote by Gi the 2 × 2 matrices which correspond to shifts for half-periods:

U(z + 1/2) = G1U(z) and U(z + 1/2τ) = fG2U(z), where

G1 =

(

−1 0
0 1

)

, G2 =

(

0 1
1 0

)

.

Then the shift of η1 for half-periods transforms solutions according to the formula

(5.3) Ti : (L,L1R) 7→ (L, (I ⊗Gi)L1, R(Gi ⊗ I)).

In the same way, the shift of η2 for half-periods transforms solutions according to
the formula

(5.4) T̂i : (L,L1R) 7→ (L(Gi ⊗ I), L1(Gi ⊗ I)).

Summarizing, we get

Theorem 5.3 (Krichever). Given an arbitrary elliptic curve Γ with three points

η, η1, η2 which differ up to a half period and three meromorphic functions of degree

two x, x1, u. Then formulae (5.2) define solutions of the Yang equation. All 4× 4
rank one general solutions of the Yang equation are of that form. Moreover, up to

weak gauge transformations and transformations (5.3) and (5.4) all such solutions

are equivalent to Baxter’s matrix Rb.

For the last part of the theorem exact formulae for vacuum vectors for the
Baxter matrix from [33] have been used. Krichever also formulated a following

Proposition 5.2. In the case η = η1 = η2 all 4× 4 rank one general solutions

of the Yang equation are weak-gauge equivalent to the Baxter solution Rb.

5.3. Rank 1 solutions in nongeneral (4×4) cases. But, as it was observed
in [13], [15], there exist 4×4 rank one solutions of the Yang–Baxter equation which
are not equivalent to the Baxter solution. The modal example is the so-called
Cherednik matrix Rch (see [11]) with the formula

Rch(t, h) =









1 0 0 0
0 b c 0
0 c b 0
d 0 0 1









,

where

b =
sinh t

sinh(t+ h)
, c =

sinh t

sinh(t+ h)
, d = −4 sinh t · sinhh.

It was calculated in [13] that the spectral polynomial is of the form

(5.5) Pch(u, v) = Au2v2 +B(u2 + v2) + Cuv

and analytic properties have been studied. It was proven that vacuum curve in this
case is rational with ordinary double point. For such sort of solutions, a description
as in Theorem 5.3 has been established in [13] where it was summarized with
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Theorem 5.4. All (4×4) rank one solutions of the Yang equation with rational

vacuum curve with ordinary double point are gauge equivalent to the Cherednik

solution.

The Cherednik and the Baxter solutions of the Yang–Baxter equation are es-
sentially different and are not gauge equivalent. Moreover, the second one is Z2

symmetric, while the first one is not. It is interesting to note that, nevertheless,
the first one can be obtained from the last one in a nontrivial gauge limit.

Lemma 5.2. [13] Denote by T (k) the following family of matrices depending

on the modulus k of the elliptic curve:

T (k) =

(

(−4/k)1/4 0

0 (−k/4)1/4

)

and denote by Rb(t, h; k) the Baxter matrix. Then

lim
k→0

(T (k)⊗ T (k))Rb(t, h; k)(T (k)
−1 ⊗ T (k)−1) = Rch(it, h).

A similar analysis of vacuum data as for the Cherednik solution, was done for
the Yang solution Ry. In [15] it was shown that the vacuum curve consists of two
rational components. For such kind of solutions the similar statement was proven
there.

Theorem 5.5. All (4 × 4) rank one solutions of the Yang equation with vac-

uum curve reducible on two rational components are gauge equivalent to the Yang

solution.

It was observed in [13] that such an approach does not lead to a solution of
the Yang–Baxter equation with rational vacuum curve with cusp singularity.

5.4. Relationship with Poncelet–Darboux theorems. Let us go back to
considerations from [29], around Lemma 5.1 and Theorem 5.2. We are going to
underline a couple of observations which have not been stressed there, see [23].

Denote by P2(u,w) = 0 the relation which corresponds to Γ̂′.

