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ANNIHILATOR TOPOLOGICAL ALGEBRAS (*)

Marina Haralampidou

Abstract. In this paper we study annihilator topological algebras, not necessarily

Banach or even locally convex ones, along with their structure theory. We also refer

to (D)-algebras a convenient variant for Q-algebras. In fact, for semisimple annihilator

algebras, (D) and Q′-algebras coincide. Topological algebras with proper closed ideals

having non zero annihilators are also considered.

0 – Introduction

Annihilator algebras have been introduced by F.F. Bonsall and A.W. Goldie
into the framework of Banach algebra theory. Later M.A. Năımark extended the
previous context by considering semisimple annihilator topological Q-algebras
with continuous quasi-inversion. In both cases a structure theory has been estab-
lished. Furthermore, topological annihilator algebras in the sense of this paper
have been also studied in the past, as e.g. in [5], [17], [19] (although continuous
multiplication is rather understood therein). In this paper we study annihilator
topological algebras, not necessarily Banach or even locally convex ones, along
with their structure theory.

In a semisimple annihilator Q′-algebra we prove the existence of minimal ide-
als, hence, equivalently, of non trivial primitive idempotents (minimal elements;
cf. Theorems 3.8 and 3.9). These ideals contribute to an identification of the
structure of the algebra (cf. Theorem 4.3). In particular, one characterizes anni-
hilator Q′-algebras as semisimple, through the density of the socle. Furthermore,
one has another structural information through the minimal closed 2-sided ide-
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als. In the latter case these ideals are semisimple topologically simple algebras
being also annihilator ones, while they are dual algebras if this is the case for the
given algebra (Theorem 4.12). We also single out algebras having the property
that every ideal of the algebra contains a minimal one ((D)-algebras, cf. Defini-
tion 3.1). For semisimple annihilator algebras the notions (D) and Q′ coincide
(Theorem 3.6). Finally, we consider topological algebras with proper closed ideals
having non zero annihilators (cf. Definition 2.4 and Section 4; see also [9]).

1 – Notation and preliminaries

Let E be a C-algebra. If (∅ 6=)S ⊆ E, A`(S) (resp. Ar(S)) denotes the left
(right) annihilator of S; viz.A`(S) = {x ∈ E : xS = {0}}, resp.Ar(S) = {x ∈ E :
Sx = {0}}. A`(S) (resp. Ar(S)) is a left (resp. right) ideal of E, which
is closed, if E is a topological algebra. L` (Lr, L(E) ≡ L) denotes the set of
all closed left (right, 2-sided) ideals in a topological algebra E. Besides, M`(E)
(resp. Mr(E)) stands for the set of all maximal closed regular left (right) ideals
of E, while m`(E) denotes that of all minimal closed left ideals. We write m`(E)
(resp. mr(E)) for the set of all minimal left (right) ideals of an algebra E. R(E)
denotes the Jacobson radical of an algebra E. If R(E) = (0), then E is said to
be semisimple. Besides, Id(E) denotes the set of all non zero idempotent ele-
ments of an algebra E, i.e., the set of all x ∈ E with 0 6= x = x2. A minimal
element of an algebra E, is a non zero idempotent, such that xEx is a division
algebra. A non zero element of an algebra E is called primitive if it can not be
expressed as the sum of two orthogonal idempotents viz. of some y, z ∈ Id(E)
with yz = zy = 0. We denote by P(E) the set of primitive elements of E, while
IP(E) that of primitive idempotents.

Definition 1.1. A topological algebra E [14] is called a Q′
` (resp. Q′

r)-
algebra, if every maximal regular left (resp. right) ideal is closed. E is said to be
a Q′-algebra, if it is both a Q′

` and a Q′
r-algebra.

We note that a Q′-ring is not in general, a Q-ring (see e.g. [18]). On the
other hand, every Q`-algebra (its group of left quasi-regular elements is open) is
a Q′

`-algebra (see also [14: p. 67, Theorem 6.1]).
The following observation for a Q-algebra is due to A. Mallios.

Lemma 1.2. Let E be a Q′
`-algebra and let I be a proper regular left ideal.

Then I is still a proper (regular left) ideal.

Proof: I is contained in a maximal regular left ideal, say M (Krull). By
hypothesis, M is closed, hence I ⊆M = M .
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The above lemma holds for right ideals, as well. The results in the remainder
of the paper stated for left (right) ideals remain true, by interchanging the notions
left and right.

Now, we give a characterization of Q′
`-algebras.

Proposition 1.3. A topological algebra E is a Q′
`-algebra, if and only, if it

has no proper dense regular left ideals.

