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WAVE FRONTS

VIA FOURIER SERIES COEFFICIENTS

Snježana Maksimović, Stevan Pilipović,

Petar Sokoloski, and Jasson Vindas

Abstract. Motivated by the product of periodic distributions, we give a new
description of the wave front and the Sobolev-type wave front of a distribution
f ∈ D ′(Rd) in terms of Fourier series coefficients.

1. Introduction

In this article microlocal properties of a distribution f at x0 ∈ Rd are detected
through the Fourier series expansion of periodizations of ϕf , where ϕ is a cut-off
function near x0. In contrast to [7], where weighted type wave front sets have been
discussed by the use of Gabor and dual Gabor frames depending on an additional
continuous parameter ε → 0, we shall show that the classical Fourier basis can be
used for microlocal analysis. Our approach leads to discretized definitions of wave
fronts in terms of Fourier coefficients. This is the main novelty of the paper, which
also includes proofs for the equivalence between these discretized definitions and
Hörmander’s approach.

The space of periodic distributions is one of the basic Schwartz spaces and
has been studied in many books and papers in the second half of the last century.
We refer here just to few of them [14, 17, 15, 1, 2, 8] (see [16] for applications
in summability of Fourier series). In the context of our paper, we mention the
recent articles [11, 12] and book [13], where Ruzhansky and Turunen have studied
generalized functions on a torus Td. Their interest there lies in pseudo-differential
operators and microlocal analysis over Td × Zd. On the other hand, at present
time, Hörmander’s notion of the wave front set attracts a lot of interest among
mathematicians and there exists a vast literature related to this basic notion and
its important role in the qualitative analysis of PDEs and ΨDOs. We mention the
basic books of Hörmander [5, 6] as standard references for classical and Sobolev
type wave front sets; the articles [9, 7] deal with weighted type wave fronts, while
[3, 4] study extended wave fronts by considering local and global versions with
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respect to various Banach and Fréchet spaces of functions over the configuration
and the frequency domains.

It is well known that the product of two distributions can be defined if their
wave fronts are in a “good” position with respect to each other. This motivates
us to study the product and wave fronts via spaces of periodic distributions. In
Subsection 1.3 below we discuss an elementary approach to local multiplication
based on Fourier series. The main results of this article are presented in Sections
2 and 3. In Theorems 2.1 and 3.1 we characterize the wave front and the Sobolev
type wave front of a distribution f ∈ D ′(Rd) by estimates of the Fourier coefficients
of its localizations. It should be mentioned that the toroidal wave fronts have been
studied in [12, 13] through Fourier series as in this paper, but our approach is
quite different and is related to the Hörmander’s wave fronts in a precise fashion.
Let us note that Sobolev type wave fronts were not considered in [12, 13].

1.1. Notation. For x = (x1, . . . , xd) ∈ Rd, we write |x| =
√
x2

1 + · · · + x2
d

and 〈x〉 = (1 + |x|2)1/2. Let 0 < η 6 1. We will use the notation

Iη,x =
d∏

j=1

(xj − η/2, xj + η/2) and Iη := Iη,0.

Throughout the article, the word periodic always refers to functions or distributions
on Rd which are periodic of period 1 in each variable, i.e., f(x+n) = f(x), x ∈ Rd,
n ∈ Zd. We also use the notation ey for ey(x) = e2πiy·x, y ∈ Rd. We will consider
periodic extensions of localizations of distributions around a point x0 ∈ Rd, so if
a distribution g is supported by Iη,x0

, with 0 < η < 1, we shall write gp(x) :=∑
n∈Zd g(x+ n) for its periodic extension.

1.2. Basic spaces. The space of periodic test functions P = P(Rd) consists
of smooth periodic functions; its topology is given via the sequence of norms ‖ϕ‖k =
supx∈I1,|α|6k |ϕ(α)(x)|, k ∈ N. Obviously, ϕ ∈ P if and only if

∑
n∈Zd |ϕn|2〈n〉2k <

∞ for every k ∈ Z, where ϕn =
∫
I1

ϕ(x)e−2πin·xdx = 〈ϕ, e−n〉, n ∈ Zd. The

dual space of P, the space of periodic distributions, is denoted by P ′. One has:
f =

∑
n∈Zd fnen ∈ P ′ if and only if

∑
n∈Zd |fn|2〈n〉−2k0 < ∞, for some k0 > 0. If

f =
∑
n∈Zd fnen ∈ P ′ and ϕ =

∑
n∈Zd ϕnen ∈ P, then their dual pairing is given

by 〈f, ϕ〉 =
∑
n∈Zd fnϕ−n.

