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A TWO PARAMETERS AMBROSETTI–PRODI PROBLEM*

C. De Coster** and P. Habets

1 – Introduction

The study of the Ambrosetti–Prodi problem has started with the paper of

A. Ambrosetti–G. Prodi [2] who consider the problem

∆u+ f(u) = h(x), in Ω ,

u = 0, on ∂Ω ,

where f is a convex function which satisfies

0 < lim
u→−∞

f ′(u) < λ1 < lim
u→+∞

f ′(u) < λ2 .

They prove that in the space H = Im(∆u+ f(u)), there is a manifold M which

separates the space in two regions O0 and O2 such that the above problem has

zero, exactly one or exactly two solutions according to h ∈ O0, h ∈M or h ∈ O2.

In 1975, M.S. Berger–E. Podolak [4] use the decomposition of h in terms of the

first eigenfunction ϕ of −∆ with Dirichlet condition i.e. h(x) = ν ϕ(x) + h̃(x),

where
∫
Ω h̃(x)ϕ(x) dx = 0, and characterize the manifold M in terms of the

parameter ν. In the same year, J.L. Kazdan–F.W. Warner [10] have used the

lower and upper solution method to study this problem but were only able to

prove the existence of one solution if h ∈ O2. It is only in 1978 that E.N. Dancer

[6] and H. Amann–P. Hess [1] have obtained independently the multiplicity result

by combining lower and upper solutions technique with degree theory. An exact

count of solutions was then obtained by H. Berestycki [3] in case f is convex.
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See also the survey paper of D.G. de Figueiredo [7]. Later, R. Chiappinelli–

J. Mawhin–R. Nugari [5] have considered the problem

(1)
u′′ + u+ f(t, u) = ν ϕ(t) ,

u(0) = 0 , u(π) = 0 ,

where ϕ(t) =
√
2
π sin t. They have proved that, if lim|u|→∞ f(t, u) = +∞, uni-

formly in t, then there exist ν0 and ν1 ≥ ν0 such that

i) If ν < ν0, the problem (1) has no solution;

ii) If ν0 ≤ ν ≤ ν1, the problem (1) has at least one solution;

iii) If ν1 < ν, the problem (1) has at least two solutions.

The question is then to know whether ν0 = ν1. Under the additional condition

that f(t, u)+Ku is nondecreasing on [−u0, u0], they prove that ν0 = ν1. C. Fabry

[8], using another argument, proves ν0 = ν1 with the help of a Hölder condition.

R. Chiappinelli–J. Mawhin–R. Nugari [5] have also considered a generalized case

where instead of the coercivity condition they assume some growth restriction

related to the classical Landesman–Lazer condition.

As already observed by J.L. Kazdan–F.W. Warner [10], the important point

is not that ϕ is the first eigenfunction but that ϕ is of one sign. If we consider

a function ϕ > 0 on [0, π], for example ϕ(t) ≡ 1 then, using the same argument

as R. Chiappinelli–J. Mawhin–R. Nugari [5], we obtain easily the same kind of

results with ν0 = ν1. In order better to understand the characterization of the

manifold M together with the existence of the interval [ν0, ν1], we consider in this

work the two parameters problem

(2)
u′′ + u+ f(t, u) = µ+ ν ϕ(t) ,

u(0) = 0 , u(π) = 0 .

An other aspect of our work concerns existence of W 2,p solutions i.e. we consider

the case where f is a Lp-Carathéodory function. With the above coercivity

assumption on f , we prove the existence of a nonincreasing Lipschitz function

µ0(ν) such that

i) If µ < µ0(ν), the problem (2) has no solution;

ii) If µ = µ0(ν), the problem (2) has at least one solution;

iii) If µ0(ν) < µ, the problem (2) has at least two solutions.
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This result will be deduced from a more general one where we consider a

Landesman–Lazer type condition similar to the one used by R. Chiappinelli–

J. Mawhin–R. Nugari [5]. Moreover, under some regularity assumption related

to those used by R. Chiappinelli–J. Mawhin–R. Nugari [5] and C. Fabry [8] we

prove that µ0 is decreasing. In the particular case µ = 0 we generalize the results

of [5] and [8]. The main techniques are lower and upper solutions together with

degree theory.

To end this introduction, let us introduce some notations. For any function

u ∈ L1(0, π), we write

(3) u :=

∫ π

0
u(t)ϕ(t) dt ,

where ϕ(t) =
√
2
π sin t. We abbreviate “almost everywhere” as a.e. We use the

space

C10 ([0, π]) :=
{
x ∈ C1([0, π]) : x(0) = 0, x(π) = 0

}
.

2 – Preliminary results

Consider the boundary value problem

(4)
x′′ + f(t, x) = 0 ,

x(0) = 0 , x(π) = 0 ,

where f verifies Lp-Carathéodory conditions, i.e.

i) For a.e. t ∈ [0, π], the function f(t, ·) is continuous;
ii) For all x ∈ IR, the function f(·, x) is measurable;

iii) For all r > 0, there exists m ∈ Lp(0, π) such that for a.e. t ∈ [0, π] and all

x ∈ [−r, r], |f(t, x)| ≤ m(t).

A basic notion to prove existence results for the problem (4) is the notion of

upper and lower solution. In this paper, however, we will use stronger concepts.

In order to use degree theory, we want to define curves

x = β(t) and x = α(t)

so that solution curves of (4) cannot be tangent to them, respectively from below

or from above. This property is basic in defining a degree with respect to sets

Ω =
{
x ∈ C([0, π]) | α(t) < x(t) < β(t)

}
⊂ C([0, π])

or
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Ω =
{
x ∈ C1([0, π]) | α(t) < x(t) < β(t), |x′(t)| < N

}
⊂ C1([0, π]) .

