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ON COMMUTATIVITY OF

QUASI-MINIMAL GROUPS

Slavko Moconja

Abstract. We investigate if every quasi-minimal group is abelian, and give
a positive answer for a quasi-minimal pure group having a ∅-definable partial
order with uncountable chains. We also relate two properties of a complete
theory in a countable language: the existence of a quasi-minimal model and
the existence of a strongly regular type. As a consequence we derive the equiv-
alence of conjectures on commutativity of quasi-minimal groups and commu-
tativity of regular groups.

1. Introduction

In the nineties Zilber initiated the study of model theory of the complex expo-
nential field (C,+, ·, exp) and conjectured that every definable subset of C is either
countable or co-countable (the complement is countable); uncountable first order
structures with this property are called quasi-minimal (see [9]). This conjecture is
still widely open and motivates the study of model theoretical properties of quasi-
minimal structures, especially algebraic ones. The interesting infinitary properties
are related to Lω1,Q-categoricity of the complex exponential field and Schanuel’s
conjecture of transcendental number theory. A complete review of this topic can be
found in the first part of Zilber’s recent paper [10]. In this article we are interested
in elementary first order properties of quasi-minimal structures. This direction
was initiated by Itai, Tsuboi and Wakai in [1]. In particular, we will investigate
quasi-minimal groups. By a group in this article we mean a first-order structure
(G, ·, . . .) which beside the group structure may have additional operations and
relations; groups with no additional structure are called pure groups.

Initially, quasi-minimality was viewed as a generalization of minimality; an
infinite first order structure is minimal if any definable subset is either finite or co-
finite. Minimal pure groups were classified by Reineke in 1975. In [6] he proved that
every minimal group is abelian, and then by purely algebraic arguments obtained
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the full list. Concerning minimal fields, it is known that every algebraically closed
field is a minimal structure. The converse was conjectured by Podewski in 1973
(see [5]).

Conjecture 1.1. Every minimal field is algebraically closed.

Podewski’s conjecture was confirmed by Wagner for fields of positive charac-
teristic in [8]. Partial results in characteristic 0 were obtained by Krupinski et al.
in [3], where the conjecture is reduced to fields with a proper partial ordering de-
finable in the field language. There are natural conjectures generalizing Podewski’s
conjecture and Reineke’s theorem in the quasi-minimal case.

Conjecture 1.2. Every quasi-minimal field is algebraically closed.

Conjecture 1.3. Every quasi-minimal group is abelian.

These conjectures were posed in [4] and studied recently by Gogacz and Krupin-
ski in [2]. Gogacz and Krupinski noted that proofs of the above mentioned results
on Podewski’s conjecture translate to the context of Conjecture 1.2. Concern-
ing Conjecture 1.3 they proved that in every quasi-minimal non-abelian group all
non-central elements are conjugated and that their centralizers are countable. By
applying iterated HNN extensions they constructed an uncountable group with
those properties, but it is still open if it is quasi-minimal. In this paper we will
confirm Conjecture 1.3 in the case when there exists a ∅-definable partial order
with uncountable chains. This assumption is motivated by Theorem 5.1 from [4],
according to which there exist two kinds of quasi-minimal structures whose generic
type is countably based (which holds in the group case): they are either symmetric
or there exists a definable, over a finite parameter set, partial order with ‘large’
chains. So, we prove the following theorem.

Theorem 1.1. Every quasi-minimal pure group having a ∅-definable partial

order with an uncountable chain is abelian.

The notion of regular types first arose in Shelah’s investigations of stable theo-
ries. Recently, Pillay and Tanović in [4] introduced the concept of strong regularity
for global types in the general first order context (we will further include the def-
inition of this and all other undefined notions used in the introduction). We will
investigate the connection between notions of global strong regularity and quasi-
minimality and prove the following theorem, indicating that quasi-minimality is
closely related to strong regularity.

Theorem 1.2. Assume that T is a complete theory in a countable language

with infinite models.

(1) If there exists a global, countably invariant, strongly regular via x = x type,

then T has a quasi-minimal model.

(2) If M |= T is quasi-minimal and its generic type p is definable, then there

exists a global, M -invariant, strongly regular via x = x type extending p.

Since the generic type of any quasi-minimal or strongly regular group is defin-
able over ∅ (see Lemma 4.1 below), as an immediate corollary we obtain.
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Corollary 1.1. (1) The existence of a non-abelian quasi-minimal group is

equivalent with the existence of a strongly regular non-abelian group.

(2) The existence of a quasi-minimal, non algebraically closed field is equivalent

with the existence of a strongly regular, non algebraically closed field.

Part (1) of the previous theorem was independently proved in unpublished
notes by Haykazyan and by Tanović. Part (2) can be derived from the results in
[4]. Here we will give direct proofs of both parts.

