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Abstract. We present a modification (and partly a generalization) of STOP-
BREAK process, which is the stochastic model of time series with permanent,
emphatic fluctuations. The threshold regime of the process is obtained by
using, so called, noise indicator. Now, the model, named the General Split-
BREAK (GSB) process, is investigated in terms of its basic stochastic prop-
erties. We analyze some necessary and sufficient conditions of the existence
of stationary GSB process, and we describe its correlation structure. Also, we
define the sequence of the increments of the GSB process, named Split-MA
process. Besides the standard investigation of stochastic properties of this
process, we also give the conditions of its invertibility.

1. Introduction

Starting from the fundamental results of Engle and Smith [2], who introduced
the stochastic process of permanent fluctuations, named Stochastic Permanent

Breaking (STOPBREAK ) process, we define a new, modified version of the well-
known generalization of STOPBREAK process. In our model, we set a thresh-
old noise indicator as we already did in the time series of ARCH type, described
in Stojanović and Popović [8]. Therefore, our model, named the General Split-

BREAK process or, simply, GSB process, at the same time is a generalization of
Split-BREAK model introduced by Stojanović, Popović and Popović [9].

In the next section we present the definition of the standard STOPBREAK
model defined by Engle and Smith [2], as well as the definition of our GSB model
and we compare their stochastic structures. In the following, Section 3, we put
the special focus on the sufficient and necessary conditions of stationarity and
correlation structure of the GSB process. Also, we define a specific stochastic
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process, the so called series of martingale means, which represents the stability
factor of GSB model. We define this series as more general than it was done in
Engle and Smith [2]. So, we discuss it with the special care. In Section 4, we define
the sequence of increments of the GSB process, the so-called Split-MA process.
It is similar to the standard MA processes, thus many of well-known results for
MA processes can be applied. Besides the standard investigation of the stochastic
properties of the Split-MA model, we give conditions for its invertibility. At last,
some concluding remarks, focused on the comparison of stationary and invertible
conditions of the GSB process, are given in Section 5.

2. The definition of GSB Process

Let us suppose that (yt) is the time series with the known values at time
t ∈ {0, 1, . . . T } and F = (Ft) is a filtration defined on some probability space
(Ω, F , P ). On the other hand, let (εt) be a white noise, i.e., the i.i.d. sequence of
random variables adapted to the filtration F , which satisfies

E(εt|Ft−1) = 0, Var(εt|Ft−1) = σ2

for each t = 1, . . . , T . At last, we denote as (qt) the sequence of the Ft−1 adaptive
random variables which depends on the white noise (εt), and in addition, we suppose
that P {0 6 qt 6 1} = 1 for each t = 0, 1, . . . , T . Following Engle and Smith [2],
firstly, we shall set their definition of the general STOPBREAK model.

Definition 2.1. The sequence (yt) is a general STOPBREAK process if it
satisfies the recurrent relation

(2.1) A(L)B(L)yt = qt−1A(L) εt + (1 − qt−1)B(L) εt, t = 1, . . . , T,

where A(L) = 1 −
∑p

j=1 αjLj , B(L) = 1 −
∑r

k=1 βkLk and L is the backshift
operator.

According to the definition above, the sequence (qt) displays the (permanent)
reaction of the STOPBREAK process, because its values determine the amount
of participation of previous elements of the white noise process engaged in the
definition of yt. In that way, the structure of the sequence (qt) determines the
character and the properties of the STOPBREAK process, which vary between
the well-known linear stochastic models. Finally, if A(L) = 1 and B(L) = 1 − L

the mentioned model represents the basic and the simplest case of STOPBREAK
process, also introduced and particularly discussed by Engle and Smith [2]. This
model was investigated later by several authors, for instance Gonzáles [4], or Gon-
zalo and Martinez [5], and their works were mainly based on different variations of
the reaction (qt).

