
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 94 (108) (2013), 3–15 DOI: 10.2298/PIM1308003I

GROMOV MINIMAL FILLINGS

FOR FINITE METRIC SPACES

Alexander O. Ivanov and Alexey A. Tuzhilin

Abstract. The problem discussed in this paper was stated by Alexander
O. Ivanov and Alexey A. Tuzhilin in 2009. It stands at the intersection of
the theories of Gromov minimal fillings and Steiner minimal trees. Thus, it
can be considered as one-dimensional stratified version of the Gromov mini-
mal fillings problem. Here we state the problem; discuss various properties of
one-dimensional minimal fillings, including a formula calculating their weights
in terms of some special metrics characteristics of the metric spaces they join
(it was obtained by A. Yu. Eremin after many fruitful discussions with partic-
ipants of Ivanov–Tuzhilin seminar at Moscow State University); show various
examples illustrating how one can apply the developed theory to get non-
trivial results; discuss the connection with additive spaces appearing in bioin-
formatics and classical Steiner minimal trees having many applications, say,
in transportation problem, chip design, evolution theory etc. In particular,
we generalize the concept of Steiner ratio and get a few of its modifications
defined by means of minimal fillings, which could give a new approach to at-
tack the long standing Gilbert–Pollack Conjecture on the Steiner ratio of the
Euclidean plane.

1. Introduction

The problem considered in this paper appears as a result of a synthesis of two
classical problems: the Steiner problem on the shortest networks, and Gromov’s
problem on minimal fillings.

The classical Steiner problem asks how one can connect a finite set of n points
of the Euclidean space to minimize the length of the obtained network. The first
variant of the problem appeared in works of Fermat, who stated the question on
finding the location of a point, such that the sum of the distances from it to the
vertices of a given triangle is minimal (this can be considered as n = 3 case of the
general Steiner problem). A few centuries later a complete answer was obtained by
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Torricelli, Simpson, etc., see details in [2]. The next important case n = 4 appeared
in Gauss’ letters to Schumacher, where they discussed how to construct the short-
est road network joining famous German cities Hamburg, Bremen, Hannover and
Braunschweig. In 1934 Jarnik and Kössler [3] stated the general problem which is
now known as Classical Steiner Problem (the priority misunderstanding appeared
due to popular book of Courant and Robbins “What is Mathematics?” [4], where
Fermat problem is referred as Steiner problem, and the Jarnik and Kössler problem
is called just a generalization of the Steiner problem). As it concerns Steiner, he
worked with another generalization of the Fermat problem: to find a point in the
space such that the sum of the distances from it to the given ones is minimal.

Let us mention that the classical Steiner problem has numerous generalizations.
First, one can change the ambient space, say, to a normed space, a Riemannian
manifold, or some more general metric space, e.g., space of words; another possibil-
ity is to change the length functional to some other one, say, energy functional, or
general Lagrangian-type functional (see a review in [2]). Another surge of interest
in Steiner problem is related with Gilbert–Pollack Conjecture [1] on the Steiner
ratio of the Euclidean plane. Numerous attempts to prove it have failed. The best
known attempt belongs to Du and Hwang [5], but it turns out that their reasoning
contains serious gaps, see [6, 2, 7, 8, 9, 10]. Ideas of Du and Hwang were adver-
tised in the stage of announcing publications [14] that has led to popularization
of the wrong construction. Several papers appeared (for example, [15, 16]) where
the ideas of Du and Hwang were adopted to the case under consideration, and, as
a result, some unfounded conclusions got the status of theorems. Notice that the
validity of Gilbert–Pollack conjecture itself seems undoubted, therefore attempts
to prove it appear again and again. In particular, numerous authors, including the
authors of the present paper, have tried to improve the construction of Du and
Hwang, but without succes. It might make sense to search for a completely differ-
ent approach to the problem. The minimal fillings discussed in the present paper
could be a base for such an approach.