Proof: By Lemma 1.2 we only have to prove that the condition is sufficient.
So if M is a maximal regular left ideal of E, then M ⊆M 6= E so that M = M .

2 – Annihilator and torsion algebras

An algebra E is called left (resp. right) preannihilator, if A`(E) = (0) (resp.
Ar(E) = (0)). If A`(E) = Ar(E) = (0), E is called preannihilator.

In particular, a topological algebra E is said to be an annihilator algebra, if
it is preannihilator with Ar(I) 6= (0) for every I ∈ L`, I 6= E, and A`(J) 6= (0)
for every J ∈ Lr, J 6= E.

An algebra without nilpotent elements and a fortiori without divisors of zero
is preannihilator.

A topological algebra is called topologically semiprime, when the following
holds:

(2.1) If I ∈ L satisfies I2 = (0), then I = (0) .

Concerning the previous notion we actually have the following result.

Theorem 2.1. In every topological algebra E the condition (2.1) holds
equivalently in L` (or in Lr).

The proof of the theorem is derived from the following lemmas.

Lemma 2.2. Let E be a topologically semiprime algebra and S a non empty
subset of E. Moreover, let I be the closed left ideal generated by S+A`(S). Then
I is a left preannihilator algebra.

Proof: By definition of I, A`(S) ⊆ I. Hence A`(I) ⊆ A`(A`(S)), i.e.,
A`(I)A`(S) = (0) and in particular, A`(I)

2 = (0). Thus, since A`(I) ∈ L,
A`(I) = (0).
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The preceding lemma and the fact that an algebra E is left preannihilator
if and only if there exists (∅ 6=)S ⊆ E, such that A`(S) = (0), yield now the
following.

Lemma 2.3. Every topologically semiprime algebra is preannihilator.

A sort of inverse of Lemma 2.3 is given in [10] which extends in our case a result
of W. Ambrose [2: p. 372]. In fact, in a preannihilator Hausdorff locally convex
H∗-algebra which is also orthogonally complemented there are no nilpotent ideals
(cf. [10: Theorem 1.2, Lemma 3.13 and comments following it]). Such an algebra
is, of course, topologically semiprime.

Proof of Theorem 2.1: It is enough to show that, if (2.1) holds in L, then
also holds in L`. In fact, let I ∈ L` with I2 = (0). Consider the left ideal IE,
being a right ideal, as well. Thus IE ∈ L. On the other hand, IE IE ⊆ I2E = (0)
(see also [14: p. 6, Lemma 1.5]). Hence IE = (0) from which one gets I ⊆ A`(E),
that is (Lemma 2.3) I = (0).

We next consider some classes of topological algebras which exhibit a certain
kind of “torsion”, in the sense that they contain proper closed ideals (left or right)
with non zero left or right annihilators. Among them we single out those given
by the following.

Definition 2.4. A topological algebra E is called an (M`)-algebra if

(2.2) A`(I) = (0), with I ∈ L`, implies I = E .

A topological algebra E is called an (M′
`) (resp. (M

′
r))-algebra if

(2.3) A`(I) = (0), with I ∈ Lr, implies I = E ,

respectively

(2.4) Ar(I) = (0), with I ∈ L`, implies I = E .

The proof of the next lemma is obtained by applying a standard argument;
cf. e.g. [16: p. 99, lemmas 2.8.10, 2.8.11].

Lemma 2.5. Let E be a topologically semiprime algebra. Then I ∩A`(I) =
(0) and J ∩ Ar(J) = (0) for every I ∈ L`, J ∈ Lr and A`(K) = Ar(K) for every
K ∈ L.
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Now, suppose moreover, that E satisfies either one of the following two equiv-
alent conditions

A`(J) = (0), with J ∈ L, then J = E ,(2.5)

Ar(J) = (0), with J ∈ L, then J = E .(2.6)

Then for every I ∈ L, one gets E = I ⊕A`(I) = I ⊕Ar(I), moreover, L`(I) ⊆
L`(E) and Lr(I) ⊆ Lr(E).

The previous lemma holds also for topological algebras without nilpotent ele-
ments. On the other hand, (2.5) and (2.6) are fulfilled, in case E is an annihilator
algebra.

Lemma 2.6. Let E be a right preannihilator (M′
r)Q

′
`-algebra. Moreover,

let x ∈ Id(E), such that the closed right ideal xE is minimal closed. Then the
regular left ideal E(1− x) is maximal.