Proposition 5.3. If P (u, v) = 0, P1(u, v) = 0 and P2(u, v) = 0 are (2− 2)
relations corresponding to rank one solutions of the Yang equation, then these cor-

respondences are symmetric.

Thus, these correspondences are of the Euler–Chasles type. According to geo-
metric interpretations of such correspondences, we may associate to P a pair of
conics (K,C), to P1 a pair (K,C1) and finally a pair (K,C2) to P2. Since cor-
respondences commute, they form a pencil χ of conics. Since we assume in this
subsection that underlying curve is elliptic, the pencil χ is of general type, having
four distinct points in the critical divisor. In other words, the conics K, C, C1 and
C2 intersect in four distinct points.

Having in mind the Darboux coordinates and related geometric interpretation,
we come to the following
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Theorem 5.6. Suppose a general 4× 4 rank one solution of the Yang equation

is given. Then there exist a pencil of conics χ and four conics K,C,C1, C2 ∈ χ
intersecting in four distinct points such that triples (u, v, w) and (u, v̂, w) satisfying
P (u, v) = 0, P1(v, w) = 0 and P1(u, v̂) = 0, P (v̂, w) = 0 form sides of two Poncelet

triangles circumscribed about K with vertices on C, C1 and C2. Moreover, the

quadruple of lines (u, v, v̂, w) forms a double reflection configuration at C and C1.

Such type of pencils is sometimes denoted also as (1, 1, 1, 1). In cases of 4× 4
rank one solutions with rational vacuum curves, the situation is practically the
same. One can easily calculate directly that spectral polynomials for the Cherednik
R matrix (see equation (5.5)) and for the Yang R matrix are symmetric.

Proposition 5.4. (a) In the case of Cherednik type solutions, corresponding

pencil of conics has one double critical point and two ordinary ones–type (2, 1, 1).
Conics are tangent in one point and intersect in two other distinct points.

(b) In the case of the Yang type solutions, the corresponding pencil of conics is

bitangential: it has two double critical point. Conics are tangent in two points-type

(2, 2).
(c) In both rational cases, the statement about two Poncelet triangles and double

reflection configuration holds as in Theorem (5.6).

It would be interesting to check if geometrically possible degeneration of a pencil
to a superosculating one, the one of type (4), can give some nontrivial contribution
to solutions of the Yang–Baxter equation.

In all cases, elliptic or rational, the vacuum vector representation of rank one
4× 4 solutions of the Yang–Baxter equation has the following form

LXl ⊗ Ul = hXl+1 ⊗ Ul−1,

where all the functions are meromorphic on a vacuum curve Γ of degree two and
we use notation Xl+n = Xl ◦Ψn. Here Ψ is an automorphism of the vacuum curve
Γ and geometric interpretation of the last formula is the following: the tangent to

conic K with Darboux coordinate xl reflects n times of the conic C1 and gives a

new tangent to K with Darboux coordinate xl+n.

The last formula with the last interpretation plays a crucial role in our presen-
tation of the Algebraic Bethe Ansatz.

6. Algebraic Bethe Ansatz and Vacuum Vectors

Our starting point, following [16], is the last formula giving general vacuum
vector representation of all rank one solutions of the Yang–Baxter equation in 4×4
case.

As in [16], together with vacuum vector representation, we consider the vacuum
covector representation:

AjBβLiα
jβ = lCiDα.

We will use more general notion of spectral polynomial. Let P ij
L denotes polynomial

in two variables obtained as determinant of the matrix generated by L contracting
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the i-th bottom and j-th top index. The spectral polynomial we used up to now,
in this notation becomes P 22

L .
It can easily be shown that vacuum covectors, under the same analytic con-

ditions as vacuum vectors, uniquely define matrix L. Thus, there is a relation
between vacuum vectors and vacuum covectors.

Lemma 6.1. [16] If a 4× 4 matrix L satisfies the condition

L(Xl ⊗ Ul) = h(Xl+1 ⊗ Ul−1),

then

(X̃l+1 ⊗ Ũl+1)L = g(X̃l+2 ⊗ Ũl).

