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SIGNED POLYOMINO TILINGS BY n-IN-LINE
POLYOMINOES AND GRÖBNER BASES

Manuela Muzika Dizdarević, Marinko Timotijević,
and Rade T. Živaljević

Abstract. Conway and Lagarias observed that a triangular region T (m) in a
hexagonal lattice admits a signed tiling by three-in-line polyominoes (tribones)
if and only if m ∈ {9d − 1, 9d}d∈N. We apply the theory of Gröbner bases over
integers to show that T (m) admits a signed tiling by n-in-line polyominoes
(n-bones) if and only if

m ∈ {dn2 − 1, dn2}d∈N.

Explicit description of the Gröbner basis allows us to calculate the ‘Gröbner
discrete volume’ of a lattice region by applying the division algorithm to its
‘Newton polynomial’. Among immediate consequences is a description of the
tile homology group for the n-in-line polyomino.

1. Introduction

An n-bone is by definition an n-in-line polyomino (polyhex) in a hexagonal
lattice. For example a 3-bone is the same as the tribone in the sense of [16]. One
initial objective is to determine when a triangular region T (m) in a hexagonal
lattice admits a signed tiling by n-bones.

By a theorem of Conway and Lagarias [6, Theorem 1.4.], T (m) admits a signed
tiling by 3-bones if and only if m = 9d or m = 9d − 1 for some integer d > 1, the
case m = 8 is exhibited in Figure 1. Our central result is Theorem 7.1, which claims
that T (m) admits a signed tiling by n-bones if and only if m = dn2 or m = dn2 − 1
for some integer d > 1.

The Gröbner basis approach to signed polyomino tilings was originally proposed
by Bodini and Nouvel [5], see also [11] for an application to tilings with symmetries.
The knowledge of the Gröbner basis (Theorem 5.1) offers a deeper insight into the
(signed) tiling problem and provides a powerful tool for analyzing general behavior
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Figure 1. A signed tiling of a triangular region by 3-bones.

and selected particular cases. It is well adopted to other methods of lattice geometry
and we illustrate this by examples involving Brion’s theorem (Example 8.2).

Computing the Gröbner basis of a tiling problem yields, as a byproduct, com-
plete information about the associated tile homology group [6, 14]. In general
computing homology classes by a ‘division algorithm’ may offer an interesting new
computational paradigm, which deserves further exploration.

2. Gröbner bases

The notion of a strong Gröbner base [1, 12] (called a D-Gröbner base in [4])
allows us to apply the Gröbner basis theory to polynomials with integer coefficients.
Here is a brief outline of some basic definitions and theorems with pointers to some
of the key references.

A term is a product t = cxα where c is the coefficient and xα = xα1

1 · · · xαk

k is the
associated monomial (power product). For a given polynomial f ∈ Z[x1, x2, . . . , xk]

the associated remainder on division by a Gröbner basis G is f
G

and f reduces to

zero f
G

−→ 0 if f
G

= 0. lm(f) and lc(f) are respectively the leading monomial and
the leading coefficient with respect to the chosen term order �. We write lcm(a, b)
and gcd(a, b) respectively for the least common multiple and the greatest common
divisor of a and b.

For other basic notions of Gröbner basis theory (over integers), such as S-
polynomial, standard representation etc., the reader is referred to [1, 4, 12] (see
also [7, 8, 15] for related results for coefficients in a field).

2.1. Gröbner bases over principal ideal domains. Let Λ = R[x1, . . . , xk]
be the ring of polynomials with coefficients in a principal ideal domain R. For a
given ideal I ⊂ Λ the associated strong Gröbner basis, called also the D bases in
[4], may be introduced as follows (see [1, p. 251] and [4, p. 455]).

Definition 2.1. A finite set G ⊂ I is a strong Gröbner basis of I (with respect
to the chosen term order �) if for each f ∈ I r {0} there exists g ∈ G such that the
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leading term of f is divisible by the leading term of g, lt(g) | lt(f), meaning that
lt(f) = t lt(g) for a term t.