Definition 1. A function β ∈ C([0, π]) is a strict upper solution of (4) if it

is not a solution of (4), β(0) ≥ 0, β(π) ≥ 0 and for any t0 ∈ [0, π], one of the

following is satisfied:

i) t0 ∈ ]0, π[ and D−β(t0) > D+β(t0);

ii) t0 ∈ {0, π} and β(t0) > 0;

iii) There exist an interval I0 ⊂ [0, π] and δ > 0 such that t0 ∈ int I0 or

t0 ∈ I0 ∩ {0, π}, β ∈ W 2,1(I0) and for almost every t ∈ I0, for all x ∈
[β(t)− δ sin t, β(t)] we have

β′′(t) + f(t, x) ≤ 0 .

Notice that this definition allows the curve x = β(t) to have angles, provided

they are downward. Also, β(0) and β(π) can be zero. In this case, condition iii)

imposes some second order condition near t = 0 or t = π but restricted to some

angular region below the curve x = β(t).

The notion of strict lower solutions is defined in a dual way.

Definition 2. A function α ∈ C([0, π]) is a strict lower solution of (4) if it

is not a solution of (4), α(0) ≤ 0, α(π) ≤ 0 and for any t0 ∈ [0, π], one of the

following is satisfied:

i) t0 ∈ ]0, π[ and D−α(t0) < D+α(t0);

ii) t0 ∈ {0, π} and α(t0) < 0;

iii) There exist an interval I0 ⊂ [0, π] and δ > 0 such that t0 ∈ int I0 or

t0 ∈ I0 ∩ {0, π}, α ∈ W 2,1(I0) and for almost every t ∈ I0, for all x ∈
[α(t), α(t) + δ sin t] we have

α′′(t) + f(t, x) ≥ 0 .

Notice that if f is continuous, a function β ∈ C2([0, π]) such that β(0) > 0,

β(π) > 0 and

∀ t ∈ ]0, π[ β′′(t) + f(t, β(t)) < 0

is a strict upper solution. However, if f is not continuous but Lp-Carathéodory,

this is not the case anymore. In fact, even the stronger condition

for a.e. t ∈ [0, π] β′′(t) + f(t, β(t)) ≤ −1
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does not prevent solutions x(t) of (4) to be tangent to the curve x = β(t) from

below. This is for example the case for the bounded function

f(t, x) :=−1 x ≥ 1 ,

:= sin t−x2

1−sin t 1 > x ≥ sin t ,
:= sin t sin t > x ,

β(t) ≡ 1 and x(t) ≡ sin t.

To obtain such a result, one has to impose additional assumptions on f such

as:

(H-1) For any t0 ∈ [0, π] and any bounded set E ⊂ IR, there exists an interval

I0 with t0 ∈ I0 and

∀ ε>0, ∃ δ>0, for a.e. t∈I0, ∀ y∈E, ∀x∈ [y− δ sin t, y] f(t, x)− f(t, y) ≤ ε .

Typical examples of Lp-Carathéodory functions that satisfy (H-1) are f(t, x) =

g(x) + h(t), with g continuous and h ∈ Lp.

Lower solutions must be smaller than upper ones. To make this precise we

introduce the following notation.

Definition 3. Let x, y ∈ C([0, π]). We write x ≺ y if there exists ε > 0 such

that for any t ∈ [0, π]

y(t)− x(t) ≥ ε sin t .

The main tool in this paper is the following result, the proof of which is given

for the sake of completeness.

Theorem 1. Assume f satisfies Lp-Carathéodory conditions. Let α, β be

strict lower and upper solutions of (4) such that α ≺ β. Then, the problem (4)

has at least one solution x1 ∈W 2,p(0, π) such that

∀ t ∈ [0, π] α(t) ≤ x1(t) ≤ β(t) .

If, moreover, there exists r > 0, such that for all s < 0 and all solutions x of

x′′ + f(t, x) = s ,

x(0) = 0 , x(π) = 0 ,

we have

‖x‖∞ < r ,

then the problem (4) has at least two solutions x1, x2 ∈W 2,p(0, π).
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Proof: Observe first that the problem (4) is equivalent to the fixed point

equation

x = Tx :=

∫ π

0
G(t, s) f(s, x(s)) ds ,

where G(t, s) is the Green function of the boundary value problem

−x′′ = h(t) ,

x(0) = 0 , x(π) = 0 .

The operator

T : C10 ([0, π])→ C10 ([0, π])

is completely continuous. Moreover, for every r > 0, there exists R > 0 such that

every solutions x of (4) with ‖x‖∞ < r satisfies ‖x′‖∞ < R.

Let us consider the modified problem

(5)
x′′ + f(t, γ(t, x)) = 0 ,

x(0) = 0 , x(π) = 0 ,

where
γ(t, x) = α(t), if x < α(t) ,

= x, if α(t) ≤ x ≤ β(t) ,
= β(t), if x > β(t) .

We will prove that, if x is a solution of (5) then α ≺ x. In a similar way, we

prove that also x ≺ β. Assume by contradiction that α 6≺ x, i.e.

inf
t

x(t)− α(t)

sin t
≤ 0 .

This implies that either there exists t̂∈]0, π[ such that mint(x−α)=x(t̂)−α(t̂)≤0

or for any t ∈ ]0, π[, x(t)− α(t) > 0 and for t̂ = 0 or π,

lim inf
t→t̂

x(t)− α(t)

sin t
= 0 .

In both cases, one deduces that if x−α has a derivative at t= t̂, then (x−α)′(t̂)=0.

Observe next that we cannot have x(t)− α(t) = x(t̂)− α(t̂) ≤ 0 for all t ∈ [0, π].

