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ON THE CENTER OF THE FUNDAMENTAL GROUP
OF THE COMPLEMENT OF

A HYPERPLANE ARRANGEMENT

Raul Cordovil*

Abstract: Let A be a simplicial hyperplane arrangement in Rd. We prove that the

center of the fundamental group of the manifold Cd\
⋃
{H ⊗C : H ∈ A} is a direct

product of infinite cyclic subgroups.

1 – Introduction

Let A be a (central) hyperplane arrangement in Rd, i.e. a finite set
H1, H2, . . . , Hm of subspaces of codimension 1 in Rd. Consider now the manifold
M = M(A) = Cd \

⋃
{H ⊗C : H ∈ A}. M is an open, smooth, paralleliz-

able manifold of real dimension 2d (see [OT, Proposition 5.1.3]). The homotopy
type of M is non trivial and has been recently an active area of research. An
important topological invariant of the manifold M(A) is certainly its fundamen-
tal group π1(M). A reduced presentation of this group was obtained by Randell
[R] and Salvetti [Sa] (see also [CG]). In this paper we determine the center of
π1(M) for simplicial (hyperplane) arrangements (i.e., such that every component
of Rd \ ∪{H : H ∈ A} is an open polyhedral simplicial cone).

We use as general reference on arrangements of hyperplanes, the recent book
with the same title by Orlik and Terao [OT]. We recall that a hyperplane ar-
rangement A in Rd is reducible [OT] if there are two arrangements A1 in Rd1

and A2 in Rd2 such that, after a change of coordinates:

A = A1 ×A2
def
=

{
H ⊕Rd2 : H ∈ A1

}
∪

{
Rd1 ⊕H : H ∈ A2

}
.

Otherwise A is irreducible.
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The results presented here depend of the following preliminary observations:

– Suppose that A is not essential (i.e.,
⋂

H∈AH = X 6= 0). Let Y be the
orthogonal complement of X in Rd. Then A′ = {H ∩ Y : H ∈ A} is an
essential hyperplane arrangement and the manifoldsM(A) andM(A′) have
the same homotopy type [OT, Sa].

– Suppose that A is essential.Then A is irreducible if and only if the matroid
M(A) determined by the nonempty intersections of the hyperplanes of A
is a connected one.

– In order to study decompositions of the group π1(M(A)), reducibility is
not the “right concept” [CG]. However for simplicial arrangements the two
concepts coincide (see Theorem 2.1 and Proposition 2.2 below).

– If A is a simplicial arrangement and A = A1×A2 then A1 and A2 are also
simplicial arrangements.

– If A = A1 × ...×An then π1(M(A)) ' π1(M(A1))× ...× π1(M(An)).

Our main result is:

1.1 Theorem. Suppose A is an irreducible simplicial hyperplane arrange-
ment in Rd.Then the center of the fundamental group of the manifold M(A) =
Cd \

⋃
{H ⊗C : H ∈ A} is an infinite cyclic subgroup.

We prove in Section 3 the oriented matroid generalization of this theorem
(see Theorem 3.4 below ).When A is an irreducible Coxeter arrangement [Bo,H],
Theorem 1.1 can be deduced from well known results. Indeed let W be the
reflection group determined by A. Let HC = {H ⊗C : H ∈ A}. Let H′

C
be the

image of HC in the quocient map q : Cd → Cd/W . Consider now the manifolds:
M(A) = Cd\HC, N(A) = (Cd/W )\H′

C
. The fundamental groups π1(M(A)) and

π1(N(A)) are, respectively, the generalized pure (or coloured) braid group and
generalized braid group (or Artin group) determined by the Coxeter arrangement
A [BS]. From the covering M(A) → N(A) we deduce the following short exact
sequence [Br]:

(1.1) {1} → π1(M(A))→ π1(N(A))→W → {1} .

