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Abstract. A semiring variety is d-semisimple if it is generated by the dis-
tributive lattice of order two and a finite number of finite fields. A d-semisimple
variety V = HSP{B2, F1, . . . , Fk} plays the main role in this paper. It will be
proved that it is finitely based, and that, up to isomorphism, the two-element
distributive lattice B2 and all subfields of F1, . . . , Fk are the only subdirectly
irreducible members in it.

1. Introduction and preliminaries

Semirings, following [5], “abound in the mathematical world around us. In-
deed, the first mathematical structure we encounter-the set of natural numbers-is a
semiring.” The very begining of their study is connected with the study of ideals of
commutative ring [3], but semirings per se were firstly considered explicitly in [18].
Besides of its more than one century long history, the intensive study of semiring
theory was initiated during the late 1960’s when their significant applications were
found. More about applications of semiring theory within analysis, fuzzy set the-
ory, the theory of discrete-event dynamical systems, automata and formal language
theory can be found in the trilogy [5–7] and in [12]. Thus, nowadays, semirings
have both a developed algebraic theory as well as important practical applications.

All semirings (S, +, ·) occuring in the literature satisfy at least the following
axioms: S+ = (S, +), the additive reduct, and S• = (S, ·), the multiplicative reduct

of a semiring S are semigroups, and the multiplication distributes over addition
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from the both sides, i.e., we have

x + (y + z) ≈ (x + y) + z,(SR1)

x(yz) ≈ (xy)z,(SR2)

x(y + z) ≈ xy + xz, (x + y)z ≈ xz + yz.(SR3)

It is, as well, often assumed that S+ is commutative, i.e.,

(SR4) x + y ≈ y + x.

Let C be a class of semigroups. A semiring S is an additively C semiring, or,
shortly a − C semiring, if S+ is a semigroup from the class C. In a similar manner
we can define a multiplicative C semiring, or, shortly, m − C semiring. If both S+

and S• are from the class C, then S is a C semiring. A subset I of a semiring S is
an ideal of S if x + y ∈ I, sx, xs ∈ I, for any x, y ∈ I and s ∈ S. An ideal I of
S is k-ideal or subtractive ideal of S if a ∈ I, and either a + x ∈ I or x + a ∈ I,
for some x ∈ S, implies x ∈ I. We can distinguish, in general, the following
three subsets of idempotents (if there are any) of a semiring S: E(S)• set of all
multiplicative idempotents of S•; E(S)+ set of all additive idempotents of S+, and
E(S) = E(S)• ∩ E(S)+. Going through the literature (for example, [4,17]) it can
be seen that E(S)+, which is an ideal of a semiring S, plays an important role in
the study of semiring’s structure. A semiring S is a subtractive semiring if E(S)+

is a k-ideal of S. By H+ and σ+ will be denoted the Green’s relation H and the
minimum group congruence on S+. A semiring S is idempotent if S = E(S), i.e.,
if it satisfies the following additional identities

x + x ≈ x ≈ x2.

An idempotent semiring S is called a bisemilattice if both S+ and S• are semilat-
tices. A distributive lattice is a bisemilattice which satisfies the absorption law

x + xy ≈ x.

It is well known that an interesting problem in universal algebra is the connec-
tion between the structure of a certain algebra and the identities it satisfies. The
study of varieties provides some insight into this problem. Through this paper we
are concerned mainly about certain varieties of semirings. Vandiver [18], worked
very hard to make semirings recognized as fundamental algebraic structure, “being
basically the best structure which include both rings and distributive lattices.” The
variety (class) of all distributive lattices is denoted by D. The smallest nontrivial
distributive lattice B2 is the only subdirectly irreducible (moreover, B2 is congru-
ence simple too) member of D and we have D = HSP{B2}. In the theory of ring
varieties important place have the so called semisimple varieties. A variety is called
semisimple if it is generated by a finite number of finite fields. Such varieties are
finitely based [15]. Some of their properties, including the one that such a variety
is arithmetical, are given in [15, 21]. Specially, in [11], it is proved that the vari-
ety generated by a finite ring is finitely based. Semisimple varieties occur in the
solutions of several natural problems. Thus, in [19] the variety of square root rings
are considered, and it is proved that this variety is generated by the finite field
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F2k . In [2] it is proved that the variety generated by finitely many finite fields with
pairwise distinct characteristics is finitely based and used in term rewriting. The
list of the adequate references on semisimple varieties and its applications can be
found in [10]. Among that list is [20] as well, where it is proved that a semisimple
variety is self-dual (i.e., lattice of of its subvarieties is self-dual) if and only if it can
be generated by a finite number of finite fields with pairwise distinct characteris-
tics. Semigroup rings which belong to self-dual semisimple varieties are described
in [10]. Coming back to the theory of semiring varieties, we can find applications of
semisimple varieties as well, [1], where it is proved that an a-commutative semiring
S is a lattice of rings from a semisimple variety R iff it S a subdirect product of a
ring from R and a (distributive) lattice iff S is in the join R ∨ D.