Proof: Since x ∈ Id(E), E(1− x) is proper. Let E(1− x) ⊆M ⊂ E, (“⊂”
means proper subset), for some (regular) left ideal M of E. Then, since E is a
right preannihilator algebra, Ar(M) ⊆ xE. If Ar(M) = (0), then Ar(M) = (0)
and thus M = E, which is a contradiction (cf. Proposition 1.3). Therefore,
Ar(M) = xE and M ⊆ A`(Ar(M)) = E(1 − x), which implies M = E(1 − x)
and this completes the proof.

Now, a topological algebra E is called dual, if

A`(Ar(I)) = I for every I ∈ L` ,(2.7)

and

Ar(A`(J)) = J for every J ∈ Lr .(2.8)

If (2.7) (resp. (2.8)) holds, then E is called a left (resp. right) dual algebra. Every
dual algebra is an annihilator algebra (see also [15: p. 321]). The converse is not,
in general, true (see e.g. [4], [8] and [12]). There are, however, some special cases
for which the previous two classes coincide (see e.g. [1], [7], [9] and [15]).

3 – (D)-algebras and minimal ideals

Many of our later results are based on the following notion.

Definition 3.1. An algebra E is said to be a (D`) (resp. (Dr))-algebra, if
the following holds:
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(D`) (resp. (Dr))
Every left (right) ideal contains a minimal
left (right) ideal.

A (D`) and (Dr)-algebra is called a (D)-algebra.

Concerning the following results see also [15: p. 322, II].

Lemma 3.2. Let E be a right preannihilator (M′
r)Q

′
`-algebra. Moreover, let

x0 be a left quasi-singular element of E. Then, there exists an element 0 6= z ∈ E,
such that z = x0z.

Proof: By assumption for x0, I ≡ E(1− x0) is proper, with x0 /∈ I. Besides
(Lemma 1.2) I is a (proper closed) regular left ideal of E. Therefore Ar(I) 6= (0),
thus there is 0 6= z ∈ Ar(E(1 − x0)), such that (x − xx0)z = 0 for every x ∈ E.
Hence, z = x0z, since E is right preannihilator.

Lemma 3.3. Let E be a left preannihilator (topological) algebra and M a
maximal (closed) right ideal of E. Moreover, let 0 6= z ∈ A`(M). Then

(3.1) M = Ar((z)`) (resp. M = Ar((z)`)) ,

where (z)` (resp. (z)`) is the left (resp. closed left) ideal of E generated by z.

Proof: Since (z)` ⊆ A`(M), M ⊆ Ar((z)`). Besides, Ar((z)`) 6= E, oth-
erwise (z)`E = (0). Thus, since E is left preannihilator, z = 0, which is a
contradiction. Therefore, M = Ar((z)`). In a similar way we get M = Ar((z)`).

The following result is given in [7: p. 155, Theorem 1] for annihilator Banach
algebras and in [15: p. 322, Theorem 1 and p. 323, Corollary 1] for annihila-
tor Waelbroeck algebras (i.e. Q-algebras with a continuous quasi-inversion [14]).
However, the gist of the proof in the latter case is the Q′-property (see Defini-
tion 1.1). So we have.

Theorem 3.4. Let E be an annihilator Q′-algebra. Moreover, let M be a
maximal closed right ideal of E, such that

(3.2) A`(M) ∩R(E) = (0) .

Then M = (1− x)E with x ∈ Id(E) ∩ A`(M).

Moreover, M is a maximal right ideal of E and the (closed) left ideal A`(M)
is minimal and thus minimal closed. In particular, x in (1 − x)E is primitive
(idempotent).

Proof: The first part of the assertion follows from the above comments.
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Let now I be a proper right ideal of E with M ⊆ I. Then M = M ⊆ I 6= E
(see also Lemma 1.2). Thus M = I = I, i.e., M is a maximal (regular) right
ideal. Now A`(M) = Ex. Besides, xE is minimal (see for instance [3: p. 221,
Proposition 8.9 and p. 220, Property 8.6] and/or [11: p. 117, Theorem 3.9])
and therefore minimal closed. Hence (Lemma 2.6) E(1 − x) is maximal and
thus Ex is minimal. Now, if x /∈ P(E), then x = y + z with y, z ∈ Id(E)
and yz = zy = 0. Consider the left ideal Ez. If w ∈ Ey then w = wy and
thus wz = wyz = 0. Therefore, w = wx ∈ Ex, i.e., Ey ⊆ Ex. Besides,
Ey 6= Ex, otherwise Exz = Eyz and hence xz = 0. Therefore yz + z = 0, that
is a contradiction. Thus (0) 6= Ey ⊂ Ex in contradiction with what we stated
above.

The conclusion of Theorem 3.4 is still in force, when (3.2) is replaced by
A`(M) 6⊆ R(E) (cf. also [6: p. 161, Theorem 3]). In this connection we remark
that the last relation follows from (3.2), since E is an annihilator algebra so that
A`(M) 6= (0).

