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LAGRANGE–D’ALEMBERT PRINCIPLE

Ðorđe Ðukić

Abstract. The major issues in the analysis of the motion of a constrained
dynamic system are to determine this motion and calculate constraint forces.
In the analytical mechanics, only the first of the two problems is analysed.
Here, the problem is solved simultaneously using: 1) Principle of liberation of
constraints; 2) Principle of generalized virtual displacement; 3) Idea of ideal
constraints; 4) Concept of generalized and “supplementary" generalized coor-
dinates. The Lagrange–D’Alembert principle of virtual work is generalized
introducing virtual displacement as vectorial sum of the classical virtual dis-

placement and virtual displacement in the “supplementary" directions. From
such principle of virtual work we derived Lagrange equations of the second kind
and equations of dynamical equilibrium in the “supplementary" directions.
Constrained forces are calculated from the equations of dynamic equilibrium.
At the same time, this principle can be used for consideration of equilibrium
of system of material particles. This principle simultaneously gives the con-
nection between applied forces at equilibrium state and the constrained forces.
Finally, the principle is applied to a few particular problems.

1. Introduction

There are two problems in analyses of motion of the dynamical systems under
action of the constraints. The first problem is to determine the motion of the
system, and the second to calculate the reaction forces of the constraints during
the motion.

In the analytical mechanics, see for example [3], [1], [6] and [2], these two tasks
are separated by the notions of ideal constraints and Lagrange–D’Alembert prin-
ciple of virtual work (In 1743, Jean Le Rond d’Alembert published his important
Traité de dynamique, a fundamental treatise on dynamics containing the famous
“d’Alembert’s principle"). According to the notion of ideal constraints, the virtual
work of the reactions forces is equal to zero, and the work vanishes in the Lagrange–
D’Alembert principle of virtual work. Therefore, the reaction forces are eliminated
from further analysies of motion, which is based on the Lagrange–D’Alembert prin-
ciple. If there are some reaction forces whose virtual work is not equal to zero, then
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those forces are added to the given set of forces and the corresponding constraints
are called non-ideal. Reaction forces of ideal constraints are absent in the La-
grange equations of the second kind. In fact, analytical mechanics considers only
the motion of a system, while for finding reaction forces the equations of Newtonian
mechanics or Lagrange equations of the first kind must be used [6], [5] and [4].

Nevertheless, the Lagrange–D’Alembert principle is frequently used for finding
reaction forces of ideal constraints. According to that procedure, the mechanical
system frees itself of a particular constraint and performs a virtual displacement
in direction consistent with the removed constraint. Calculation of virtual work on
that displacement yields the corresponding reaction force.

It is this author’s opinion that any principle of dynamics must simultaneously
give answer to both mentioned questions of mechanical motion under constraints.
In that sense, the Lagrange–D’Alembert principle requires some generalization.

In this paper, the basic problem for dynamical systems is analysed using the
following ideas:

(1) Virtual displacements and supplementary virtual displacements,
(2) Principle of liberation of constraints,
(3) Ideal constraints,
(4) Generalized coordinates and supplementary “generalized" coordinates.

The supplementary virtual displacements are introduced in directions which
are consistent with the removed constraints. Because the directions are in normal
directions to the constraints, the virtual displacements are called normal virtual
displacements. Also, supplementary generalized coordinates are introduced, which
are measured along this normal virtual displacements, and whose number is equal to
the number of constraints. In the Lagrange–D’Alembert principle of virtual work,
the classical virtual displacements are replaced by vectorial sum of the classical and
normal virtual displacements. From such generalized Lagrange–D’Alembert prin-
ciple of virtual work, the Lagrange equations of the second kind and the equations
of dynamical equilibrium in the normal directions are derived. From the equations
of dynamical equilibrium the constraints forces are calculated. Hence, using this
principle, the equations of Newtonian mechanics are not necessary for finding the
reaction forces. This principle can be used for consideration of equilibrium of ma-
terial particles. In that case, this principle simultaneously gives the connection
between the applied forces at equilibrium state and the constraint forces. Finally,
the principle is applied to a few particular problems.