Let ν, ω be positive functions over Zd. We call ω a ν-moderate weight if there
is C such that

(1.1) ω(m+ n) 6 Cω(m) ν(n), ∀m,n ∈ Z
d.

If we take ν to be a polynomial, we call ω polynomially moderate. The set of all
polynomially moderate weights on Zd will be denoted as Pol(Zd). For ω ∈ Pol(Zd),
we define

Plqω =
{
f ∈ P

′ : {fnω(n)}n∈Zd ∈ lq, where fn = 〈f, e−n〉
}

supplied with the norm ‖f‖Plqω = ‖{fnω(n)}‖lq . We consider from now only values
of q > 1. Clearly, Plq1

ω1
⊆ Plq2

ω2
, if q1 6 q2 and ω2 6 Cω1.
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We will also consider the local space Plqω, loc consisting of distributions f ∈

D ′(Rd) such that the periodic extensions (ϕf)p ∈ Plqω, for all x0 ∈ Rd and ϕ ∈
D(I1,x0

). Its topology is defined via the family of seminorms ‖f‖x0,ϕ = ‖(ϕf)p‖Plqω ,

where x0 ∈ Rd and ϕ ∈ D(I1,x0
). For the sake of completeness, we give the

following elementary proposition (its proof also shows that the definition of Plqω, loc
is consistent).

Proposition 1.1. Plqω ⊂ Plqω, loc.

Proof. Let f ∈ Plqω and ϕ ∈ D(I1,x0
), then (ϕf)p = ϕpf . Write f =∑

n fnen and ϕp =
∑

n ϕnen ∈ P. By (1.1) and the generalized Minkowski in-
equality, we have

‖ϕpf‖Plqω 6 C

(∑

n

(∑

j

|ϕj |ν(j)|fn−j |ω(n− j)

)q)1/q

6 C‖ϕp‖Pl1ν
‖f‖Plqω < ∞. �

Set ωs(n) = 〈n〉s, s ∈ R. For convenience, we write Plqs := Plqωs
and

Plqs, loc := Plqωs, loc. We clearly have

P =
⋂

s>0

Plqs =
⋂

ω∈Pol(Zd)

Plqω and P
′ =

⋃

s60

Plqs =
⋃

ω∈Pol(Zd)

Plqω.

Moreover,

E =
⋂

s>0

Plqs, loc =
⋂

ω∈Pol(Zd)

Plqω, loc and D
′
F =

⋃

s60

Plqs, loc =
⋃

ω∈Pol(Zd)

Plqω, loc,

where E is the space of all smooth functions and D ′
F is the space of distributions

of finite order on Rd.

1.3. Multiplication. In this section we make some comments about the mul-
tiplication of distributions. Assume that the indices q, q1, q2 ∈ [1,∞] are such that
1
q1

+ 1
q2

= 1
q + 1. We fix two weight functions ω, ν ∈ Pol(Zd) and we assume ω is

ν-moderate (cf. 1.1).
We start with products in the spaces of type Plqω. Here we define the prod-

uct via Fourier coefficients. Indeed, let f1 =
∑

n∈Zd f1,nen ∈ Plq1

ω and f2 =∑
n∈Zd f2,nen ∈ Plq2

ν . We define their product as f := f1f2 :=
∑
n∈Zd fnen, where

fn =
∑

j∈Zd

f1,n−jf2,j , n ∈ Z
d.

(One can easily see that the formula for the Fourier coefficients fn is just the
convolution formula on the integer lattice.) We will check in Proposition 1.2 that
f ∈ Plqω.

The previous definition allows us to introduce multiplication in the local ver-
sions of these spaces. In fact, let now f1 ∈ Plq1

ω, loc and f2 ∈ Plq2

ν, loc. To define

their product f = f1f2, we proceed locally. Let x0 ∈ Rd and 0 < η < 1. Let
φ ∈ D(I1,x0

) be such that φ(x) = 1 for x ∈ Iη,x0
. We define fIη,x0

∈ D ′(Iη,x0
)
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as the restriction of (φf1)p (φf2)p to Iη,x0
. Note that different choices of φ lead

to different Fourier coefficients but, by Proposition 1.1, we have fIη,x0
= fIη′,x′

0

on

Iη,x0
∩ Iη′,x′

0
. The {fIη,x0

} thus gives rise to a distribution f ∈ Plqω, loc and we
define the product of f1f2 := f .