Similarly as it was done in the definition of Split-ARCH model, which was
described in Stojanović and Popović [8], we suppose that

(2.2) qt = I(ε2
t−1 > c) =

{
1, ε2

t−1 > c

0, ε2
t−1 6 c

t = 1, . . . , T.
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Then, we say that permanent reaction (2.2) is a noise indicator, and the STOP-
BREAK model, obtained in this way, represents the split-BREAK model, intro-
duced and discussed by Stojanović, Popović and Popović [9]. According to (2.2), it
follows that E(qtεt|Ft−1) = qtE(εt|Ft−1) = 0, and it can be seen that the sequence
(qtεt) is a martingale difference, the same as it was in the definition of the basic
STOPBREAK model of Engle and Smith [2].

However, it seems that in the case of the general STOPBREAK process this
formulation of reaction (qt) is inadequate. The primary reason for such opinion
is the fact that model (2.1) includes only “directly previous" realizations of (qt),
which are obtained at the moment t − 1. Therefore, general STOPBREAK process
(2.1) with reaction (2.2) operates in (only) two different regimes

(2.3) εt =

{
A(L)yt, qt−1 = 0 (w.p. bc)
B(L)yt, qt−1 = 1 (w.p. ac),

where ac = E(qt) = P {ε2
t−1 > c}, bc = 1 − ac and “w.p." stands for “with proba-

bility". So, equality (2.3) defines the well-known Thresholds Autoregressive (TAR)
model introduced by Tong [10] and discussed in details by Chan [1], Hansen [6]
and some others. Based on these reasons, we yield a different generalization of the
Split-BREAK process, in a sense, more general than (2.1).

Definition 2.2. Let L be a backshift operator, (qt) noise indicator defined with
(2.2), A(L) = 1 −

∑m
i=1 αiL

i, B(L) = 1 −
∑n

j=1 βjLj and C(L) = 1 −
∑p

k=1 γkLk.

The sequence (yt) represents the General Split-BREAK (GSB) process if it satisfies

(2.4) A(L)yt = B(L)qtεt + C(L)(1 − qt)εt, t ∈ Z.

The definition above represents the general stochastic model which, for its speci-
ficity, contains most of the other well-known models. In dependence of A(L), B(L)
and C(L) we have, for example, the following situations:

A(L) = B(L) = C(L) = 1: yt = εt (White noise)

A(L) = 1, B(L) = C(L) 6= 1: yt = B(L)εt (MA model)

A(L) 6= 1, B(L) = C(L) = 1: A(L)yt = εt (AR model).

Finally, in the case when A(L) = C(L) = 1 − L and B(L) = 1 we get the Split-
BREAK process introduced in [9]. From this point of view, we shall analyze a
specification of model (2.4) and suppose that A(L) = C(L) 6= 1 and B(L) = 1.
Thus, the just defined model can be written in the form

(2.5) yt −

p∑

j=1

αj yt−j = εt −

p∑

j=1

αj θt−j εt−j , t ∈ Z,

where αj > 0, j = 1, . . . , p and θt = 1 − qt = I(ε2
t−1 6 c). Obviously, this

representation is close to linear ARMA time series, except that it includes the noise
indicators (εt) in its own structure. They indicate the realizations of white noise
which have a statistically significant value at the previous moment t − j. These
“temporary" components imply the structure of GSB model (2.5). That makes
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some difficulties in usage of well-known procedures of investigating properties of
the model.

3. Stationarity and correlation structure. The martingale means

We shall notice that GSB model (2.5) can be represented in the form of a linear
stochastic difference equation of order one

(3.1) Yt = MYt−1 + Vt, t ∈ Z,

where

Yt = (yt − θtεt · · · yt−p+1 − θt−p+1εt−p+1)′, Vt = (qtεt · · · 0)′

and

M =




α1 α2 · · · αp

1 0 · · · 0
...

...
...

0 · · · 1 0




Without loss of generality, we suppose that for all t ∈ Z the random variable εt

has an absolutely continuous distribution and ac, bc ∈ (0, 1). Then, we can specify
necessary and sufficient stationarity conditions of (Yt).