Throughout the paper we use the standard notions from model theory. Let
L be a first-order language and let M be an L-structure. By ā we denote a finite
tuple of elements from M and by |ā| its length. We will write ā ∈ A, where A ⊆ M ,
to denote that ā is a tuple of elements of A. For a subset A ⊆ M , let LA be the
language obtained by adding to L constant symbols naming elements of A. For an
LA-formulas we say that it is a formula with parameters from A. Usually, when
the meaning of the model M is clear from the context, then by a formula we mean
a formula with parameters from M . By a solution of φ(x̄) in A ⊂ M we mean a
tuple ā ∈ A|x̄| for which M |= φ(ā) holds; φ(A) will denote the set of all solutions
of φ(x̄) in A. A subset D ⊆ M is definable over A, or A-definable, if D = φ(M)
holds for some formula φ(x) with parameters from A; D ⊆ M is definable if it is
A-definable for some A ⊆ M .

A type over A ⊆ M in variables x̄ is a set of formulas whose free variables are
among x̄ and whose parameters are from A, which is consistent with Th(M). By
an n-type we mean a type in n free variables, usually x1, . . . , xn. If p is an n-type
(over some set of parameters), we say that ā ∈ M realizes p, and write ā |= p, if ā is
a solution of every formula φ(x̄) ∈ p. The set of all realizations of p in M is denoted
by p(M). We say that p is not realized in M , or that M omits p, if p(M) = ∅. An
n-type over A is complete if it contains either φ(x̄) or ¬φ(x̄), for every φ(x̄) with
parameters from A. We usually denote complete types by p, q, r, . . .. The set of
all complete n-types over A is denoted by Sn(A). For a tuple ā ∈ M and subset
A ⊆ M , by tp(ā/A) we denote the set of all formulas with parameters from A
satisfied by ā; it is a complete |ā|-type over A.

For an n-type p over A and B ⊆ A, we write p↾B to denote the restriction of
p to the set of parameters B, i.e., the set of all LB-formulas from p. A formula
φ(x̄) (with parameters from M) is algebraic if φ(M) is finite. A type p ∈ Sn(M) is
algebraic if it contains an algebraic formula; otherwise, it is non-algebraic.

A complete type p ∈ S1(B) is finitely satisfiable in A ⊆ B, if every finite
subtype p0 ⊆ p has a realization in A, equivalently if every formula φ(x) ∈ p has a
solution in A.

Remark 1.1. If a type p ∈ S1(A) is finitely satisfiable in A, then for every
B ⊇ A there exists a type q ∈ S1(B) such that p ⊆ q and q is finitely satisfiable in
A. For the proof, consider the set of formulas

Σ(x) = {φ(x, b̄) | φ(x, ȳ) is L-formula, b̄ ∈ B and φ(A, b̄) = A}.

Obviously, Σ(x) ∪ p(x) is consistent, since p is finitely satisfiable in A. Therefore it
has an extension q ∈ S1(B). The type q is finitely satisfiable in A, since otherwise
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there is a formula ϕ(x) ∈ q(x) such that ϕ(A) = ∅. But then ¬ϕ(A) = A, hence
¬ϕ(x) ∈ Σ(x) ⊆ q(x). A contradiction.

In fact, one can easily prove that q ∈ S1(B) is finitely satisfiable in A extension
of p if and only if it contains Σ(x) ∪ p(x).

Let p ∈ S1(M) be a type over a model, and let M ⊆ B. An extension q ∈ S1(B)
of p is an heir of p if for every LM -formula φ(x, ȳ) such that φ(x, b̄) ∈ q for some
b̄ ∈ B, there exists m̄ ∈ M such that φ(x, m̄) ∈ p.

Monster model. Assume that T is a complete theory with infinite models. If
we are interested in studying the models of T of cardinality less than κ, then under
some additional set-theoretical assumptions we can fix a model of T of cardinality
κ, usually denoted by C, with the following properties:

• every model M of T with |M | 6 κ is elementary embeddable in C, hence we
may assume that M is an elementary submodel of C;

• every type with parameters from A, where A ⊆ C and |A| < κ, is realized in C;
• if tp(ā/A) = tp(b̄/A), where A ⊆ C and |A| < κ, then there exists an auto-

morphism f ∈ AutA(C) such that f(ā) = b̄.

We say that C is a monster model of T . By a small subset or model we mean a set
A ⊆ C or a model M ≺ C such that |A|, |M | < κ. Also |= φ(ā) means C |= φ(ā).
For a complete type with parameters from C we say that it is global, and usually
denote such type by p. By p↾A we denote the restriction of the global type p to the
set of parameters A.

If Σ(x̄) is a set of formulas with parameters from A, where A is some small
subset of C, and φ(x̄) is a formula with parameters, then by Σ(x̄) ⊢ φ(x̄) we mean
that whenever ā ∈ C satisfies all formulas in Σ(x̄), then ā also satisfies φ(x̄) (the
set of realisation of Σ(x̄) in C is a subset of the set of realisations of φ(x̄) in C).
Now compactness inside C can be stated in the following form. If Σ(x̄) ⊢ φ(x̄),
then there exists some finite subset Σ0(x̄) ⊆ Σ(x̄) such that Σ0(x̄) ⊢ φ(x̄). Indeed,
by considering x̄ as constants, the theory Σ(x̄) ∪ {¬φ(x̄)} is not consistent with T ,
since otherwise it would be a type over small set of parameters, hence realized in C.
By compactness, for some finite Σ0(x̄) ⊆ Σ(x̄), Σ0(x̄) ∪ {¬φ(x̄)} is not consistent
with T ; in particular Σ0(x̄) ⊢ φ(x̄).