Corollary 3.5. In every annihilator Q′-algebra E a maximal right ideal
that satisfies (3.2) (take, for instance, E semisimple) is regular if and only if it is
closed.

Proof: Supposing simply that the given algebra is Q′, the condition is,
obviously, necessary. It is also sufficient by Theorem 3.4.

We come now to the main result of this section.

Theorem 3.6. Let E be a semisimple topological algebra. Consider the
assertions:

1) E is a (D)-algebra;

2) E is a Q′-algebra.

Then 1)⇒2). The above two assertions are equivalent if E is an annihilator
algebra.

Proof: 1)⇒2): Let M be a maximal left ideal of E. Consider the right
ideal Ar(M). By hypothesis, there exists a minimal right ideal I, such that
I ⊆ Ar(M). But I = xE, with x minimal and x ∈ IP(E) (see for instance
[15: p. 326, III], where just semisimplicity of the algebra suffices, as well as
[16: p. 45, Lemma 2.1.5]). Now, M ⊆ A`(Ar(M)) ⊆ A`(xE) and, since
x ∈ Id(E), A`(xE) = E(1 − x) 6= E. Thus M = E(1 − x) that is closed; i.e.,
E is a (Q′

`)-algebra. Likewise, we prove that E is a (Q′
r)-algebra as well.
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2)⇒1): Let I 6= (0) be a left ideal of E. If I is minimal, there is nothing
to prove. So assume that I is not minimal and does not contain minimal left
ideals. By semisimplicity and Theorem 3.4 there is a maximal (closed) regular
right idealM , such thatM = (1−x)E with x ∈ IP(E). Since E is preannihilator
and x ∈ Id(E), A`(M) = Ex which is minimal (ibid.). Thus, for z ∈ I, Exz
is either minimal or (0) (see, for instance, [6: p. 155, Lemma 7]). The first case
yields Exz ⊆ I, that is a contradiction. Thus Exz = (0) for every z ∈ I. Hence
I ⊆ Ar(Ex) = M . That is I is contained in every maximal (closed) regular
right ideal of E. Thus (see, for instance [15: p. 163, III′] and/or [16: p. 55,
Theorem 2.3.2]) I ⊆ R(E) which is a contradiction. (For another proof based on
structure theory see comments following Theorem 4.3).

By the previous proof we get that: in a semisimple topological (D)-algebra
every maximal (left) ideal is regular.

Corollary 3.7. Let E be a topologically semiprime algebra and I a minimal
left ideal of E. Then I = Ex with x minimal primitive idempotent. Therefore,
if E is, moreover, a (D`)-algebra, then IP(E) 6= ∅.

Proof: Claim that I2 6= (0). Otherwise, by hypothesis, and since I
2
=

I I ⊆ I2 (cf. [14: p. 6, Lemma 1.5]), I = (0) and a fortiori I = (0), that is a
contradiction, since I is minimal. Now I2 6= (0) implies I2 6= (0). Otherwise we
get a contradiction. Thus, by I2 6= (0) we have I = Ex, with x minimal and
x ∈ IP(E) (cf. [15: p. 326, III] and [16: p. 45, Lemma 2.1.5]) and this completes
the proof.

We state the following immediate consequence of Theorem 3.6 and Corol-
lary 3.7.

Theorem 3.8. Every semisimple annihilator Q-(topological) algebra E (but
Q′ suffices, as well) “has enough minimal ideals” (viz. it is a (D)-algebra). More-
over, each one of the latter is of the form Ex, with x a minimal primitive idem-
potent element in E.

The following result extends [15: p. 326, V, and p. 327, VI].

Theorem 3.9. Let E be a topological algebra and x ∈ Id(E). Consider the
assertions:

1) The (closed) left ideal Ex is minimal (thus minimal closed).

2) x ∈ P(E).
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Then 1)⇒2). The above assertions are equivalent in case E is a topologically
semiprime (D`)-algebra.

Proof: 1)⇒2): Cf. the relevant argument in the proof of Theorem 3.4.

Now, if (0) 6= J ⊂ Ex for some left ideal J of E, then by assumption, there is
a minimal left ideal I, such that (0) 6= I ⊆ J . Thus (0) 6= I ⊂ Ex with I2 6= (0).
Hence I = Ey with y ∈ Id(E) (see Corollary 3.7) and therefore (0) 6= Ey ⊂ Ex
with y = y2 = yx. Consider the element z = xy. Then z = xyx and zx = z = xz.
On the other hand, z2 = zxy = z and yz = yxy = y. Thus z ∈ Id(E). Moreover,
x − z ∈ Id(E). For, if x = z, Ex = Ez ⊂ Ex which is a contradiction. Thus
x− z 6= 0. Furthermore, (x− z)2 = x− z and z(x− z) = (x− z)z. The previous
argument yields x /∈ P(E) which is a contradiction. Thus 2)⇒1).