This would imply x(t) = α(t) and α would be a solution of (4). Hence there

exists t such that x(t) − α(t) > x(t̂) − α(t̂). Assume t > t̂, the other case being

similar, and define

t0 = inf
{
t > t | x(t)− α(t) = x(t̂)− α(t̂)

}
∈ ]0, π] .
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From the definition of strict lower solutions and the contradiction assumption,

we can choose I0, δ and t1 ∈ I0 with t1 < t0 such that

i) for every t ∈ ]t1, t0[, x(t) ≤ α(t) + δ sin t,

ii) (x− α)′(t1) < 0, (x− α)′(t0) = 0 and

iii) for a.e. t ∈ ]t1, t0[, α
′′(t) + f(t, γ(t, x(t))) ≥ 0.

Hence we have the contradiction

0 < (x− α)′ (t0)− (x− α)′ (t1) =

∫ t0

t1

[
−f(t, γ(t, x(t)))− α′′(t)

]
dt ≤ 0 .

Now, let us define the operator

T : C10 ([0, π])→ C10 ([0, π]) : x→ Tx :=

∫ π

0
G(t, s) f(s, γ(s, x(s))) ds .

Observe that there exists R > 0 such that T (C10 ([0, π])) ⊂ B(0, R). So by the

properties of the degree,

deg(I − T ,B(0, R)) = 1 .

Moreover, if R is large enough, every fixed point of T is in

Ω :=
{
x ∈ C10 ([0, π]) : α ≺ x ≺ β, ‖x′‖ < R

}
,

whence

deg(I − T ,Ω) = deg(I − T ,B(0, R)) = 1 .

Finally, as T and T coincide on Ω we obtain

deg(I − T,Ω) = deg(I − T ,Ω) = 1 .

In this way, we have the existence of a solution x1 of (4) such that, for all t ∈ [0, π],

α(t) ≤ x1(t) ≤ β(t).

Let us prove the second part of the result. Without loss of generality, we can

assume r > max{‖α‖∞, ‖β‖∞}. Let R be such that, every solution x of (4) with

‖x‖∞ < r satisfies ‖x′‖∞ < R. We will prove

deg(I − T,Ω1) = 0 ,

where

Ω1 :=
{
x ∈ C10 ([0, π]) : ‖x‖∞ < r, ‖x′‖∞ < R

}
.

Hence, as Ω ⊂ Ω1 we have, by excision, the existence of a second solution.
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We have assumed that, for all s < 0, the solutions x of

x′′ + f(t, x) = s ,

x(0) = 0 , x(π) = 0 ,

i.e. the solutions of

(6) x = Tx− s
t(π − t)

2

are such that

‖x‖∞ < r .

We can assume this is true also for s = 0. Otherwise the result is proved.

As T maps bounded sets into bounded sets, there exists r1 > 0 such that, for

all x ∈ Ω1,

‖x− Tx‖∞ < r1 .

Hence, if s is large enough, the problem (6) has no solution and

deg(I − T,Ω1) = deg

(
I − T + s

t(π − t)

2
,Ω1

)
= 0 .

We obtain the existence of the second solution by the excision property of the

degree.

Remark. For the first part of this theorem to hold, it is not necessary to

assume the upper and lower solutions to be strict.

3 – Existence of strict upper and lower solutions

In this section, we consider the boundary value problem

(7)
x′′ + x+ f(t, x) = µ+ ν ϕ(t) ,

x(0) = 0 , x(π) = 0 ,

where ϕ(t) =
√
2
π sin t and f verifies Lp-Carathéodory conditions.

Proposition 2. Let β be a solution of problem (7) with (µ, ν) = (µ0, ν0).

Assume (H-1) is satisfied.

Then β is a strict upper solution of (7) for any (µ, ν) such that

µ > µ0 and µ+

√
2

π
ν > µ0 +

√
2

π
ν0 .
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Proof: Let ε > 0 be such that

µ ≥ µ0 + ε and µ+

√
2

π
ν ≥ µ0 +

√
2

π
ν0 + ε .

It follows that, in case ν ≤ ν0,

µ+ ν ϕ(t) ≥ µ0 + ν0 ϕ(t) +

(√
2

π
− ϕ(t)

)
(ν0 − ν) + ε ≥ µ0 + ν0 ϕ(t) + ε ,

and if ν > ν0,

µ+ ν ϕ(t) = µ0 + ν0 ϕ(t) + (µ− µ0) + (ν − ν0)ϕ(t) ≥ µ0 + ν0 ϕ(t) + ε .

For any t0 ∈ [0, π], we can find from (H-1) an interval I0 containing t0 and

δ > 0, such that for a.e. t ∈ I0 and all x ∈ [β(t)− δ sin t, β(t)], we have f(t, x)−
f(t, β(t)) ≤ ε. Hence, for such (t, x),

β′′(t) + x+ f(t, x)− (µ+ ν ϕ(t)) ≤ β ′′(t) + β(t) + f(t, β(t)) + (x− β(t))

+
(
f(t, x)− f(t, β(t))

)
− (µ0 + ν0 ϕ(t))− ε

≤ 0

and the thesis follows.

It is easy to find strict upper solutions for large values of µ.

Proposition 3. Let f satisfy Lp-Carathéodory conditions together with

(H-1). Then, for any ν ∈ IR, if µ is large enough, the problem (7) has a strict

upper solution.

Proof: Let m ∈ L1(0, π) be such that for a.e. t ∈ [0, π] and all x ∈ [−1, 1],
|f(t, x)| ≤ m(t) and let K > 0 be such that for any r ∈ L1(0, π) with r = 0 (see

(3)), the solution of

(8)
u′′ + u+ r(t) = 0 ,

u(0) = 0 , u(π) = 0 ,

with u = 0, verifies

‖u‖∞ ≤ K ‖r‖L1 .