The following theorem provides a useful criterion for testing whether a finite set
of polynomials is a Gröbner basis of the ideal generated by them, see [4, Chapter 10,
Corollary 10.12] and [13, Theorem 2.1.].

Theorem 2.1. Let G be a finite collection of nonzero polynomials which gen-
erate an ideal IG. Suppose that,

(1) For each pair g1, g2 ∈ G there exists an h ∈ G such that,

lm(h) | lcm(lm(g1), lm(g2)) and lc(h) | gcd(lc(g1), lc(g2))

(2) For each pair g1, g2 ∈ G the associated S-polynomial reduces to zero,

S(g1, g2)
G

−→ 0.

Then G is a strong Gröbner basis of IG.

2.2. Gröbner bases over Euclidean domains. The general theory is fur-
ther simplified if one works with Euclidean domains. Aside from standard references
[1, 4], a selfcontained account can be found in [12]. In the case of integers, one
usually chooses the linear ordering,

(2.1) · · · 0 < +1 < −1 < +2 < −2 < +3 < −3 < · · ·

which allows us to define unambiguously remainders, S-polynomials etc. For ex-
ample following (2.1) the reduction of 8 mod 5 is −2 rather than +3.
Caveat: We find it convenient in Section 6 to stick to positive remainders and
write that +3 is, rather than −2, the remainder of 8 on division by 5. In other
words we use the following term order for coefficients,

(2.2) · · · 0 < +1 < +2 < +3 < · · · < −1 < −2 < −3 < · · · .

Example 2.1. In agreement with (2.1) many standard computer algebra pack-
ages (including Wolfram Mathematica 9.0) would yield −x−y −1 as the remainder
of T (6) (Section 4) on division by GBI3. In Section 6 we would (following (2.2)) re-
duce this polynomial further by the element g3(3) = 3T (2) = 3(x+y+1) (Section 5)
and obtain the polynomial 2(x + y + 1).

3. From polyominoes to polynomials

Each polyomino P ⊂ Z
2 is associated to the corresponding Laurent–Newton

polynomial fP :=
∑

(p,q)∈P xpyq ∈ Z[x, y; x−1, y−1]. For example the shaded tri-

bone P in Figure 1 is associated to the trinomial x2y2 + x3y2 + x4y2. More gener-
ally if P is a (not necessarily finite) subset of Zd, then the associated ‘integer-point
transform’ [3, p. 60] is the formal power series fP :=

∑

α∈P xα ∈ Z[[x±1
1 , . . . , x±1

d ]].

From here on we tacitly assume that all polyominoes are subsets of N2 (or N
d

in the general case). As a consequence, the associated Laurent–Newton polynomial
has only monomials with nonnegative exponents, fP ∈ Z[x, y] (respectively fP ∈
Z[x1, . . . , xd]).
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Proposition 3.1. A polyomino P admits a signed tiling by translates of pro-
totiles P1, P2, . . . , Pk if and only if for a monomial xα = xα1

1 · · · xαn
n with a nonneg-

ative exponent α ∈ N
d, the polynomial xαfP is in the ideal generated by polynomials

fP1
, . . . , fPk

,

xαfP ∈ 〈fP1
, fP2

, . . . , fPk
〉.

Proof. Let J ⊂ Z[x±1
1 , . . . , x±1

d ] be the extension of the ideal

I = 〈fP1
, fP2

, . . . , fPk
〉 ⊂ Z[x1, . . . , xd]

in the ring of Laurent polynomials with coefficients in Z. P admits a signed tiling
by translates of prototiles P1, P2, . . . , Pk if and only if fP ∈ J . The proposition is
an immediate consequence of the relation

(3.1) J =
⋃

xα∈Nd

x−α〈fP1
, fP2

, . . . , fPk
〉.