If E is semiprime and x minimal, then Ex and xE are minimal left resp.
right ideals of E. See for instance [16: p. 46, Corollary 2.1.9]. In this regard, in
view of the proof of Corollary 3.7 the last assertion is true for E a topologically
semiprime algebra.

Now we give conditions such that the notions minimal element and primitive
idempotent coincide.

Corollary 3.10. Let E be a topologically semiprime algebra and x ∈ E.
Consider the statements:

1) x is minimal;

2) x ∈ IP(E).

Then 1)⇒2). The above assertions are equivalent, if E is a (D`) (or a (Dr))-
algebra.

Proof: 1)⇒2): Since x is minimal, Ex and xE are minimal ideals. Hence
x ∈ IP(E) (see Theorem 3.9).

If x ∈ IP(E), the ideal Ex (or the ideal xE) is minimal (cf. Theorem 3.9).
Thus the algebra xEx is a division algebra (see for instance [13: p. 103, proof
of Lemma 1] and/or [16: p. 45, Lemma 2.1.5]). Hence x is minimal and this
completes the proof.

Theorem 3.11. Let E be a locally convex algebra with a continuous quasi-
inversion, such that the left ideal Ex or the right ideal xE is minimal and
x ∈ Id(E). Then

(3.3) xEx = C ,

within an isomorphism of topological algebras.
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Proof: Since E is a locally convex algebra with a continuous quasi-inversion,
xEx is a locally convex algebra with a continuous inversion. So (3.3) is true,
by Gel’fand–Mazur, xEx being also a division algebra (proof of Corollary 3.10).
Cf. also [14: p. 62, Corollary 5.1].

Lemma 3.12. Let E be a left preannihilator (M′
`)-algebra and x ∈ Id(E).

Consider the assertions:

1) Ex ∈m`(E);

2) (1− x)E ∈Mr(E).

Then 1)⇒2). The converse statement holds in each one of the following cases:

i) E is a topologically semiprime (D`)-algebra;

ii) E is a left dual algebra.

Proof: 1)⇒2): Suppose (1− x)E ⊆M 6= E for some closed (regular) right
ideal M . Then, since E is left preannihilator and x ∈ Id(E), A`(M) ⊆ Ex.
Moreover, A`(M) 6= (0). Thus, by the minimality of Ex, A`(M) = Ex, which
implies M ⊆ Ar(A`(M)) = (1− x)E. Hence (1− x)E = M .

2)⇒1): i) Let (0) 6= I ⊆ Ex for some I ∈ L`. Then, by hypothesis, there
exists a minimal left ideal, say J , such that J ⊆ I ⊆ Ex. Moreover, J = Ey with
y ∈ IP(E) (see Corollary 3.7). Hence Ar(Ex) ⊆ Ar(Ey) and since x, y ∈ Id(E),
(1−x)E ⊆ (1−y)E. Since y is right quasi-singular, (1−y)E is proper. Therefore,
(1 − x)E = (1 − y)E. Hence, since a topologically semiprime algebra is left
preannihilator (see Lemma 2.3), Ex = Ey, i.e., Ex ∈m`(E).

ii) As in i) (1−x)E⊆Ar(I). If Ar(I)=E, then IE=(0), which implies I=(0),
a contradiction. Therefore (1− x)E = Ar(I) and thus I = A`(Ar(I)) = Ex.

Since semisimple implies semiprime, case i) in the above lemma, is a fortiori
satisfied for semisimple annihilator Q′-algebras (see Theorem 3.6).

4 – Structure theorems

If E is a C-algebra, we denote by S` (resp. Sr) the left (resp. right) socle of E.
In case S` = Sr ≡ S, the resulted 2-sided ideal S is called the socle of E (see [16:
p. 46]). Let (Li)i∈Λ (resp. (Rj)j∈K) be the family of all minimal left (resp. right)
ideals of E; these families have the same set of indices, i.e., the set of all minimal
elements, if, for instance, E is a topologically semiprime (D`) or (Dr)-algebra
(cf. Corollaries 3.7 and 3.10). Moreover, S` =

∑

i∈ΛExi, Sr =
∑

i∈Λ xiE. Hence
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the socle is defined and is given by

(4.1) S =
∑

i∈Λ

Exi =
∑

i∈Λ

xiE

(see also [16: p. 46, Lemma 2.1.11 and Lemma 2.1.12]).