A global type p ∈ Sn(C) is invariant over A, or A-invariant, if for every auto-
morphism f ∈ AutA(C), every formula φ(x̄, ȳ) with no parameters and every ā ∈ C:
φ(x̄, ā) ∈ p iff φ(x̄, f(ā)) ∈ p holds. The type p is invariant if it is A-invariant, for
some small A, and it is countably invariant if it is A-invariant, for some countable
A. Note that if p is A-invariant, then p is B-invariant, for every B ⊇ A.

Let p ∈ Sn(C) be invariant and let (I,<) be a linear order. The sequence of
n-tuples (āi)i∈I is a Morley sequence in p over A if āi |= p↾Aā<i

, for each i ∈ I,
where ā<i denotes the set {āj | j < i}.

Definable types. Let M be a first order structure and p ∈ Sn(M). We
say that the type p is definable over A ⊆ M if for every formula φ(x̄, ȳ) with no
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parameters, there exists formula dp φ(ȳ) with parameters from A, such that

φ(x̄, m̄) ∈ p if and only if M |= dp φ(m̄)

holds for every m̄ ∈ M .
We say that formula dp φ(ȳ) is a definition over A of formula φ(x̄, ȳ), and the

correspondence dp is a defining schema of p. A type p ∈ Sn(M) is definable if it is
definable over M .

Remark 1.2. If we work in a countable language L, then every definable type is
definable over some countable set. Indeed, there are only countably many formulas
with no parameters, hence if p ∈ Sn(M) is a definable type, then the definition of
each formula uses only finitely many parameters from M , hence p is definable over
some countable A ⊆ M .

2. Closure operations associated to types

We start with the definition of a closure operation on a set.

Definition 2.1. Suppose that S is a non-empty set and let cl : P(S) −→ P(S).
We say that cl is closure operation on S if it satisfies (for all X,Y ⊆ S):

• X ⊆ Y implies X ⊆ cl(X) ⊆ cl(Y ); (Monotonicity)
• cl(X) =

⋃
{cl(X0) | X0 ⊆ X, X0 is finite}; (Finite character)

• cl(cl(X)) = cl(X). (Transitivity)

We say that cl is pregeometry operation if in addition it satisfies (for all a, b ∈ S
and X ⊆ S):

• b ∈ cl(X ∪ {a}) r cl(X) implies a ∈ cl(X ∪ {b}). (Exchange property)

If cl : P(S) −→ P(S) is an operation on S, then for any A ⊆ S one can define

another operation clA : P(S) −→ P(S) on S with

clA(X) = cl(A ∪X).

We call the operation clA the relativization of cl in A. It is easy to see that
any relativization keeps monotonicity, finite character, transitivity and exchange
property.

An important notion related to a closure operation cl, which we will use, is the
notion of a cl-free sequence.

Definition 2.2. Suppose that cl is a closure operation on S, and (I,6) is
a linear order. We say that the sequence (ai)i∈I of elements of S, is cl-free over

A ⊆ S if

ai /∈ cl(A ∪ {aj | j < i})

holds for every i ∈ I. In particular, (a, b) is a cl-free sequence over A ⊆ S if
a /∈ cl(A) and b /∈ cl(A ∪ {a}).

Assume that p ∈ S1(N) is a non-algebraic type, where N is a first order struc-
ture (possibly N = C). We associate to p an operation clp on P(N) defined by

clp(X) = {a ∈ N | a 6|= p↾X}.
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Equivalently

clp(X) =
⋃

{φ(N, ā) | φ(x, ȳ) is L-formula, ā ∈ X and φ(x, ā) /∈ p}.

It is not common, but we will say that a formula is p-large if it belongs to p;
otherwise it is p-small. If the type p is clear from the context, we just say that
a formula is large (small), instead of p-large (p-small). So, keeping in mind this
convention, we see that clp(X) is the union of all sets definable by a p-small formula
with parameters from X .

Remark 2.1. Let p ∈ S1(N).
(1) Operation clp always satisfies monotonicity and finite character. Since p is

non-algebraic, X ⊆ clp(X) immediately follows. If X ⊆ Y , then clp(X) ⊆ clp(Y )
since every formula with parameters from X is also a formula with parameters from
Y . For finite character, if a ∈ clp(X), then a is a solution of some small formula
with parameters from X . Since this formula uses only finitely many parameters X0

from X , it follows that a ∈ clp(X0).
(2) As we have remarked earlier, if p is a non-algebraic type, then every rela-

tivization clAp satisfies Monotonicity and Finite character.

Definition 2.3. Assume that p ∈ S1(C) is a global non-algebraic type. The
type p is strongly regular if there exists some small A ⊆ C such that:

• p is A-invariant;
• for every B ⊇ A and every a 6|= p↾B: p↾B ⊢ p↾Ba holds.