The center of π1(N(A)) was already calculated: it is an infinite cyclic subgroup
[BS,D]. Besides if W is irreducible it is known that its center Z(W ) is {1} or
{1,−1} (see [Bo, Ch.V,Sect. 4, exerc.3] or [H, Sect. 6.3, exerc.1]). From these
results it is easy to deduce that the center Z(π1(M(A))) is also an infinite cyclic
subgroup. Note also that a direct computation of the center of the pure braid
groups was done by Chow [Ch] (see also [Bi, Corollary 1.8.4]).
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The reader is assumed to have some familiarity with the oriented matroid
theory namely the knowledge of the main definitions and results.The best general
reference is [BLSWZ].

We assume also some familiarity with the Salvetti complexes determined
by a real hyperplane arrangement [Sa] and its construction arising from a given
oriented matroid [BLSWZ].

We use the notations introduced in [C,CG], a survey of which is given in the
next section.

2 – Notations and definitions

Assume A is an essencial hyperplane arrangement in Rd. Consider the inter-
section of the hyperplanes of A with the unit sphere Sd−1 ⊂ Rd. This intersection
determines a regular cell decomposition Σ of the sphere Sd−1. Let P = P (A) be
the poset of the closed cells of Σ ordered by inclusion. The poset P determines the
regular CW complex Σ up to homeomorphism (see [BLSWZ,Proposition 4.7.8]).
Let H1, H2, ..., Hn be an ordering of the hyperplanes of A. For every hyperplane
Hi we choose positive and negative sides Hi

+ and Hi
−, respectively. To every

open cell σ ∈ Σ we associate a “signed vector” ω(σ) ∈ {+,−, 0}{1,...,n}, called
covector and defined in the following way. Pick up an element x of σ, then:
ω(σ)i = +,−, 0 if x ∈ H+, x ∈ H−, x ∈ H, respectively. The set of the covec-
tors constructed in this way, ordered componentwise according to the relations
0 < +, 0 < −, is a poset isomorphic to P (A) (and therefore determines the reg-
ular CW complex Σ up to homeomorphism). This poset L = L(A) is called the
oriented matroid determined by the real hyperplane arrangement A.

The theory of oriented matroids can be seen as the “right axiomatization” of
the posets of covectors of the type L(A). (Note that in the standard notation
a bottom element is adjoined to L.) There are many oriented matroids not
corresponding to real hyperplane arrangements.However L is always the poset of
closed cells,ordered by inclusion, of a regular cell decomposition of a sphere (see
[BLSWZ],Theorem 5.2.1]).

Using the standard notations we suppose L adjoined with a bottom element
0̂ = (0, . . . , 0). L is a graded poset; its elements of maximal rank are called
topes. In this paper we consider only loopless oriented matroids without parallel
elements. We say that i, 1 ≤ i ≤ n is a wall of the tope T if there is another tope
T̃ such that Tj = T̃j for every j, j 6= i, 1 ≤ j ≤ n, and Ti = −T̃i. (We are using
the notation −(−) = + and −(+) = − .) Note that the “signed vector” w such
that wj = Tj , j 6= i, 1 ≤ j ≤ n, and wi = 0 is a covector of L of corank 1 covered
by T and T̃ . We denote by wall(T ) the set of the walls of the tope T . It is known
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that |wall(T )| ≥ rank(T ) [BLSWZ]; in the equality case, T is called a simplicial
tope. L is a simplicial oriented matroid if all its topes are simplicial ones. If A is
a simplicial hyperplane arrangement then L(A) is a simplicial oriented matroid.

Now let M be a (nonoriented) matroid. By definition, the graph Gc(M)
determined by M is the graph whose vertex set is E(M) and where {a, b} is
an edge if the line {a, b} contains at least a third element of E. If L is an
oriented matroid andM(L) is its underlying nonoriented matroid we set Gc(L) =
Gc(M(L)). If A is a hyperplane arrangement, we set by definition Gc(A) =
Gc(L(A)). A connected component of A is naturally a subarrangement A′ such
that Gc(A

′) is a connected component of Gc(A).The following result has justified
the introduction of the graph Gc [CG]:

2.1 Theorem. Let A1, . . . ,An be the connected components of a hyperplane
arrangement A. Then

π1(M(A)) ' π1(M(A1))× . . .× π1(M(An)) .