Lemma 4.1. Let E be a left preannihilator topological algebra with dense
socle. Then E is semiprime.

Proof: Let I ⊆ E be a 2-sided ideal with I2 = (0). If J ∈ m`(E), then
either J ∩ I = J or J ∩ I = (0). Thus IJ = (0), that is J ⊆ Ar(I). Therefore
S ⊆ Ar(I), hence, by hypothesis, I = (0).

For the following result see also [6: p. 162, Proposition 5].

Proposition 4.2. Let E be a non-radical topologically semiprime annihilator
Q′-algebra. Then

i) A`(S) = Ar(S) = R(E);

ii) S ∩R(E) = (0).

If, moreover, S is dense in E, then

iii) E is semisimple.

Proof: Since E is non-radical, it contains a right quasi-singular element,
say z (cf. [16: p. 42 and p. 55, Theorem 2.3.2]), so that the regular right ideal
J = {y − zy : y ∈ E} ≡ (1 − z)E is proper (see also [14: p. 66, Lemma 6.4]).
Now, if M is a maximal regular right ideal, with J ⊆ M (Krull), we claim that
A`(M) 6⊆ R(E). Otherwise, and since R(E) ⊆ M (see, for instance [16: p. 55,
Theorem 2.3.2]), it would be A`(M)2 = (0). Therefore, since E is topologically
semiprime (see also Theorem 2.1) A`(M) = (0) and hence M = E, that is a
contradiction. On the other hand, M = (1 − x)E, x ∈ Id(E) ∩ A`(M) (cf. also
the comments following Theorem 3.4). Now, since M is maximal, Ex is minimal
with x minimal (see proofs of Theorem 3.4 and Corollary 3.10). Thus

R(E) =
⋂

x,min

(1− x)E =
⋂

x,min

Ar(Ex) = Ar(S) .

Likewise, R(E) = A`(S) and this finishes the proof of i). By i) one gets S ⊆
Ar(A`(S)) = Ar(R(E)), so that S ⊆ Ar(R(E)) and hence (see also Lemma 2.5)
S∩R(E) = (0), which proves ii). Finally, since E = S, iii) is a direct consequence
of ii).
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By Theorem 3.8, a semisimple annihilator Q′-algebra contains minimal left
and minimal right ideals. So we now get the following result (see also [6: p. 162,
Corollary 6]).

Theorem 4.3. An annihilator Q′-algebra E is semisimple if and only if it
has a dense socle.

Proof: By Lemma 4.1 and Proposition 4.2 we only have to prove that the
condition is necessary. Indeed, let x ∈ E such that S`x = 0. Then, by (4.1),
Exix = (0), hence xix = 0 for every i ∈ Λ. Therefore,

(4.2) x = x− xix ∈ (1− xi)E ≡Mi , i ∈ Λ .

Moreover, by Lemma 2.6, the ideal Mi is maximal and thus maximal closed. Let
now M be a maximal (closed) regular right ideal of E. Then (Theorem 3.4)
M = (1 − y)E with y ∈ IP(E) ∩ A`(M). Now, the left ideal A`(M) = Ey is
minimal (ibid.), i.e., Ey is one among Li and thus M is one of Mi, i ∈ Λ (cf.
(4.2)). Therefore, Mi, i ∈ Λ, exhaust all maximal (closed) regular right ideals
of E. Hence x ∈

⋂

i∈ΛMi = R(E), so x = 0 by semisimplicity. Therefore,
Ar(S`) = (0), hence by hypothesis, S` = E. Similarly, Sr = E.

As follows from the previous proof, one gets the following (set-theoretic) bi-
jections

Mr(E) ∼= m`(E) and M`(E) ∼= mr(E) .

Based on Theorem 4.3, one can get another proof of prop. 2)⇒1) of Theo-
rem 3.6: Let I 6= (0) be a left ideal of E that does not contain minimal left ideals.
If (Li)i∈Λ is the family of all minimal left ideals of E, then I∩Li = I∩Exi = (0),
xi ∈ IP(E) for every i ∈ Λ. This follows from Corollary 3.7 and the fact that
E is topologically semiprime, as semisimple (cf. also [6: p. 155, Proposition 5]).
Now let z ∈ E and i ∈ Λ. Then either Exiz = (0) or Exiz = Exλ for some λ ∈ Λ
(see for instance [ibid: p. 155, Lemma 7]). Thus Exiz ∩ I = (0) for every z ∈ E,
i ∈ Λ and xiE ∩ I = (0) for every i ∈ Λ. Hence, by xiEI ⊆ xiE ∩ I, xiEI = (0)
for every i ∈ Λ. On the other hand (Theorem 4.3), E =

∑

i∈Λ xiE. Therefore,
EI ⊆

∑

i∈Λ xiEI and hence I = (0), a contradiction. A similar proof establishes
the analogous result for right ideals. Therefore, E is a (D)-algebra.