Note that in union (3.1) is not changed if the exponents of monomials xα range in
a set T ⊂ N

d which is cofinal in N
d in the sense that for each α ∈ N

d there exists
a β ∈ T such that α 6 β. �

The following proposition is essentially a restatement of the definition of the
tile homology group, as introduced in [6] and [14, Definition 2.4.].

Proposition 3.2. Given a system P = {P1, P2, . . . , Pk} of prototiles, the as-
sociated tile homology group H(P) is isomorphic to the group Z[x±1

1 , . . . , x±1
d ]/J

where J is the ideal described in equation (3.1).

4. The n-bone ideal In

Let In = 〈b1(n), b2(n), b3(n)〉 ⊂ Z[x, y] be the ideal generated by polynomials,

b1(n) = 1+x+· · ·+xn−1, b2(n) = 1+y+· · ·+yn−1, b3(n) = xn−1+xn−2y+· · ·+yn−1

These polynomials correspond to three types of n-in-line polyominoes in a hexag-
onal lattice.

We denote by T (m) the ‘integer-point transform’ [3, p. 60] (Laurent–Newton
polynomial) of a triangular region with the side-length equal to m,

T (m) =
∑

06i,j6m−1
i+j6m−1

xiyj .

5. Gröbner basis for the n-bone ideal

Let GBIn = {g1(n), g2(n), g3(n), g4(n)} be the following set of polynomials,

g1(n) = b1(n), g2(n) = b2(n), g3(n) = nT (n − 1), g4(n) = b3(n) − b1(n) − b2(n).

Lemma 5.1. The leading terms of polynomials g1, g2, g3, g4 with respect to the
lexicographical term order are the following,

(5.1) lt(g1(n)) = xn−1, lt(g2(n)) = yn−1, lt(g3(n)) = nxn−2, lt(g4(n)) = xn−2y.
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The relations listed in Proposition 5.1 will be needed in the sequel. The first
equality is trivial, while the rest follow from an iterated application of the identity
ad − bd = ad−1 + ad−2b + · · · + bd−1 for suitable a and b.

Proposition 5.1. We have

T (n) = T (n − 1) + b3(n),

(x − 1)T (n − 1) = b3(n) − b2(n),

(x − y)T (n − 1) = b1(n) − b2(n),

(y − 1)g1(n) + (y − x)g4(n) = (x − 1)g2(n).

Proposition 5.2. The set GBIn is a basis of the ideal In.

Proof. Let 〈GBIn〉 be the ideal generated by GBIn. It is obvious that

In = 〈g1(n), g2(n), g4(n)〉 ⊆ 〈GBIn〉

so it is sufficient to show that g3(n) ∈ In. As a consequence of the second identity
in Proposition 5.1, we have

(x − 1)T (n − 1), (x2 − 1)T (n − 1), . . . , (xn−1 − 1)T (n − 1) ∈ In

By suming these polynomials, we obtain b1(n)T (n − 1) − nT (n − 1) ∈ In and
g3 = nT (n − 1) ∈ In, which is the desired conclusion. �

Theorem 5.1. The set of polynomials GBIn is a strong Gröbner basis (over
the base ring Z) of the ideal In, n > 2, with respect to lexicographic term order.

Proof. The case n = 2 is elementary, so we assume that n > 3. By Propo-
sition 5.2, the set GBIn is a basis of the ideal In. In order to show that this is
indeed a strong Gröbner basis of the ideal In ⊂ Z[x, y], we apply the Z-version of
the Buchberger criterion.

Following [12, Theorem 2], it is sufficient to show that for every pair of poly-
nomials gi(n), gj(n) ∈ GBIn, their S-polynomial reduces to 0 by the set GBIn.
Equivalently, one can use Theorem 2.1 by observing that condition (1) is (in light
of Lemma 5.1) readily satisfied.

Since the leading monomials of the polynomials g1(n), g2(n) and g2(n), g3(n)
are pairwise coprime (Lemma 5.1) and (at least) one of the leading coefficients is
equal to 1, we conclude from [12, Theorem 3] that

S(g1(n), g2(n))
GBIn

−−−−−−→ 0 and S(g2(n), g3(n))
GBIn

−−−−−−→ 0.