Theorem 3.1. Let the sequence (Yt) be defined by recurrent relation (3.1).
Then, the following conditions are equivalent.

(i) The polynomial P (λ) = λp −
∑p

j=1 αjλp−j has the roots λ1, . . . , λp satisfying

(3.2) |λj | < 1, ∀j = 1, . . . , p.

(ii) Equation (3.1) has almost sure unique, strong stationary and ergodic solution

(3.3) Yt = Vt +

∞∑

k=1

Mk Vt−k.

(iii)
∑p

j=1 αj < 1.

Proof. (i) ⇒ (ii) After some computation it can be seen that

det(M − λI) = (−1)pP (λ),

i.e., the eigenvalues of the matrix M are roots of the characteristics polynomial
P (λ). Then, according to assumption (3.2) we have Mk → Op×p, k → ∞. Follow-
ing Francq et al. [3], the existence of almost sure unique, stationary solution (3.3)
of equation (3.1) is equivalent to the convergence shown above.

(ii) ⇒ (iii) If we suppose that (ii) is true, then the sequence

Ut = Wt +
∞∑

k=1

Mk Wt−k, where Wt = (qtε
2
t 0 · · · 0)′, t ∈ Z

is also strong stationary, with the mean

(3.4) E(Ut) = (I − M)−1E(Wt) = ac σ2 ·

(
1 −

p∑

j=1

αj

)
−1

· 1p×1.
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As the components u
(j)
t , j = 1, . . . , p of the sequence (Ut) satisfy recurrent relations

u
(1)
t =

p∑

j=1

αju
(j)
t−1 + qt ε2

t , u
(j)
t = u

(j−1)
t−1 , j = 2, . . . , p,

according to the assumption of absolutely continuous distribution of εt, it is obvious

that for any j = 1, . . . , p and t ∈ Z values u
(j)
t are strictly positive. Then, according

to (3.4) and assumption ac > 0, we have E
(
u

(j)
t

)
> 0 ⇔ 1 −

∑p
i=1 αj > 0 and (iii)

follows.

(iii) ⇒ (i). Let Sr(M) = maxj {λj} be the spectral radius of the matrix M.
Then Sr(M) 6 ‖M‖

∞
it is valid (see e.g., Milovanović [7]) wherefrom we get

‖M‖
∞

= max
{ ∑p

j=1 αj , 1
}

= 1. If we suppose that Sr(M) = 1, then for some

ϕ ∈ [0, 2π) there exists an eigenvalue λ′ = eiϕ satisfying

P (λ′) = eipϕ −

p∑

j=1

αj ei(p−j)ϕ = 0.

After that, the inequality
∣∣ eipϕ

∣∣ 6
∑p

j=1 αj

∣∣ ei(p−j)ϕ
∣∣ implies

∑p
j=1 αj > 1, which

contradicts (iii). So, Sr(M) < 1 and according to the above, it is equivalent
to (i). �

Corollary 3.1. Let the GSB model be defined by (2.2) and (2.5). The se-

quence (yt) is strong stationary iff the sequence (Yt) satisfies the conditions of

Theorem 3.1. In this case, it holds E(yt) = 0 and the covariance function γ
Y

(h) =
E

(
yt+h yt

)
, h > 0 satisfies the recurrent relation

(3.5) γ
Y

(h) −

p∑

j=1

αj

[
γ

Y
(h − j) − s(h − j)I(h − j > 0)

]
=

{
σ2, h = 0
0, h 6= 0

where s(h), h > 0 is a solution of the difference equation

s(h) −

p∑

j=1

αj s(h − j) = 0, h > p

with the initial conditions s(0) = bcσ
2, s(k) =

∑k
j=1 αj s(k − j), k = 1, . . . , p − 1.

Proof. Firstly, we define the sequences ut = yt − θtεt, vt = qtεt, t ∈ Z so
that, according to (2.5),

(3.6) ut =

p∑

j=1

αjut−j + vt.