Next, we choose p ∈ C([0, π]) such that ‖m− p‖L1 < 1
3K and define β to be the

solution of (8) with r = m− p− (m− p)ϕ. We have ‖β‖∞ ≤ 1 and therefore

β′′(t) + β(t) + f(t, β(t)) ≤ β ′′(t) + β(t) +m(t)

= p(t) + (m− p)ϕ(t) ≤ µ0 + ν ϕ(t)
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if µ0 is large enough. As in the proof of Proposition 2, we deduce now that β is

a strict upper solution for µ > µ0.

To build strict lower solutions, we need the nonlinearity to be large enough

for large negative values of x.

Proposition 4. Let f satisfy Lp-Carathéodory conditions. Assume

(H-2) There exist ν̂ ∈ IR and a function h ∈ L1(0, π) such that

∫ π

0
h(t)ϕ(t) dt > ν̂

and

(9) lim inf
x→−∞

f(t, x) ≥ h(t)

uniformly in t.

Then, for any z ∈ C10 ([0, π]) and each (µ, ν) such that

2

√
2

π
µ+ ν ≤ ν̂

the problem (7) has a strict lower solution α such that

α ≺ z .

Proof: Let us choose ε > 0 such that

2

√
2

π
ε <

1

2

[∫ π

0
h(t)ϕ(t) dt− 2

√
2

π
µ− ν

]
.

From (9), we can pick r > 0 such that for a.e. t and all x ≤ −r,

(10) f(t, x) ≥ h(t)− ε .

From the Carathéodory conditions and (10), there exists m ∈ L1(0, π) such that

for a.e. t and all x ∈ ]−∞, r]

f(t, x) ≥ −m(t) .

Let us choose next δ > 0 small enough so that

∫

Fδ

(
m(t) + h(t)

)
ϕ(t) dt <

1

2

[∫ π

0
h(t)ϕ(t) dt− 2

√
2

π
µ− ν

]
,
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where Fδ :=[0, δ] ∪ [π − δ, π]. The function

g(t) :=−m(t)− µ, if t ∈ Fδ ,
:=h(t)− (µ+ ε), if t ∈ Iδ = [δ, π − δ] ,

is such that

g =

∫ π

0
g(t)ϕ(t) dt

=

[∫ π

0
h(t)ϕ(t) dt− 2

√
2

π
µ

]
−

∫

Fδ

(
m(t) + h(t)

)
ϕ(t) dt− ε

∫

Iδ

ϕ(t) dt > ν .

Define now w to be the solution of

w′′ + w + g(t)− g ϕ(t) = 0 ,

w(0) = 0 , w(π) = 0 ,

and choose a negative enough so that

α(t) := aϕ(t) + w(t) ≤ 0 on Fδ ,
:= aϕ(t) + w(t) ≤ −2r on Iδ .

The function α is a strict lower solution since

α(0) = α(π) = 0

and for a.e. t ∈ [0, π] and all x ∈ [α(t), α(t) + r sin t],

α′′(t) + x+ f(t, x)− µ− ν ϕ(t) ≥
≥ α′′(t) + α(t) + g(t)− ν ϕ(t) = (g − ν)ϕ(t) ≥ 0 .

4 – Existence results

Theorem 5. Let f satisfy Lp-Carathéodory conditions together with (H-1)

and (H-2).

Then, there exists a nonincreasing, Lipschitz function µ0 : IR → IR ∪ {−∞}
with

2

√
2

π
µ0(ν) + ν ≤ ν̂

such that
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i) if µ < µ0(ν), the problem (7) has no solution;

ii) if µ0(ν) < µ ≤ 1
2

√
π
2 (ν̂ − ν), the problem (7) has at least one solution.

Proof: Step 1 – Definition of µ0. Define µ0(ν) ∈ IR ∪ {−∞} by

µ0(ν) := inf
{
µ | 2

√
2

π
µ+ ν = ν̂ or (7) has a solution for (µ, ν)

}
.

Let (µ, ν) be given such that

µ0(ν) < µ ≤ 1

2

√
π

2
(ν̂ − ν) .

By definition, there exists µ1 ∈ [µ0(ν), µ[ and a solution x1 of (7) for (µ1, ν). From

Proposition 2, x1 is a strict upper solution of (7) for (µ, ν), from Proposition 4

there exists a strict lower solution α ≺ x1 and at last we obtain from the first

part of Theorem 1 the existence of a solution of (7) for the given (µ, ν).

Step 2 – The function µ0(ν) is nonincreasing and Lipschitz. Let ν2 be such

that µ0(ν2) <
1
2

√
π
2 (ν̂ − ν2). For any η > 0, small enough, there exist

µ2 ∈
[
µ0(ν2), µ0(ν2) + η

]
⊂

[
µ0(ν2),

1

2

√
π

2
(ν̂ − ν2)

]

and a solution x2 of (7) for (µ2, ν2). Let ν1 < ν2 be close enough to ν2. From

Propositions 2 and 4, x2 is a strict upper solution of (7) for (µ1, ν1) such that µ1 >

µ2+
√
2
π (ν2−ν1) and there exists a strict lower solution α ≺ x2 if 2

√
2
πµ1+ν1 ≤ ν̂.

This together with the first part of Theorem 1 implies µ0(ν1) ≤ µ1. Further, we

can choose µ1 so that µ1 ≤ µ2 +
√
2
π (ν2 − ν1) + η. It follows that

µ0(ν1) ≤ µ1 ≤ µ0(ν2) +

√
2

π
(ν2 − ν1) + 2η

and as η is arbitrary,

µ0(ν1) ≤ µ0(ν2) +

√
2

π
(ν2 − ν1) .

