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FIXED POINTS AND D-BRANES

Elaine Beltaos

Abstract. The affine Kac–Moody algebras give rise to rational conformal
field theories (RCFTs) called the Wess–Zumino–Witten (WZW) models. An
important component of an RCFT is its fusion ring, whose structure con-
stants are given by the associated S-matrix. We apply a fixed point property
possessed by the WZW models (“fixed point factorization") to calculate non-
negative integer matrix representations of the fusion ring, allowing for the
calculation of D-brane charges in string theory.

1. Introduction

To each quantum field theory is associated an S-matrix. This matrix expresses
amplitudes and thus is a fundamental component of the theory. In string theory, a
particle is a finite curve of length approximately 10−33cm. Modern string theories
contain both open (e.g., photon) and closed (e.g. graviton) strings. Topologically, a
closed string is a circle S1 and an open string is the interval [0, 1]. As a string evolves
through time, it traces out a surface called a worldsheet. For example, an incoming
closed string travelling from t = −∞ to t = 0 traces out a semi-infinite cylinder.
An important discovery, in 1989, was of higher dimensional objects (‘membranes’)
called Dirichlet-branes, or D-branes for short (co-discoverers were Polchinski, Dai,
Leigh, and Hořava). Physically, D-branes are the membranes where the endpoints
of open strings reside. In 1995, Polchinski proved that a consistent theory requires
branes. D-branes are physical entities having tension and charge. During physical
processes, these charges are conserved – thus D-brane charges in string theory are
analogous to electrical charges in particle physics. Unlike regular electrical charges
however, D-brane charges are usually preserved only modulo some integer M .

In this paper, we are specifically interested in the Wess–Zumino–Witten (WZW
models). The WZW models are a well-studied class of two dimensional rational
conformal field theories (RCFTs). A conformal field theory (CFT) is a quantum
field theory whose symmetries include the conformal transformations. Since R2 ∼=
C, in two dimensions, the space of conformal maps is infinitely dimensional. Let
f(z) be a holomorphic map such that f ′(z0) 6= 0 for some z0 ∈ C. Then f is
conformal in a neighbourhood of z0. A rational conformal field theory obeys a
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further finiteness condition. The WZW models correspond to strings propagating
on compact Lie groups (e.g., SU(n), the group of n × n unitary matrices with
determinant 1).

Our main interest is in calculating D-brane charges for the WZW models. In a
given model, the D-brane charges form a discrete abelian group, the charge group.
One approach to determining the charge group is through K-theory [43, 44, 48];
however, while this yields the charge group, it does not give the actual charges
themselves. To find the charges, we adopt the conformal field theory approach,
discussed in Section 4.

For the simply connected groups (e.g., SU(n)), the D-brane charges have been
determined using both methods [1, 6, 9, 19, 29, 42]. Also see [20, 37] for results
on twisted charges and [17, 18] for results on semi-simple groups. The K-theory
calculation for the non-simply connected group SO(3) = SU(2)/Z2 has been done
in [10]. Other than this, for the non-simply connected groups, the only way known
to this author to find D-brane charges requires knowing the NIM-reps. The NIM-
rep is explained in Section 3. It is important to note that not every NIM-rep
corresponds to a consistent boundary condition of a CFT – e.g., the tadpoles of
SU(2) [13].

The rest of this paper is structured as follows: in Section 2, we give the rele-
vant mathematical background on the WZW models, including modular data and
simple-currents; Section 3 discusses the NIM-rep and fixed point factorization in
detail, and in Section 4, we give some details about the conformal field theory ap-
proach to finding D-brane charges. This is a work in progress, and the results of
solving the charge equation (4.1) for the non-simply connected groups will follow
in [4]. We conclude with some questions and further work in this direction.