The concept of a minimal filling appeared in papers of Gromov [17]. Let M
be a manifold endowed with a distance function ρ. Consider all possible films W
spanning M , i.e., compact manifolds with the boundary M . Consider on W a
distance function d non-decreasing the distances between the points in M . Such a
metric space W = (W, d) is called a filling of the metric space M = (M, ρ). The
Gromov Problem consists in calculating the infimum of the volumes of the fillings
and describing the spaces W where this infimum is achieved (such spaces are called
minimal fillings).

An interest in minimal fillings is inspired, first of all, by the fact that many
classical geometrical inequalities such as the Bezikovich one or the Pu one can be
stated in terms of the fillings (see [19] and the dissertation of Ivanov [20]). Notice
also that minimal fillings possess numerous applications in dynamic systems theory,
asymptotic geometry, mathematical physics, etc.

In the scope of the Steiner problem, it is natural to consider M as a finite
metric space. Then the possible fillings are metric spaces having the structure
of one-dimensional stratified manifolds which can be considered as graphs whose
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edges have nonnegative weights. This leads to the following particular case of the
generalized Gromov problem.

Let M be an arbitrary finite set, and G = (V, E) be a connected graph. We
say, that G joins M , if M ⊂ V . Now, let M = (M, ρ) be a finite metric space,
G = (V, E) be a connected graph joining M , and ω : E → R+ is a mapping into
nonnegative numbers, which is usually referred to as a weight function and which
generates the weighted graph G = (G, ω). The function ω generates on V the
pseudometric dω (some distances can be zero), namely, the distance between the
vertices of the graph G is defined as the least possible weight of the paths in G joining
these vertices. If for any two points p and q from M the inequality ρ(p, q) 6 dω(p, q)
holds, then the weighted graph G is called a filing of the space M, and the graph
G is referred to as the type of this filing. The value mf(M) = inf ω(G), where the
infimum is taken over all the filings G of the space M is called the weight of minimal

filling, and each filling G such that ω(G) = mf(M) is called a minimal filling.
A weighted graph G can be considered as a one-dimensional stratified manifold.

Notice that stratified manifolds have appeared naturally in geometric problems; see
for example [21, 22, 24], and in such applications as quantum physics [25, 23].

2. Preliminaries

In the present paragraph we discuss a few more optimization problems closely
related with minimal fillings.

Let X = (X, d) be a metric space and G = (V, E) an arbitrary connected
graph. Any mapping Γ: V → X is called a network in X parameterized by the

graph G = (V, E), or a network of the type G. The vertices and edges of the
network Γ are the restrictions of the mapping Γ onto the vertices and edges of the
graph G, respectively. The length of the edge Γ: vw → X is the value d

(

Γ(v), Γ(w)
)

,
and the length d(Γ) of the network Γ is the sum of lengths of all its edges.

In what follows we shall consider various boundary value problems for graphs.
To do that, we fix some subsets ∂G of the vertices sets V of our graphs G = (V, E),
and we call such ∂G the boundaries. We always suppose that in each graph under
consideration a boundary, possibly, an empty one, is chosen. The boundary ∂Γ of a

network Γ is the restriction of Γ onto ∂G. If M ⊂ X is finite and M ⊂ Γ(V ), then
we say that the network Γ joins or connects the set M . The vertices of graphs and
networks which are not boundary ones are called interior vertices.

The value smt(M) = inf{d(Γ) | Γ is a network joining M} is called the length

of shortest network for M . Notice that the network Γ which joins M and satisfies
d(Γ) = smt(M) may not exist, see [6] and [27] for nontrivial examples. If such a
network exists, it is called a shortest network joining M , or for M . One variant
of the Steiner problem is to describe the shortest networks joining finite subsets of
metric spaces.1

Now let us define minimal parametric networks in a metric space X = (X, d).
Let G = (V, E) be a connected graph with some boundary ∂G, and let ϕ : ∂G → X

1The denotation smt is an acronym for “Steiner Minimal Tree” which is a synonym for the
shortest network whose edges are nondegenerate and, thus, it must be a tree.
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be a mapping. By [G, ϕ] we denote the set of all networks Γ: V → X of the type
G such that ∂Γ = ϕ. We put mpn(G, ϕ) = infΓ∈[G,ϕ] d(Γ) and we call this value
the length of minimal parametric network. If there exists a network Γ ∈ [G, ϕ] such
that d(Γ) = mpn(G, ϕ), then Γ is called a minimal parametric network of the type

G with the boundary ϕ.