On the other hand, there exists a strict upper solution β of (7) for (µ2, ν2)

such that µ2 > µ0(ν1). Using the same arguments, it follows that

µ0(ν2) ≤ µ0(ν1) .

Hence, the claim follows.
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Notice that this theorem allows two degenerate cases.

a) The function f(t, x) :=−x satisfies (H-1) and (H-2) and the corresponding

problem (7) has a unique solution for any (µ, ν), i.e. µ0(ν) = −∞.

b) The function f(t, x) := 0 satisfies also (H-1) and (H-2) and (7) has a solu-

tion if and only if

0 =

∫ π

0
(µ+ ν ϕ(t))ϕ(t) dt = 2

√
2

π
µ+ ν .

In this case, h(t) ≤ 0, we must choose ν̂ < 0 and there is no solution if

µ ≤ 1

2

√
π

2
(ν̂ − ν) < −1

2

√
π

2
ν ,

i.e. µ0(ν) =
1
2

√
π
2 (ν̂ − ν).

To rule out the case where µ0(ν) = −∞, we shall impose some lower bound

on f .

Theorem 6. Let f satisfy Lp-Carathéodory conditions together with (H-1),

(H-2) and

(H-3) There exists k ∈ L1(0, π) such that for a.e. t ∈ [0, π] and all x ∈ IR,

f(t, x) ≥ k(t).

Then, there exists a nonincreasing Lipschitz function µ0 : IR→ IR with

2

√
2

π
µ0(ν) + ν ≤ ν̂

such that

i) if µ < µ0(ν), the problem (7) has no solution;

ii) if µ0(ν) < µ ≤ 1
2

√
π
2 (ν̂ − ν), the problem (7) has at least one solution.

Proof: Claim 1 – Given any ν ∈ IR, problem (7) has no solution for µ

negative enough. For any solution x of (7), multiplying the equation by ϕ and

integrating, one obtains a lower bound on µ

∫ π

0
k(t)ϕ(t) dt ≤

∫ π

0
f(t, x(t))ϕ(t) dt = 2

√
2

π
µ+ ν .

Step 2 – The remainder of the proof follows from Theorem 5.
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To make sure that there is a non empty region

µ0(ν) < µ ≤ 1

2

√
π

2
(ν̂ − ν) ,

where there is at least one solution, we reinforce the assumption on the nonlin-

earity for large negative values of x.

Theorem 7. Let f satisfy Lp-Carathéodory conditions together with (H-1),

(H-3) and

(H-2*) lim inf
x→−∞

f(t, x) = +∞, uniformly in t.

Then, there exists a nonincreasing Lipschitz function µ0 : IR→ IR such that

i) if µ < µ0(ν), the problem (7) has no solution;

ii) if µ0(ν) < µ, the problem (7) has at least one solution.

Proof: From Proposition 3, for any ν ∈ IR, there exists µ large enough so

that problem (7) has a strict upper solution β. Let us take ν̂ > 0 large enough

so that

2

√
2

π
µ+ ν < ν̂ .

Notice that for such a ν̂, assumption (H-2) is satisfied (choose h(t) =
√

π
2 ν̂).

Hence from Proposition 4, the problem (7) has, for (µ, ν), a strict lower solution

α such that α ≺ β. We deduce then from Theorem 1 the existence of a solution

of (7). Also, from Theorem 6, the function µ0(ν) exists such that µ0(ν) ≤ µ and

i) if µ < µ0(ν), the problem (7) has no solution;

ii) if µ0(ν) < µ ≤ 1
2

√
π
2 (ν̂ − ν), the problem (7) has at least one solution.

As ν̂ is arbitrary large, the conclusion holds for all µ > µ0(ν).

5 – Multiplicity results

Consider the problem (7) with

f(t, x) :=−x if x ≤ 0 ,
:= 0 if x > 0 .

It is easy to see that µ0(0) = 0. First, one proves there is no solution if ν = 0 and

µ < 0. Next, considering a solution for ν = 0 and µ > 0, the distance between
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two consecutive zeros of a positive hump is larger than π. Hence, the solution

has to be negative and is unique. This means that for ν = 0, Theorem 7 gives an

exact count of the number of solutions. To obtain a multiplicity result, we will

have to reinforce (H-2) and (H-3), assuming a better control on the nonlinearity

for large values of x.

Theorem 8. Let f satisfy Lp-Carathéodory conditions together with (H-1)

and

(H-4) There exist ν̂ ∈ IR and a function h ∈ L1(0, π) such that

∫ π

0
h(t)ϕ(t) dt > ν̂

and

lim inf
|x|→∞

f(t, x) ≥ h(t)

uniformly in t.

Then there exists a nonincreasing Lipschitz function µ0 : IR→ IR with

2

√
2

π
µ0(ν) + ν ≤ ν̂

such that

i) if µ < µ0(ν), the problem (7) has no solution;

ii) if µ = µ0(ν) <
1
2

√
π
2 (ν̂ − ν), the problem (7) has at least one solution;

iii) if µ0(ν) < µ ≤ 1
2

√
π
2 (ν̂ − ν), the problem (7) has at least two solutions.

To prove this result, we will need the following lemma which provides the

necessary a-priori bounds to apply Theorem 1.

Lemma 9. Suppose the assumptions of Theorem 8 are verified. Then, for

all ν, there exists r > 0, such that for all µ with 2
√
2
πµ+ ν ≤ ν̂ and all solution

x of (7), we have

‖x‖∞ < r .