Proposition 1.2. The mappings

Plq1

ω × Plq2

ν ∋ (f1, f2) 7→ f1f2 ∈ Plqω,(1.2)

Plq1

ω, loc × Plq2

ν, loc ∋ (f1, f2) 7→ f1f2 ∈ Plqω, loc(1.3)

are continuous.

Proof. The continuity of (1.3) follows at once from that of (1.2). For (1.2),
Young’s inequality and (1.1) yield

‖f1f2‖Plqω 6 C‖f1‖Pl
q1
ω

‖f2‖Pl
q2
ν
. �

In particular, we have

Corollary 1.1. Let s, s1, s2 ∈ R be such that s1 + s2 > 0, s 6 min{s1, s2}.

Then the two mappings

Plq1

s1
× Plq2

s2
∋ (f1, f2) 7→ f1f2 ∈ Plqs,

Plq1

s1, loc × Plq2

s2, loc ∋ (f1, f2) 7→ f1f2 ∈ Plqs, loc

are continuous.

Proof. We may assume s1 > 0 and s = s2. It is obvious that s1 > |s2| has
to hold in order to have s1 + s2 > 0. The result then follows from Proposition1.2
upon setting ω(n) = 〈n〉s2 and ν(n) = 〈n〉s1 because (1.1) holds for them. �

Concerning the local products from Corollary 1.1, exactly the same method
from the proof of Theorem 3.1 below applies to show that the local space Pl2s, loc

coincides with the local Sobolev space Hs
loc(R

d). Therefore, the multiplicative prod-
uct for the local spaces in Corollary 1.1 agrees with the one defined by Hörmander
in [6, Sect. 8.2]. Moreover, it is also worth mentioning that our results from the next
sections imply that one can go beyond local products and in fact define the multi-
plicative product by microlocalization as in [6, Sect. 8.3]. We leave the formulation
of such definitions to the reader. Theorem 3.1 below shows that the microlocal
version of our multiplication also agrees with Hörmander’s one.

2. Wave front

Our goal in this section is to describe the wave front of f ∈ D ′(Rd) via the
Fourier series coefficients of the periodic extension of an appropriate localization of
f around x0 ∈ Rd, as explained in the previous section. Recall (x0, ξ0) /∈ WF (f)
if there exist ψ ∈ D(Rd) with ψ ≡ 1 in a neighborhood of x0 and an open cone
Γ ⊂ Rd containing ξ0 such that

(2.1) (∀N > 0)(∃CN > 0)(∀ξ ∈ Γ)
(∣∣f̂ψ(ξ)

∣∣ 6 CN 〈ξ〉−N
)
.

The following theorem tells that we can discretize (2.1).
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Theorem 2.1. Let f ∈ D ′(Rd) and (x0, ξ0) ∈ Rn × (Rd r {0}). The following

conditions are equivalent:

(i) There exist φ ∈ D(Iε,x0
), with ε ∈ (0, 1) and φ ≡ 1 in a neighborhood of x0,

and an open cone Γ containing ξ0 such that

(∀N ∈ N)(∃CN > 0)(∀n ∈ Γ ∩ Z
d)(|f̂φ(n)| 6 CN 〈n〉−N ).

(ii) (x0, ξ0) /∈ WF (f).

Proof. It is well known that, by shrinking the conic neighborhood of ξ0,
one may choose ψ in (2.1) with arbitrarily small support around x0. Thus, (ii)
implies (i). So, it is enough to show that (i) implies (ii). Assume (i). We divide
the proof in two steps. We first prove that there are ε′ and an open cone ξ0 ∈ Γ1

such that

(2.2) (∀B bounded set in D(Iε′,x0
))(∀N > 0)(∃C′

N > 0)

(∀n ∈ Γ1 ∩ Z
d)
(

sup
ϕ∈B

∣∣f̂ϕ(n)
∣∣ 6 C′

N

〈n〉N

)
.

We choose ε′ in such a way that φ(x) = 1 for every x ∈ Iε′,x0
. For the cone,

we select Γ1 an open cone with ξ0 ∈ Γ1 and Γ1 ⊂ Γ ∪ {0}. Let us show that
(2.2) holds with these choices. Let 0 < c < 1 be a constant smaller than the
distance between ∂Γ and the intersection of Γ1 with the unit sphere. Clearly,
{y ∈ Rd : (∃ξ ∈ Γ1)(|ξ − y| 6 c|ξ|)} ⊂ Γ. Let B ⊂ D(Iε′,x0

) be a bounded set.