Now, the Lagrange–D’Alembert principle is used [7]–[30] in analysis of different
problems in conservative, nonconservative, holonomic and nonholonomic mechanics
and different areas of physics. But, in this papers there is no generalization of the
principle in the sense of the present paper.

Here, a small Greek index takes values from 1 to n, the capital Greek index
from 1 to s, small italic index from 1 to N and capital italic index from 1 to n+ s.
Every repeated capital italic index, small Greek index or capital Greek index means
sum with respect to that index. Bold face letters are vectors.
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2. Generalized Virtual Displacement

Let us consider motion of a dynamical system with N material particles Mi,
whose masses are mi, and which is under the action of a given set of forces Fi, and
subject to s holonomic constraints

(2.1) f∆(t, xi, yi, zi) = 0, ∆ = 1, . . . , s.

Here t is time and xi, yi and zi are the Cartesian coordinates of a particle Mi. If
particles are liberated from the constraints, then their actions on particles Mi are
replaced by the reaction forces Ri. The system has n = 3N − s degrees of freedom
and qα (α = 1, . . . , n) are the corresponding generalized coordinates.

Let the position of any particle Mi, of the system, which during the motion is
defined by its position vector ri in the three dimensional space be ri = xii+yij+zik,
where i, j, and k are the unit vectors of Cartesian coordinate system x, y, and z.

Virtual changes of the constraint equations (2.1) are

(2.2) δf∆ =
∑

i

li∆ · δri = 0,

where

(2.3) li∆ = gradi f∆ =
∂f∆

∂xi

i +
∂f∆

∂yi

j +
∂f∆

∂zi

k,

and δri = δxii + δyij + δzik is the virtual change of the position vector. It is a well
known fact that vectors (2.3) are perpendicular to the constraints.

Let us liberate every particle Mi in the system of the constraints and permit
to every particle displacements li∆qn+∆ in the perpendicular directions li∆, where
qn+∆ are supplementary generalized coordinates. In our analysis the independent
parameters qn+∆ are considered as functions of time. For motion along constraints
(2.1), the parameters qn+∆ and their derivatives q̇n+∆ and q̈n+∆ are equal to zero,
i.e., qn+∆ = 0, q̇n+∆ = 0, q̈n+∆ = 0. Any quantity, which is calculated for the
motion along the constraints, is denoted by lower index 0.

The position vector of the so liberated particle Mi of the constraints is

(2.4) ρi(t, qU ) = ri(t, qα) + li∆(t, qα)qn+∆,

whose virtual change is δρi = δri + δli∆qn+∆ + li∆δqn+∆. For the motion of the
particle along the constraints, we have

(2.5) (δρi)0 = δri + li∆δqn+∆.

Relations (2.5) define generalized virtual displacement of any particle Mi. Let us
decompose the generalized virtual displacement into the following two parts

(2.6) (δρi)0 = (δρi)0T + (δρi)0N ,

where

(2.7) (δρi)0T = δri
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is the classical virtual displacement in the tangential directions to the constraints,
while

(2.8) (δρi)0N = li∆δqn+∆,

is virtual displacement in perpendiculars to the constraints.
Calculating sum

∑

i(δρi)0T · (δρi)0N , and using (2.2) we have
∑

i

(δρi)0T · (δρi)0N = δqn+∆

∑

i

li∆ · δri = 0.

In the sense to this relation, two parts δri and li∆δqn+∆ of the generalized vir-
tual displacement (δρi)0 are mutually orthogonal, and decomposition (2.6) of the
generalized virtual displacement is justifiable.

3. Constraints forces

Here, the classical definition of the ideal constraints (see for example [3, p. 218])
is accepted. This means that the virtual work of all reaction forces of the constraints
on the tangential virtual displacements must be zero, i.e.,

(3.1)
∑

i

(Ri)0 · (δρi)0T = 0.

The position vectors of the material particles Mi are functions of time and the
generalized coordinates ri = ri(t, qα), and virtual displacements (2.7) in tangential
planes to the constraints are

(3.2) (δρi)0T = δri =
∂ri

∂qα

δqα.

Substituting the virtual displacements into orthogonality condition (2.2), and be-
cause the virtual changes δqα are mutually independent and different from zero,
the following condition is valid

(3.3)
∑

i

∂ri

∂qα

· li∆ = 0.