In that case we say that A witnesses the strong regularity of p.

Remark 2.2. (1) Pillay and Tanović in [4] define that a global, nonalgebraic
type p ∈ S1(C) is strongly regular via formula φ(x) if there exists some small A ⊆ C

such that:

• φ(x) ∈ p↾A and p is A-invariant;
• for every B ⊇ A and every a ∈ φ(C) r p↾B(C): p↾B ⊢ p↾Ba holds.

Note that our definition of a strongly regular type corresponds to the definition
of a strongly regular type via x = x in the sense of Pillay and Tanović.

(2) An equivalent characterization of a strongly regular type is the following:
A global, non-algebraic type p is strongly regular, witnessed by small A, if:

• p is A-invariant;
• clAp is a closure operation on C.

The proof of this characterisation can be found in [4].
(3) It is clear from the definition that if A witnesses strong regularity of p, then

any small B ⊇ A witnesses strong regularity of p. Moreover, if p is strongly regular,
then every small subset B, such that p is B-invariant, witnesses strong regularity
of p. For the proof of this fact see [7].

Let us fix a strongly regular type p ∈ S1(C), witnessed by A. We consider

clAp -free sequences. We will freely use the following fact.

Fact 2.1. If (I,<) is a linear order, and (ai)i∈I and (bi)i∈I are two clAp -free

sequences over some small B ⊇ A, then tp((ai)i∈I/B) = tp((bi)i∈I/B).
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Note that for a strongly regular type p, the clAp -free sequences over A are
precisely the Morley sequences in p over A. Indeed, if (I,<) is a linear order,

(ai)i∈I is a clAp -free sequence over A iff ai /∈ clAp (ā<i) iff ai |= p↾Aā<i
iff (ai)i∈I is a

Morley sequence in p over A, where ā<i denotes the set {aj | j < i}.
According to the dichotomy theorem for regular types from [4] we have two

kinds of regular types: symmetric and asymmetric.

Symmetric kind: If clAp is a pregeometry operation on C.

In this case every clAp -free sequence over A is invariant under permutations, i.e.,

if (a1, a2, . . . , an) is a clAp -free sequence overA and π is a permutation of {1, 2 . . . , n},

then (aπ(1), aπ(2), . . . , aπ(n)) is also a clAp -free sequence over A. In particular, by

Fact 2.1 every clAp -free sequence is totally indiscernible over A.

Asymmetric kind: If clAp is not a pregeometry operation on C.

In this case there exist a finite extension A0 of A and a A0-definable partial
order on C such that every clAp -free sequence over A0 is strictly increasing.

Now, we turn to the notion of a quasi-minimal structure.

Definition 2.4. A first order structure M in a countable language is said to
be quasi-minimal if it is uncountable and every M -definable subset of M is either
countable or co-countable (its complement in M is countable).

Naturally, we say that a definable subset is small if it is countable, and that it
is large if it is co-countable. Accordingly, we say that a formula is small (large) if
it defines small (large) subset.

For a quasi-minimal structure M , denote by p the set of all large formulas with
parameters from M ; then p ∈ S1(M). Indeed, p is closed for finite conjunctions,
since the intersection of finitely many co-countable subsets is co-countable. For
completeness note that by quasi-minimality every formula defines either a countable
or a co-countable subset of M , hence either a formula or its negation belongs to p.
We say that p is the generic type of M .

Remark 2.3. Let M be a quasi-minimal structure and let p be its generic type.
(1) The set clp(X) is countable for every at most countable subset X ⊆ M .

Indeed, there are only countably many formulas with parameters from X , hence
clp(X) is a countable union of countable sets.

(2) Since clp(X) is defined as the union of all countable X-definable subsets, it
follows that f(clp(X)) = clp(f(X)) for every automorphism f ∈ Aut(M).

(3) The operation clp doesn’t need to be a closure operation on M . An example
can be found in [4].

Lemma 2.1. Assume that M is a quasi-minimal structure whose generic type

p is definable over countable A ⊆ M . Then clAp is a closure operation on M .

Proof. As we remarked earlier, clAp satisfies Monotonicity and Finite charac-

ter. It remains to prove Transitivity. We have to prove that clAp (clAp (X)) ⊆ clAp (X),
since the other inclusion holds by Monotonicity.
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Let c ∈ clAp (clAp (X)). Then M |= φ(c, b̄), where φ(x, ȳ) is a formula with

parameters from A, b̄ = b1b2 . . . bn ∈ clAp (X) and φ(x, b̄) /∈ p. For each i, 1 6 i 6 n,

bi ∈ clAp (X) implies that M |= ψi(bi, ā), where ψi(yi, z̄) is a formula with parameters

from A, ā ∈ X and ψi(yi, ā) /∈ p. By definability of p, φ(x, b̄) /∈ p and ψi(yi, ā) /∈ p
imply M |= ¬ dp φ(b̄) and M |= ¬ dp ψi(ā), where dpφ(ȳ) and dpψi(z̄) are the
definitions over A of formulas φ(x, ȳ) and ψi(yi, z̄). So c satisfies the following
formula with parameters from A ∪X

θ(x, ā) := ∃ȳ (φ(x, ȳ) ∧ ¬dpφ(ȳ) ∧
n∧

i=1

ψi(yi, ā)).

