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MIRROR-CURVE CODES FOR KNOTS AND LINKS

Ljiljana Radović and Slavik Jablan

Abstract. Inspired by Lomonaco–Kauffman paper on quantum knots and
knot mosaics we construct the more concise representation of knot mosaics
and grid diagrams via mirror-curves. We introduce codes for mirror-curves
treated as knot or link diagrams placed in rectangular square grid, suitable for
software implementations and discuss possible applications of mirror-curves.

1. Introduction

Mirror-curves originated from matting, plaiting, and basketry. They appear
in arts of different cultures (as Celtic knots, Tamil threshold designs, Sona sand
drawings. . . ), as well as in works of Leonardo and Dürer. Gerdes recognized their
deep connection with the mathematical algorithmic-based structures: knot mosaics,
Lunda matrices, self-avoiding curves, and cell-automata [1, 2, 3, 4].

Mirror curves are constructed out of rectangular square grids, denoted by
RG[p, q], of size p, q (p, q ∈ N). First we connect the midpoints of adjacent edges
of RG[p, q] to obtain a 4-valent graph: every vertex of this graph is incident to four
edges, called steps. Next, choose a starting point and traverse the curve so that
we leave each vertex via the middle outgoing edge. If we return to the starting
point, closing a path called a component, we choose a different one and repeat the
process until every step is used exactly once. A mirror-curve in RG[p, q] grid is
the set of all components. To obtain a knot or a link diagram from the mirror
curve we introduce the “over-under” relation, turning each vertex to the crossing,
i.e., we choose a pair of collinear steps (out of two) meeting at a vertex to be the
overpass [5].

Mirror-curves can also be obtained from the following physical model: consider
that the sides of our rectangular square grid RG[p, q] are made of mirrors, and that
additional internal two-sided mirrors are placed between the square cells, coinciding
with an edge, or perpendicular to it in its midpoint. If a ray of light is emitted
from one edge-midpoint at an angle of 45◦, it will eventually come back to its
starting point, closing a component after series of reflections. If some steps remained
untraced, repeat the whole procedure starting from a different point.
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Through the rest of the paper the term “mirror-curve” will be used for a labeled
mirror-curve. Hence, all crossings will be signed, where +1 corresponds to positive,
and −1 to negative crossings.

Theorem 1.1. [3] The number of components of a knot or link L obtained from
a rectangular grid RG[p, q] without internal mirrors is c(L) = gcd(p, q).

The web-Mathematica computations with mirror-curves are available at the
address: http://math.ict.edu.rs:8080/webMathematica/mirror/cont.htm

Up to some point, the paper is an extended summary of the paper [6] by
the authors together with collaborators, where it is shown that mirror-curve codes
together with a set of appropriate equivalence moves capture all information about
isotopy classes of knot and link diagrams, and that this theory is equivalent to
the theory of mosaics by Kauffman and Lomonaco, and even more economical.
Beyond summarizing the theory of mirror curves, we go further with presenting
and discussing an interesting application of mirror-curves in obtaining knots and
links in chiral nematic colloids.

2. Coding of mirror-curves

Mirror curve is constructed on a rectangular grid RG[p, q] with every internal
edge labeled 1, −1, 2, and −2, where 1 and −1 denote, respectively, a positive and
negative crossing in the middle point of the edge (Fig. 1a), while 2 and −2 denote
a two-sided mirror incident with the edge, either collinear or perpendicular to it,
containing the middle point of the edge. The code for the mirror curves is the
matrix (list of lists), containing labels of internal edges corresponding to rows and
columns of the RG[p, q]. For example, the code

Ul =
{

{−2, −1, −1, 2}, {1, 2, −1, 1}, {2, 1, −1}, {1, −2, −1}, {1, −2, −1}
}

.

corresponds to the mirror curve (Fig. 1c) based on the labeled rectangular grid
RG[3, 2] shown in Fig. 1b.

3. Reduction of mirror-curves

Labeled mirror curves represent knot and link (shortly KL) diagrams. In
this section we consider Reidemeister moves and their effects, expressed in the
language of mirror-curves. The Reidemeister move RI is equivalent to replacing
crossing by the mirror −2 (i.e., ±1 → −2) (Fig. 2a). Reidemeister move RII is the
replacement of two neighboring crossings of the same sign by two perpendicular or
collinear mirrors (Fig. 2b), and Reidemeister move RIII is illustrated in Fig. 2c.
The reduction process we have described will not always result in the minimal
rectangular grid for representing a given KL as a mirror-curve. Therefore we need
so-called “all-over move" (Fig. 3b) reducing the size of the grid from RG[p, q] to
RG[p − 1, q] while preserving the knot or link type. In the reduction process,
sometimes it is useful to use topological intuition to simplify the reduction, such as
the mirror-moves shown in Fig. 3a, where the mirror which is repositioned is shown
by a dotted line. Notice that every unknot or unlink can be reduced to the code
containing only labels 2 and −2. Minimal diagrams of mirror curves correspond to
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the codes with the minimal number of ±1 labels. Minimal mirror-curve codes of
alternating knots and links contain either 1 or −1, but not both of them.