Proof: Let x be a solution of (7) for (µ, ν) such that

2

√
2

π
µ+ ν ≤ ν̂ .
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Let us write x(t) = xϕ(t) + x̃(t), with x ∈ IR and
∫ π
0 x̃(t)ϕ(t) dt = 0.

It is known [11] that there exists K > 0 such that

‖x̃‖∞ ≤ K

∫ π

0
|x′′(t) + x(t)|ϕ(t) dt .

Using (H-4) and the Carathéodory conditions, we can find m ∈ L1(0, π) such

that

(11) for a.e. t ∈ [0, π], ∀x ∈ IR f(t, x) ≥ m(t) .

Hence, we compute

|x′′(t) + x(t)| ≤ |f(t, x(t))|+ |µ|+ |ν|ϕ(t)
≤ f(t, x(t))−m(t) + |m(t)|+ |µ|+ |ν|ϕ(t)

and
∫ π

0
|x′′(t) + x(t)|ϕ(t) dt ≤

≤
∫ π

0
f(t, x(t))ϕ(t) dt+ 2

∫ π

0
|m(t)|ϕ(t) dt+ 2

√
2

π
|µ|+ |ν|

≤
∫ π

0
(µ+ ν ϕ(t))ϕ(t) dt+ 2

∫ π

0
|m(t)|ϕ(t) dt+ 2

√
2

π
|µ|+ |ν| .

Hence, we obtain

‖x̃‖∞ ≤ K

[
2

√
2

π
(µ+ |µ|) + (ν + |ν|) + 2

∫ π

0
|m(t)|ϕ(t) dt

]

≤ 2K

[
|ν̂ − ν|+ |ν|+

∫ π

0
|m(t)|ϕ(t) dt

]
=: r .

Assume now there exists (µk)k with 2
√
2
πµk + ν ≤ ν̂ and xk = xkϕ + x̃k

solution of (7) for (µk, ν) such that ‖xk‖∞ →∞. From the first part of the proof,

‖x̃k‖∞ is bounded and |xk| → ∞. Going to a subsequence, we have xk(t) → ∞
(or xk(t)→ −∞) for all t ∈ ]0, π[. Hence, using (11), Fatou’s theorem and (H-4),

we obtain

ν̂ ≥ lim inf
k→∞

(
2

√
2

π
µk + ν

)
= lim inf

k→∞

∫ π

0
f(t, xk(t))ϕ(t) dt

≥
∫ π

0
h(t)ϕ(t) dt > ν̂

which is a contradiction.
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Proof of Theorem 8: Let µ0 be defined from Theorem 6 and (µ, ν) be such

that µ0(ν) < µ ≤ 1
2

√
π
2 (ν̂ − ν). From the proof of Theorem 5, we can find strict

lower and upper solutions α ≺ β. From Lemma 9, there exists r > 0, such that

for all s ≤ 0 and all solutions x of

x′′ + x+ f(t, x) = µ+ ν ϕ(t) + s ,

x(0) = 0 , x(π) = 0 ,

we have ‖x‖∞ < r. Hence by Theorem 1, the problem (7) has at least two

solutions.

Let now (µ, ν) be such that µ = µ0(ν) <
1
2

√
π
2 (ν̂−ν). We can find µn > µ0(ν)

such that limn→∞ µn = µ0(ν) and solutions xn of (7) for (µn, ν). From Lemma 9,

there exists r > 0 such that ‖xn‖∞ ≤ r and from Carathéodory condition, we

have m ∈ L1(0, π) with |x′′n(t)| ≤ m(t). Using Arzela–Ascoli Theorem, we can

find a subsequence (xnk)k that converges in C1 to some function x ∈ C1. Going

to the limit in (7), it is easy to see that x solves (7) for (µ, ν) = (µ0(ν), ν).

Just as for Theorem 7, we can obtain a result for all values of (µ, ν).

Theorem 10. Let f satisfy Lp-Carathéodory conditions together with (H-1)

and

(H-4*) lim inf |x|→∞ f(t, x) = +∞, uniformly in t.

Then there exists a nonincreasing Lipschitz function µ0 : IR→ IR such that

i) if µ < µ0(ν), the problem (7) has no solution;

ii) if µ = µ0(ν), the problem (7) has at least one solution;

iii) if µ0(ν) < µ, the problem (7) has at least two solutions.

The proof of this result is similar to the proof of Theorem 7 and will be

omitted.

In case µ = 0, Theorem 10 reduces to the following result which extends [5]

to Lp-Carathéodory functions.

Corollary 11. Let f satisfy Lp-Carathéodory conditions together with (H-1)

and (H-4*).

Then there exist ν0 and ν1 ≥ ν0 such that

i) if ν < ν0, the problem
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(12)
x′′ + x+ f(t, x) = ν ϕ(t) ,

x(0) = 0 , x(π) = 0 ,

has no solution;

ii) if ν0 ≤ ν ≤ ν1, the problem (12) has at least one solution;

iii) if ν1 < ν, the problem (12) has at least two solutions.

Notice that ν0 is different from ν1 in case µ0(ν) is not a decreasing function.

6 – Decreasing of µ0

In this section, we give regularity assumptions on f which imply that the

function µ0 given by Theorem 6 is decreasing. The first condition is a one-sided

continuity for a norm ‖x‖ := supt
|x(t)|
ϕ(t) .

Theorem 12. Let f satisfy Lp-Carathéodory conditions together with (H-1)

and (H-4). Assume

(H-5) One of the functions g(t, x) = f(t, x) or g(t, x) = −f(t, x) is such that,

given R > 0, we have

∀ ε > 0, ∃ δ > 0, for a.e. t ∈ [0, π], ∀x, y ∈ [−Rϕ(t), Rϕ(t)],

0 ≤ x− y ≤ δ ϕ(t) ⇒ g(t, y)− g(t, x) ≤ εϕ(t) .