There is another way to use finite fields within semiring variety case. We
will stop for a moment to give the following definition. A semiring variety is d-

semisimple if it is generated by the distributive lattice of order two and a finite
number of finite fields. The “simplest” d-semisimple semiring variety, the variety
of Boolean rings, is the variety generated by B2 and the smallest nontrivial finite
field Z2 –the field of integers modulo 2 or 2-element Boolean ring–given by

+ 0̄ 1̄

0̄ 0̄ 1̄

1̄ 1̄ 0̄

· 0̄ 1̄

0̄ 0̄ 0̄

1̄ 0̄ 1̄ .

In [9], it is proved that this variety is finitely based, and that it is equivalent
to the category of partially Stone spaces. This motivates us to give a little progress
in that direction.

Finite fields (also called Galois fields) are fields with finitely many elements.
We start this section with three (wellknown) fundamental properties of finite fields
which we are going to use till the end of this paper without special announcement.

Theorem 1.1. Let F be a finite field. Then F has pk elements, where the

prime p is the characteristic of F , k is a positive integer.

Theorem 1.2 (Existence and Uniqueness). For every prime p and every posi-

tive integer k there exists a finite field with pk elements. Any finite field with q = pk

elements is isomorphic to the splitting field of xpk

− x over Fp.

Theorem 1.3 (Subfield Criterion). Let Fq be a finite field with q = pk ele-

ments. Then every subfield of Fq has order pm, where m is a positive divisor of k.

Conversely, if m is a positive divisor of k, then there is exactly one subfield of Fq

with pm elements.

Theorem 1.1 gives justification for talking about finite field with q elements or
finite field of order q. We denote this field with Fq, having in mind that q is a
power of the prime characteristic p of Fq. A great progress is made during last
decades in connection with algorithmic and computational aspects of finite fields
so important in the areas of computer algebra and symbolic computation. The
numerous applications of finite fields in combinatorics, cryptology, algebraic coding
theory, pseudorandom number generating and electronical engineering, besides of
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their important application within mathematics, were and are stimulus for intensive
developing of the theory of finite fields. For notions and notations in connection to
finite fields not given in this paper, as well as about more of their applications, we
refer to [13].

The main subject of this paper is d-semisimple semiring variety

V = HSP{B2, F1, . . . , Fk},

the variety generated by B2 and finite fields F1, . . . , Fk with distinct characteristcs.
We will prove that this variety is finitely based. To do that we will define variety
DFSR by certain finite number of identities, describe it, and then prove that V is
its proper subvariety.

We refer to [5–7] as sources of references on semirings. For notions and ter-
minologies not given in this paper, we refer to [14] as a background on universal
algebra, and [8,16] for semigroup theory.

2. DFSR variety

Till the end of this paper let F1, . . . , Fk be a fixed list of finite fields with distinct
characteristics p1, . . . , pk, i.e., with respective sizes q1 = p1

n1 , . . . , qk = pk
nk , for

some positive integers n1, . . . , nk. Let c = p1 · · · pk, and let n be a positive integer
such that n − 1 is the least common multiple of q1 − 1, . . . , qk − 1. It is easy to
verify that B2, F1, . . . , Fk satisfy the following identities:

(c + 1) · x ≈ x;(DFSR1)

xn ≈ x;(DFSR2)

c · x2 ≈ c · x;(DFSR3)

x + c · xy ≈ x;(DFSR4)

xy ≈ yx.(DFSR5)

Let us denote by DFSR the variety of semirings defined by the identities
(SR1–4) and (DFSR1–5). We will start with some results about semirings which
are members of DFSR.