2. The WZW models

The WZW models have the property that most of their quantities have a nat-
ural interpretation in terms of the underlying affine Lie algebra g. We denote
the algebra g at level k by gk. More precisely, the modes of the current algebra
generate an algebraic structure called a vertex operator algebra (VOA), whose rep-
resentations are precisely the integrable representations of gk (for an introduction
to VOAs, see e.g., [41]). These representations form a modular tensor category,
and the fusion ring of gk (see (2.2)) is the Grothendieck ring of that tensor cate-
gory. For an introduction to these matters, see e.g., [12, 23, 46]. In the following
sections, we describe the WZW models from a Lie-theoretical point of view. For
an introduction to Lie theory, see [26,27,39].

2.1. Affine algebras. Let g be a simple, finite dimensional Lie algebra. We

construct the affine algebra g := g
(1) as follows. Let L(g) be the set of all Lau-

rent polynomials in g. That is, L(g) = {
∑
n∈Z

antn | an ∈ g}, where all but
finitely many an are zero. This is an infinite dimensional Lie algebra with bracket
[atn, btm] = [a, b]tn+m. To have true, rather than projective, representations, we
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centrally extend by an element C;1 i.e., [C, x] = [x, C] = 0 for all x. This algebra
has bracket [atn, btm] = [ab]tn+m + nδn+m,0(a|b)C, where (a|b) is the Killing form

of g. Finally, we extend one more time (non-centrally) by a derivation ℓ0 := t ddt ,
2

and denote this algebra by g
(1)=: g. We call g the horizontal subalgebra of g. The

affine algebras behave similarly to their horizontal subalgebras – they have highest
weight representations, and (extended) Dynkin diagrams. The extended Dynkin
diagrams are obtained from the Dynkin diagrams of the horizontal subalgebra by
the addition of an extra node, the 0 node. The superscript ‘1’ in the notation of
the affine algebra means ‘nontwisted’. The above construction can be twisted by

an automorphism of the Dynkin diagram of g, yielding affine algebras A
(2)
2 , A

(2)
2r−1,

A
(2)
2r , D

(2)
r+1, E

(2)
6 , and D

(3)
4 , where the superscript denotes the order of the automor-

phism.3 Though there are subtle differences, these twisted algebras behave mostly
analogously to the nontwisted ones.

The algebra g constructed above has irreducible highest weight modules, in-
dexed by highest weights (λ0; λ1, . . . , λr). In any highest weight representation,
the central element C is mapped to a scalar multiple k of the identity – we call k
the level of the representation. We are interested in the integrable highest weight
modules, i.e., those for which λi ∈ Z>0 for all i; they are indexed by the set

(2.1) P k
+(g) =

{
λ = (λ0; λ1, . . . , λr) ∈ Zr+1

>0

∣∣∣
r∑

i=0

a∨
i λi = k

}

of integrable highest weights. In (2.1), the λi are the Dynkin labels, r is the rank of
the underlying horizontal subalgebra, and a∨

i are the colabels (The zeroth colabel

a∨
0 is always 1). For example, for g = A

(1)
r , the Lie algebra corresponding to

SU(r + 1), a∨
i = 1 for all 0 6 i 6 r. Physically, the set P k

+ indexes the primaries of
the theory, with the vacuum primary (the state of lowest energy) corresponding to
the weight kΛ0 = (k; 0, . . . , 0) =: 0.

2.2. Modular data. In a rational CFT, the chiral algebra V has finitely many
irreducible modules M .4 Their characters are the one-point functions chA(τ, u) =
trA o(u)e2πi(L0−c/24), where c is the central charge, L0 is the energy operator, τ ,
the modular parameter, is in the upper half plane, and o(u) is the zero-mode. We
usually specialize to the variable τ to obtain chA(τ) = trA e2πi(L0−c/24), though we
lose linear independence of the characters by doing so. These characters satisfy the
modularity property

chA(−1/τ) =
∑

B

SAB chB(τ), chA(τ + 1) =
∑

B

TAB chB(τ)

where the sum is over all irreducible modules B. The S and T matrix are called
the modular data of the theory and generate an SL2(Z) representation

(
0 −1
1 0

)
7→ S

1Up to isomorphism, there is a unique nontrivial one dimensional central extension.
2This extension is taken so that the simple roots are linearly independent.
3We use the notation of [39] for the twisted algebras.
4We assume the the theory is non-heterotic, i.e., that the two chiral algebras are isomorphic.
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and
(

1 1
0 1

)
7→ T .5 For an introduction to modular data, see [36]. The entries of S

and T lie in a cyclotomic field and S and T satisfy the following properties:

• T is diagonal and of finite order,
• S is unitary and symmetric (i.e., SS∗ = I),
• (ST )3 = S2 =: C, an order two permutation matrix called charge-conjugation.