Concerning the following result see also [6: p. 163, Theorem 9].

Theorem 4.4. Let E be a topologically semiprime annihilator algebra and
I ∈ L such that EI = IE = I. Then I is a topologically semiprime annihilator
algebra. Moreover, I is semisimple, if I ∩R(E) = (0).

Proof: Let N ∈ L`(I) with N2 = (0). By Lemma 2.5 and the comments
following it, N ∈ L`. Thus N = (0) and so I is topologically semiprime. Let now
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K ∈ L`(I) with K 6= I. Then Ar(K) ∩ I 6= (0), otherwise IE ⊆ K. Indeed, by
considering the left ideal J ≡ K ⊕A`(I) of E, one gets in turn

(4.3) IJ ⊆ IK + IA`(I) ⊆ K .

On the other hand, Ar(J)I ⊆ Ar(J) ∩ I = (0). Hence Ar(J) ⊆ A`(I) ⊆ J and
thus Ar(J)

2 ⊆ JAr(J) = (0). Therefore Ar(J) = (0) (see also Theorem 2.1) and
hence J = E. Now, by (4.3) and the hypothesis, one gets I = IE ⊆ K, that
is a contradiction. Thus AI

r(K) ≡ Ar(K) ∩ I 6= (0). Similarly, AI
` (L) 6= (0) for

L ∈ Lr(I) with L 6= I. Moreover, AI
` (I) ≡ A`(I) ∩ I = (0) (see Lemma 2.5).

Analogously, AI
r(I) = (0). The foregoing prove now that I is an annihilator

algebra. Finally if I ∩ R(E) = (0), then by [6: p. 126, Corollary 20] R(I) = (0)
and this completes the proof.

Corollary 4.5. Let E be an annihilator topologically semiprime algebra.
Then S is an algebra of the same type. In particular, S is also semisimple, if E
is a non-radical Q′-algebra, as well.

Proof: Let I be a minimal left ideal of E. Then (Corollary 3.7), I = Ex,

x ∈ Id(E), so that Ex = Ex2 ⊆ ES; hence, S ⊆ ES, thus S = ES. Likewise,

S = SE. So, by Proposition 4.2 and Theorem 4.4, we get the assertion.

Now, by Theorem 4.3 we get the next. Cf. also [6: p. 163, Corollary 10].

Corollary 4.6. In every semisimple annihilator Q′-algebra (with socle S),
S is an algebra of the same type.

Proposition 4.7. Let E be an (M`)-algebra, such that A`(I) = (0) for
every I ∈ L` − {(0)} and S` ≡

∑

i∈Λ Li 6= (0). Then E = S`.

Now we obtain a second structure theorem for a semisimple annihilator
Q′-algebra. For this we apply Theorem 4.3. We will make use of the follow-
ing terminology: Let E be a semiprime topological algebra and (Kα)α∈A the
family of all minimal closed 2-sided ideals of E. Then the sum of Kα, α ∈ A,
K ≡

∑

α∈AKα is direct, so we have K =
⊕

α∈AKα. Moreover, if Kα 6= Kβ , then
KαKβ = {0}; in this case

⊕

α∈AKα is called direct sum of the ideals Kα, while
⊕

α∈AKα is said to be the topological direct sum of the ideals Kα. For the proof
we use the argument of [15: p. 328, Theorem 5].

The next lemma specializes to a similar result in [7: p. 158, Theorem 5], whose
proof can be adapted to our case.
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Lemma 4.8. Let E be a topologically semiprime algebra and I a minimal
(closed) left or right ideal of E. If RL(I) is the closed 2-sided ideal generated by
I, then RL(I) is minimal closed.

Lemma 4.9. Let E be a topologically semiprime algebra which, moreover,
is a (DrM

′
r)-algebra. If I is a minimal closed 2-sided ideal of E, then I is a left

preannihilator (M′
r)-algebra.