Theorem 2.1. Let S be a semiring in DFSR. Then:

(i) E(S)+ = {c · a | a ∈ S}, and (E(S)+, +, ·) is a distributive lattice;

(ii) S+ is an E-unitary Clifford semigroup;

(iii) S is a subtractive Clifford semiring;

(iv) S is (isomorphic to) a subdirect product of the distributive lattice S/H+

and the ring S/σ+.

Proof. Let (S, +, ·) be a semiring in DFSR.
(i) It is obvious that c · a + c · a = c · a, for any a ∈ S. Thus we have that

E(S)+ = {c · a | a ∈ S}. By (SR4), (E(S)+, +) is a semilattice. Let e ∈ E(S)+.
Then, by (DFSR3), we have

e2 = (c · e)(c · e) = c2 · e2 = c · (c · e2) = c · (c · e) = c · e = e.
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Thus (E(S)+, ·) is a band, and, by (DFSR5), a semilattice. We have, by (DFSR1)
and (DFSR4), that e + ef = e + c · ef = e. Thus, (E(S)+, +, ·) is a distributive
lattice.

(ii) (DFSR1) implies regularity of the addition, even more, we have

(c − 1) · a + a = a + (c − 1) · a,

for any a ∈ S. So, S+ is completely regular. By (SR4), S+ is a Clifford semigroup.
Let a + e ∈ E(S)+, a ∈ S and e ∈ E(S)+, i.e., there is f ∈ E(S)+ such that

a + e = f and a + e + f = f . On the other hand, by (i) and (DFSR5), we have

e + f = e + f + ef = e + f + e(a + e)

= e + f + e + ea = e + f + ea

= f + e(e + a) = f + ef = f + fe = f.

Thus, a+e+f = e+f , and (left-)multiplying it by a, we have a2+a(e+f) = a(e+f),
which implies

a2 + a + a(e + f) = a + a(e + f).

If we, further, add (c − 1) · a(e + f) to both sides, we get

a2 + a + c · a(e + f) = a + c · a(e + f).

Now, by (DFSR4), we have a2+a = a, and, multiplying it by a, we have a3+a2 = a2,
which implies a + a3 + a2 = a + a2. Thus a3 + a = a. By induction, it can easily
be shown that am + a = a for any positive integer m. By (DFSR2), it follows that
a + a = a, i.e., a ∈ E(S)+. Therefore, S+ is E-unitary.

(iii) S• is a Clifford semigroup by (DFSR2). By this and (ii), S is a Clifford
semiring. By (ii) again, E(S)+ is a k-ideal. Thus, S is a subtractive Clifford
semiring.

(iv) By (iii) and [4, Theorem 3.5], S is a subdirect product of a distributive
lattice and a ring. By (ii) and [8, Proposition 5.9.1], we have σ+ ∩H+ = 1S , which,
by [16, Lemma I.4.18], implies that S is a subdirect product of S/H+ and S/σ+.

(SR4), [8, Theorem 4.1.3], [8, Theorem 4.2.1] and (ii), implies that H+ is the
least semilattice congruence on S+ with H+-classes as the maximal subgroups of
S+. Recall that [8, Proposition 5.1.2],

H+ = {(x, y) ∈ S × S | x + x′ = y + y′},

and H+-class of an element x is the group H+
x+x′ . On the other hand, as H+ is a

congruence, we have c ·x ∈ H+
x+x′. By (i), c ·x ∈ E(S)+, which implies c ·x = x+x′.

So we have

H+ = {(x, y) ∈ S × S | c · x = c · y}.