For the WZW models, the modules M are labelled by the set P k
+ of level k highest

weights λ, and the characters coincide with the characters of the underlying affine
algebra, specialized to τ .

The coefficients defined by Verlinde’s formula

(2.2) Nν
λµ =

∑

α

SλαSµαS∗
να

S0α

are nonnegative integers. They are structure constants for a commutative, asso-
ciative ring called the fusion ring. That is, the ring multiplication is given by
xλ ∗ xµ =

∑
ν Nν

λµxν , where the sum is over P k
+. For each λ ∈ P k

+, the fusion

matrix is the matrix indexed by P k
+ and given by entries (Nλ)µν := Nν

λµ.

The Kac–Peterson formula gives an explicit formula for the S-matrix [40]:

(2.3) Sλµ = κ−r/2s
∑

w∈W

(det w) exp

[
−2πi

w(λ + ρ) · (µ + ρ)

κ

]
,

where W is the g Weyl group, ρ = (1, . . . , 1) is the Weyl vector, and κ and s are
constants depending on the rank r and level k.

A simple example of modular data is for A
(1)
1 . The group manifolds SU(2) and

SO(3)=SU(2)/Z2 are based on this algebra. The S and T matrices are

Sλµ =

√
2

k + 2
sin

[
π

(λ + 1)(µ + 1)

k + 2

]
,

Tλλ = exp

[
−

πi

4

]
exp

[
πi

(λ + 1)2

2(k + 2)

]
,

where 0 6 λ, µ 6 k, and the fusion coefficients are

Nν
λµ =

{
1, if ν ≡2 λ + µ and |λ − µ| 6 ν 6 min{λ + µ, 2k − λ − µ}

0, otherwise

2.3. Simple-currents. The S-matrix has a strictly positive column and sat-
isfies the inequality

Sλ0 > S00 > 0.

Equality occurs for weights called simple-currents. These weights are given by
some permutation J of the vacuum–we also refer to the permutation J as a simple-

current. In all cases except E
(1)
8 , level 2, simple-currents correspond to extended

diagram automorphisms [21]. This is realized by labelling each node of the extended
diagram with a Dynkin label of λ– the automorphism of the graph permutes the

5The group is SL2(Z) rather than PSL2(Z) because of the u variable in the original definition
of character.
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Dynkin labels yielding Jλ. The set of all simple-currents forms an abelian group J ,
isomorphic to the centre of the universal cover of the corresponding Lie group. For

example, take A
(1)
r , the affine algebra for the models SU(r + 1)/H , where H is any

subgroup of Zr+1, the centre of SU(r + 1). Its graph is an (r + 1)-gon. Let λ ∈ P k
+

and label each node consecutively by the Dynkin labels of λ. Let J be the rotation
of 2π/(r + 1). Then J acts on λ by the rule (λ0; λ1, . . . , λr) 7→ (λr; λ0, . . . , λr−1).
This simple-current generates the group J , isomorphic (as it must be) to Zr+1.

For B
(1)
r , C

(1)
r , A

(2)
2r−1, and D

(2)
r+1, there is one nontrivial diagram automophism, of

order two, so J ∼= Z2. For D
(1)
r , J ∼= Z2 ×Z2 if r is even and Z4 if r is odd. If r is

even, the generators of the simple-current group are Jv which exchanges the zeroth
and first nodes, and Js : (λ0; . . . , λr) 7→ (λr ; . . . , λ0), and if r is odd, J is generated
by the order four simple-current Jv : (λ0; . . . , λr) 7→ (λr−1; λr, λr−2, . . . , λ0).