Proposition 2.1. Let X = (X, d) be an arbitrary metric space and M be a

finite subset of X. Then smt(M) = inf{mpn(G, ϕ) | ϕ(∂G) = M}.

Thus, the problem of calculating the length of the shortest network is reduced
to investigation of minimal parametric networks.

Let M = (M, ρ) be a finite metric space and G = (V, E) an arbitrary connected
graph joining M . In this case we always assume that the boundary of such G is
fixed and equal to M . By Ω(M, G) we denote the set of all weight functions
ω : E → R such that (G, ω) is a filling of the space M. We put mpf(M, G) =
infω∈Ω(M,G) ω(G) and we call this value the weight of minimal parametric filling

of the type G for the space M. If there exists a weight function ω ∈ Ω(M, G) such
that ω(G) = mpf(M, G), then (G, ω) is called a minimal parametric filling of the

type G for the space M.

Proposition 2.2. Let M = (M, ρ) be a finite metric space. Then mf(M) =
inf

{

mpf(M, G)
}

.

It is not difficult to show that to investigate shortest networks and minimal
fillings one can restrict the consideration to trees such that all their vertices of
degree 1 and 2 belong to their boundaries. In what follows, we always assume that

this condition holds, providing the opposite is not declared.
To be more precise, we recall the following definition. We say that a tree is a

binary one if the degrees of its vertices can be 1 or 3 only, and the boundary consists
just of all vertices of degree 1. Then each finite metric space has a binary minimal
filling (possibly, with some degenerate edges), and a nondegenerate minimal filling
(whose type is a tree and all whose vertices of degree 1 and 2 belong to its boundary
in accordance with the above agreement).

3. Minimal realization

In this section we show that the problem on minimal filling can be reduced to
the Steiner problem in special metric spaces and for special boundaries.

Consider a finite set M = {p1, . . . , pn}, and let M = (M, ρ) be a metric
space. We put ρij = ρ(pi, pj). By ℓn

∞ we denote the n-dimensional arithmetic
space with the norm

∥

∥(v1, . . . , vn)
∥

∥

∞
= max

{

|v1|, . . . , |vn|
}

, and by ρ∞ the metric

on ℓn
∞ generated by ‖ · ‖∞, i.e., ρ∞(v, w) = ‖w − v‖∞. Let us define a mapping

ϕM : M → ℓn
∞ by the formula ϕM(pi) = p̄i = (ρi1, . . . , ρin).

Proposition 3.1. The mapping ϕM is an isometry with its image.

The mapping ϕM is called the Kuratowski isometry.
Let G = (G, ω) be a filling of a space M = (M, ρ), where G = (V, E), and dω

be the pseudometric on V generated by the weight function ω. Denote by EM the
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edges set of the complete graph on M and put Ḡ = (V, Ē = E ∪ EM ). Let ω̄ be
the weight function on Ē coinciding with metric ρ on EM and with ω on Ē r EM .
Recall that dω̄ denotes the pseudometric on V generated by ω̄.

We define the network ΓG : V → ℓn
∞ of the type G as follows: ΓG(v) =

(

dω̄(v, p1), . . . , dω̄(v, pn)
)

. This network is called the Kuratowski network for the

filling G.

Proposition 3.2. We have ∂ΓG = ϕM.

For any network Γ in a metric space (X, d) by ωGamma we denote the weight

function on G induced by the network Γ, i.e., ωGamma(vw) = d
(

Γ(v), Γ(w)
)

.

Corollary 3.1. Let G = (G, ω) be a minimal parametric filling of a metric

space (M, ρ) and Γ = ΓG be the corresponding Kuratowski network. Then ω =
ωGamma.

