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GEODESIC MAPPINGS ON COMPACT

RIEMANNIAN MANIFOLDS WITH

CONDITIONS ON SECTIONAL CURVATURE

Irena Hinterleitner

Abstract. We found new criteria for sectional curvatures on compact Rie-
mannian manifolds for which geodesic mappings are affine, and, moreover,
homothetic.

1. Introduction

To the theory of geodesic mappings and their transformations have been de-
voted many papers, these results are formulated in a large number of research
papers and monographs [2,4–12,16–19,21–26,30,33], etc.

In 1953, Takeno and Ikeda [31] considered geodesic mappings of spherically
symmetric spaces V4, in 1954 Sinyukov [26, p. 88] studied the case of symmetric and
recurrent spaces and, in 1976 Mikeš ( [13,16], [21, p. 206], [26, pp. 151–155]) proved
that generalized recurrent (pseudo-) Riemannian spaces Vn with nonconstant cur-
vature do not admit nontrivial geodesic mappings. In this topic Prvanović [23] and
Sobchuk [20, 29] also have been interested. These results were obtained “locally"
and they are contained in [14,16,21,26].

Global results for geodesic mappings of compact Riemannian manifolds were
obtained by Vrançeanu [33], Sinyukova [27,28], Mikeš [15,16], etc.

The above results are related to questions of projective rigidity of (pseudo-)
Riemannian manifolds and also of manifolds with affine connections.

In [10] and [11] we proved that these mappings preserve the smoothness class
of metrics of geodesically equivalent (pseudo-) Riemannian manifolds. In [10] it
was sufficient to suppose the metrics to be of differentiability class C2, and in [11]
to be of class C1.

We present new results on geodesic mappings of compact Riemannian manifolds
with certain conditions on the sectional curvature of the Ricci directions.
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2. Geodesic mapping theory

Let Vn = (M, g) and V̄n = (M̄, ḡ) be n-dimensional (pseudo-) Riemannian
manifolds with metrics g and ḡ, respectively.

Definition 2.1. A diffeomorphism f : Vn → V̄n is called a geodesic mapping

of Vn onto V̄n if f maps any geodesic in Vn onto a geodesic in V̄n.

We restricted ourselves to the study of a coordinate neighborhood (U, x) of the
points x ∈ Vn and f(x) ∈ V̄n. The points x and f(x) have the same coordinates
x = (x1, . . . , xn). We assume that Vn, V̄n ∈ C1 (g, ḡ ∈ C1) if their components
gij(x), ḡij(x) ∈ C1 on (U, x), respectively.

It is known [12], see [6, pp. 131–133], [21, p. 167], that Vn admits a geodesic
mapping onto V̄n if and only if the following Levi-Civita equations

(2.1) ∇kḡij = 2ψkḡij + ψiḡjk + ψj ḡik

hold, where ∇ is the Levi-Civita connection on Vn and

ψi = ∂iΨ, Ψ =
1

n+ 1
ln

√

| det ḡ/ det g|, ∂i = ∂/∂xi.

Sinyukov [26, p. 121], see [21, p. 167], proved that the Levi-Civita equations (2.1)
are equivalent to

(2.2) ∇kaij = λigjk + λjgik,

where

(2.3) (a) aij = e2Ψ ḡαβgiαgjβ ; (b) λi = −e2Ψ ḡαβψαgiβ ,

and, moreover, λi = ∂iΛ, Λ = 1
2 aαβg

αβ . Here (ḡij) = (ḡij)−1 and (gij) = (gij)−1.
On the other hand:

ḡij = e2Ψĝij , Ψ = ln
√

| det ĝ/ det g|, (ĝij) = (aαβg
iαgjβ)−1.

Furthermore, we assume that Vn = (M, g) ∈ C2 and V̄n = (M, ḡ) ∈ C2. In this
case, the integrability conditions of the equations (2.2), due to the Ricci identity

(2.4) ∇l∇kaij − ∇k∇laij = aiαR
α
jkl + ajαR

α
ikl,

have the following form

(2.5) aiαR
α
jkl + ajαR

α
ikl = gik∇lλj + gjk∇lλi − gil∇kλj − gjl∇kλi,

where Rh
ijk are components of the Riemannian tensorR on Vn, and after contraction

with gik we get [26, p. 133]

(2.6) n∇lλj = µ gjl − ajαR
α
l − aαβRj

αβ
l,

where µ = ∇αλ
α, Rα

i = gαβRβi and Rij = Rα
iαj are components of the Ricci tensor

Ric on Vn.
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3. Integral formula

We introduce the vector field ξ on Vn ∈ C2 in the following way

(3.1) ξi = aα
β∇αa

iβ − ai
β∇αa

αβ ,

where al
i = glαaαi, aij = aαβg

iαgjβ . Using formula (3.1), the Ricci identity (2.4)
and Sinyukov’s equations (2.2) we obtained that the divergence of the vector ξ has
the following representation

div ξ = Φ(a) − (n− 1)(n+ 2)λαλβg
αβ ,

where Φ(a) = Rija
ikaj

k −Rijkla
ikajl.

Suppose that the Riemannian manifold (M, g) is compact and without bound-
ary, then on the basis of the Gauß theorem

∫

M
div ξ dν = 0 we obtain the integral

formula

(3.2)
∫

M

Φ(a) dν = (n− 1)(n+ 2)
∫

M

λαλβg
αβdν.