Proof: Since AI
` (I) ≡ I ∩A`(I) = (0) (see also Lemma 2.5) the algebra I is

left preannihilator. Let now K ∈ L`(I) with K 6= I. Then (ibid.) L`(I) ⊆ L`(E)
and A`(I) = Ar(I). Consider the left ideal J ≡ K +A`(I) = K +Ar(I). Then
either E = J or E 6= J . If E = J , then for x ∈ I, xJ = xK+xAr(I) which implies
xJ⊆K. Therefore, for every x∈ I, xE = xJ⊆xJ⊆K, that yields I2⊆K. Now
I2 6= (0), otherwise I = (0), which is a contradiction. Besides, (0) 6= RL(I2) ⊆ I
and thus RL(I2) = I. On the other hand, RL(I2) ⊆ K ⊆ I. Therefore I = K, a
contradiction. Hence E 6= J . Moreover, J ∈ L`, thus Ar(J) 6= (0) and a fortiori
Ar(J) 6= (0). Now, by hypothesis, Ar(J) contains a minimal right ideal and hence
contains a primitive idempotent, say x0. Consider (Theorem 3.9 and Lemma 4.8)
the minimal closed 2-sided ideal RL(x0E). Then, since RL(x0E)∩ I ∈ L, either
RL(x0E)∩ I = (0) or I = RL(x0E)∩ I = RL(x0E). In the first case, x0I = (0)
and hence x0 ∈ A`(I) ⊆ J . Therefore, since x0 ∈ Ar(J), x

2
0 = 0, a contradiction.

Thus, since x20 = x0 ∈ RL(x0E), x0 ∈ I and therefore x0 ∈ Ar(J) ∩ I, namely
AI
r(J) 6= (0) and thus AI

r(K) 6= (0). I.e., the algebra I is an (M′
r)-algebra.

By Theorem 3.6, Lemma 4.9 and [6: p. 126, Corollary 20] we get the following.

Corollary 4.10. Every minimal closed 2-sided ideal of a semisimple annihi-
lator Q′-algebra is an annihilator semisimple algebra.

Lemma 4.11. Let E be a dual topologically semiprime algebra. Then every
minimal closed 2-sided ideal I of E is a dual algebra, as well.

Proof: We prove that the algebra I is left dual; i.e., AI
` (A

I
r(K)) = A`(Ar(K)∩

I) ∩ I = K, K ∈ L`(I). Similarly, we prove the right duality of I. It suffices
to show that A`(Ar(K) ∩ I) ∩ I ⊆ K for every K ∈ L`(I). By Lemma 2.5,
L`(I) ⊆ L`(E), thus K ∈ L`(E). Therefore (cf., for instance, [15: p. 231, (5α)]),

A`(Ar(K) ∩ I) = A`(Ar(K)) +A`(I) = K +A`(I) = K +Ar(I)

(see also Lemma 2.5). Moreover, since K∈L`(I) and IAr(I)=(0), I(K+Ar(I))
⊆ IK ⊆ K, i.e., I(K +Ar(I)) ⊆ K. Thus, if x ∈ A`(Ar(K) ∩ I) ∩ I,
x ∈ K +Ar(I) and therefore Ix ⊆ K. Hence, IxAr(K) ⊆ KAr(K) = (0).
On the other hand, since Ar(I)I =A`(I)I = (0) and x∈ I, Ar(I)xAr(K) = (0).
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Therefore, (I+Ar(I))xAr(K)=(0). Besides, ExAr(K)⊆ (I+Ar(I))xAr(K)=(0)
(ibid.) which implies x ∈ A`(Ar(K)) = K.

The next theorem is the analogue in our case of the classical second structure
theorem of Wedderburn. It thus extends previous ones in [7: p. 158, Theorem 6]
and [15: p. 328, Theorem 5].

Theorem 4.12 (Second structure theorem). Every semisimple annihilator
Q′-algebra E is the topological direct sum of its minimal closed 2-sided ideals,
i.e.,

(4.4) E =
⊕

α∈A

Kα .

Moreover, each Kα is a semisimple topologically simple annihilator algebra.
In particular, if E is a dual algebra, every Kα is a dual algebra too.

Proof: By Theorem 3.6 there exists a minimal left ideal, say Lαi , such that
Lαi ⊆ Kα. Hence Lαi ⊆ RL(L

α
i ) ⊆ Kα, that is RL(L

α
i ) = Kα. Now, if (Li)i∈Λ is

the family of all minimal left ideals of E, then (Lemma 4.8)RL(Li) is one ofKα’s;
therefore, for every i ∈ Λ, Li ⊆ RL(Li) ⊆

⋃

α∈AKα. Thus
∑

i∈Λ Li ⊆
∑

α∈AKα

and E =
⊕

α∈AKα (cf. Theorem 4.3). Moreover (Corollary 4.10), every Kα is
an annihilator semisimple algebra. Now, if (0) 6= J ∈ L(Kα), then (Lemma 2.5)
J ∈ L; hence J = Kα, that is Kα is topologically simple (there are no closed
2-sided ideals) and this along with Lemma 4.11 completes the proof.
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