Let us consider the polynomials g1(n) and g4(n). By Lemma 5.1, we have

S(g1(n), g4(n)) = yg1(n) − xg4(n).

Since

lt(S(g1(n), g4(n))) = lt(xn−1 + xn−2y − xn−2 + · · · ) = xn−1

we can reduce this polynomial by g1(n). The reduction leads to the polynomial

S(g1(n), g4(n)) − g1(n) = yg1(n) − xg4(n) − g1(n)
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which has the leading term

lt(S(g1(n), g4(n)) − g1(n)) = lt(−xn−2y2 + xn−2y − · · · ) = −xn−2y2

and which, in light of Lemma 5.1, can be reduced by g4(n). This reduction leads
to the polynomial

S(g1(n), g4(n)) − g1(n) + yg4(n) = (y − 1)g1(n) + (y − x)g4(n).

By using the last equality in Proposition 5.1, we finally get a strong representation
of S(g1(n), g4(n)) by the set GBIn,

S(g1(n), g4(n)) = g1(n) − yg4(n) + (x − 1)g2(n).

The reducibility of polynomials S(g1(n), g3(n)) and S(g3(n), g4(n)) can be es-
tablished in a similar manner.

By Lemma 5.1, S(g1(n), g3(n))= ng1(n)−xg3(n) has the leading term −nxn−2y.
Consequently it can be reduced by the polynomial g4(n) and we focus our attention
to the polynomial, ng1(n) − xg3(n) + ng4(n). It is reducible to zero since, in light
of the second equality in Proposition 5.1, it is equal to −ng3(n). In particular it
has the strong representation in terms of the basis GBIn,

S(g1(n), g3(n)) = −ng4(n) − g3(n).

A similar calculation shows that S(g3(n), g4(n)) = g3(n) + ng2(n) is a strong rep-
resentation of S(g3(n), g4(n)).

Together with the case of the S-polynomial S(g2(n), g4(n)), which is separately
treated in Lemma 5.2, this concludes the proof. �

Figure 2. Reduction of S(g2(n), g4(n)).

Lemma 5.2. The S-polynomial S(g2(n), g4(n)) can be reduced to 0 by GBIn.
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Proof. By Lemma 5.1, we have S(g2(n), g4(n)) = xn−2g2(n) − yn−2g4(n).
The terms xn−2y and −xn−2 are the leading two terms of the polynomial g4(n)
and they are the only terms in the lexicographically leading column {xn−2yi}i>0

(Figure 2). This observation indicates that one should begin with the reduction of
the S-polynomial S(g2(n), xn−2y −xn−2) = xn−2S(b2(n), y −1). From the identity,

(5.2) b2(n) − n =

n−1
∑

j=0

(yj − 1) = (y − 1)B2(n)

where B2(n) = b2(n − 1) + b2(n − 2) + · · · + b2(1), we observe that S(g2(n), g4(n))
can be reduced to the polynomial xn−2g2(n) − B2(n)g4, which has the monomial
nxn−2 as the leading term. This is precisely the leading term of the polynomial
g3(n) = nT (n − 1), so we turn our attention to the polynomial

(5.3) xn−2g2(n) − B2(n)g4(n) − g3(n).

Since by definition b3(n) − b1(n) =
∑n−1

k=1 xn−k−1(yk − 1), we observe (in light of
(5.2)) that,

B2(n)[b3(n)−b1(n)] =

[ n−1
∑

k=1

xn−k−1
( k−1

∑

j=0

yj

)]

[b2(n)−n] = T (n−1)b2(n)−nT (n−1).

It follows that B2(n)g4 + g3(n) = [T (n − 1) − B2(n)]b2(n) which implies that the
polynomial (5.3) can be reduced by g2(n) = b2(n) with zero remainder. �

6. Evaluation of remainders

Our objective in this section is to calculate the remainder T (n)
GBIn

of T (n) on
division by the Gröbner basis GBIn.