Therefore, (ut) is the linear autoregressive sequence with noise (vt) and it is obvious
that it is the stationary sequence iff the sequence of vectors (Yt), described in
Theorem (3.1), is stationary, too. In this case, it holds E(ut) = 0 and the covariance
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function γ
U

(h) of the sequence (ut) satisfies the recurrent relation

(3.7) γ
U

(h) −

p∑

j=1

αj γ
U

(h − j) =

{
acσ

2, h = 0
0, h 6= 0,

where γ
U

(−h) = γ
U

(h). We have that

E(ut) = E(yt) − E(θtεt) = 0,

γ
U

(h) = E(utut−h) = γ
Y

(h) − s(h),

where s(h) = E(θt−hεt−h ut) + bcσ2I(h = 0), h > 0. Substituting the last equality
in (3.7) we obtain equation (3.5). �

The proposition above shows, at the same time, the similarity and the dis-
tinction of correlations between (3.5) and (3.7). Further, this proposition demon-
strates how familiar are the stationary GSB process (yt) and the corresponding
linear model. On the other hand, similarly to the basic STOPBREAK process,
equality (2.5) makes it possible to presentthe sequence (yt) in the form of additive
decomposition

(3.8) yt = mt + εt,

where

(3.9) mt =

p∑

j=1

αj

(
yt−j − θt−jεt−j

)
=

p∑

j=1

αj

(
mt−j + qt−jεt−j

)

is the sequence of random variables which we named the martingale means. In
this way, the previous equality is a generalization of an analogous equality in [2],
which can be obtained according to (3.9), for p = α1 = 1. Regarding this general
form, the basic properties of the sequence (mt), stationarity in particular, can be
described by the following proposition which is a result of the previous analysis.

Corollary 3.2. The sequence (mt) is stationary iff the roots λj , j = 1, . . . , p

of the characteristic polynomial P (λ) satisfy the condition |λj | < 1, or equivalently∑p
j=1 αj < 1. Then, E(mt) = 0 and the covariance function γm(h) = E(mtmt+h)

satisfy the difference equation

γm(h) =

p∑

j=1

αj

[
γm(h − j) + s̃(j − h − 1)I(j − h − 1 > 0)

]
,

where s̃(h), h > 0 is a solution of the equation

s̃(h) −

p∑

j=1

αj s̃(h − j) = 0, h > p

with the initial conditions

s̃(0) = α1acσ2, s̃(k) =
k∑

j=1

αj s̃(k − j) + αk+1acσ2, k = 1, . . . , p − 1.
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Proof. Using the same notations as in the previous proposition, we have

ut = mt + qtεt, vt = qtεt, t ∈ Z.

According to the same recurrent relation as (3.6), the whole procedure is analogue
to Corollary 3.1. �

Remark 3.1. According to (3.8), regardless the stationarity conditions are
fulfilled, the sequences (yt) and (mt) are connected as follows

(3.10) E
(
yt | Ft−1

)
= mt + E

(
εt | Ft−1

)
= mt.

From here, we have E(yt) = E(mt) = µ(const), t ∈ Z, i.e., the means of these two
sequences are (always) equal and constant. The variance of GSB process can be
determined in a similar way. As

(3.11) Var
(
yt | Ft−1

)
= E

(
y2

t | Ft−1
)

− m2
t = σ2,

we can conclude that the conditional variance of the sequence (yt) is a constant and
it is equal to the variance of the noise (εt). According to (3.11), the variances of the
sequences (mt) and (yt) satisfy Var(yt) = Var(mt) + σ2. Let us remark that (3.10)
and (3.11) explain the stochastic nature of (yt). The sequence (mt) is predictable,
and it will be a component which demonstrates the stability of the process (yt).
Opposite to this, the sequence (εt) is a factor which represents the deviations (or
random fluctuations) from values (mt).