Figure 1. (a) Edge labeling; (b) labeled RG[3, 2]; (c) the mirror-
curve corresponding to the code Ul.

Figure 2. (a) Reidemeister move RI; (b) Reidemeister move RII;
(c) Reidemeister move RIII, with additional mirrors in RI and RII
denoted by dotted lines.

Figure 3. (a) Mirror move; (b) all-over move.

4. Derivation of knots and links from mirror-curves

Another interesting open problem is which knots and links can be obtained
from a rectangular grid RG[p, q] of a fixed size. To remove redundancies, we list
each knot or link only once, associated only with the smallest rectangular grid from
which it can be obtained. Knots and links are given by their classical notation and
Conway symbols [5] from Rolfsen’s tables [7]. Links with more than 9 crossings are
given by Thistlethwaite’s link notation, and links with n = 12 crossings are given
only by their Conway symbols.

Obviously, grid RG[1, 1] contains only the unknot, while from RG[2, 1] we can
additionally derive the trivial two-component unlink. In general, every rectangular
grid RG[p, 1] contains the trivial p-component unlink.

RG[2, 2] without internal mirrors, taken as the alternating link, represents the
link 42

1 (or its mirror image). It contains three different prime KLs: Hopf link 2
(22

1), trefoil 3 (31) and link 4 (42
1). Hence, derived KLs can be treated as the states
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Figure 4. (a) Link 4 (42
1); (b) non-minimal diagram of the Hopf

link 2 (22
1); (c,d) two minimal diagrams of the Hopf link; (e) min-

imal diagram of the trefoil knot 3 (31).

of the link 42
1 obtained by substituting its crossings by elementary tangles 1, −1,

L0 and L∞ (a “horizontal" and “vertical" smoothing) (Fig. 4).
From RG[3, 2] and its corresponding alternating knot 3 1 3 (74) with the code

{{1, 1, 1}, {1, 1}, {1, 1}}, we obtain the following prime KLs: knot 4 2 (61) with the
code {{1, 1, −1}, {1, 1}, {−1, −1}}, knot 3 1 2 (62) with the code {{1, 1, 1}, {1, 1},

{−2, 1}}, link 6 (62
1) with the code {{1, 2, 1}, {1, 1}, {1, 1}}, knot 5 (51) with

the code {{1, 2, 1}, {−2, 1}, {1, 1}}, knot 3 2 (52) with the code {{1, 1, 1}, {1, 1},

{−2, −2}}, Whitehead link 2 1 2 (52
1) with the code {{1, 1, 1}, {−2, 1}, {1, −2}},

and figure-eight knot 2 2 (41) with the code {{−2, 1, 1}, {1, 1}, {−2, −2}}.
Alternating link 3 1 2 1 3 (L10a101 from Thistlethwaite’s tables) corresponds to

the grid RG[4, 2], from which we obtain the following prime KLs: 5 1 3 (95), 3 1 2 1 2
(920), 4 1 1 3 (92

5), 3 1 3 2 (92
8), 3 1 1 1 3 (92

9), 5 1 2 (82), 4 1 3 (84), 3 1 1 1 2 (813), 8 (82
1),

4 2 2 (82
3), 3 2 3 (82

4), 3 1 2 2 (82
5), 2 4 2 (82

6), 2 1 2 1 2 (82
7), 7 (71), 5 2 (72), 2 2 1 2 (76),

2 1 1 1 2 (77), 4 1 2 (72
1), 3 1 1 2 (72

2), 2 3 2 (72
3), 2 1 1 2 (63), 3 3 (62

2), and 2 2 2 (62
3).

Theorem 4.1. [6] All rational knots and links can be derived as mirror-curves
from rectangular grids RG[p, 2] (p > 2).