We remark that if A is a simplicial arrangement then Gc(A) is connected if
and only if A is irreducible. This is a consequence of the following useful fact:

2.2 Proposition. Let L be a simplicial oriented matroid.Then the following
two conditions are equivalent:

2.2.1. The graph Gc(L) is connected;

2.2.2. The underlying matroid M(L) is connected.

Proof: We will prove the non trivial implication ∼ (2.2.1) ⇒∼ (2.2.2), by
induction on rank(M).

If rank(M) = 1 or 2 there is nothing to prove. Suppose the implication true
for matroids of rank < r and set rank(M) = r. Let X1 ] . . .]Xn = E(L) be the
partition of the vertices of Gc(L) corresponding to the connected components.
Set A = X1 and B = X2 ] . . . ]Xn.

Let H be a hyperplane of M(E) such that H ∩A 6= ∅ and H ∩B 6= ∅. The
restriction of L to the flat H is also a simplicial matroid and then by induction
hypothesis we know thatM(H) =M(H∩A)⊕M(H∩B). Let C be the covector
of L such that Ci = + if i ∈ E \H and Ci = 0 otherwise.Let T be a tope of L
such that C ≤ T. SetW = wall(T ). Then clearlyW1 =W ∩A ⊃W ∩(H∩A) 6= ∅
and W2 =W ∩B ⊃W ∩ (H ∩B) 6= ∅. Suppose T̃ a tope such that T̃j = −Tj for

some j ∈W1, and T̃i = Ti if i 6= j. Set W̃ = wall(T̃ ). We claim that W̃ ∩B =W2.
Indeed pick x ∈W2 and let X be a covector such that X ≤ T and Xi = Xj = 0.
Set F = {i′ : Xi′ = 0}. F is a flat of M and by induction hypothesis we know
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thatM(F ) =M(F ∩A)⊕∩M(F ∩B); as X ≤ T̃ we conclude that x ∈ W̃ ∩B.
As L is simplicial we also deduce that |(W̃ ∩A)| = |W1|.

Now let T̃ be an arbitrary tope of L. It is well known that there is a path
of adjacent topes X0 = T, . . . ,Xm = T̃ connecting T and T̃ . From the above
reasoning we conclude that if W̃ = wall(T̃ ) then |(W̃∩A)| = |W1| and |(W̃∩B)| =
|W2|. These equalities are only possible if M(E) =M(A)⊕M(B).

Suppose now that T is the set topes of an oriented matroid L. The Salvetti
complex ∆Sal(L), determined by L, is the finite regular CW complex (determined
up to homeomorphism) whose poset of closed cells is the set {[w, T ] ∈ L × T :
w ≤ T} with the parcial order [w̃, T̃ ] ¹ [w, T ] if w ≤ w̃ and T̃ = w̃ ◦ T . By
abuse of language, and if no confusion is possible, we denote by the same symbol
a geometric realization of the Salvetti complex ∆Sal(L) and its poset of closed
cells.

We have the following nice theorem [Sa]:

2.3 Theorem. Let A be a hyperplane arrangement in Rd. Then the finite
regular CW complex ∆Sal(L(A)) has the homotopy type of the open manifold

M(A) = Cd \
⋃
{H ⊗C : H ∈ A} .

We will consider the 1-skeleton ∆
(1)
Sal(L) as an oriented graph. Its vertex set

might be seen as the set of topes T of L, and the 1-cells [w, T ] as the directed
edge with T as its initial vertex. Unless indicated otherwise we will suppose that

the initial vertex of a given edge path α of ∆
(1)
Sal(L) is a fixed vertex O.Note that

if σ is a 2-cell of ∆Sal then there are two minimal length positive edge paths γ1

and γ2 in ∆(1) such that γ1 · γ
−1
2 is the oriented boundary path of σ.