Let Γ be a network in a metric space X , let G be its parameterizing graph,
and H = (H, ω) be a weighted graph. We say that Γ and H are isometric, if there
exists an isomorphism of the weighted graphs H and G = (G, ωGamma).

Corollary 3.1 and the existence of minimal parametric and shortest networks
in a finite-dimensional normed space [26] imply the following result.

Corollary 3.2. Let M = (M, ρ) be a metric space consisting of n points,

and ϕM : M → ℓn
∞ be the Kuratowski isometry. For any graph G joining M there

exists a minimal parametric filling of the type G of the space M. Each minimal

parametric filling of the type G of the space M is isometric to the corresponding

Kuratowski network, which is, in this case, a minimal parametric network of the

type G with the boundary ϕM. Conversely, each minimal parametric network of

the type G on ϕM(M) is isometric to some minimal parametric filling of the type

G of the space M.

Corollary 3.3. Let M = (M, ρ) be a metric space consisting of n points, and

ϕM : M → ℓn
∞ be the Kuratowski isometry. Then there exists a minimal filling G

for M, and the corresponding Kuratowski network ΓG is a shortest network in the

space ℓn
∞ joining the set ϕM(M). Conversely, each shortest network on ϕM(M) is

isometric to some minimal filling of the space M.

4. Minimal Parametric Fillings and Linear Programming

Let M = (M, ρ) be a finite metric space joined by a (connected) graph G =
(V, E). As above, by Ω(M, G) we denote the set consisting of all the weight func-
tions ω : E → R+ such that G = (G, ω) is a filling of the space M, and by Ωm(M, G)
we denote its subset consisting of the weight functions such that G is a minimal
parametric filling of the space M.

Proposition 4.1. The set Ω(M, G) is closed and convex in the linear space

R
E of all the functions on E, and Ωm(M, G) ⊂ Ω(M, G) is a nonempty convex

compact.
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Remark 4.1. The proof of Proposition 4.1 shows that the problem of search-
ing for a minimal parametric filling of a metric space can be reduced to a linear
programming.

5. Generalized Fillings and Formula for the Weight of Minimal Filling

In this section we give a review of the recent results obtained by our group,
see [11] and [12].

5.1. Generalized fillings. Investigating the fillings of metric spaces, it turns
out to be convenient to expand the class of weighted trees under consideration
permitting arbitrary weights of the edges (not only nonnegative). The correspond-
ing objects are called generalized fillings, minimal generalized fillings and minimal

parametric generalized fillings. Their weights for a metric space M and a tree G
are denoted by mf−(M) and mpf−(M, G), respectively.

For any finite metric space M = (M, ρ) and a tree G joining M , the next
evident inequality is valid: mpf−(M, G) 6 mpf(M, G). And it is not difficult to
construct an example, when this inequality becomes strict. However, for minimal
generalized fillings the following result holds, see [11].

Theorem 5.1 (A. Ivanov, Z. Ovsyannikov, N. Strelkova, A. Tuzhilin). The set

of all minimal generalized fillings of an arbitrary finite metric space M contains its

minimal filling, i.eȧ generalized minimal filling with nonnegative weight function.

Hence, mf−(M) = mf(M).

5.2. Multitours and the true formula for the weight of minimal filling.

Let M = (M, ρ) be a finite metric space, and G be a tree joining M . Choose an
arbitrary embedding G′ of the tree G into the plane. Consider a walk around
the tree G′. We draw the points of M consecutive with respect to this walk as a
consecutive points of the circle S1. Notice that each vertex p from M appears deg p
times. For each vertex p ∈ M of degree more than 1, we choose just one arbitrary
point from the corresponding points of the circle. So, we construct an injection
ν : M → S1. Define a cyclic permutation π as follows: π(p) = q, where ν(q)
follows after ν(p) on the circle S1. We say that π is generated by the embedding

G′ (this procedure is not unique due to different possible choices of ν). Each π
generated in this manner is called a tour of M w.r.t. G. The set of all tours
on M w.r.t. G is denoted by O(M, G). For each tour π ∈ O(M, G) we put
p(M, G, π) = 1

2

∑

x∈M ρ
(

x, π(x)
)

and we call the value by the half-perimeter of the

space M w.r.t. the tour π. The minimal value of p(M, G, π) over all π ∈ O(M, G)
for all possible G (in fact, over all possible cyclic permutations π on M) is called
the half-perimeter of the space M.