Lemma 6.1. Suppose that

(6.1) p(x) = q(x)(xn − 1) + r(x)

is the equality arising from the division of a polynomial p(x) ∈ Z[x] by xn − 1

where q(x) is the quotient and r(x) the remainder. If P (x, y) = p(x)−p(y)
x−y

and

R(x, y) = r(x)−r(y)
x−y

, then

P (x, y)
GBIn

= R(x, y)
GBIn

.

Moreover, if R(x, y) cannot be further reduced by the Gröbner basis GBIn, then the
remainder of P (x, y) on division by GBIn is,

P (x, y)
GBIn

= R(x, y)
GBIn

= R(x, y) =
r(x) − r(y)

x − y
.

Proof. From (6.1) we deduce the equality

p(x) − p(y)

x − y
=

q(x) − q(y)

x − y
(xn − 1) + q(y)

xn − yn

x − y
+

r(x) − r(y)

x − y
.
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Both xn −1 = (x−1)b1(n) and xn
−yn

x−y
= b3(n) are in the ideal In, so P (x, y)

GBIn

=

R(x, y)
GBIn

. The second part of the lemma is an immediate consequence. �

Lemma 6.2. Let b3(m) = xm−1 +xm−2y+· · ·+ym−1 and assume by convention
that b3(0) = 0. Then

(6.2) b3(m)
GBIn

= b3(rm)

where rm = rn
m = m − ⌊m/n⌋n is the remainder of the division of m by n.

Proof. Observe that b3(m) = P (x, y) = p(x)−p(y)
x−y

for p(x) = xm. For this

choice of p(x), the equation corresponding to (6.1) is

xm = (xm−n + xm−2n + · · · + xrm)(xn − 1) + xrm .

Since lt(R(x, y)) = lt(b3(rm)) = xrm−1 is not divisible by any of the leading terms

of the Gröbner basis GBIn listed in (5.1), we note that b3(rm)
GBIn

= b3(rm) and
the result follows from the second half of Lemma 6.1. �

Since T (m) = T (m − 1) + b3(m), Lemma 6.2 may be used for an inductive

evaluation of T (m)
GBIn

. In the following proposition we write p ≡In
q (congruence

mod In) as an abbreviation for p − q ∈ In. As before r = rm = rn
m = m − ⌊m/n⌋n.

Remark 6.1. Before reading the proof of Proposition 6.1, it is quite instructive
to check relation (6.5) for some small values of n and m.

Proposition 6.1. For each integer n > 1 the sequence of polynomials αm =

αn
m = αn

m(x, y) = T (m)
GBIn

is periodic with the period n2. For 1 6 m 6 n2 − 2,
T (m) =

∑m

k=1 b3(k) and

(6.3) T (m)
GBIN

=
m

∑

k=1

b3(rn
k ) 6= 0.

For m ∈ {n2 − 1, n2},

(6.4) T (m)
GBIN

= 0.

Moreover if m = pn + q where 0 6 p 6 n − 1 and 1 6 q 6 n, then

(6.5) T (m)
GBIN

≡In
pT (n − 1) + T (q).

Proof. To establish the periodicity of the sequence αm = αn
m = T (m)

GBIn

,
it is sufficient to establish equalities (6.3) and (6.4). Indeed, assume that (6.3) and
(6.4) are true and that αm is periodic with the period n2 in the interval [1, jn2] for
some integer j > 1. Note that for each d ∈ [jn2 + 1, (j + 1)n2],

αd = T (d)
GBIn

= A + B
GBIn
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where A = T (jn2) and B =
∑d

k=jn2+1 b3(k). Since by the inductive hypothesis

A
GBIn

= 0, we note that

(6.6) αd = B
GBIn

≡In

d
∑

k=jn2+1

b3(rk) ≡In

d′

∑

k=1

b3(rk)

where d′ = d − ⌊d/n2⌋n2. Following (6.3), the right-hand sum in (6.6) is a reduced

polynomial, hence αd =
∑d′

k=1 b3(rk) which proves that the sequence αm repeats
the same pattern in the interval [jn2 + 1, (j + 1)n2].