Edge paths are denoted by Greek letters α, β and γ. For any edge path α
we denote α(T ) the subpath of α ending at the vertex T . We denote by the
same letter an edge path and the homotopic equivalence class it determined.By
convention the empty path ∅ is considered a positive closed edge path.

The homotopic equivalence of the edge paths, which we denote ' is generated
by the following two “elementary discrete moves”:

(m1) Insert or remove an edge that runs back and forth;

Let γ1 and γ2 be two minimal length positive edge paths such that γ1 · γ
−1
2 is

the oriented boundary path of a 2-cell of ∆Sal. Then:

(m2) Substitute γ1 by γ2 or γ−1
1 by γ−1

2 .

Move (m2) generates an equivalence relation on the set of positive edge paths

of ∆
(1)
Sal(L); it is denoted by

+
' (positive equivalence).
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The following theorem is the first of the crucial results concerning positive
edge paths in the Salvetti complex (see[CM]; for the simplicial and realizable
cases see [D] and [Sa], respectively).

2.4 Theorem. Let α and β be two positive edge paths in ∆
(1)
Sal with the

same end points, which have minimal length (among all paths with these end

points). Then α
+
'β.

Using Deligne’s notations we denote u(T, T̃ ) the positive equivalence class of
minimal positive edge paths from T to T̃ . Suppose now that T and T̃ are two
adjacent topes. Set u(T, T̃ )t = u(−T,−T̃ ). Let u(T, T̃ )−1 denote the edge path
from T̃ to T such that the edge u(T, T̃ ) is traversed along the opposite direction.
These notions are eassily extended to edge paths noting that for every edge path
γ = γ1 · γ2, γ

−1 = γ−1
2 · γ−1

1 and γt = γt
1 · γ

t
2.

By convenience of the calculations we denote by the same symbol∇ every min-
imal positive edge path joining two arbitrary opposite topes (i.e. ∇ = u(T,−T ),
for some tope T ). Note that if u(T, T̃ ) is a directed edge then

u(T, T̃ )
−1
' ∇−1 · ∇ · u(T, T̃ )

−1
' ∇−1 · u(−T̃ ) · u(T, T̃−1) ' ∇−1 · u(−T̃ , T ) .

Note also that

u(T, T̃ ) · ∇−1 ' u(T, T̃ ) · u(T, T̃ )
−1
· u(−T̃ , T )

−1
,

∇−1 · u(T, T̃ )
t
' u(−T̃ , T )

−1
· u(−T,−T̃ )

−1
· u(−T,−T̃ ) ,

and then

u(T, T̃ ) · ∇−1 ' ∇−1 · u(T, T̃ )
t
.

Therefore for every edge path α there is a smallest positive integer n such
that α'∇−n · α̃, for some positive edge path α̃.

The following two theorems are the key to problems concerning positive edge
paths in the Salvetti complexes determined by simplicial oriented matroids.

The proof of Theorem 2.5 is non trivial but similar to [D, Propositions 1.19
and 1.27] and omitted here (see [Sa2] for a recent and detailed proof).

2.5 Theorem. Let α, β and γ be positive edge paths of Salvetti complex
∆Sal(L) determined by a simplicial oriented matroid L.Then:

2.5.1. α · γ
+
'α · β ⇒ γ

+
'β (left cancellation);

2.5.2. β · α
+
'β · α⇒ γ

+
'β (right cancellation);

2.5.3. γ ' β ⇒ γ
+
'β.
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We also need some information concerning the “ends” of the homotopic equiv-
alence class determined by a positive edge path α(T ).We denote by L = L(α) the
associate poset on the set {T̃ : T̃ tope of L and α ' α̃ · u(T̃ , T ) for some positive
edge path α̃} with the partial order, T1 ≤ T2 if u(T2, T ) ' u(T2, T1) · u(T1, T ).
Then [C] (compare [D,Proposition 1.19 iii]):

2.6 Theorem. L(α) is a lattice.

3 – Theorem

The following algorithm describes a construction method for the lattice L(α).
Suppose that the bottom and top element of L(α) are respectively T and T̂ .