A. Ivanov and A. Tuzhilin proposed the following hypothesis.

Conjecture 5.1. For an arbitrary metric space M = (M, ρ) the following

formula is valid mf(M) = minG maxπ∈O(M,G) p(M, G, π), where minimum is taken

over all binary trees G joining M .
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Eremin [12] constructed a counter-example to the Conjecture 5.1 and showed
that if one changes the concept of tour by the one of multitour, introduced by him,
then the Conjecture 5.1 holds.

To define the multitours, let us consider the graph in which every edge of G is
taken with the multiplicity 2k, k > 1. The resulting graph possesses an Euler cycle
consisting of irreducible boundary paths – the ones which do not contain properly
other boundary paths. This Euler cycle generates a bijection π : X → X , where
X = ⊔k

i=1M , which is called multitour of M w.r.t. G. The set of all multitours on
M w.r.t. G is denoted by Oµ(M, G).

Let M = (M, ρ) be a finite metric space, and G be a tree joining M . As
in the case of tours, for each multitour π ∈ Oµ(M, G) we put p(M, G, π) =
1

2k

∑

x∈X ρ
(

x, π(x)
)

.

Theorem 5.2 (A. Eremin [12]). For an arbitrary finite metric space M =
(M, ρ) and an arbitrary tree G joining M , the weight of minimal parametric gen-

eralized filling can be calculated as follows mpf−(M, G) = max
{

p(M, G, π) | π ∈
Oµ(M, G)

}

. The weight of minimal filling can be calculated as follows mf(M) =

mf−(M) = minG max
{

p(M, G, π) | π ∈ Oµ(M, G)
}

, where the minimum is taken

over all binary trees G joining M .

6. Minimal Fillings for Generic Metric Spaces

Theorem 5.2 gives an opportunity to get several interesting corollaries. To
formulate one of them, we need to define what is a “generic” metric space. Notice
that the set of all metric spaces consisting of n points can be naturally identified
with a convex cone in R

n(n−1)/2 (it suffices to enumerate the set of all two-elements
subsets of these spaces and assign to each such space the vector of the distances
between the pairs of points). This representation gives us an opportunity to speak
about topological properties of families of metric spaces consisting of a fixed number
of points.

We say, that some property holds for a generic metric space, if for any n this
property is valid for an everywhere dense set of n-point metric spaces.

The following result can be found in [12].

Corollary 6.1 (A. Eremin). Each general finite metric space has a minimal

filling which is a nondegenerate binary tree.

7. Additive Spaces

The additive spaces are very popular in bioinformatics, playing an important
role in evolution theory. Recall that a finite metric space M = (M, ρ) is called
additive, if M can be joined by a weighted tree G = (G, ω) such that ρ coincides
with the restriction of dω onto M . The tree G in this case is called generating tree

for the space M.
Not any metric space is additive. It turns out that an additivity criterion can

be stated in terms of well-known 4 points rule: for any four points pi, pj , pk, pl, the
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values ρ(pi, pj) + ρ(pk, pl), ρ(pi, pk) + ρ(pj , pl), ρ(pi, pl) + ρ(pj , pk) are the lengths
of sides of an isosceles triangle whose base does not exceed its other sides.

Proposition 7.1. [29, 30, 31, 32] A metric space is additive, if and only if it

meets the 4 points rule. In the class of nondegenerate weighted trees, the generating

tree of an additive metric space is unique.

The next criterion solves completely the minimal filling problem for additive
metric spaces.

Theorem 7.1. Minimal fillings of an additive metric space are exactly its gen-

erating trees.

The next additivity criterion is obtained by O. Rubleva, a student of mechanical
and mathematical faculty of Moscow State University, see [33].