2.4. Modular invariants. The modular invariant partition function of a
WZW model is the function

(2.4) Z(τ) =
∑

λ,µ

Mλµχλ(τ)χ∗
µ(τ)

where the sum is over all λ, µ ∈ P k
+, and where the Mλµ ∈ Z>0 are the multiplicities

in the decomposition H = ⊕Mλµλ⊗ µ of state-space H into V ⊗ V ′-modules, which
are labelled by P k

+.6 The function (2.4) satisfies Z(A.τ) = Z(τ) for any A ∈

SL2(Z), where A.τ = aτ+b
cτ+d for A =

(
a b
c d

)
, and the numbers Mλµ are nonnegative

integers with M00 = 1. The matrix M of coefficients is called a modular invariant.
It satisfies the following three properties

• Mλµ ∈ Z>0 for all λ, µ ∈ P k
+ (positivity)

• M00 = 1 (uniqueness of vacuum)
• MS = SM and MT = T M (modular invariance).

Modular invariants fall into series–the A-series (this includes the identity and
charge-conjugation C := S2), the D-series (simple-current extensions–see (2.5))
and the E-series (exceptionals that do not fit into the previous two categories–
these occur at low levels). This notation is used because the modular invariants

in the first classification, for A
(1)
1 fell into an A-D-E pattern [11] (see [34] for

another approach to this classification, which has been generalized to other cases).7

Classifying modular invariants is an important step in classifying RCFTS. A precise
mathematical formulation of this problem (simultaneously the classification of NIM-
reps) as the classification of Frobenius algebras in their representation categories is
given in [15]. Also see the review [23].

6Physically, state-space is the set of all possible states of the theory– it carries a representation
of V ⊗ V ′, where V and V ′ are the vertex operator algebras of holomorphic and antiholomorphic
fields resp. (a typical quantum field is neither holomorphic nor antiholomorphic, but a sesquilinear
combination of both). A vertex operator algebra is the natural algebraic structure formed by the
holomorphic (or antiholomorphic) fields.

7Because the exceptionals must be classified separately each time, complete modular invariant

classifications are rare and difficult–see e.g., [32, 33] for the A
(1)
2 classification.
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Every (non-heterotic) RCFT has a modular invariant and a NIM-rep [14] (we
describe the NIM-rep in Section 3 below). Our interest is in the simple-current
modular invariants, as they correspond to non-simply connected Lie groups. Let
G be a compact simply connected Lie group corresponding to the affine algebra gk

(this denotes the algebra g at level k). Let J be an order n simple-current for gk,
and define the matrix [45]

(2.5) M [J ]λµ =

ord(J)∑

i=1

δJiλ,µδZ(QJ(λ) + irJ)

where δZ(x) = 1 if x ∈ Z and 0 otherwise, and QJ(λ) and rJ are rational numbers.
The matrix M [J ] is a modular invariant if and only if TJ0,J0T ∗

00 is an nth root of
unity. In this case, it corresponds to the model with group G/〈J〉. For example,

for A
(1)
1 (with Lie group SU(2)) there is one order two simple-current J(λ0; λ1) =

(λ1; λ0). At level 4, the D-series modular invariant (2.5) for J is

D4 =




1 0 0 0 1
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
1 0 0 0 1




.

The group 〈J〉 is isomorphic to Z2. This modular invariant corresponds to the
model with Lie group SU(2)/Z2=SO(3).

Because of the similarity of (2.3) to the Weyl character formula (see e.g., [39]),
we have the relationship

(2.6) χλ(µ) := chλ

(
−2πi

(µ + ρ)

κ

)
=

Sλµ
S0µ

between the ratios of the S-matrix and characters at elements of finite order of
the underlying horizontal subalgebra g. Equation (2.6) is the key to Theorem 3.1
below.