Let T̃ be an atom of L(α) obtained from T crossing the wall i.
Set Di(T̃ ) = {X : X is a tope of L and Xi = T̃i}. Then:

3.1 Algorithm. L(α(T̃ )) ∩Di(T̃ ) = L(u(T̂ , T̃ )).

Algorithm 3.1 can be proved similarly to [D, Algorithme 1.22]. We give here
a proof by completeness.

Proof: We will prove

3.1.1. L(u(T̂ , T̃ )) ⊂ L(α(T̃ )) ∩Di(T̃ ).

Suppose that X belongs to the first member of the inclusion 3.1.1. Note that
as T̂ ∈ Di(T̃ ) we have also X ∈ Di(T̃ ). We claim that X ∈ L(α(T̃ )). Indeed

we know from the definitions that α
+
'α(X) · u(X, T̃ ) · u(T̃ , T )

+
'α(T̃ ) · u(T̃ , T ).

Using the right cancellation 2.5.2 we conclude that α(X) · u(X, T̃ )
+
'α(T̃ ).

Therefore X ∈ L(α(T̃ )) and the inclusion 3.1.1 follows.

Now we will prove

3.1.2. L(α(T̃ )) ∩Di(T̃ ) ⊂ L(u(T̂ , T̃ )).

Suppose that X belongs to the first member of the inclusion 3.1.2.Then

α(T̃ )'α(X) · u(X, T̃ )

and
α'α(T̃ ) · u(T̃ , T )'α(X) · u(X, T̃ ) · u(T̃ , T )'α(X) · u(X,T ) .

Therefore X ∈ L(α). The implication 2.5.3 entails

α(T̂ ) · u(T̂ , T̃ ) · u(T̃ , T )
+
' α(T̂ ) · u(T̂ ,X) · u(X, T̃ ) · u(T̃ , T ) .
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Using the left and right cancellations 2.5.1 and 2.5.2 we conclude that

u(T̂ , T̃ )
+
' u(T̂ ,X) · u(X, T̃ )

and therefore X ∈ L(u(T̂ , T̃ )).

The gist of the proof of the main theorem is the following proposition.

3.2 Proposition. Let ∆Sal(L) be the Salvetti complex determined by an
irreducible simplicial oriented matroid L.

Suppose that one of the following conditions holds:

3.2.1. α is a positive closed edge path with base point O, and for any other
positive closed edge path β, with base point O, we have α · β ' β · α;

3.2.2. α is a positive edge path from −O to O, and for any other positive
closed edge path β,with base point O, we have α · β'βt · α.

Then L(α) = L(u(−O,O)).

To prove the proposition we need the following lemma.

3.3 Lemma. Suppose the graph Gc(L) connected.
Let T, T̃ be two different topes such that wall(T ) = wall(T̃ ).

Then T = −T̃ .

Proof: Suppose by absurd that T 6= −T̃ . Set A = {i ∈ E(L) : Ti = −T̃i} 6= ∅.
Note that (T 6= −T̃ )⇔ (A 6= E(L)).

Let F be the closure of {wall(T ) ∩A} in the underlying matroid M. From
the theory of convexity in oriented matroids [BLSWZ] we know that F ⊂ A and
there is a tope X of L such that F = {i ∈ E(L) : Ti = −Xi}.

We claim that F = A(⇔(X = −T̃ )).
Indeed let Y0 = T, . . . , Yj = X, . . . , Yn = T̃ be a sequence of minimal length
of adjacent topes from T to T̃ using X. Suppose X 6= T̃ and let i be the wall
crossed by the edge u(Yn−1, T̃ ). Then i ∈ wall(T̃ ) and the sequence is not minimal,
because by hypothesis wall(T ) = wall(T̃ ). Hence A is a closed set of M(E).