We have that φϕ = ϕ, ∀ϕ ∈ B. Moreover, note that f̂ϕ(n) are precisely the
Fourier coefficients of the periodic distribution (fφ)p(ϕ)p. Therefore, for ϕ ∈ B
and n ∈ Γ1 ∩ Zd,

∣∣f̂ϕ(n)
∣∣ =

∣∣∣∣
∑

j∈Zd

f̂φ(n− j)ϕ̂(j)

∣∣∣∣ 6
( ∑

|j|6c|n|

+
∑

|j|>c|n|

)∣∣f̂φ(n− j)ϕ̂(j)
∣∣

=: I1(n) + I2(n)

Further on,

I1(n) =
∑

|n−j|6c|n|

∣∣f̂φ(j)
∥∥ϕ̂(n− j)

∣∣ 6 C sup
|n−j|6c|n|

∣∣f̂φ(j)
∣∣,

where C only depends on B. Since |n− j| 6 c|n| implies |j| > (1 − c)|n|,

sup
ϕ∈B, n∈Γ1

〈n〉N I1(n) 6 C sup
n∈Γ1

〈n〉N sup
|n−j|6c|n|

∣∣f̂φ(j)
∣∣(2.3)

6 C sup
j∈Γξ0

(1 − c)−N 〈j〉N
∣∣f̂φ(j)

∣∣ = C(1 − c)−NCN .

For the estimate of I2 we use that |n− j| 6 (1 + c−1)|j| if |j| > c|n|. Moreover, by
the Paley–Wiener theorem, there are M,D > 0 such that

∣∣f̂φ(n− j)
∣∣ 6 D〈n− j〉M , n, j ∈ Z

d.
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Due to the boundedness of B ⊂ D(Rd),

sup
ϕ∈B

∑

j∈Zd

〈j〉M+N |ϕ̂(j)| =: KN < ∞.

Thus, for the second term, we have

sup
n∈Γ1

〈n〉N I2(n) 6 D sup
n∈Γ1

〈n〉N
∑

|j|>c|n|

〈n− j〉M
∣∣ϕ̂(j)

∣∣(2.4)

6 Dc−N (1 + c−1)MKN , ∀ϕ ∈ B.

Combining (2.3) and (2.4), we get (2.2).
We now deduce that (x0, ξ0) /∈ WF (f) with the aid of (2.2). Let ψ ∈ D(Iε′,x0

)
be equal to 1 in a neighborhood of x0. Then, the set B = {ϕt := ψe−t : t ∈ [0, 1)d}
is a bounded subset of D(Iε′,x0

). So,

sup
t∈[0,1)d

∣∣f̂ψ(n+ t)
∣∣ = sup

t∈[0,1)d

∣∣f̂ϕt(n)
∣∣ 6 C′

N

〈n〉N
, ∀n ∈ Γ1 ∩ Z

d,

that is,

sup
ξ∈(Γ1∩Zd)+[0,1)d

〈ξ〉N
∣∣f̂ψ(ξ)

∣∣ 6 (1 + 4d)N/2C′
N .

Select now an open conic neighborhood Γ2 of ξ0 such that Γ2 ⊂ Γ1 ∪ {0} and find
c′ such that {y ∈ Rd : (∃ξ ∈ Γ2)(|ξ− y| 6 c′|ξ|)} ⊂ Γ1. The latter condition implies
that Γ2 ∩ {ξ ∈ Rd : |ξ|c′ > 1} ⊂ (Γ1 ∩ Zd) + [0, 1)d and hence

sup
ξ∈Γ2

〈ξ〉N
∣∣f̂ψ(ξ)

∣∣ 6 max
{
C′′
N , (1 + 4d)N/2C′

N

}
= CN < ∞,

where C′′
N = supξ∈Γ2, |ξ|<1/c′〈ξ〉N

∣∣f̂ψ(ξ)
∣∣. This shows that (x0, ξ0) /∈ WF (f), as

claimed. �

We mention that Theorem 2.1 also follows from the relation between discrete
and Hörmander’s wave front sets proved in Theorem 7.4 in [12], once one observes
that the notion is local and so it does not depend of a particular parametrization.