3. The NIM-rep

In this section, we discuss the NIM-rep and a property of the S-matrix – fixed
point factorization – that allows for the calculation of NIM-rep coefficients. This
in turn allows for the calculation of D-brane charges.

3.1. Description of the NIM-rep. A NIM-rep [2] N is a nonnegative in-
teger representation of the fusion ring. More precisely, to each λ ∈ P k

+, associate
a nonnegative integer matrix Nλ such that NλNµ =

∑
ν Nν

λµNν , with N0 = I, the

identity matrix, and NCλ = N t
λ, where t denotes transpose. Two NIM-reps N and

N ′ are called equivalent if there is a permutation matrix P such that N ′
λ = P −1NλP

for all λ ∈ P k
+. The easiest example of a NIM-rep is the assignment λ 7→ Nλ, the

fusion matrices. These are indexed by P k
+, but a general NIM-rep matrix Nλ is in-

dexed by boundary states–these were given a Lie theoretic interpretation in [28,30]
and will be described below.



FIXED POINTS AND D-BRANES 175

In a given NIM-rep, all matrices are normal and commute, so are simultaneously
diagonalized by a unitary matrix Ψ. The eigenvalues of Nλ are Sλµ/S0µ, where µ
lies in a multi-set, with multiplicities as eigenvalues. We call the multi-set of all
such µ the exponents of the NIM-rep and denote it by E(N ). We then have the
Verlinde-like formula (recall eqn. (2.2))

(3.1) N y
λx =

∑

µ

ΨxµSλµΨ†
yµ

S0µ
,

where the sum is over all exponents of the NIM-rep, x and y are boundary states,
and † denotes complex conjugate transpose.

Consider a simple-current J of order n and its associated modular invariant
M [J ]. Let λ ∈ P k

+. Define the order of λ, written ord(λ), to be the order of the
stabilizer of λ in 〈J〉. By [λ] we mean the J-orbit [λ] = {Jaλ | 0 6 a 6 n − 1}.
Then the set of boundary states for the model is the set of all pairs [[λ], j] such
that 1 6 j 6 ord(λ). The exponents of a modular invariant M are elements of the
multi-set E(M) consisting of all λ with Mλλ 6= 0, appearing with multiplicity Mλλ.
We will associate this with the set {(λ, i) | 1 6 i 6 Mλλ}. If E(M) = E(N ), then
we say that N and M correspond to each other. Recall the NIM-rep Nλ = Nλ for
all λ ∈ P k

+. In this case, the boundary states coincide with the set P k
+, each weight

occurring with multiplicity 1.

3.2. Fixed points and NIM-reps. Here, we describe fixed point factoriza-
tion in detail. Fixed point factorization has been used successfully in the case of
SU(n) to find D-brane charges for non-simply connected groups [30,31]. As men-
tioned in the introduction, fixed point factorization refers to a simplification of the
S-matrix at entries where at least one index is a fixed point of a simple-current.
More precisely, the S-matrix ratio χΛℓ

(ϕ) (see (2.6)) reduces to some simple polyno-
mial in S-matrix ratios for a smaller rank algebra (also at the fundamental weights).
This is remarkable because a priori, there would have been no reason to expect the
modular data of the two theories to be linked. The theorem below, adapted from
Theorem 3.1 of [3], makes this precise. By a fixed point, we mean a weight ϕ
such that Jϕ = ϕ, and by a truncated fixed point ϕ̃, we mean the part of ϕ that
contains the non-redundant Dynkin labels. These are given for each algebra in [3],
and below for the examples relevant to us. For example, the extended diagram for

A
(1)
5 is a regular hexagon. Consider the simple-current rotation by 2π/3 radians–it

has fixed points ϕ = (ϕ0; ϕ1, ϕ0, ϕ1, ϕ0, ϕ1) with ϕ̃ = (ϕ0; ϕ1).