As wall(−T̃ ) = wall(T̃ ) we have also wall(T ) = wall(−T̃ ). Using the above
argument we conclude that E \A is also a closed set of M(E).

But then no element of A can be connected to an element of E \ A in the
graph Gc(L), a contradiction.

Proof of Proposition 3.2: Let T̂ be the top element of the lattice L(α).
From Lemma 3.3 it is enough to prove wall(O) = wall(T̂ ).



A HYPERPLANE ARRANGEMENT 371

Let X be an arbitrary tope adjacent to O and i be the common wall of X and
O such that Oi = −Xi. Set β = u(O,X) · u(X,O) and let X̂ be the top element
of the lattice L(α · u(O,X)).

Using Algorithm 3.1 we know that L(u(X̂, O)) = L(α) ∩Di(O) and then

u(T̂ , O)
+
' u(T̂ , X̂) · u(X̂, O), u(X̂,X)

+
' u(X̂, O) · u(O,X) .

We conclude that

u(T̂ , O) · u(O,X)
+
' u(T̂ , X̂) · u(X̂,X)

and if T̂ 6= X̂ then u(T̂ , X̂) is an edge crossing the wall i.
Now, denote by Ŷ the top element of the lattice L(α ·β). From Algorithm 3.1

we know that L(u(Ŷ ,X)) = L(α · u(O,X)) ∩Di(X) and then Ŷi = −X̂i,

u(Ŷ , O)
+
' u(Ŷ ,X) · u(X,O) , u(X̂,X)

+
' u(X̂, Ŷ ) · u(Ŷ ,X) .

We remark that if T̂ = X̂ then u(T̂ , Ŷ ) is an edge crossing the wall i (see the
above argument).

From our hypothesis we have α · β ' β · α or α · β ' βt · α. We conclude that
T̂ ∈ L(α · β). From the above equivalences we deduce

u(Ŷ , O)
+
' u(Ŷ , T̂ ) · u(T̂ , X̂) · u(X̂, O) .

If T̂ 6= X̂ and T̂ 6= Ŷ both the edge pahts u(Ŷ , T̂ ) and u(T̂ , X̂) cross the wall
i, an impossibity. Then (T̂ 6= X̂ and T̂ = Ŷ ) or (T̂ 6= Ŷ and T̂ = X̂), and
i ∈ wall(T̂ ). As i is an arbitrary wall of the tope O, wall(O) ⊂ wall(T̂ ). As L is
supposed simplicial, we conclude that wall(O) = wall(T̂ ).

The following result is the “oriented matroid generalization” of Theorem 1.1.
We remember that the elements of the fundamental group π1(∆Sal) are the

homotopic equivalence classes of closed edge paths starting from the base O. We
denote by the same letter a closed path and the equivalence class it determines.

3.4 Theorem. Let L be an irreducible simplicial oriented matroid and
∆Sal(L) be the Salvetti complex determined by L.

Then the center of the fundamental group of ∆Sal(L) is the infinite cyclic
sugroup generated by the equivalence class determined the positive closed edge
path ∇2 = u(O,−O) · u(−O,O).

Proof: For every closed edge path β we have ∇2 · β ' ∇ · βt · ∇ ' β · ∇2

and ∇2 is an element of the center of π1(∆Sal). Note that ∇2 is an element of
infinite order [CG, Theorem 4.2].
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Suppose now that α is an arbitrary element of the center of π1(∆Sal). Let n be
the smallest positive integer such that α ' ∇−n · α̃, where α̃ denotes a positive
edge path. Then ∇ · α̃ or α̃ is also an element of the center. Suppose that
β = ∇ · α̃ [resp. β = α̃] is an element of the center 6= ∅. Note that in both cases
α̃ 6= ∅. Then L(α̃) = L(∇) from Proposition 3.2, and there is a positive edge path
γ such that α̃' γ · ∇'∇ · γt. Therefore α'∇−n · ∇ · γt a contradiction with the
definition of n. So β = ∅, and α ' ∇2m for some m ∈ Z.
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