Combining (3.1) and (3.2), and using the fact that virtual changes δqα are mutually
independent and different from zero, we obtain the following conditions

(3.4)
∑

i

(Ri)0
∂ri

∂qα

= 0,

which must be satisfied by the reaction forces of the ideal constraints. Comparison
of (3.3) and (3.4) suggests the following form for the reaction forces

(3.5) (Ri)0 = (R−1)∆li∆,

where (R−1)∆ are mutually independent quantities. The condition (3.4) is identi-
cally satisfied for arbitrary values of the quantities (R−1)∆.

Let us introduce a second-order system b∆Γ by relations

(3.6)
∑

i

li∆ · liΓ = b∆Γ,
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where b∆Γ = bΓ∆, which means that the system is symmetric. The corresponding
inverse system (b−1)∆Ω is defined by

(3.7) (b−1)∆Ωb∆Γ = δΩΓ

where δΩΓ are the Kronecker symbols, that means δΩΓ = 0 for Ω 6= Γ and δΩΓ = 1
for Ω = Γ. Using the second-order system b∆Γ the inverse vectors R∆ and (R−1)Γ

are connected with the relation

(3.8) R∆ = (R−1)ΓbΓ∆.

4. Generalized Forces

The virtual work of all applied forces Fi on the generalized virtual displace-
ments (2.6) is

(4.1) δAF =
∑

i

(Fi)0 · (δρi)0.

Using (2.6), (2.8) and (3.2), the virtual work becomes

(4.2) δAF = Qαδqα +N∆δqn+∆,

where Qα =
∑

i

(

Fi · ∂ri

∂qα

)

0, are the classical generalized forces, and

(4.3) N∆ =
∑

i

(Fi)0 · li∆

are generalized forces in the perpendicular directions. If all applied forces Fi have
the potential energy Π(t, qU ), then the generalized forces are

(4.4) Qα = −
∂Π

∂qα

, N∆ = −
∂Π

∂q∆
.

5. Kinetic Energy of the System

Position in the space of every particle Mi of the system, which is liberated from
the corresponding constraints is defined by the vectors ρi (2.4). The kinetic energy
of the system free of constraints is

(5.1) Ek =
1

2

∑

i

miρ̇i · ρ̇i.

The velocity of the particle free from constraints (2.1) is obtained as the first
derivative of the vector ρi in to time

(5.2) ρ̇i = ṙi + l̇i∆qn+∆ + li∆q̇n+∆.

Here, ṙi is the velocity of the particle which is not free from constraints. Using
(5.2), kinetic energy (5.1) becomes

(5.3) Ek = (Ek)0 + Ẽk +NLT,

where (Ek)0 = 1
2

∑

i miṙi · ṙi is kinetic energy of the system which is not free from

constraints, and Ẽk =
∑

imiṙi · (l̇i∆qn+∆ + li∆q̇n+∆) is the part of the kinetic
energy linear to qn+∆ and q̇n+∆. The term NLT is nonlinear in qn+∆ and q̇n+∆.
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The term NLT is not important for analysis and therefore it is omitted in the
further considerations.

6. Generalized D’Alembert Principle

For the motion of a particle Mi of the system under action of a given force
Fi and a reaction force Ri, the second Newton law of motion under action of the
constraints means that (Fi+Ri−miρ̈i)0 = 0. Multiplying the previous equations by
virtual displacements (δρi)0 (2.6) and summing up such equations for all particles,
i.e., over the index i, we have

∑

i(Fi + Ri −miρ̈i)0 · (δρi)0 = 0, or

(6.1) δAI + δAF + δAR = 0,

where

(6.2) δAI = −
∑

i

(miρ̈i · δρi)0

is the virtual work of the inertial forces, δAR =
∑

i(Ri · δρi)0 is the virtual work
of reaction forces and δAF is virtual work of active forces given by (4.1). Equation
(6.1) is a generalized form of the Lagrange–D’Alembert principle of virtual work.
The meaning of the generalized Lagrange–D’Alembert principle of virtual work
(6.1) is that during the motion of a mechanical system the sum of the virtual works
of inertial, active and reaction forces is equal to zero.

Using (2.6) and (2.7) the virtual work of reaction forces is

(6.3) δAR =
∑

i

(Ri)0δri + δqn+∆

∑

i

(Ri)0Ii∆.