4. Analysis of increments. The general Split-MA process

In this section we shall describe in details the stochastic structure of increments

Xt
def
= A(L)yt, t ∈ Z

which (according to (2.4)–(2.5)) can be written in the form of recurrent relation

(4.1) Xt = εt −

p∑

j=1

αj θt−jεt−j , t ∈ Z.

Obviously, the sequence (Xt) has the multi-regime structure, which depends on the
realizations of indicators (θt). If all fluctuations of the white noise in time t − j are
large, an increment Xt will be equal to the white noise. On the other hand, the
fluctuations of the white noise which do not exceed the critical value c will produce a
“part of" MA(p) representation of (Xt). In this sense, the similarity of this model to
the standard linear MA model is noticeable, and the sequence (Xt) we shall call the

general Split-MA model (of order p), or simply Split-MA(p) model. It represents the
generalization of the adequate model defined in Stojanović, Popović and Popović [9]
and the threshold integrated moving average (TIMA) model introduced in Gonzalo
and Martinez [5]. The main properties of this process can be expressed in the
following way.
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Theorem 4.1. The sequence (Xt), defined by (4.1), is stationary, meaning

E(Xt) = 0 and covariance γ
X

(h) = E(XtXt+h), h > 0 which satisfies the equality

γ
X

(h) =





σ2
(
1 + bc

∑p
j=1 α2

j

)
, h = 0

σ2 bc

( ∑p−h
j=1 αj αj+h − αh

)
, 1 6 h 6 p − 1

−σ2 bcαp, h = p

0, h > p.

Proof. Elementary. �

Similarly to the basic STOPBREAK model, we can show (under some condi-
tions) the invertibility of increments (Xt). This property is analyzed from different
aspects by many authors who researched the STOBREAK models (see, e.g., [2, 4]).
In order to give necessary and sufficient invertibility conditions of Split-MA process,
we give the explicit stochastic representation of an invertible process.

Theorem 4.2. The sequence (Xt), defined by (4.1), is invertible iff the roots

r1, . . . , rp of the characteristic polynomial Q(λ) = λp − bc

∑p
j=1 αjλp−j satisfy

|rj | < 1, j = 1, . . . , p or, equivalently, bc

∑p
j=1 αj < 1. Then,

(4.2) εt =

∞∑

k=0

ωk(t) Xt−k, t ∈ Z,

where ωk(t) is a solution of the stochastic difference equation

(4.3) ωk(t) = θt−k

p∑

j=1

αj ωk−j(t), k > p, t ∈ Z,

with the initial conditions ω0(t) = 1, ωk(t) = θt−k

∑k
j=1 αjωk−j(t), 1 6 k 6 p − 1.

Moreover, representation (4.2) is almost sure unique and the sum converges with

probability one and in mean-square.

Proof. We shall use the similar procedure as in the analysis of the stationarity
conditions of the GSB process. First of all, for any t ∈ Z, we define the vectors and
matrices

Et =
(
εt εt−1 · · · εt−p+1

)
′

, Xt =
(
Xt 0 · · · 0

)
′

At =




α1 θt α2 θt−1 · · · αp−1 θt−p+2 αp θt−p+1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0




in order to write model (4.1) in the form of a stochastic difference equation of order
one

(4.4) Et = At−1Et−1 + Xt, t ∈ Z.
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From here, we have

Et = Xt +
k∑

j=1

(
At−1 · · · At−j

)
Xt−j +

( k+1∏

j=1

At−j

)
Et−k−1,

where k = 1, 2, . . . It can be proven (see, e.g., [3]) that the existence of an almost
sure unique, stationary solution of equation (4.4), in the form

(4.5) Et = Xt +

∞∑

k=1

(
At−1 · · · At−k

)
Xt−k, t ∈ Z

is equivalent to the convergence
∏k+1

j=1 At−j
a.s.
−→ 0, k → ∞, i.e., to the fact that the

eigenvalues rj , 1 = 1, . . . , p of the matrix

A = E(At) =




α1 bc α2 bc · · · αp−1 bc αp bc

1 0 · · · 0 0
...