It suffices to prove that θ(x, ā) /∈ p; c ∈ clAp (X) follows. Note that:

θ(M, ā) =
⋃

{φ(M, d̄) | d̄ ∈ M, M |= ¬dpφ(d̄), M |= ψi(di, ā), for all 1 6 i 6 n}.

Since M |= ¬ dp ψi(ā), we conclude that there are only countably many choices for

d̄ such that M |= ψi(di, ā) for all 1 6 i 6 n. Therefore, the former set is countable.
For any d̄ ∈ M such that M |= ¬dpφ(d̄) and M |= ψi(di, ā), for all 1 6 i 6 n,

M |= ¬dpφ(d̄) implies that φ(x, d̄) /∈ p, hence φ(M, d̄) is countable. So, θ(M, ā) is
a countable union of countable sets, hence is countable. Therefore, θ(x, ā) /∈ p. �

3. Strong regularity and quasi-minimality

Throughout this section we assume that T is a complete theory in a countable
language, with C being its monster model. In this section we prove Theorem 1.2.
Part (1) is proven in Proposition 3.1 and part (2) in Proposition 3.2. We need few
lemmas.

Lemma 3.1. Assume that M is a countable model of T and ā ∈ C. There exists

a countable model N of T such that:

• M ⊆ N , ā ∈ N ;

• for every b ∈ N rM , tp(b/Mā) is not finitely satisfiable in M .

Proof. Consider the following set of formulas with parameters from Mā:

Σ(x) = {φ(x) | φ(x) is LMā –formula and φ(M) = M} ∪ {x 6= m | m ∈ M}.

The set Σ(x) is obviously (incomplete) type over Mā.
We claim that the following conditions are equivalent for every q ∈ S1(Mā):
(1) q is finitely satisfiable in M and q is not realized in M ;
(2) Σ(x) ⊆ q(x).
(1)⇒(2): Assume that q is finitely satisfiable in M , but not realized in M .

Obviously {x 6= m | m ∈ M} ⊆ q(x), since q is complete and not realized in M .
Assume that φ(x) ∈ Σ(x) is such that φ(M) = M . Since q is complete, either φ(x)
or ¬φ(x) belongs to q(x). But since φ(M) = M , we get that ¬φ(x) has no solution
in M , so ¬φ(x) /∈ q(x) since q is finitely satisfiable in M . Therefore, φ(x) ∈ q(x).

(2)⇒(1): Assume now that Σ(x) ⊆ q(x). Since {x 6= m | m ∈ M} ⊆ q(x), q is
not realized in M . If q is not finitely satisfiable in M , then there exists a formula
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φ(x) ∈ q(x) that has no solution in M , i.e. φ(M) = ∅. Then ¬φ(M) = M , so
¬φ(x) ∈ Σ(x). Therefore, ¬φ(x) ∈ Σ(x) r q(x). A contradiction.

By the claim, if a countable model N of T , such that M ⊆ N and ā ∈ N ,
omits Σ(x), then for every b ∈ N rM , tp(b/Mā) is not finitely satisfiable in M .
(Note that tp(b/Mā) is not realized in M , since this implies b ∈ M .) Thus, by
Omitting Types Theorem, it suffices to show that for no consistent formula θ(x)
with parameters from Mā, θ(x) ⊢ Σ(x) holds.

Toward a contradiction, assume that θ(x) is a consistent formula with parame-
ters from Mā such that θ(x) ⊢ Σ(x). The formula θ(x) has a solution in C, so choose
b ∈ C such that |= θ(b). Since θ(x) ⊢ Σ(x), we get that Σ(x) ⊆ tp(b/Mā), and by the
claim above, tp(b/Mā) is finitely satisfiable in M . In particular, θ(x) ∈ tp(b/Mā)
has a solution in M . But this is not possible since θ(x) ⊢ {x 6= m | m ∈ M}. A
contradiction. �

Lemma 3.2. Assume that p ∈ S1(C) is a strongly regular type, witnessed by A.

Let M be a small model containing A and let a |= p↾M . If tp(b/Ma) is not finitely

satisfiable in M , then b |= p↾M .

Proof. Assume that tp(b/M) is finitely satisfiable in M , then by Remark
1.1 it has a finitely satisfiable in M extension q ∈ S1(Ma). Let b′ |= q. Then
tp(b′/M) = tp(b/M).

Toward a contradiction, assume that b 6|= p↾M . Then b′ 6|= p↾M as well. By strong
regularity of p, we get that p↾M ⊢ p↾Mb and p↾M ⊢ p↾Mb′ , so a |= p↾Mb and a |=
p↾Mb′ , since a |= p↾M . But this implies that tp(b/Ma) = tp(b′/Ma), which is a
contradiction since tp(b′/Ma) is finitely satisfiable in M , and tp(b/Ma) is not. �

Corollary 3.1. Assume that p ∈ S1(C) is a strongly regular type, witnessed

by A. Let M be a countable model of T containing A and a |= p↾M . There exists a

countable model N of T such that: M ⊆ N , a ∈ N and p↾M(N) = N rM .