We use notation X = [x 1]t and X̃ = [1 − x].

Let us just mention that the proof of the last lemma extends automatically to
arbitrary 4× 4 matrices.

The matrices L, solutions of the Yang equation, are local transition matrices.
As it was suggested in [33] we change them according to the formula

Ll
n(λ) = M−1

n+l(λ)Ln(λ)Mn+l−1 =

(

αl
n(λ) βl

n(λ)
γl
n(λ) δln(λ)

)

,

where the matrix Ml has vacuum vectors as columns:

Ml =

(

xl xl+1

1 1

)

.

By this transformation, the monodromy matrix T (λ) =
∏N

n=1 Ln(λ) transforms

into T l
N(λ) = M−1

N+lT (λ)Ml. Denote the elements of the last matrix by Al
N (λ),

Bl
N (λ), Cl

N (λ), Dl
N (λ). The aim of the ABA method is to find local vacuum

vectors ωl independent of λ such that

γl
n(λ)ω

l
n = 0, αl

n(λ)ω
l
n = g(λ)ωl−1

n , δln(λ)ω
l
n = g′(λ)ωl+1

n .

Having the last relations satisfied, vector Ωl
N = ωl

1 ⊗ · · · ⊗ ωl
N would satisfy

Al
N (λ)Ωl

N = gN(λ)Ωl−1
N , Dl

N(λ)Ωl
N = g′N (λ)Ωl+1

N , Cl
N (λ)Ωl

N = 0

and provide a family of generating vectors.

Theorem 6.1. [16] The following relations are valid

γl
n(λ)Ul = 0, αl

n(λ)Ul = g(λ)Ul−1, δln(λ)ω
l
n = g′(λ)Ul+1.

It is also necessary to calculate images of shifted vacuum vectors. The formulae
are given in the following

Lemma 6.2. [16] The image of the shifted vacuum vector is a combination of

two shifted vacuum vectors:

LXl+1 ⊗ Ul = hXl+1 ⊗ Ul + h′Xl ⊗ Ul+1.
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The proof follows from Lemma (6.1) using the same arguments as at the end
of the proof of the last Theorem.

From the last two Lemmas one can easily derive commuting relations between
matrix elements of the transfer matrix. We need them for application of the ABA
method and we state them in the following

Proposition 6.1. The matrix elements of the transfer matrix commute ac-

cording to the formulae

Bk
l+1(λ)B

k+1
l (µ) = Bk

l+1(µ)B
k+1
l (λ),

Bk
l−2(λ)A

k+1
l−1 (µ) = h′Ak

l (µ)B
k+1
l−1 (λ) + h′′Bk

l−2(µ)A
k+1
l−1 (λ),

Bk+2
l (λ)Dk+1

l−1 (µ) = k′Dk
l (µ)B

k+1
l−1 (λ) + k′′Bk+2

l (µ)Dk+1
l−1 (λ).

Using the last statements, one can derive relations among λi in order that the
sum of vectors

Ψl(λ1, . . . , λn) = Bl−1
l+1(λ1) · · ·Bl−n

l+n (λn)Ω
l−n
N

be an eigen-vector of the operator trT (λ) = Al
l(λ) +Dl

l(λ). For more details see
[33].

7. Rank 2 solutions in (4 × 4) case

The main example of solutions of rank two is the Felderhof R matrix, see
[26, 29]. We will use the following its parametrization, (see [3]):

Ff (φ|q, p|k) =









b1 0 0 d
0 b2 c 0
0 c b3 0
d 0 0 b0









,

where

b0 = ρ(1− pqe(φ)), b1 = ρ(e(φ)− pq),

b2 = ρ(q − pe(φ)), b3 = ρ(p− qe(φ)),

c =
iρ

2 · sn(φ/2)
√

(1− p2)(1 − q2)
(

1− e(φ)
)

,

d =
kρ

2

√

(1− p2)(1 − q2)
(

1− e(φ)
)

· sn(φ/2),
e(φ) = cnφ+ i · snφ,

where ρ is a trivial common constant, p, q are arbitrary constants and cn and sn
are Jacobian elliptic functions of modulus k.