Since T (m) =
∑m

k=1 b3(k), in light of the equality (6.2), we note that

αm = T (m)
GBIn

=

m
∑

k=1

b3(rn
k )

GBIn

.

Equality (6.3) claims more than that, it says that the right-hand side of (6.3) is
reduced with respect to the Gröbner basis GBIn. Indeed, for m 6 n2 − 2, if Cxpyq

is the leading term of
∑m

k=1 b3(rn
k ), then either p < n − 2 or C 6 n − 1.

A similar analysis shows that T (n2 − 1) ≡In
nT (n − 1) = g3(n) ∈ In. This

together with the fact b3(n2) ∈ In establishes equality (6.4). Finally (6.5) is just a
restatement of (6.3) and (6.4) suitable for applications. �

7. Signed tilings by n-bones

Theorem 7.1. A triangular region T (m) in a hexagonal lattice admits a signed
tiling by n-in-line polyominoes (n-bones) if and only if

(7.1) m ≡ −1 (mod n2) or m ≡ 0 (mod n2).

Proof. By Proposition 3.1, it is sufficient to check if at least one of the poly-
nomials,

T (m), xnynT (m), x2ny2nT (m), x3ny3nT (m), . . .

is in the ideal In generated by n-bones. Since xknykn − 1 ∈ In for each k, the
triangular region T (m) admits a signed tiling by n-in-line polyominoes if and only
if T (m) ∈ In.

By Proposition 6.1 this happens if and only if the condition (7.1) is satisfied.
This observation completes the proof of the theorem. �

8. Tile homology groups and Brion’s theorem

For tile homology groups the reader is referred to [6] and [14] (see also Propo-
sition 3.2). In this section we show how one can read off the tile homology group
from the Gröbner basis. We begin with the definition of ‘standard’ d-dimensional
polyominoes.

Definition 8.1. We say that a polyomino P = {P1, . . . , Pk} in N
d is standard

if,

(8.1) Z[x±1
1 , . . . , x±1

d ] = Z[x1, . . . , xd] + JP

where J = JP is the ideal described in (3.1).
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Example 8.1. Condition (8.1) says that each Laurent monomial xα is con-
gruent modulo JP to a polynomial p ∈ Z[x1, . . . , xd]. In particular the n-bone
polyomino is standard since each xα can be (mod JP) replaced by negative sums
of monomials xβ where β are positioned to the right of α (alternatively above α).

Proposition 8.1. The tile homology group H(P) (Proposition 3.2) of a stan-
dard polyomino (Definition 8.1) with prototiles P and the associated ideal IP ⊂
Z[x1, . . . , xd] = Z[x] can be computed as the direct limit,

(8.2) lim
−→

Aα
∼= H(P) ∼= lim

−→
Bα

of two isomorphic direct systems A = (Aα; aα,β) and A = (Bα; bα,β) over the
directed poset (Nd,6) where

(a) Aα = Z[x]/(Z[x] ∩ x−αI) and aα,β is induced by the inclusion map

(8.3) Z[x] ∩ x−αI →֒ Z[x] ∩ x−βI

(b) Bα = xα
Z[x]/(xα

Z[x] ∩ I) and bα,β is the multiplication by xβ−α.