Proposition 7.2 (O. Rubleva). The weight of a minimal filling of a finite

metric space is equal to the half-perimeter of this space, if and only if this space is

additive.

In the scope of Proposition 7.2, we conjectured that if there exists a tree joining
a metric space such that all the corresponding half-perimeters are equal to each
other, then the space is additive. It turns out that it is not true. Z. Ovsyannikov
suggested to consider a wider class of spaces, so called pseudo-additive spaces, for
which our conjecture becomes true, see [13].

A finite metric space M = (M, ρ) is said to be pseudo-additive, if the metric
ρ coincides with dω for a weighted tree (G, ω) (which is also called generating),
where the weight function ω can take arbitrary (not necessary nonnegative) values.
Z. Ovsyannikov shows that these spaces can be described in terms of the so-called
weak 4-points rule: for any four points pi, pj , pk, pl, the values ρ(pi, pj) + ρ(pk, pl),
ρ(pi, pk)+ρ(pj , pl), ρ(pi, pl)+ρ(pj , pk) are the lengths of sides of an isosceles triangle.
The generating tree is also unique in the class of nondegenerate trees. Moreover,
the following result is valid, see [13].

Theorem 7.2 (Z. Ovsyannikov). Let M = (M, ρ) be a finite metric space.

Then the following statements are equivalent.

• There exists a tree G such that M coincides with the set of degree 1 vertices

of G and all the half-perimeters p(M, G, π) of M corresponding to the

tours of G are equal to each other.

• The space M is pseudo-additive.

Moreover, the tree G in this case is a generating tree for the space M.

It would be interesting to see what role could play these pseudo-additive spaces
in applications.

8. Rays of Metric Spaces and Minimal Fillings

Let M = (M, ρ) be a metric space and λ be a positive real number. By
λρ we denote the function on the pairs of points from M , defined as follows:
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(λρ)(x, y) = λρ(x, y). It is clear that λρ is a metric for λ > 0, and that (G, ω)
is a minimal (parametric) filling of the space (M, ρ), if and only if (G, λω) is a min-
imal (parametric) filling of the space (M, λρ). The set of all metric spaces (M, λρ),
λ > 0, we call by an open multiplicative ray passing through M.

By ρ + a we denote the function on the pairs of points from M defined as
follows: (ρ + a)(x, y) = ρ(x, y) + a. It is easy to see, that there exists a value
aM 6 0 such that the function ρ + a is a metric for a > aM, and is not a metric for
a < aM. The set of all the metric spaces M + a, a > aM, we call by an additive

ray with the vertex at M + aM, passing through M.

Theorem 8.1. Let G = (G, ω) be a minimal filling of a metric space M =
(M, ρ), and M coincides with the set of degree 1 vertices of the tree G. Let b be

the least weight of the boundary edges of G. Then −2b < aM, and, hence, for

any a > aM, the function ωa obtained from ω by adding a/2 to all the weights

of the boundary edges is nonnegative. Moreover, for any such a, the weighted tree

Ga = (G, ωa) is a minimal filling of the space M + a. In particular, all the spaces

of the form (M, λρ + a), λ > 0, a > λaM, have the same set of types of minimal

fillings.

9. Examples of Minimal Fillings

In this section we give several examples of minimal filling and demonstrate how
to use the technique elaborated above.

9.1. Triangle. Let M = (M, ρ) consist of three points p1, p2, and p3. Put
ρij = ρ(pi, pj). Consider the tree G = (V, E) with V = M ∪ {v} and E = {vpi}3

i=1.
Define the weight function ω on E by the following formula: ω(ei) = (ρij + ρik −
ρjk)/2, where {i, j, k} = {1, 2, 3}. Notice that dω restricted onto M coincides with
ρ. Therefore, M is an additive space, G = (G, ω) is a generating tree for M, and,
due to Theorem 7.1, G is a minimal filling of M.

Recall that the value (ρij+ρik−ρjk)/2 is called by the Gromov product (pj , pk)pi

of the points pj and pk of the space M with respect to the point pi, see [18].