Theorem 3.1. Let X
(n)
r be one of the algebras in the first column of Table 1 or

2, with fixed level k, and let χλ(µ) be defined as in (2.6). Let J be a simple-current,

ϕ a fixed point of J , and ϕ̃ the truncated fixed point associated to ϕ. Then

(1) For any fundamental weight Λi of X
(n)
r , the character χΛi

(ϕ) can be ex-

pressed as a linear combination, with all coefficients in the set {−1, 0, 1},

in the characters χ′
Λ′

j
(ϕ̃), 0 6 j 6 s, for the algebra X

′(m)
s given in the

third column, where the level is given in the fourth column;
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(2) For any λ ∈ P k
+(X

(n)
r ), there exists a polynomial Pλ such that χλ(ϕ) =

Pλ(χ′
Λ′

1
(ϕ̃), . . . , χ′

Λ′

s
(ϕ̃)).

Explicit formulas for part (1) are given in [38] (the A-series) and [3] (all other
nonexceptional algebras); we show two below. Part (2) follows from Part (1),
equation (2.6), and the classical result that the character ring of g is generated by
the characters at the fundamental weights (see e.g., [5, Chapitre IV–VI]).

The A-series fixed point factorization is as follows: g=A
(1)
r . Suppose d | (r+1),

and fix a level k, divisible by r+1
d . The simple-current Jd, of order (r + 1)/d, has

fixed points ϕ = (ϕ0; . . . , ϕd−1, . . . , ϕ0, . . . , ϕd−1). Let ϕ̃ = (ϕ0; . . . , ϕd−1). Then

χΛℓ
(ϕ) = χ′

Λ′

ℓd/(r+1)
(ϕ̃)

if r+1
d | ℓ, where primes denote A

(1)
d−1 level kd/(r + 1) quantities. If r+1

d ∤ ℓ, then
χΛℓ

(ϕ) = 0. This is a very clean example of how the character χΛℓ
(ϕ) reduces to

that of a smaller rank algebra. The paper [38] also gives a formula for general λ.
However, the existence of such a nice formula for general λ turned out to be special
to the A-series and did not generalize to the other cases.

To illustrate the most complicated scenario, consider the algebra C
(1)
r , where

r is even, and let J be the order two simple-current. Fixed points of J are ϕ =
(ϕ0; . . . , ϕr/2, . . . , ϕ0). Let ϕ̃ = (ϕr/2; . . . , ϕ0). Then

χΛ2m
(ϕ) = (−1)m

m∑

ℓ=0

χ′
Λ′

ℓ
(ϕ̃),

where primes denote A
(2)
2( r

2 ) level k quantities, and χΛℓ
(ϕ) = 0 if ℓ is odd.

The formulas are similar in the other cases.8 Tables 1 and 2 below show the
smaller rank algebras involved in each case. We call these the ‘fixed point factor-
ization’ (FPF) algebras. It is interesting to note that the fixed point factorization
algebras are the orbit Lie algebras of [24] (the orbit Lie algebra ğ of a symmetriz-
able Kac–Moody algebra g is obtained by a matrix-folding, or diagram-folding
technique).

Recall the NIM-rep coefficients N
[[κ],j]
λ,[[ν],i] of (3.1). If at least one of ν, κ is

not a fixed point, then these reduce to fusions of gk (we give an example below),
which can be calculated easily–for example using the Kac–Walton formula [39,47].
However, when both ν and κ are fixed points, the NIM-rep coefficients are more
difficult to calculate, and the only way known to this author is to use the formulas
given by fixed point factorization. In this case, the NIM-rep also reduces to fusions,
but of both the original algebra and the fixed point factorization algebra.