3. Sobolev wave front

In this section we deal with wave fronts of Sobolev type. We slightly reformulate
Hörmander’s definition [6].

Definition 3.1. Let f ∈ D ′(Rd), (x0, ξ0) ∈ Rd × (Rd r {0}), and s ∈ R. We
say that f is Sobolev microlocally regular at (x0, ξ0) of order s, that is (x0, ξ0) /∈
WFs(f), if there exist an open cone Γ around ξ0 and ψ ∈ D(Rd) with ψ ≡ 1 in a

neighborhood of x0 such that
∫

Γ

∣∣ψ̂f(ξ)
∣∣2〈ξ〉2sdξ < ∞.

We shall now refine Theorem 2.1.
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Theorem 3.1. Let f ∈ D ′(Rd). The following two conditions are equivalent:

(i) There exist an open cone Γ around ξ0, φ ∈ D(Iη,x0
), η ∈ (0, 1), with φ ≡ 1

in a neighborhood of x0, such that

(3.1)
∑

n∈Γ∩Zd

|an|2〈n〉2s < ∞, where (fφ)p =
∑

n∈Zd

anen.

(ii) (x0, ξ0) /∈ WFs(f).

Proof. (i) ⇒ (ii). Assume (3.1). Choose an open cone Γ1 so that Γ1 ⊂ Γ∪{0}
and ξ0 ∈ Γ1. Find 0 < ε < η such that φ(x) = 1 for all x ∈ Iε,x0

. We first prove
that: For every bounded set B ⊂ D(Iε,x0

)

(3.2) sup
ϕ∈B

∑

n∈Γ1∩Zd

∣∣f̂ϕ(n)
∣∣2〈n〉2s < ∞.

Fix a bounded subset B ⊂ D(Iε,x0
). In view of the choice of ε, we have that

fϕ = fϕφ and so f̂ϕ(n) =
∑

j∈Zd ajϕ̂(n − j), for every ϕ ∈ B. We fix a constant
0 < c < 1 that is smaller than the distance between ∂Γ and the intersection of
Γ1 with the unit sphere, and also smaller than the distance between ∂Γ1 and the

intersection of Rd r Γ with the unit sphere. One has that ξ ∈ Γ1 and y /∈ Γ imply
|ξ − y| > cmax {|ξ|, |y|}. We keep ϕ ∈ B. By Peetre’s inequality, we have

( ∑

n∈Γ1∩Zd

∣∣f̂ϕ(n)
∣∣2〈n〉2s

)1/2

6 C

( ∑

n∈Γ1∩Zd

( ∑

j∈Zd

|aj |〈j〉
s
∣∣ϕ̂(n− j)

∣∣〈n− j〉|s|

)2
)1/2

6 C(I1(ϕ) + I2(ϕ)),

where

I1(ϕ) =

( ∑

n∈Γ1∩Zd

( ∑

j∈Γ∩Zd

|aj |〈j〉
s
∣∣ϕ̂(n− j)

∣∣〈n− j〉|s|

)2
)1/2

,

I2(ϕ) =

( ∑

n∈Γ1∩Zd

( ∑

j /∈Γ∩Zd

|aj |〈j〉
s
∣∣ϕ̂(n− j)

∣∣〈n− j〉|s|

)2
)1/2

.

By Young’s inequality and the fact that B is a bounded set,

sup
ϕ∈B

I1(ϕ) 6

( ∑

n∈Γ∩Zd

|an|2〈n〉2s
)1/2

sup
ϕ∈B

∑

n∈Zd

|ϕ(n)|〈n〉|s| < ∞.

We now estimate I2(ϕ). Since fφ is compactly supported, 〈j〉s|aj | = 〈j〉s|f̂φ(j)| 6
D〈j〉k, ∀n ∈ Zd, for some D > 0 and k > 0. The fact that B is bounded yields the
existence of C′ > 0 such that |ϕ̂(j)| 6 C′〈j〉−k−|s|−3(d+1)/2. Because of the choice
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of Γ1, we have

sup
ϕ∈B

(I2(ϕ))2
6 (DC′)2

∑

n∈Γ1∩Zd

( ∑

j /∈Γ∩Zd

〈j〉k〈n− j〉−k−3(d+1)/2
)2

6 (DC′)2c−2k−3(d+1)
∑

n∈Γ1∩Zd

〈n〉−d−1
( ∑

j /∈Γ∩Zd

〈j〉−d−1
)2

.