Then, the function µ0(ν) is decreasing.

Proof: Let ν0 ∈ IR be such that

µ0(ν0) <
1

2

√
π

2
(ν̂ − ν0) .

Claim 1 – For all ν > ν0, there exists µ < µ0(ν0) and a strict upper solution β

of (7) with (µ, ν).

Assume g(t, x) = f(t, x) in (H-5). The proof is similar in case g(t, x) =

−f(t, x). From Theorem 8, there is a solution x0 of

x′′0 + x0 + f(t, x0) = µ0(ν0) + ν0 ϕ(t) ,

x0(0) = 0 , x0(π) = 0 .
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Also, there exists K̃ > 0 such that for every m > 0, the solution w of

w′′ + w = −m

(
1− 2

√
2

π
ϕ(t)

)
,

w(0) = 0 , w(π) = 0 ,

with w = 0, is such that, for all t ∈ [0, π],

|w(t)| ≤ mK̃ ϕ(t) .

Define

β(t) :=x0(t) + w(t)−mK̃ ϕ(t) ,

where m ∈ ]0, 1] will be chosen later. Observe that

0 ≤ x0(t)− β(t) ≤ 2mK̃ ϕ(t) .

Let R > 0 be such that, for all m ∈ ]0, 1],

|x0(t)| < Rϕ(t) , |β(t)| < Rϕ(t) .

Define ε > 0 such that

ν0 + ε < ν

and pick δ > 0 from assumption (H-5). Next, we choose m ∈ ]0, 1] small enough

so that

2mK̃ ≤ δ , ν0 + 2

√
2

π
m+ ε ≤ ν

and set µ1 :=µ0(ν0)−m. Notice that

x0(t)− β(t) ≤ δ ϕ(t) ,

whence we compute

β′′(t) + β(t) + f(t, β(t)) =

= x′′0(t) + x0(t) + w′′(t) + w(t) + f(t, β(t))

= µ0(ν0) + ν0 ϕ(t)−m
(
1− 2

√
2
πϕ(t)

)
+ f(t, β(t))− f(t, x0(t))

≤
(
µ0(ν0)−m

)
+

(
ν0 + 2

√
2
π m+ ε

)
ϕ(t)

≤ µ1 + ν ϕ(t) .



298 C. DE COSTER and P. HABETS

Using (H-1), we deduce now as in Proposition 2 that β is a strict upper solution

for µ ∈ ]µ1, µ0(ν0)] and ν.

Step 2 – If 2
√
2
π µ + ν ≤ ν̂, there exists, from Proposition 4, a strict lower

solution α ≺ β and we obtain, from the first part of Theorem 1, the existence

of a solution of (7) for the given (µ, ν). This implies µ0(ν) ≤ µ < µ0(ν0). If

2
√
2
πµ+ ν > ν̂, we have

2

√
2

π
µ0(ν0) + ν > ν̂ ≥ 2

√
2

π
µ0(ν) + ν

and also µ0(ν) < µ0(ν0).

The assumption (H-5) can be thought of as some one-sided uniform continuity

assumption when t 6= 0, π, together with a Lipschitz condition near zero. More

precisely, we can prove the following result.

Proposition 13. Let f(t, x) be a continuous function and

(H-5*) There exist L > 0 and r > 0 such that

f(t, x) + Lx or − f(t, x) + Lx

is nondecreasing for a.e. t ∈ [0, π] and x ∈ [−r, r].

Then assumption (H-5) holds.

Proof: Assume f(t, x) + Lx is nondecreasing. Let R > 0 be given and

choose τ ∈ ]0, π
2 ] so that Rϕ(τ) < r. For t ∈ Fτ :=[0, τ ]∪ [π− τ, π] and all x, y in

[−Rϕ(t), Rϕ(t)], we have

0 ≤ x− y ⇒ f(t, y)− f(t, x) ≤ L(x− y) .

If t ∈ [τ, π − τ ], we compute from the continuity of f

(13) ∀ ε′ > 0, ∃ δ2 > 0 , |x− y| < δ2 ⇒ f(t, y)− f(t, x) ≤ ε′ ≤ ε′

ϕ(τ)
ϕ(t) .

Now, given ε, we choose δ1 and ε′ small enough so that

Lδ1 < ε ,
ε′

ϕ(τ)
< ε ,

we choose δ2 from (13) and δ :=min(δ1, δ2
√

π
2 ). Now, it is easy to see that if

|x|, |y| < Rϕ(t) are such that 0 ≤ x− y ≤ δ ϕ(t), we have:
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for t ∈ Fτ ,

f(t, y)− f(t, x) ≤ Lδ ϕ(t) < εϕ(t) ,

and for t ∈ [τ, π − τ ], 0 < x− y < δ ϕ(t) implies |x− y| < δ2 and

f(t, y)− f(t, x) ≤ ε′

ϕ(τ)
ϕ(t) < εϕ(t) .

The following corollary is a direct consequence of Theorem 12. It improves

a result of P. Habets and P. Omari [9] and also the corresponding one in R.

Chiappinelli–J. Mawhin–R. Nugari [5].

Corollary 14. Let f satisfy Lp-Carathéodory conditions together with

(H-1), (H-4*) and (H-5). Then there exists ν0 ∈ IR such that

i) for ν < ν0, the problem (12) has no solution;

ii) for ν = ν0, the problem (12) has at least one solution;

iii) for ν > ν0, the problem (12) has at least two solutions.

Our second result considers a Hölder condition on the function f .