The first term in (6.3) is equal to zero according to (3.1) and the previous relation
becomes

(6.4) δAR = R∆δqn+∆,

where the generalized reaction forces are R∆ =
∑

i(Ri)0Ii∆.

7. Lagrange equations

According to (2.4) ρi is a function of time t and of all generalized coordinates
qU , U = 1, . . . , n+ s. Using the well known relations for such functions

∂ρ̇i

∂q̇U

=
∂ρi

∂qU

,
d

dt

∂ρi

∂qU

=
∂ρ̇i

∂qU

,

virtual work of inertial forces (6.2) becomes

(7.1) δAI = ZUδqU , where ZU =

(

∂Ek

∂qU

−
d

dt

∂Ek

∂q̇U

)

.

Now, using (4.2), (6.4), and (7.1), the generalized form of the Lagrange–D’Alembert
principle of virtual work in generalized coordinates (6.1) becomes

(7.2) (Zα +Qα)δqα + (Zn+∆ +N∆ +R∆)δqn+∆ = 0.
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Because the generalized coordinates and the supplementary generalized coordinates
are mutually independent, and their virtual changes are also independent and dif-
ferent from zero, i.e., δqα 6= 0 and δqn+∆ 6= 0, virtual work δA (7.2) is equal to zero
for arbitrary virtual changes δqα and δqn+∆ only if

(7.3)

(

d

dt

∂Ek

∂q̇α

−
∂Ek

∂qα

)

0
= Qα,

and

(7.4)

(

d

dt

∂Ek

∂q̇n+∆
−

∂Ek

∂qn+∆

)

0
= N∆ +R∆.

System of equations (7.3) are well known Lagrange equations of motion for
the dynamical system, which are called the Lagrange equations of the second kind.
Equations (7.4) form another system of equations from which, using (3.5), (3.8),
we calculate the reaction forces on every particle of a system as

(7.5) (Ri)0 =

[(

d

dt

∂Ek

∂q̇n+∆
−

∂Ek

∂qn+∆

)

0
−N∆

]

(b−1)∆ΩliΩ.

For this reason the equations (7.5) can be called equations of dynamic equilibrium
in normal directions.

8. Examples

Example 1. Let us consider the motion of a material point with mass m on
a smooth surface whose equation is F1 = F (x, y, z), where x, y and z are the
Cartesian coordinates of the point and the axis z is in up direction. This motion
has two degrees of freedom. The normal vector (2.3) is

(8.1) l11 = Fxi + Fyj + Fzk,

where the low index means partial derivative with respect to that coordinate. Using
(3.6) we have

(8.2) b11 = F 2
x + F 2

y + F 2
z , (b−1)11 =

1

F 2
x + F 2

y + F 2
z

.

The kinetic energy (5.3) of the particle is

(8.3) Ek =
m

2
(ẋ2 + ẏ2 + ż2) + (ẋḞx + ẏḞy + żḞz)mq3,

where q3 is the displacement in normal direction (8.1). There is only one active
force F = −mgk, where g is gravity acceleration. Hence, the generalized force
in normal direction (4.3) is N3 = −mgFz. Now, applying (7.4) to (8.3) for the
coordinate q3 we have R3 = mgFz −m(ẋḞx + ẏḞy + żḞz), and using (7.5) and (8.2)
we have the reaction force

R =
R3

F 2
x + F 2

y + F 2
z

(Fxi + Fyj + Fzk).
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If the surface is a sphere with radius r, then F = x2 +y2 +z2 −r2, and the reaction
force is

R =
m[gz − (ẋ2 + ẏ2 + ż2)]

r2 r,

where r is the position vector of the point.

Example 2. Let us consider a mathematical pendulum of the length a and
mass m. The corresponding constraint is f1 = x2+y2−a2 = 0, where x is horizontal
axis and y vertical oriented down. From this relation we have the gradient vector
(2.3)

I11 = 2xi+2yj.