Proof. By Lemma 3.1 there exists a countable model N of T such that M ⊆
N , a ∈ N and for every b ∈ N rM , tp(b/Ma) is not finitely satisfiable in M . Then
for every b ∈ N rM , b |= p↾M follows by Lemma 3.2. Therefore, N rM ⊆ p↾M(N).
The other inclusion is obvious. �

Now we are ready to prove Theorem 1.2 (1).

Proposition 3.1. Assume that p ∈ S1(C) is a countably invariant, strongly

regular type. Then there exists a quasi-minimal model N of T .

Proof. Let A be a countable set such that p is A-invariant. By Remark 2.2
(3), A witnesses strong regularity of p.

We build a sequence (Mα, aα)α<ω1
such that:

• Mα is a countable model of T ;
• Mα ⊆ Mα+1, aα ∈ Mα+1 rMα and aα |= p↾Mα

;
• p↾Mα

(Mα+1) = Mα+1 rMα.

We proceed by induction. For α = 0 take any countable model M0 of T
containing A, and take any a0 |= p↾M0

; note that a0 /∈ M0.
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If α is a limit ordinal, take Mα =
⋃

β<α Mβ and take any aα |= p↾Mα
; note that

Mα is a countable model of T and aα /∈ Mα.
Given (Mα, aα) such that Mα is a countable model of T containing A and aα |=

p↾Mα
, by Corollary 3.1 there is a countable model Mα+1 such that Mα ⊆ Mα+1,

aα ∈ Mα+1 and p↾Mα
(Mα+1) = Mα+1 rMα. Take any aα+1 |= p↾Mα+1

; note that
aα+1 /∈ Mα+1.

It is clear that the defined sequence (Mα, aα)α<ω1
satisfies the desired condi-

tions.
Take N =

⋃
α<ω1

Mα. Obviously, N is an uncountable (since it contains

(aα)α<ω1
) model of T . Also note that p↾Mα

(N) = N r Mα, for every α < ω1.
Indeed, if b ∈ N rMα, then b ∈ Mβ+1, for some β > α. By construction, b |= p↾Mβ

,
hence b |= p↾Mα

, since Mα ⊆ Mβ . Therefore p↾Mα
(N) ⊇ N r Mα. The other

inclusion is obvious.
We claim that N is quasi-minimal. Let φ(x) be a formula with parameters from

N . Then φ(x) is a formula with parameters from Mα, for some α < ω1. If φ(x) /∈
p↾Mα

, then no element of p↾Mα
(N) = N rMα satisfies φ(x). Thus φ(N) ⊆ Mα, so

φ(N) is countable. If φ(x) ∈ p↾Mα
, then ¬φ(x) /∈ p↾Mα

, hence ¬φ(N) is countable
and φ(N) is co-countable. Therefore, N is indeed a quasi-minimal model of T . �

Corollary 3.2. Assume that p ∈ S1(C) is a definable, strongly regular type.

Then there exists a quasi-minimal model N of T .

Proof. Since p is definable, by Remark 1.2 it is definable over some countable
A. Now it is clear that p is A-invariant: if φ(x, ȳ) is an L-formula, ā ∈ C and
f ∈ AutA(C), then

φ(x, ā) ∈ p iff |= dp φ(ā) iff |= dp φ(f(ā)) iff φ(x, f(ā)) ∈ p,

where dp is the defining schema of p over A.
Therefore, p is countably invariant, hence by Proposition 3.1, T has a quasi-

minimal model. �

In the following proposition we prove Theorem 1.2 (2).

Proposition 3.2. Assume that M is a quasi-minimal model whose generic

type p is definable. Then the global heir p of p is strongly regular.

Proof. Since p is definable, by Remark 1.2 it is definable over some countable
A ⊆ M . Let C be a monster model of a theory T = Th(M), and let dp be the
defining schema of the type p over A. The global heir of p is defined with:

p = {φ(x, ā) | φ(x, ȳ) is L-formula, ā ∈ C and |= dp φ(ā)}.

We claim that A witnesses the regularity of p. First, note that p is A-invariant.
Assume that φ(x, ā) ∈ p and f ∈ AutA(C). Then |= dp φ(ā) holds, hence also
|= dp φ(f(ā)) holds, since dp φ(ȳ) is a formula with parameters from A. Therefore

φ(x, f(ā)) ∈ p. It remains to prove that clAp is a closure operation on C.
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Note that the corresponding clAp operation on C is defined by

clAp (X) =
⋃

{φ(C, ā) | φ(x, ȳ) is L-formula, ā ∈ A ∪X and φ(x, ā) /∈ p}

=
⋃

{φ(C, ā) | φ(x, ȳ) is L-formula, ā ∈ A ∪X and |= ¬ dp φ(ā)}.