9.2. Regular Simplex. Let all the distances in the metric space M are the
same and are equal to d, i.e., M is a regular simplex. Then the weighted tree
G = (G, ω), G = (V, E), with the vertex set V = M ∪{v} and edges vm, m ∈ M , of
the weight d/2 is generating for M. Therefore, the space M is additive, and, due
to Theorem 7.1, G is its unique nondegenerate minimal filling. If n is the number
of points in M , then the weight of the minimal filling is equal to dn/2.

9.3. Star. If a minimal filling G = (G, ω) of a space M = (M, ρ) is a star
whose single interior vertex v is joined with each point pi ∈ M , 1 6 i 6 n, n > 3,
then the metric space M is additive [35, 36]. In this case the weights of edges can
be calculated easily. Indeed, put ei = vpi. Since a subspace of an additive space
is additive itself, then we can use the results for three-points additive space, see
above. So, we have ω(ei) = (pj , pk)pi

, where pi, pj , and pk are arbitrary distinct
boundary vertices, and ρij is the distance between the corresponding points.
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9.4. Mustaches of Degree more than 2. Let G = (V, E) be an arbitrary
tree, and v ∈ V be an interior vertex of degree (k + 1) > 3 adjacent with k vertices
w1, . . . , wk from ∂G. Then the set of the vertices {w1, . . . , wk}, and also the set of
the edges {vw1, . . . , vwk}, are referred to as mustaches. The number k is called the
degree, and the vertex v is called the common vertex of the mustaches. An edge
incident to v and not belonging to {vw1, . . . , vwk} is called the root edge of the
mustaches under consideration.

As shown in [35, 36], any mustaches of a minimal filling of a metric space
forms an additive subspace. If the degree of such mustaches is more than 2, then
we can calculate the weights of all the edges containing in the mustaches just in
the same way as in the case of a star.

9.5. Four-Points Spaces. Here we give a complete description of minimal
fillings for four-points spaces.

Proposition 9.1. Let M = {p1, p2, p3, p4}, and ρ be an arbitrary metric on

M . Put ρij = ρ(pi, pj). Then the weight of a minimal filling G = (G, ω) of the

space M = (M, ρ) is given by the following formula

1

2

(

min{ρ12 + ρ34, ρ13 + ρ24, ρ14 + ρ23} + max{ρ12 + ρ34, ρ13 + ρ24, ρ14 + ρ23}
)

.

If the minimum in this formula is equal to ρij +ρrs, then the type of minimal filling

is the binary tree with the mustaches {pi, pj} and {pr, ps}.

We apply the obtained result to the vertex set of a planar convex quadrangle.

Corollary 9.1. Let M be the vertex set of a convex quadrangle p1p2p3p4 ⊂ R
2

and ρ(pi, pj) = ‖pi − pj‖. The weight of a minimal filling of the space (M, ρ) is

equal to 1
2 min(ρ12 +ρ34, ρ14 +ρ23)+ 1

2 (ρ13 +ρ24). The topology of minimal filling is

a binary tree with mustaches corresponding to opposite sides of the less total length.

10. Ratios

The Steiner ratio is an important characteristic in the Steiner minimal networks
theory. Let M be a finite subset of a metric space X consisting of more than
one point. Recall that the Steiner ratio of M is the ratio of the lengths of the
Steiner minimal tree and minimal spanning tree constructed on M , i.e., the value
sr(M) = smt(M)/ mst(M). The infimum of the numbers sr(M) over all such
subsets M of X is called the Steiner ratio of the space X and is denoted by sr(X ),
see [1].

Notice that the exact values of the Steiner ratio are known for a very restricted
class of spaces (see a review in [6], or in [2]). Below, we shall define other two ratios
based on minimal fillings, which could be more available for calculating, and which
could be useful to calculate the Steiner ratio, as we hope.