The key property of the Felderhof R-matrix is the free-fermion condition

b0b1 + b2b3 = c2 + d2.

The free-fermion six-vertex R-matrix FXXZ is given by the limit:

FXXZ(φ|p, q) = lim
k→0

Ff (φ|p, q|k).
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To get a free-fermion analogous of the Cherednik R matrix, one applies the
trick of Lemma 5.2. More detailed, denoting by T (k) the family of matrices

T (k) =

(

(−1/k)1/4 0

0 (−k)1/4

)

,

we have

Theorem 7.1. [17] A rank two solution of the Yang–Baxter equation F1(φ|p, q)
is obtained in a limit

F1(φ|p, q) = lim
k→0

(T (k)−1 ⊗ T (k)−1)Ff (φ|p, q|k)(T (k)⊗ T (k)),

with explicit formulae

F1(φ|p, q) =









b̂1 0 0 0

0 b̂2 ĉ 0

0 ĉ b̂3 0

d̂ 0 0 b̂0









where

b̂0 = ρ(1− pqê(φ)), b̂1 = ρ(ê(φ)− pq),

b̂2 = ρ(q − pê(φ)), b̂3 = ρ(p− qê(φ)),

c =
iρ

2 · sin(φ/2)
√

(1− p2)(1− q2)
(

1− ê(φ)
)

,

d =
kρ

2

√

(1− p2)(1− q2)
(

1− e(φ)
)

· sin(φ/2),
e(φ) = cosφ+ i · sinφ.

Proposition 7.1. The vacuum curves of the rank two R-matrices are of the

following types:

(a) [29] The vacuum curve of the Felderhof R matrix is elliptical.

(b) [17] The vacuum curve of the six-vertex free-fermion R matrix consists of two

rational components.

(c) [17] The vacuum curve of the free-fermion R matrix F1 is rational with ordi-

nary double point.

Consider two polynomials of type Pa, the vacuum polynomials in the general
rank two case:

Pa1 = u2v2 +A1u
2 +B1v

2 + 1, Pa2 = u2v2 +A2u
2 +B2v

2 + 1.

Krichever proved that they induce (2 − 2) correspondences which commute if and
only if A1 + B1 = A2 + B2. The same statement, with associated polynomials is
true in rational cases, (see [17]).

The previous considerations were devoted to the basic, most simple 4×4 case of
solutions of the Yang–Baxter equation. The real challenge is to develop something
similar for higher dimensions. Some attempts were done, for example see [18]. But
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there a very specific situation was considered connected with the so called Potts
model.

In general, essential problem is that Krichever’s vacuum vector approach works
only for even-dimensional matrices.

8. Pencils of conics and the Penrose diagram

8.1. Pencils of conics. We will denote pencils of conics of general (1, 1, 1, 1)
type as [A], with four simple common points of intersection. The case with two
simple points of intersection and one double with a common tangent at that point
is denoted (1, 1, 2) as [B]. The next case with two double points of intersection and
with a common tangent in each of them is (2, 2), denoted as [C]. The case (1, 3),
denoted as [D] is defined by one simple and one triple point of intersection. Finally
(4), the case of one quadriple point, is denoted as [E]. Fig. 2 (see [5] and [22])
illustrates possible configurations of pencils of conics.

Following [20], [21], we will code the process of transition from a more general
pencil to a more special one by a Penrose-type diagram:

(8.1)

A

B C

D E O

@
@
@R?
-

?

@
@
@R ?

@
@
@R

- -

8.2. Integrable quad graphs. Now, we will start with basic ideas of the
theory of integrable systems on quad graphs from works of Adler, Bobenko, Suris
[1], [2]. We will use the notation Pn

d (K) for the set of polynomials in d variables
of degree at most n in each of variables, over the field K.