For applying the Gauss theorem it is necessary to require the orientability of M , if
M is a non-orientable manifold, then we’ll look at the oriented double cover.

Let g(ei, ej) = δij and a(ei, ej) = αiδij with the Kronecker symbol δij , i.e.,
{e1, . . . , en} is the orthonormal basis of eigenvectors to the eigenvalues α1, . . . , αn

of the tensor a = (aij) of TxM at any point x ∈ M . As we can see from direct
calculation, Φ(a) has the following form (see [3, p. 592]):

(3.3) Φ(a) =
∑

i<j

K(ei, ej)(αi − αj)2,

where K(ei, ej) are sectional curvatures in the two-directions ei ∧ ej.
It is easy to see:

Φ(a) = Rija
ikaj

k −Rijkla
ikajl =

∑

i,j

(αi)2Rijij −
∑

i,j

αiαjRijij

=
∑

i<j

((αi)2 + (αj)2) · Rijij − 2
∑

i<j

αiαjRijij

=
∑

i<j

(αi − αj)2 ·Rijij =
∑

i<j

(αi − αj)2 ·K(ei, ej),

where

K(ei, ej) =
R(ei, ej, ei, ej)

g(ei, ei) · g(ej, ej) − (g(ei, ej))2 = Rijij .

4. Principal orthonormal basis

Eisenhart [6, pp. 113–114] introduced a principal direction in a Riemannian
manifold (M, g), as an eigenvector of the Ricci tensor. He showed that at any point
x ∈ M there exists the orthonormal basis {e1, . . . , en} in which

gij = δij and Rij = ρiδij ,
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i.e., e1, . . . , en are the vectors of the principal directions and ρ1, . . . , ρn are their
eigenvalues. This basis is called the principal orthonormal basis.

This means that the existence of this basis is a property only of the Riemannian
manifold (M, g), independent of the solution aij of equation (2.2). Generally the set
of principal orthonormal bases is a proper subset of the set of orthonormal bases.
Because the vector field λi is gradient-like, formula (2.6) implies [26, p. 138]

aiαR
α
j = ajαR

α
i .

So the tensors aij and Rij commute and have common eigenvectors. From this
fact it follows that there exist a principal orthonormal basis in which gij = δij and
aij = αiδij hold. This basis is called a joint principal orthonormal basis. Note
that we do not restrict the signature of the Ricci tensor and the tensor aij . In
the following we restrict ourselves to the study of formulas (3.2) and (3.3) on joint
principal orthonormal bases.

5. Main Theorems

For the following we recall that a compact Riemannian manifold Vn admits a
geodesic mapping onto a (pseudo-) Riemannian manifold V̄n.

If we assume that at each point x ∈ M all sectional curvatures K(ei, ej) are
non-positive in the two-directions ei ∧ ej of the joint principal orthonormal basis
{e1, . . . , en} of vectors of the main directions of the Ricci tensor, then from integral
formula (3.2) it follows

(5.1) (a)
∫

M

Φ(a) dν = 0 and (b)
∫

M

λαλβg
αβ dν = 0.

From integral (5.1b) follows λαλβg
αβ = 0 and this fact implies that λi is

vanishing on M , i.e., λ1 = · · · = λn = 0. In this case, the geodesic mapping is
affine (see [21, p. 150]). We proved the following theorem:

Theorem 5.1. Assume a compact Riemannian manifold (M, g) without bound-

ary of dimension n > 2. If at any point x ∈ M the sectional curvature K(ei, ej) is

non-positive for any two-direction ei ∧ ej from all the principal orthonormal basis

{e1, . . . , en} of vectors of the main direction of the Ricci tensor, then any geodesic

mapping of (M, g) is affine.

Moreover, we suppose at each point x ∈ M the sectional curvature K(ei, ej) is
non-positive and that there is a certain point x0 ∈ M where the sectional curva-
ture K(ei, ej) in any two-direction ei ∧ ej of the joint principal orthonormal basis
{e1, . . . , en} of vectors of the main directions of the Ricci tensor is negative. Then
from integral (3.2) follows equation (5.1). On the basis of Theorem 5.1 it follows
λ1 = · · · = λn = 0 and the geodesic mapping is affine.

Further, from integral (5.1a) follows Φ(a) = 0 on M . Then from formula (3.3)
at the point x0 ∈ M we obtain α1 = · · · = αn = α. Hence aij = αδij , i.e.,
aij(x0) = αgij(x0).

In this case, the affine mapping is homothetic, i.e., ḡ = α′ g, where α′ = const.
This fact follows from the uniqueness of solutions of the fundamental equations of
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affine mappings Vn → V̄n : ∇kḡij = 0 with initial values ḡij(x0) = α′ gij(x0). This
is equivalent to aij(x0) = αgij(x0), this fact follows from equation (2.3).

We proved the following theorem:

Theorem 5.2. Assume a compact Riemannian manifold (M, g) without bound-

ary of dimension n > 2. If at any point x ∈ M the sectional curvature K(ei, ej) is

non-positive and if there is a certain point x0 ∈ M , where the sectional curvature

K(ei, ej) is negative in any two-direction ei ∧ ej of all the principal orthonormal

basis {e1, . . . , en} of vectors of the main directions of the Ricci tensor, then any

geodesic mapping of (M, g) is homothetic.

These Theorems generalize the results of Mikeš [15] (see [16]), which were
obtained by means of modifications of integral inequalities obtained by Švec [1,
p. 10].
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