Proof. By Proposition 3.2, there is an isomorphism H(P) ∼= Z[x±1]/JP where
JP =

⋃

α∈Nd x−αIP and Z[x±1] = Z[x±1
1 , . . . , x±1

d ]. Since P is standard (Defini-
tion 8.1),

H(P) ∼= (Z[x] + JP)/JP = Z[x]/(Z[x] ∩ JP)

and the first isomorphism in (8.2) follows from the observation that Z[x] ∩ JP =
⋃

α∈Nd (Z[x] ∩ x−αIP ). The commutative diagram

Aα

aα,β

−−−−→ Aβ

×xα





y





y×xβ

Bα −−−−→
bα,β

Bβ

establishes the second isomorphism in (8.2). �

It is clear that the direct system described in Proposition 8.1 can be in principle
calculated if a Gröbner basis of the ideal I is known. In favorable cases, such as
the case of the n-in-line polyomino, all connecting maps are isomorphisms.

Proposition 8.2. The tile homology group of the n-in-line polyomino is iso-
morphic to the group,

(8.4) Z
(n−1)(n−2) ⊕ Z/nZ.

Proof. By Proposition 8.1, the tile homology group H(P) of the n-in-line
polyomino can be computed as the direct limit of the direct system A = (Aα; aα,β).
We want to show that H(P) ∼= A0 = Z[x, y]/In, which follows from the observation
that the inclusion map (8.3) is an isomorphism for each pair α 6 β in N

2. This is
in turn reduced to the claim that

a0,αk
: Z[x, y] ∩ In = In →֒ Z[x, y] ∩ x−αk In
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is an epimorphism where αk = k(n, n) ∈ N
2. Let p ∈ Z[x, y] ∩ x−αk In. Then

xαk · p = q for some q ∈ In, which implies that p = (1 − xαk )p + q ∈ In.
The formula (8.4) is a direct consequence of Lemma 5.1 in light of the fact

that Z[x, y]/In is generated by monomials, which are reduced with respect to the
Gröbner basis. �

Knowledge of a short Gröbner basis provides powerful experimental tool, which
is particularly well adopted to methods of lattice geometry. Theorem 7.1 was dis-
covered by experiments which involved Brion’s theorem. Indeed, Brion’s theorem
and its relatives [2, 3] provide a short rational form for the integer-point trans-
form, which is an ideal input for a division algorithm. The following example
from Mathematica 9.0 exhibits the short rational form for the Newton polynomial
(integer-point transform) of the triangular region T (n).

Example 8.2. T [n_] := Together
[

1
(1−x)∗(1−y) + x∧(n+1)

(x−1)∗(x−y) + y∧(n+1)
(y−1)∗(y−x)

]

9. Gröbner discrete volume

Let Q be a convex polytope with vertices in N
d and let fQ be its Newton

polynomial (integer-point transform). The usual ‘discrete volume’ of Q, defined in
[2, 3] as the number of integer points inside Q, can be evaluated as the remainder of
fQ on division by the ideal I = 〈x1 −1, x2 −1, . . . , xd −1〉. Let J ⊂ Z[x1, . . . , xd] be
an ideal, say the ideal associated to a set R of prototiles in N

d. Let G = GJ be the
Gröbner basis of J with respect to some term order. It may be tempting to ask (at
least for some carefully chosen ideals J) what is the geometric and combinatorial

significance of the remainder f
G

Q of the integer-point transform fQ on division by
the Gröbner basis G.

Definition 9.1. The polynomial valued function Q 7→ f
G

Q is referred to as
Gröbner or G-discrete volume of Q with respect to the Gröbner basis G,

Definition 9.1 may look somewhat artificial at first sight. Note however that the
basic geometric idea of a volume of a geometric object Q involves approximation,
or rather exhaustion (tiling!) of Q by a set of prototiles R. The fact that the
G-volume is a polynomial valued (rather than integer valued) function reflects the
idea that there may be more than one object in R used for ‘measurements’ of Q.

As in the case of integer-point enumeration in polyhedra, Brion’s theorem is a
powerful tool for calculation of the G-discrete volume. It may be expected that some
aspects of the Ehrhart theory can be extended in an interesting way to Gröbner
volumes, in particular the results from Section 6 can be interpreted as the evaluation
of the GBIn-discrete volume of the triangular region T (m).
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