Assume on the contrary that clAp is not a closure operation on C. Then
Transitivity condition fails, so we can choose X ⊆ C and c ∈ C such that c ∈
clAp (clAp (X)) r clAp (X). Since c ∈ clAp (clAp (X)), there exists a formula φ(x, ȳ) with

parameters from A and b̄ = b1b2 . . . bn ∈ clAp (X) such that φ(x, b̄) /∈ p and |= φ(c, b̄).

For each i, 1 6 i 6 n, bi ∈ clAp (X) implies that there exists a formula ψi(yi, z̄) with
parameters from A and ā ∈ X such that ψi(yi, ā) /∈ p and |= ψi(bi, ā). By the
definition of p, φ(x, b̄) /∈ p and ψi(yi, ā) /∈ p imply |= ¬ dp φ(b̄) and |= ¬ dp ψi(ā).

Therefore, b̄ witnesses the existential quantifier that c satisfies

θ(x, ā) := ∃ȳ [φ(x, ȳ) ∧ ¬ dp φ(ȳ) ∧
n∧

i=1

ψi(yi, ā) ∧
n∧

i=1

¬ dp ψi(ā)],

where θ(x, z̄) is a formula with parameters from A. Since c /∈ clAp (X) and ā ∈ X
we conclude that θ(x, ā) ∈ p, i.e., |= dp θ(ā), and accordingly: |= ∃z̄ dp θ(z̄) holds.

Since M ≺ C and ∃z̄ dp θ(z̄) is a formula with parameters from A ⊆ M , M |=
∃z̄ dp θ(z̄) also holds, i.e., there exists ā′ ∈ M such that M |= dp θ(ā

′). This implies

that θ(x, ā′) ∈ p, i.e. θ(M, ā′) is co-countable. Since clAp (ā′) is countable, we can

choose c′ ∈ θ(M, ā′) r clAp (ā′). Now M |= θ(c′, ā′) implies that there exists b̄′ ∈ M
such that

M |= φ(c′, b̄′) ∧ ¬ dp φ(b̄′) ∧
n∧

i=1

ψi(b
′
i, ā

′) ∧
n∧

i=1

¬ dp ψi(ā
′).

The last two conjuncts imply that b̄′ ∈ clAp (ā′), and then the first two say that

c′ ∈ clAp (clAp (ā′)). Therefore c′ ∈ clAp (clAp (ā′)) r clAp (ā′). This is a contradiction,

since by Lemma 2.1, clAp is a closure operation on M . �

4. Around quasi-minimal group

In this section we prove Theorem 1.1.
According to the general definition of a quasi-minimal structure, a group G in

a countable language is quasi-minimal if it is uncountable and every G-definable
subset of G is either countable or co-countable (its complement in G is countable).

Let p be the generic type of G, i.e. the type consisting of all large formulas
with parameters from G. It turns out that the type p is definable over ∅. This fact
is well known (see [2, 3, 4]), but for the sake of completeness we formulate and
prove it in the following lemma.

Lemma 4.1. The generic type p of a quasi-minimal group G is definable over ∅.

Proof. First we prove that for any co-countable subset S ⊆ G there exists
a ∈ G such that S∪aS = G. Since S is co-countable, then also S−1 is co-countable,
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as well as gS−1, for each g ∈ G. Consider the family {gS−1 | g /∈ S}. Since it is a
countable family of co-countable subsets, it has co-countable intersection, so choose
a in its intersection. But then for each g /∈ S we have a ∈ gS−1, hence g ∈ aS.
Therefore G = S ∪ aS.

Also note that if G = S ∪ aS holds for a subset S ⊆ G, then S is uncountable
(since G is uncountable). Therefore, if in addition S is definable, then by quasi-
minimality S is co-countable.

Suppose now that φ(x, ȳ) is a formula with no parameters. Note that for any
ḡ ∈ G, φ(x, ḡ) ∈ p iff φ(G, ḡ) is co-countable iff G = φ(G, ḡ) ∪ a φ(G, ḡ) for some
a ∈ G. Therefore, φ(x, ḡ) ∈ p iff G |= dp φ(ḡ), where dp φ(ȳ) is the formula

∃z ∀x [φ(x, ȳ) ∨ ∃x′ (φ(x′, ȳ) ∧ x = zx′)].

Note that dp φ(ȳ) has no parameters, hence it is the definition of φ(x, ȳ) over ∅. �

By Lemma 2.1 we have an immediate corollary.

Corollary 4.1. Let G be a quasi-minimal group whose generic type is p. Then

clp = cl∅p is a closure operation on G.

In order to prove Theorem 1.1 we first consider some properties that hold if a
non-abelian quasi-minimal group exists. The same properties hold in the minimal
case and some of them are proven in [6]. The proof of Lemma 4.2 in the quasi-
minimal case can also be found in [2]. In Lemma 4.2 and Corollaries 4.2 and 4.3
we deal under the following assumption.

Assumption 4.1. Assume that G is a non-abelian quasi-minimal group.

Lemma 4.2.

(i) Every definable proper subgroup of G is countable.

(ii) The center Z(G) is countable.