...
...

...
0 0 · · · 1 0




satisfy |rj | < 1, j = 1, . . . , p . According to the representation

det
(
A − λI

)
= (−1)p Q(λ)

it is obvious that the eigenvalues rj , j = 1, . . . , p are the roots of the characteristic
polynomial Q(λ). Then, the condition |rj | < 1, j = 1, . . . , p is necessary and
sufficient for the almost sure uniqueness of representation (4.5), and the almost
sure convergence of the appropriate sum. In a similar manner, we can prove that
the same conditions are equivalent to the mean-square convergence of the sum in
(4.5). From this point on, by simple computation, we can obtain equations (4.2)
and (4.3). �

At the end of this section, we shall give another method for determining nec-
essary and sufficient conditions for stationarity of the GSB process and necessary
and sufficient conditions for invertibility of its increments. In order to do that, let
us define the following process.

Definition 4.1. Let (Zt), t ∈ Z be some Ft adaptive time series. The per-

manent effect of observation of this time series is the time series (Pe(Zt)) such
that

Pe(Zt)
def
= lim

k→∞

∂E(Zt+k | Ft)

∂Zt

, t ∈ Z,

where the last convergence is almost sure.

Now we can state and prove the following theorem.

Theorem 4.3. Let (yt) be the GSB process defined by (2.2) and (2.5), where

ac = E(qt) ∈ (0, 1) and (Xt) is the sequence of increments of the GSB process

defined by (4.1). Then:

(i) The sequence (yt) is strictly stationary iff Pe(yt)
a.s.

= 0;

(ii) The sequence (Xt) is invertible iff Pe(εt)
a.s.

= 0.
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Proof. (i) Consider the vector time series (Yt) defined by equality (3.1). For

an arbitrary t ∈ Z and k > 0 we have Yt+k =
∑k−1

j=0 MjVt+k−j + MkYt. This

implies E(Yt+k | Ft) = MkYt, that is E(yt+k | Ft) = ck(t)(yt − θtεt), where

ck(t) =






1, k = 0;∑k
j=1 αj ck−j(t), 1 6 k 6 p − 1;∑p
j=1 αj ck−j(t), k > p.

Then, the permanent effect of observation of time series (yt) is

Pe(yt) =

(
1 − θt

∂εt

∂yt

)
lim

k→∞

ck(t) = qt lim
k→∞

ck(t).

The last equality is valid because of (3.8), i.e., because of the fact that ∂εt

∂yt
= 1.

Finally, because of ac = P {qt = 1} > 0, we have Pe(yt)
a.s.
= 0 iff limk→∞ ck(t) = 0.

This is, according to Theorem 3.1, equivalent to the fact that (yt) is stationary.

(ii) The proving procedure is analogous to (i), where definition (4.1) of the
sequence of increments (Xt) and Theorem 4.2 should be used. �

Remark 4.1. By using the same permanent effect of observation process, Engle
and Smith [2] proved somewhat different (necessary and sufficient) conditions for
the invertibility of the sequence of increments (Xt). Meanwhile, they considered
only the simplest STOPBREAK model, the model of order p = 1. So, Theorem
4.3 is more general than the mentioned result.

5. Conclusion

According to Theorems 3.1 and 4.2, it is clear that the presence of the sequence
(θt) enables that the conditions of invertibility of increments (Xt) are weaker than
the appropriate conditions related to the stationarity of the series (Yt) and (mt). In
this way, even the nonstationary time series (yt) and (mt) can form invertible Split-
MA process which is always stationary. This situation is particularly interesting in
the case of the so-called integrated (standardized) time series, where

(5.1)

p∑

j=1

αj = 1.

If the value of the parameter bc is nontrivial (i.e., bc ∈ (0, 1)), then the sequence (Xt)
will be invertible, although (yt) and (mt) are nonstationary time series. Therefore,
“normality condition" (5.1) allows us that these two series have nonzero means,
which is particularly important in applications.
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