10.1. Steiner–Gromov Ratio. For convenience, the sets consisting of more
than a single point are referred to as nontrivial. Let X = (X, ρ) be an arbitrary
metric space, and let M ⊂ X be some finite subset. Recall that by mst(M, ρ)
we denote the length of minimal spanning tree of the space (M, ρ). Further, for
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nontrivial M , we define the value sgr(M) = mf(M, ρ)/ mst(M, ρ) and call it the
Steiner–Gromov ratio of the subset M . The value inf sgr(M), where the infimum
is taken over all nontrivial finite subsets of X , consisting of at most n > 1 vertices
is denoted by sgrn(X ) and is called the degree n Steiner–Gromov ratio of the space

X . At last, the value inf sgrn(X ), where the infimum is taken over all positive
integers n > 1 is called the Steiner–Gromov ratio of the space X and is denoted
by sgr(X ), or by sgr(X), if it is clear what particular metric on X is considered.
Notice that sgrn(X ) is nonincreasing function on n. Besides that, it is easy to see
that sgr2(X ) = 1 for any nontrivial metric space X .

Proposition 10.1. sgr3(X ) = 3/4.

Proposition 10.2. The Steiner–Gromov ratio of an arbitrary metric space is

not less than 1/2. There exist metric spaces whose Steiner–Gromov ratio equals to

1/2.

Recently, A. Pakhomova, a student of the Mechanical and Mathematical De-
partment of the Moscow State University, obtained an exact general estimate for
the degree n Steiner–Gromov ratio, see [37].

Proposition 10.3 (A. Pakhomova). For any metric space X the estimate

sgrn(X ) > n/(2n − 2) is valid. Moreover, this estimate is exact, i.e., for any

n > 3 there exists a metric space Xn, such that sgrn(Xn) = n/(2n − 2).

Also recently, Ovsyannikov [38] investigated the metric space of all compact
subsets of the Euclidean plane endowed with Hausdorff metric.

Proposition 10.4 (Z. Ovsyannikov). The Steiner ratio and the Steiner–Gro-

mov ratio of the metric space of all compact subsets of the Euclidean plane endowed

with Hausdorff metric are equal to 1/2.

10.2. Steiner Subratio. Let X = (X, ρ) be an arbitrary metric space, and
M ⊂ X its finite subset. Recall that by smt(M, ρ) we denote the length of Steiner
minimal tree joining M . Further, for nontrivial subsets M , we define the value
ssr(M) = mf(M, ρ)/ smt(M, ρ) and call it the Steiner subratio of the set M . The
value inf ssr(M), where infimum is taken over all nontrivial finite subsets of X
consisting of at most n > 1 points, is denoted by ssrn(X ) and is called the degree n
Steiner subratio of the space X . At last, the value inf ssrn(X ), where the infimum
is taken over all positive integers n > 1, is called the Steiner subratio of the space

X and is denoted by ssr(X ), or by ssr(X), if it is clear what particular metric on X
is considered. Notice that ssrn(X ) is a nonincreasing function on n. Besides that,
it is easy to see that ssr2(X ) = 1 for any nontrivial metric space X .

Proposition 10.5. ssr3(Rn) =
√

3/2.

The next result is obtained by E. Filonenko, a student of the Mechanical and
Mathematical department of the Moscow State University, see [34].

Proposition 10.6 (E. Filonenko). ssr4(R2) =
√

3/2.
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Conjecture 10.1. The Steiner subratio of the Euclidean plane is achieved at

the regular triangle and, hence, is equal to
√

3/2.

Recently, A. Pakhomova obtained an exact general estimate for the degree n
Steiner subratio, see [37].

Proposition 10.7 (A. Pakhomova). For any metric space X the estimate

ssrn(X ) > n/(2n − 2) is valid. Moreover, this estimate is exact, i.e., for any

n > 3 there exists a metric space Xn such that ssrn(Xn) = n/(2n − 2).

Also recently, Z. Ovsyannikov [38] investigated the metric space of all compact
subsets of the Euclidean plane endowed with Hausdorff metric.

Proposition 10.8 (Z. Ovsyannikov). Let C be the metric space of all compact

subsets of the Euclidean plane endowed with Hausdorff metric. Then ssr3(X ) = 3/4
and ssr4(X ) = 2/3.
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