Recall that the basic building blocks of systems on quad-graphs are the equa-
tions on quadrilaterals of the form

(8.2) Q(x1, x2, x3, x4) = 0

where Q ∈ P1
4 is a multiaffine polynomial.

Equations of type (8.2) are called quad-equations. The field variables xi are
assigned to four vertices of a quadrilateral as in Fig. 3. Equation (8.2) can be
solved for each variable, and the solution is a rational function of the other three
variables. A solution (x1, x2, x3, x4) of equation (8.2) is singular with respect to xi

if it also satisfy the equation Qxi
(x1, x2, x3, x4) = 0.

Following [2] one considers the idea of integrability as consistency, see Fig. 4.
One assigns six quad-equations to the faces of coordinate cube. The system is said
to be 3D-consistent if three values for x123 obtained from equations on right, back
and top faces coincide for arbitrary initial data x, x1, x2, x3.
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Pencil of type A Pencil of type B

Pencil of type C Pencil of type D

Pencil of type E

Figure 2

Then, applying discriminant-like operators introduced in [2]

δx,y : P1
4 → P2

2 , δx : P2
2 → P4

1

by formulae

δx,y(Q) = QxQy −QQxy, δx(h) = h2
x − 2hhxx,

there is a descent from the faces to the edges and then to the vertices of the
cube: from a multiaffine polynomial Q(x1, x2, x3, x4) to a biquadratic polyno-
mial h(xi, xj) := δxk,xl

(Q(xi, xj , xk, xl)) and further to a polynomial P (xi) =
δxj

(h(xi, xj)) of one variable of degree up to four.
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Figure 3. An elementary quadrilateral. A quad-equation
Q(x1, x2, x3, x4) = 0.

x
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x
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x
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x
12

x
23

x
123

x x
1

Figure 4. A 3D consistency.

A biquadratic polynomial h(x, y) ∈ P2
2 is said to be nondegenerate if no poly-

nomial in its equivalence class with respect to fractional linear transformations is
divisible by a factor of the form x − c or y − c, with c = const. A multiaffine
function Q(x1, x2, x3, x4) ∈ P1

4 is said to be of type Q if all four of its accompa-
nying biquadratic polynomials hjk are nondegenerate. Otherwise, it is of type H .
Previous notions were introduced in [2], where the following classification list of
multiaffine polynomials of type Q has been obtained:

QA = sn(α) sn(β) sn(α + β)(k2x1x2x3x4 + 1)− sn(α)(x1x2 + x3x4)

− sn(β)(x1x4 + x2x3) + sn(α+ β)(x1x3 + x2x4),

QB = (α− α−1)(x1x2 + x3x4) + (β − β−1)(x1x4 + x2x3)

− (αβ − α−1β−1)(x1x3 + x2x4) +
δ
4 (α− α−1)(β − β−1)(αβ − α−1β−1),

with δ 6= 0, and from the last relation, for δ = 0 one gets

QC = (α− α−1)(x1x2 + x3x4) + (β − β−1)(x1x4 + x2x3)

− (αβ − α−1β−1)(x1x3 + x2x4),

QD = α(x1 − x4)(x2 − x3) + β(x1 − x2)(x4 − x3)

− αβ(α + β)(x1 + x2 + x3 + x4) + αβ(α + β)(α2 + αβ + β2),

QE = α(x1 − x4)(x2 − x3) + β(x1 − x2)(x4 − x3)− δαβ(α + β).
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8.3. Discriminantly separable polynomials. The notion of discriminantly
separable polynomials has been introduced in [19]. A family of such polynomials
has been constructed there as pencil equations from the theory of conics

F(w, x1, x2) = 0,

where w, x1, x2 are the pencil parameter and the Darboux coordinates respectively.
The key algebraic property of the pencil equation, as quadratic equation in each of
three variables w, x1, x2 is: all three of its discriminants are expressed as products

of two polynomials in one variable each:

Dw(F)(x1, x2) = P (x1)P (x2),

Dx1
(F)(w, x2) = J(w)P (x2),

Dx2
(F)(w, x1) = P (x1)J(w),

where J, P are polynomials of degree up to 4, and the elliptic curves

Γ1 : y2 = P (x), Γ2 : y2 = J(s)

are isomorphic (see Proposition 1 of [19]) .
In this section we will present briefly a classification of strongly discriminantly

separable polynomials F(x1, x2, x3) ∈ P2
3 , which are those with J = P , modulo a

gauge group of the following fractional-linear transformations

xi 7→
axi + b

cxi + d
, i = 1, 2, 3,

from [22], where more details can be found.

Let F(x1, x2, x3) =
∑2

i,j,k=0 aijkx
i
1x

j
2x

k
3 be a strongly discriminantly separable

polynomial with Dxi
F(xj , xk) = P (xj)P (xk), (i, j, k) = c.p.(1, 2, 3).

Then, the classification of such polynomials, following [22], goes along the study
of structure of zeros of a nonzero polynomial P ∈ P4

1 . There are five cases: [A]
with four simple zeros; [B] with a double zero and two simple zeros; [C] corresponds
to polynomials with two double zeros; [D] is the case of one triple and one simple
zero; finally, [E] is the case of one zero of degree four. The corresponding families of
polynomials FA, FB, FC1, FC2, FD, FE1, FE2, FE3, FE4 are listed in Theorem 4
of [22]. The case [A], of general position, as it has been proven in [22] corresponds
to a 2 valued group (from [7]) associated with an elliptic curve y2 = P (x).

Here, we are giving another example.

Example 8.1 (B). (1,1,2): two simple zeros and one double zero, for canonical
form P (x) = x2 − ǫ2, with ǫ 6= 0, the corresponding discriminantly separable
polynomial is FB = x1x2x3 +

ǫ
2 (x

2
1 + x2

2 + x2
3 − ǫ2).

8.4. From discriminant separability to quad graph integrability. The
relationship between the discriminantly separable polynomials of degree two in each
of three variables, and integrable quad-graphs of Adler, Bobenko and Suris has been
established in [22]. The key point is the following formula, which defines an h, a
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biquadratic ingredient of quad-graph integrability, starting form a discriminantly
separable polynomial F :

ĥ(x1, x2, α) =
F(x1, x2, α)
√

P (α)
.

As an example, we are going to present here only the case [B].

Example 8.2. The system for hB leads to

h22 = 0, h21 = h12 = 0, h01 = h10 = 0,

h02 = h20, h11 = ±
√

1 + 4h2
20, h00 = e2/4h20.

Thus h20 is a free parameter of the system, an arbitrary function of α. In [2], it
appears that they used the following choice for h20:

h20 =
α

1− α2
.

If one wants to get hB

ĥB(x1, x2, α) =
FB(x1, x2, α)

√

PB(α)
,

then the appropriate expression for the free parameter is

ĥ20 =
e

2
√
α2 − e2

and we get

ĥB(x1, x2, α) =
(e

2
(x2

1 + x2
2 + α2) + αx1x2 −

e3

2

)/

√

α2 − e2

= FB(x1, x2, α)/
√

α2 − e2.

One can easily calculate the corresponding multiaffine polynomial QB ∈ P1
4 :

Q̂B =
√

β2
1 − e2(x1x4 + x2x3) +

√

α2
1 − e2(x1x2 + x3x4)

+
α1

√

β2
1 − e2 + β1

√

α2
1 − e2

e
(x1x3 + x2x4)

−
√

β2
1 − e2

√

α2
1 − e2(α1

√

β2
1 − e2 + β1

√

α2
1 − e2)

e
.