It is easy to check that the mapping f : E(S)+ → S/H+, defined by f(c · x) = H+
c·x

is an isomorphism. Thus S/H+, by (i), is a distributive lattice.
It is easy to verify that a relation

σ+ = {(x, y) ∈ S × S | (∃e ∈ E(S)+)x + e = y + e}

is the least ring congruence on S. �
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Now, to determine subdirectly irreducible members of DFSR.

Lemma 2.1. Let R be a ring in DFSR. If R is subdirectly irreducible, then R
is a finite field.

Proof. Let R be a subdirectly irreducible ring in the semiring variety DFSR.
Then R has the unique minimal nontrivial ideal J . For any a 6= 0 in J , if aa = 0,
then 0 = a2 · an−2 = an = a, which is a contradiction. This implies that aa 6= 0
and so {0} ⊂ aJ . Since (aJ)R = a(JR) ⊆ aJ , it follows that aJ is an ideal. Also,
{0} ⊂ aJ ⊆ J . This shows that aJ = J since J is the unique minimal nontrivial
ideal.

For any a, b ∈ J r {0}, we have that aJ = bJ = J . Thus, there exist c, d ∈
J r {0} such that a = bc, b = ad. It follows from (DFSR5) that an−1 = bn−1cn−1

and bn−1 = an−1dn−1. Since

bn−1an−1 = bn−1bn−1cn−1 = bnbn−2cn−1 = bn−1cn−1 = an−1,

we have that bn−1an−1 = an−1. Similarly, we obtain an−1bn−1 = bn−1. Thus
an−1 = bn−1. For any a, b ∈ J r {0}, if ab = 0, then, by (DFSR5), an−1bn−1 = 0
and so an−1 = an−1an−1 = an−1bn−1 = 0. Moreover, a = an−1a = 0 · a = 0, which
is a contradiction. This shows that (J r {0}, ·) is a multiplicative subsemigroup
of J .

Since an−1 = bn−1 for any a, b ∈ J r {0}, without loss of generality, we let
e = an−1 for any a ∈ J r {0}. It is easy to see that b = be = eb for any b ∈ J r {0}.
Thus, e is the identity element of the semigroup (J r{0}, ·). Also, it is obvious that
every element in (J r {0}, ·) has a multiplicative inverse since e = an−2a = aan−2

for any a ∈ J r {0}. This shows that (J r {0}, ·) is a group and so J is a field.
Let I = {a | ea = 0}. It is easy to verify that I is an ideal of R. If a ∈ I

⋂
J

and a 6= 0, then ea = an−1a = a = 0, which is a contradiction. Thus, I = {0}. For
any r ∈ R, we have that e(r − er) = 0 and so r − er = 0, i.e., r = er. Since J is an
ideal and e ∈ J , it follows that r = er ∈ J . This shows that R is a field.

R satisfies xn ≈ x, that is to say that every element of R is a root of the
polynomial xn − x. Since the polynomial xn − x has at most n roots in a field, we
have that the size of the field R is less than or equal to n. This shows that R is a
finite field. �

Remark. Lemma 2.1 is an equivalent of Jacobson’s theorem [14, p. 175].

It is a well known fact that subdirectly irreducible members, in general, need
not be congruence simple. For example, let Z4 be the integer residue ring modulo
4 with addition and multiplication table

+ 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 1̄ 2̄ 3̄

1̄ 1̄ 2̄ 3̄ 0̄

2̄ 2̄ 3̄ 0̄ 1̄

3̄ 3̄ 0̄ 1̄ 2̄

· 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ 2̄ 3̄

2̄ 0̄ 2̄ 0̄ 2̄

3̄ 0̄ 3̄ 2̄ 1̄

.
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It is easy to verify that {0̄, 2̄} is the unique nontrival ideal of Z4. Thus Z4 is
subdirectly irreducible, but it is not congruence simple. For subdirectly irreducible
members from DFSR, as a consequence of Lemma 2.1, we have

Corollary 2.1. A semiring S from DFSR is subdirectly irreducible if and

only if it is congruence simple.

How many subdirectly irreducible members are there in DFSR? The main
result of this section will give the answer.

Theorem 2.2. There exist, up to isomorphism, finitely many finite fields in

DFSR.