Thus (3.2) has been established. We now deduce (ii) from (3.2). Once again
we shrink the conic neighborhood of ξ0. So let Γ2 be an open cone such that
Γ2 ⊂ Γ1 ∪ {0} and ξ0 ∈ Γ2. Let ψ ∈ D(Iε,x0

) be equal to 1 in a neighborhood
of x0. Find r > 0 such that Γ2 ∩ {ξ ∈ Rd : |ξ| > r} ⊂ (Γ1 ∩ Zd) + [0, 1)d. For each
n ∈ Γ1 ∩ Zd, write Λn = n+ [0, 1]d. Then, by (3.2) and Peetre’s inequality,

∫
ξ∈Γ2

|ξ|>r

|ψ̂f(ξ)|2〈ξ〉2sdξ 6 C
∑

n∈Γ1∩Zd

〈n〉2s
∫

Λn

|ψ̂f(ξ)|2dξ

= C

∫

[0,1]d

∑

n∈Γ1∩Zd

〈n〉2s|ψ̂f(n+ t)|2dt

6 C sup
t∈[0,1]d

∑

n∈Γ1∩Zd

〈n〉2s|ê−tψf(n)|2 < ∞.

Therefore, (x0, ξ0) /∈ WF (f).

(ii) ⇒ (i). A variant of the argument employed above, but with integrals
instead of sums, applies to show that (x0, ξ0) /∈ WFs(f) implies the following
property: There exist an open cone Γ and ε ∈ (0, 1) such that for every bounded
set B ⊂ D(Iε,x0

)

(3.3) sup
ψ∈B

∫

Γ
|f̂ψ(ξ)|2〈ξ〉2sdξ < ∞.

We leave such details to the reader. So, assume that (3.3) holds. Let Γ1 be an open
cone containing ξ0 such that Γ1 ⊂ Γ ∪ {0}. Then, there exists some r > 0 such
that (Γ1 + [0, 1]d) ∩ {ξ ∈ Rd : |ξ| > r} ⊂ Γ. Let φ ∈ D(Iε,x0

) such that φ ≡ 1 in
a neighborhood of x0. Consider a measurable function t : Γ → [0, 1]d. Taking the
bounded set

B =
{
ψj,t ∈ D(Iε,x0

) : ψj,t(x) = xje
−2πix·t(ξ)φ(x), ξ ∈ Γ, j = 1, . . . , d

}

in (3.3), we obtain that there is a constant C > 0 such that

(3.4)

∫

Γ
|∇(φ̂f)(ξ + t(ξ))|2〈ξ〉2sdξ < C.

The constant C is actually independent of t. For each n ∈ Γ1 ∩ Zd, let Λn be the

unit cube n+ [0, 1]d =
∏d
j=1[nj , nj + 1]. Note that Λn ⊂ Γ if |n| > r. Then

( ∑

n∈Γ1∩Zd

|φ̂f(n)|2〈n〉2s
)1/2

=

( ∑

n∈Γ1∩Zd

∫

Λn

|φ̂f(n)|2〈n〉2sdξ

)1/2

6 I
1/2
1 + I

1/2
2 ,
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where I1 :=
∑

n∈Γ1∩Zd

∫
Λn

|φ̂f(n) − φ̂f(ξ)|2〈n〉2sdξ and

I2 :=
∑

n∈Γ1∩Zd

∫

Λn

|φ̂f (ξ)|2〈n〉2sdξ

6
∑

|n|6r

∫

Λn

|φ̂f(ξ)|2〈n〉2sdξ + C′

∫

Γ
|φ̂f(ξ)|2〈ξ〉2sdξ < ∞.

It remains to show that I1 is finite. Given θ > 0, define tθ : Γ → [0, 1]d as

tθ(ξ) =

{
θ(n− ξ) if ξ ∈ Λn and |ξ| > r,

0 otherwise.

We now make use of (3.4). Since

|φ̂f(ξ) − φ̂f(n)|2 6 |n− ξ|

∫ 1

0
|∇(φ̂f)(ξ + θ(n− ξ))|2dθ,

we have

I1 6
∑

|n|6r

n∈Γ1∩Z
d

∫

Λn

|φ̂f(n) − φ̂f(ξ)|2〈n〉2sdξ

+ C′ sup
θ∈[0,1]

∫

Γ
|∇(φ̂f )(ξ + tθ(ξ))|

2〈ξ〉2sdξ < ∞.

This completes the proof. �
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