Let us note that integrable quad graphs related to pencils of higher dimensional
quadrics have been studied recently in [24]. There, a role of multiaffine quad
equations is played by the double reflection configurations.
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8.5. Petrov classification. As we mentioned in the Introduction, the Petrov
1954 classification gives a description of possible algebraic symmetries of the Weyl
tensor at a point in a Lorentzian manifold (see [31],[32]). Its popularity is connected
with applications to the theory of relativity, in the study of the exact solutions of
the Einstein field equations.

The Weyl tensor, as a fourth rank (2, 2)-tensor, evaluated at some point, acts
on the space of bivectors at that point as a linear operator:

W : Y αβ 7→ 1
2W

αβ
pq Y pq.

The associated eigenvalues and eigenbivectors are defined by the equation

1
2W

αβ
pq Y pq = λY αβ .

In the case of basic four dimensional spacetimes, the space of antisymmetric
bivectors at each point is six-dimensional, but, moreover, due to the symmetries
of the Weyl tensor, eigenbivectors lie in a four dimensional subset. Thus, the
Weyl tensor at a point has at most four linearly independent eigenbivectors. The
eigenbivectors of the Weyl tensor can occur with multiplicities, which indicate a
kind of algebraic symmetry of the tensor at the point. The multiplicities reflect the
structure of zeros of a certain polynomial of degree four. The eigenbivectors are
associated with null vectors in the original spacetime, the principal null directions
at point. According to the Petrov classification theorem, there are six possible
types of algebraic symmetry, the six Petrov types:

[I] –four simple principal null directions;
[II] –two simple principal null directions and one double;
[D] –two double principal null directions;
[III] –one simple and one triple principal null direction;
[N] –one quadruple principal null direction;
[O] –corresponds to the case where the Weyl tensor vanishes.

Of course, in different points the same tensor can have different Petrov types.
A Weyl tensor of type I at some point is also called algebraically general ;

otherwise, it is called algebraically special. The classification of the Petrov types,
has been schematically presented by original Penrose diagram (see [30]):

(8.3)

I

II D

III N O

@
@
@@R?
-

?

@
@
@@R ?

@
@
@@R

- -

which served as a motivation for our diagram (8.1), see also [20], [21].
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9. Experimental Mathematics: From elementary

n-valued groups to discriminant factoriziblity

The list of elementary n-valued groups has been done in [6]. For a fixed n,
corresponding n-valued group is defined by a symmetric polynomial pn ∈ Pn

3 .
The elementary symmetric functions of three variables are denoted as s1, s2, s3:

s1 = x+ y + z, s2 = xy + xz + yz, s3 = xyz.

The first example is 2-valued group, defined by p2(x, y, z) = 0, where

p2(z, x, y) = (x+ y + z)2 − 4(xy + yz + zx).

As it has been observed in [19], the polynomial p2(z, x, y) is discriminantly sepa-
rable. The discriminants satisfy relations

Dz(p2)(x, y) = P (x)P (y), Dx(p2)(y, z) = P (y)P (z), Dy(p2)(x, z) = P (x)P (z),

where P (x) = 2x. Moreover, it has been shown in [19] that the polynomial p2
as discriminantly separable, generates a case of generalized Kowalevski system of
differential equations, with K = 0.

Now, we can produce a small mathematical experiment with the next cases of
elementary n valued groups, with small n.

Example 9.1 (n = 3).

p3 = s31 − 33s3

Dp3 = y2x2(x− y)2.

Example 9.2 (n = 4).

p4 = s41 − 23s21s2 + 24s22 − 27s1s3

Dp4 = y3x3(x− y)2(y + 4x)2(4y + x)2.

Example 9.3 (n = 5).

p5 = s51 − 54s21s3 + 55s2s3

Dp5 = y4x4(x− y)4(−y2 − 11xy + x2)2(−y2 + 11xy + x2)2.

We see that the polynomials p3, p4, p5 are not discriminantly separable any
more. But, we observe an amazing factoriziblity property of their discriminants.
It looks as a challenging and interesting problem to turn this simple mathematical
experiment into a mathematical theory, to formulate and prove an exact state-
ment about the observed phenomena, and to possibly relate it to some kind of
integrability.
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