From alternating link 8∗2 : 2 : 2 : 2 and RG[3, 3], we derive the following prime
KLs: (2, 2) (3 1, −3 1), (−5 1, 2) (2, 2), 6∗ − 2.2. − 2 : 4, 6∗3.2. − 3 : 2, 6∗ − 3. −
3 0 :: −3 0, 2 1 2 1 1 1 2 (1044), .4.2 0 (1085), 4 1 2 1 2 (L10a99), .3 : 3 0 (L10a140),
6, 2, 2 (L10a145), .2.3.2 0 (L10a162), 8∗2 :: 2 (L10a163), 2 0.2.2 0.2 0 (L10a164),
(2 1, −2 1) (2, 2) (L10n73), (3 1, −2) (2, 2) (L10n85), (2, 2) (4, −2) (L10n86), 4, 3 1, −2
(L10n92), 4, 4, −2 (L10n93), 2 0. − 2. − 2 0.2 0 (L10n94), 3 1, 3 1, −2 (L10n95), 4 1 2 2
(911), 4 1 1 1 2 (914), 2 1 3 1 2 (917), 2 2 1 2 2 (923), 2 1 2 1 1 2 (927), 2 1 1 1 1 1 2 (931),
6 1 2 (92

1), 2 2 1 1 1 2 (92
12), 5, 2, 2 (92

13), .4 (92
31), .3.2 0 (92

35), 8∗2 (92
42), 6 2 (81),

3, 3, 2 (85), 4 1 1 2 (87), 2 3 1 2 (88), 2 1, 3, 2 (810) 2 2 2 2 (812), 2 2 1 1 2 (814), .2.2 0
(816), .2.2 (817), 8∗ (818), 2 1 2 1 2 (82

7), 2 1 1 1 1 2 (82
8), 4, 2, 2 (83

1), 3 1, 2, 2 (83
2),

(2, 2) (2, 2) (83
4), .3 (83

5), .2 : 2 0 (83
6), 4, 2, −2 (83

7), 3 1, 2, −2 (83
8), (2, 2) (2, −2) (83

9),
(2, 2) − (2, 2) (83

10), 4 3 (73), 3 2 2 (75), 2, 2, 2+ (73
1), 2 3 2 (72

3), 3, 2, 2 (72
4), 2 1, 2, 2

(72
5), .2 (72

6), 2, 2, 2 (63
1), 6∗ (63

2), and 2, 2, −2 (63
3).

Mirror-curves are equivalent to link mosaics [8]: every link mosaic can be
easily transformed into a mirror-curve and vice versa (Fig. 5). Kuriya [9] proved
Lomonaco–Kauffman conjecture [8], showing that tame knots are equivalent to
knot mosaics, hence also to mirror-curves, as well as to grid diagrams [10, 11].
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This means that every KL can be represented as a mirror-curve placed in a RG of
sufficiently large size.

Figure 5. (a) Figure-eight knot and (b) Borromean rings from
[8] transformed into mirror-curves.

5. Application of mirror curves

In [12], the authors used a restricted construction based on mirror curves in or-
der to obtain different knots and links in chiral nematic colloids. They demonstrated
the knotting of microscopic topological defect lines in chiral nematic liquid-crystal
colloids into knots and links of arbitrary complexity by using laser tweezers as a
micromanipulation tool. As the result they discerned almost 40 different knot and
link types among 39 tangle combinations with minimum crossing numbers up to
10, and concluded that such a large diversity of topological objects suggests that
it is possible to design any knot or link in a sufficiently large area (a rectangular
square grid).

Figure 6. Restricted construction [12].

Analyzing their construction we conclude that on the left and right border of
every array is placed a series of curls that can be eliminated by Reidemeister moves
RI. All crossings corresponding to spheres are −1 crossings, and the empty places
(denoted by ?, Fig. 6) can be substituted by a +1 crossing, mirror 2, or mirror −2
(“horizontal" or “vertical" smoothing). In the general construction, crossings +1,
−1, or mirrors 2, −2 are permitted in every such empty position. Because of that
restriction, the set of mirror curves obtained by this (restricted) construction is the
subset of all mirror curves placed in rectangular grids. For the set of all mirror
curves obtained by general construction it is proved that every knot or link can be
modeled by some mirror curve placed in a sufficiently large area.
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In order to check and extend the results obtained in [12], using the construction
with the mentioned restriction, in the program “LinKnot" we succeeded to obtain
all knots and links from the paper [12], including two more links, 62

2 = 3 3 and 92
49 =

4, 3, −2 that can be obtained from RG[4, 3]. Moreover, from larger rectangular grids
we obtained more than 1000 different knots and links up to 12 crossings. Among
them, we obtained all knots and links up to n = 8 crossings, and all knots and
links with n = 9 crossings, except nine of them: knots 924, 934, 937, 940, and two-
component links 92

20, 92
23, 92

34, 92
42. However, we are still not able to prove that all

knots and links can be constructed by the restricted construction in a sufficiently
large area, so we propose the question:

Open problem. Prove that all knots and links can be designed in a sufficiently
large area by using the restricted construction.
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