8The algebras E
(1)
6 and E

(1)
7 have nontrivial simple-currents; the current work suggests that

fixed point factorization formulas exist for these algebras as well, but these have only to be worked
out.
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Table 1. Fixed point factorization algebras for the nontwisted algebras

X
(1)
r , level k Simple-current FPF algebra Level

A
(1)
r Jd A

(1)
d−1

kd
r+1

B
(1)
r J A

(2)
2(r−1) k

C
(1)
r , r odd J C

(1)
r−1

2

k
2

C
(1)
r , r even J A

(2)
2( r

2 ) k

D
(1)
r Jv C

(1)
r−2

k
2

D
(1)
r , r odd Js C

(1)
r−3

2

k
4

D
(1)
r , r even Js B

(1)
r
2

k
2

Table 2. Fixed point factorization algebras for the twisted algebras

X
(1)
r , level k Simple-current FPF algebra Level

A
(2)
2r−1 J C

(1)
r−1

k
2

D
(2)
r+1, r odd J A

(2)
2( r−1

2 )
k
2

D
(2)
r+1, r even J D

(2)
r
2 +1

k
2

For example, for C
(1)
r , r even, we have the NIM-rep coefficients

N
[κ]
λ[ν] = Nκ

λν + NJκ
λν , N

([κ],j)
λ[ν] = Nκ

λν

N
(ψ,j)
Λn(ϕ,i) =





1
2

(
Nψ

Λ2mϕ
+ (−1)i+j+m

∑m
ℓ=0 Ñ ψ̃

Λ̃ℓϕ̃

)
if n = 2m

1
2 Nψ

Λnϕ
if n = 2m + 1

where tildes indicate A
(2)
2( r

2 ) level k quantities. Interestingly, our formulas above

look similar to formulas found in [7] for the fusion rules of orbifolds involving twist
fields (see e.g., eqn. (2.55)).9

4. Charges of WZW D-branes

In this section, we introduce the conformal field theory description of D-brane
charges.

9We thank one of the anonymous referees for pointing this out to us.
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Consider a WZW model that corresponds to the modular invariant M . The
number of maximally symmetric, untwisted D-branes (our interest in this paper) is
the trace of M ; they are indexed by the boundary states from Section 3.1. Denote
by qx the charge of the D-brane corresponding to the boundary state x. These
satisfy the charge equation [19]

(4.1) dim(λ)qx =
∑

y

N y
λxqy

where dim(λ) is the Weyl dimension of λ in g; N y
λx are the NIM-rep coefficients,

and the sum is over all boundary states.
The simply connected group G corresponds to the charge-conjugation modular

invariant C. In this case, the D-branes are parametrized by P k
+; the NIM-rep

coefficients are precisely the fusion coefficients, and modulo an integer M(g, k),
(4.1) has the unique solution qλ =dimλ. The integer M(g, k) has been found for all
algebras and levels [1,6,19], and the charge groups are then ZM(g,k) [43,44,48].

In the case of the non-simply connected groups, not as much is known. The
K-theory calculation for SO(3)=SU(2)/Z2 was done in [10]. This corresponds to

the A
(1)
1 modular invariant for the order two simple-current. The paper [30] adopts

the CFT approach, finding the charge groups to be Z2 × Z2 if 4|k and Z4 if 4 ∤ k.
On the other hand, the charge group for SU(2) is Zk+2, which grows with the
level k, showing that the behaviour of the non-simply connected groups may be
quite different from the simply connected ones. The charge groups for SO(3) were
also studied, using the CFT approach, in [16], where different groups were found,
corresponding to another supersymmetric CFT. Using the NIM-rep coefficients for

A
(1)
r , obtained via fixed point factorization, the charges and charge groups were

found for the non-simply connected groups SU(n)/Zd in [30, 31]. Our goal is to
use the NIM-rep coefficients found for the remaining algebras [4] to solve (4.1) for
all WZW models listed in Tables 1 and 2.

5. Summary and future work

In this paper, we described the NIM-reps of WZW models and how fixed point
factorization can be used to find them. We then discussed how this will lead to
solving the charge equation (4.1). A full treatment of D-brane charges requires
finding the actual charges themselves, which in turn requires using the conformal
field theory description of D-branes. Thus the only way we know to do this in the
non-simply connected case is to use Theorem 3.1. Once this is completed, we are
interested in comparing our results with K-theory calculations. Further work based
on fixed point factorization is to find more physical applications for, in addition to
calculating D-brane charges, find a conceptual explanation for this phenomenon,
and explain the link between fixed point factorization and the orbit Lie algebras.
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