(iii) For every a /∈ Z(G), the centralizer CG(a) is countable and the conjuga-

tion class aG is co-countable.

(iv) For every a /∈ Z(G), G = Z(G) ∪ aG holds.

Proof. Assume that H is a definable proper subgroup of G. Assume that
H is not countable, hence by quasi-minimality it is co-countable. Choose a /∈ H .
Then H and aH are disjoint co-countable sets of G. This contradiction proves (i).
For (ii) note that Z(G) is definable proper subgroup of G, since G is non-abelian.
Therefore, (ii) follows from (i). Similarly, for (iii) note that CG(a) is definable
proper subgroup of G, since a /∈ Z(G). Hence, the countability of CG(a) follows
from (i) as well. Since |aG| = |G : CG(a)| holds by the orbit-stabilizer theorem, we
get that aG is uncountable, hence by quasi-minimality it is co-countable.

(iv) Take a, b /∈ Z(G). By (iii) aG and bG are co-countable, hence they meet.
Therefore aG = bG, and we get that G = Z(G) ∪ aG. �

Corollary 4.2. For every a, b /∈ Z(G), the set {x ∈ G | ax = b} is countable.

Proof. By Lemma 4.2 (iv) there exists g ∈ G such that b = ag. Then b = ax

iff ag = ax iff axg−1

= a iff xg−1 ∈ CG(a) iff x ∈ CG(a)g. Therefore, there exists a
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bijection between {x ∈ G | ax = b} and CG(a), which is countable by Lemma 4.2
(iii). �

If in addition we assume that G is a pure group, then we get the following
corollary.

Corollary 4.3. We have clp(∅) = Z(G).

Proof. Obviously, Z(G) ⊆ clp(∅), since by Lemma 4.2(ii), Z(G) is countable
and also ∅-definable. Toward a contradiction, assume that Z(G) ( clp(∅) and
choose a ∈ clp(∅) r Z(G). Then there exists ∅-definable countable subset D ⊆ G
containing a. But then for every g ∈ G, ag ∈ Dg, and Dg = D since D is ∅-definable
and conjugation is an automorphism of a pure group. Therefore, aG ⊆ D, which is
a contradiction since by Lemma 4.2(iii), aG is co-countable. �

Now, till the end of the section we deal under a stronger assumption.

Assumption 4.2. Assume that G is non-abelian quasi-minimal pure group
with ∅-definable partial order 6 with an uncountable chain.

Lemma 4.3. Exactly one of the following holds:

(1) a < x defines a co-countable subset of G, for every a /∈ clp(∅);
(2) x < a defines a co-countable subset of G, for every a /∈ clp(∅).

Proof. Since clp(∅) is countable and there exists an uncountable chain C, we
can choose an element a0 ∈ C r clp(∅). Then at least one of a0 < x and x < a0

defines an uncountable subset, hence by quasi-minimality exactly one of a0 < x
and x < a0 defines a co-countable subset of G.

Assume that a0 < x defines a co-countable subset of G and take any a /∈ clp(∅).
By Corollary 4.3, clp(∅) = Z(G), so by Lemma 4.2(iv) we can choose an element g ∈
G such that ag

0 = a. Since 6 is 0-definable and the conjugation is an automorphism
of a pure group, we get that a < x defines a co-countable subset of G as well.

In a similar way we can prove that x < a defines a co-countable subset of G,
for every a /∈ clp(∅), assuming that x < a0 defines a co-countable subset of G. �

Lemma 4.4. For every a, b /∈ clp(∅), clp(a) ⊆ clp(b) or clp(b) ⊆ clp(a).

Proof. By Lemma 4.3, without loss of generality, assume that c < x defines
a co-countable subset of G, for every c /∈ clp(∅). Then x < c and c 6< x define
countable subsets of G.

If a < b, since x < b defines a countable set, we get that a ∈ clp(b), and
clp(a) ⊆ clp(b) follows by Transitivity. If a ≮ b, since a ≮ x defines a countable set,
we get b ∈ clp(a), and clp(b) ⊆ clp(a) follows by Transitivity. �

Proof of Theorem 1.1. Let (a, b) be a clp-free sequence over ∅. Since b /∈
clp(a), by Lemma 4.4, clp(a) ( clp(b) holds, so clp(a, b) = clp(b). By Lemma 4.2(iv)
choose g ∈ G such that b = ag. Since g ∈ {x ∈ G | ax = b}, and since this set is
countable by Corollary 4.2, we get that g ∈ clp(a, b) = clp(b), hence clp(g) ⊆ clp(b).
On the other hand, obviously b ∈ clp(a, g), and since b /∈ clp(a), we conclude that
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g /∈ clp(a). Hence, by Lemma 4.4, clp(a) ⊆ clp(g), and finally b ∈ clp(a, g) = clp(g).
Therefore, clp(b) = clp(g).

Since clp(a) ( clp(b) = clp(g) and conjugation is an automorphism of a pure
group, by Remark 2.3 (2) we have that clp(ag) ( clp(gg), i.e., clp(b) ( clp(g). A
contradiction. �
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