The problem has one degree of freedom, the angle α between the pendulum and
the vertical direction. In that case

(8.4) I11 = 2a sinαi + 2a cosαj,

and velocity of the particle ṙ = (a cosαi − a sinαj)α̇. Here, there is only gravity
applied force F = mgj, where g is the gravity acceleration. The corresponding
potential energy is Π = mga(1 − cosα). Therefore, the generalized forces (4.4) and
(4.3) are Qα = −mga sinα, Nα = 2mga cosα. The kinetic energy (5.1) has the
form Ek = m

2 (aα̇)2 + 2m(aα̇)2q2, where q2 is the additional generalized coordinate.
Second-order symmetric system (3.6), using (8.4) becomes and its inverse (3.7)
(b−1)11 = 1/4a2. Finally, from (7.3) and (7.5) we have the equation of motion
α̈+ g

a
sinα = 0, and the reaction force to the particle

R = −m(aα̇2 + g cosα)(sinαi + cosαj).

Example 3. Let us consider the motion in a vertical plane of two equal rods
OA and AB equal masses m and lengths l connected by a cylindrical joint at the
point A, while the rod OA is connected to unmovable cylindrical joint at the end
of rod at the point O. This system has two degrees of freedom and the angles ϕ
and ψ between the rod and vertical direction are the generalized coordinates. Let
x be the horizontal and y the vertical axes. The centers of gravity for the rods are
the points C1 and C. The gravity forces are

(8.5) Fc1 = mgj, Fc = mgj,

where g is the gravity acceleration. If we want to determine forces at cylindrical
joints then we must remove them. Let x1 and y1 be the motion of the rods and
with respect to joint O, and x2 and y2 motion of A of the rod AB with respect to
the joint point of the rod OA. The corresponding equations of constraints are

(8.6)
F1x1

= x1 = 0, F1y1
= y1 = 0,

F2x2
= x2 = 0, F2y2

= y2 = 0.

The kinetic energy of the system is

Ek =
1

2
Jc1ϕ̇

2 +
m

2
v2

c1 +
1

2
Jcψ̇

2 +
m

2
v2

c ,
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where Jc1 and Jc are the corresponding moments of inertia and vc1 and vc are
velocities of the points C1 and C. The part of the kinetic energy linear with
respect x1, y1 x2, y2, ẋ1, ẏ1 ẋ2, ẏ2 is

(8.7) Ẽk =
m

2
l(ẋ1ϕ̇ cosϕ− ẏ1ϕ̇ sinϕ)

+ml
[

(ẋ1 + ẋ2)
(

ϕ̇ cosϕ+
ψ̇

2
cosψ

)

− (ẏ1 + ẏ2)
(

ϕ̇ sinϕ+
ψ̇

2
sinψ

)]

.

The virtual work of active forces (8.5) is

δAF = 2mgδy1 +mgδy2 −mg
3

2
l sinϕδϕ−mgl sinψδψ,

and the generalized forces in perpendicular directions are

(8.8) Nx1
= 0, Ny1

= 2mg, Nx2
= 0, Ny2

= mg.

Applying (7.4) to (8.7) and using (8.8) we have

(8.9)

Rx1
=

d

dt

[ml

2
ϕ̇ cosϕ+ml

(

ϕ̇ cosϕ+
ψ̇

2
cosψ

)]

,

Ry1
= −2mg −

d

dt

[ml

2
ϕ̇ sinϕ+ml

(

ϕ̇ sinϕ+
ψ̇

2
sinψ

)]

,

Rx2
=

d

dt

[

ml
(

ϕ̇ cosϕ+
ψ̇

2
cosψ

)]

,

Ry2
= −mg −

d

dt

[

ml
(

ϕ̇ sinϕ+
ψ̇

2
sinψ

)]

.

The vectors in perpendicular directions to the constraints (8.6) are l1x1
= i, l1y1

= j,
l2x2

= i, l2y2
= j. Hence the system b∆Γ and its inverse system (b−1)∆Γ are 4×4 unit

matrixes, and using (3.8) we have (R−1)x1
= Rx1

, (R−1)y1
= Ry1

, (R−1)x2
= Rx2

,
(R−1)y2

= Ry2
. Therefore, the vectors of reaction forces at joints at the points O

and A are RO = Rx1
i +Ry1

j, RA = Rx2
i +Ry2

j, where Rx1
, Ry1

, Rx2
and Ry2

are
given by (8.9).
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