Proof. Let F be a finite field in DFSR. By (DFSR1) we have that F satisfies
c · x ≈ 0. This implies that the characteristic of F divides c, so the characteristic
is some pi(1 6 i 6 k) since c = p1 · · · pk. Without loss of generality, we let the
characteristic of F be pj . Then, there exists a positive integer t such that the size

of F is pj
t. Hence, F satisfies xpj

t

≈ x, Clearly, F satisfies (DFSR2), thus we have
that pj

t − 1 divides n − 1. Since n − 1 has finitely many divisors, it follows that,
up to isomorphism, there are finitely many finite fields in DFSR. �

Here are, given below, some consequences of Theorem 2.2

Corollary 2.2. Let F be a finite field. Then F belongs to DFSR if and only

if there exists a prime q which is a divisor of c and a positive integer t such that

the characteristic of F is q, the size of F is qt and qt − 1 divides n − 1.

Corollary 2.3. There are finitely many subdirectly irreducible members in

DFSR.

3. The d-semisimple semiring variety

In what follows the d-semisimple semiring variety V = HSP{B2, F1, . . . , Fk}
will be considered. Clearly, V satisfies (DFSR1-5) so it is a subvariety of DFSR.
We also have that B2 and finite fields F1, . . . , Fk, [2, Lemma 1.1], satisfy the fol-
lowing identities

(DFSR6)
c

pi

· xqi =
c

pi

· x (1 6 i 6 k),

which implies that V = HSP{B2, F1, . . . , Fk} satisfies (DFSR1-6). The following
theorem is the main result of this section.

Theorem 3.1. Let V = HSP{B2, F1, . . . , Fk}. Then

(i) V is finitely based;

(ii) if S is a subdirectly irreducible semiring in V, then S is isomorphic to

B2, or there exists a field F in {F1, . . . , Fk} such that S is isomorphic to

a subfield of F .

Proof. (i) We denote by V∗ the variety of semirings defined by (SR1-4) and
(DFSR1-6). It is easy to see that V∗ is a subvariety of DFSR and that V is a
subvariety of V∗. In the following we will prove that V = V∗.
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Suppose that S is a subdirectly irreducible semiring in V∗. It follows from
Theorem 2.1 and Theorem 2.2 that S, up to isomorphism, is B2 or a finite field.
If S is a finite field, then S satisfies c · x ≈ 0. Thus, the characteristic of S is

equal to some pi(1 6 i 6 k) since c = p1 · · · pk. Next, S satisfies
c

pi

· xqi =
c

pi

· x

which implies that S satisfies xqi = x, so the size of S divides qi. Thus, up to
isomorphism, S is a subfield of Fi. Since every subfield of Fi is in the variety
V = HSP{B2, F1, . . . , Fk}, we have that S belongs to V. This shows that every
subdirectly irreducible semiring of V∗ is in V and so V∗ ⊆ V. Thus we have that
V is finitely based.

(ii) If S is a subdirectly irreducible semiring in V, then it follows directly from
the proof of (i) that S is isomorphic to B2, or there exists a field F in {F1, . . . , Fk}
such that S is isomorphic to a subfield of F . �

In general, V is a proper subvariety of DFSR which is shown by the following
example.

Example. Let us consider the variety HSP{B2, Z3, F72 } and the variety
DFSR(3, 7, 97) defined by the identities

x + 21 · x ≈ x;(1)

x97 ≈ x;(2)

x + 21 · xy ≈ x;(3)

21 · x2 ≈ 21 · x;(4)

xy ≈ yx.(5)

It is easy to see that HSP{B2, Z3, F72 } satisfies identities (1)–(5). Since 32

is not a divisor of 72, we have by Theorem 3.1 that F32 does not belong to the
variety HSP{B2, Z3, F72 }. It is routine to verify that F32 is in DFSR(3, 7, 97).
This implies that HSP{B2, Z3, F72 } is a proper subvariety of DFSR(3, 7, 97).

By Corollary 2.2 and Theorem 3.1, we have

Corollary 3.1. HSP{B2, F1, . . . , Fk} = DFSR if and only if every finite

field in DFSR is isomorphic to a subfield of some Fi (1 6 i 6 k).
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