Theorem 15. Let f be a continuous function that satisfies (H-4) and

(H-6) Either g(t, x) = f(t, x) or g(t, x) = −f(t, x) is such that, for some L ≥ 0,

α ∈ ]1/3, 1[ and r > 0, for a.e. t and all x, y ∈ [−r, r] with 0 ≤ x− y ≤ 1,

we have

g(t, x)− g(t, y) ≤ L(x− y)α .

Then, the function µ0(ν) is decreasing.

Proof: Let ν0 be such that µ0(ν0) <
1
2

√
π
2 (ν̂ − ν0). We shall prove that, for

all ν > ν0, there exists µ < µ0(ν0) such that the problem (7) has a strict upper

solution β. Then, by Proposition 4 there exists a strict lower solution α ≺ β and

we obtain, from the first part of Theorem 1, the existence of a solution of (7) for

the given (µ, ν).

Case 1 – Assume g(t, x) = f(t, x). Let ν > ν0 and x0 be a solution of

(14)
x′′ + x+ f(t, x) = µ0(ν0) + ν0 ϕ(t) ,

x(0) = 0 , x(π) = 0 .
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Let τ ≤ π/2 be such that |x0(t)| ≤ r/2 on [0, τ ] ∪ [π − τ, π] and R > max |x0(t)|.
By continuity, we have δ such that, if |x|, |y| ≤ R+1, |x−y| ≤ δ and t ∈ [τ, π−τ ],

|f(t, y)− f(t, x)| ≤ (ν − ν0)

2
ϕ(τ) .

Let ε > 0 be a quantity to be chosen later but small enough so that

(15) ε ≤ r

2
, ε ≤ 1 and ε ≤ δ .

Let also A :=(L+ 1) εα. The problem

w′′ + w = −A ,

w(0) = 0 , w(t1) = ε , w′(t1) = 0 ,

has a solution

w(t) :=−A+A cos t+ (A+ ε) sin t1 sin t

with t1 such that

cos t1 :=
A

A+ ε
, i.e. ϕ(t1) =

√
2

π

√
ε2 + 2 εA

A+ ε
= O(ε

1−α
2 ) .

Let us choose ε small enough so that t1 ≤ τ . Next we define

w(t) :=w(t), if t ∈ [0, t1] ,
:= ε, if t ∈ [t1, π − t1] ,
:=w(π − t), if t ∈ [π − t1, π]

and β(t) :=x0(t) + w(t). Observe that β ∈ C1([0, π]) ∩W 2,1(0, π) and for t ∈
[0, t1[∪ ]π − t1, π], we can write

β′′(t) + β(t) + f(t, β(t)) = x′′0(t) + x0(t) + f(t, x0(t)) + w′′(t) + w(t)

+ f(t, β(t))− f(t, x0(t))

≤ µ0(ν0) + ν0 ϕ(t)−A+ Lwα

≤ µ+ ν ϕ(t) +
(
µ0(ν0)− µ− εα

)
+ (ν0 − ν)ϕ(t) .

On ]t1, τ [∪ ]π − τ, π − t1[, we have

β′′(t) + β(t) + f(t, β(t)) ≤ µ0(ν0) + ν0 ϕ(t) + ε+ Lεα

≤ µ+ ν ϕ(t) +
(
µ0(ν0)− µ+ ε− εα

)

+

(
ν0 +

(L+ 1) εα

ϕ(t1)
− ν

)
ϕ(t) .
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At last, for t ∈ ]τ, π − τ [, we compute

β′′(t) + β(t) + f(t, β(t)) ≤ µ0(ν0) + ν0 ϕ(t) + ε+
(ν − ν0)

2
ϕ(τ)

≤ µ+ ν ϕ(t) +

(
µ0(ν0)− µ+ ε− (ν − ν0)

2
ϕ(τ)

)

+ (ν0 − ν) (ϕ(t)− ϕ(τ)) .

Now it is easy to see that, as α ∈ ]1/3, 1[, we can choose ε > 0 and next

µ0(ν0)− µ > 0 small enough so that in all cases

β′′(t) + β(t) + f(t, β(t)) ≤ µ+ ν ϕ(t) .

Case 2 – Assume g(t, x) = −f(t, x). Let us fix ν > ν0 and x0 solution of (14).

Next we choose, as in Case 1, τ , R and δ. At last, ε > 0 will be chosen later

but is small enough to verify (15). Let t1 :=
√
6 (L+1)−1/2 ε

1−α
2 , A :=(L+1) εα,

B :=
√
2
3 (L+ 1)

3

2 ε
3α−1

2 and consider the problem

w′′ = −A+Bt ,

w(0) = 0, w(t1) = −ε, w′(t1) = 0 .

Its solution reads

w(t) :=−A
t2

2
+B

t3

6
∈ [−ε, 0] .

Next we define

w(t) :=w(t), if t ∈ [0, t1] ,
:=−ε, if t ∈ [t1, π − t1] ,
:=w(π − t), if t ∈ [π − t1, π]

and β(t) :=x0(t) + w(t). Again, we have β ∈ C1([0, π]) ∩ W 2,1(0, π) and for

t ∈ [0, t1[, we can write

β′′(t) + β(t) + f(t, β(t)) =

= x′′0(t) + x0(t) + f(t, x0(t)) + w′′(t) + w(t) + f(t, β(t))− f(t, x0(t))

≤ µ0(ν0) + ν0 ϕ(t)−A+Bt+ L |w(t)|α

≤ µ+ ν ϕ(t) +
(
µ0(ν0)− µ− εα

)
+

(
ν0 − ν +B

t

ϕ(t)

)
ϕ(t) .
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On ]t1, τ [ we have

β′′(t) + β(t) + f(t, β(t)) ≤
≤ µ0(ν0) + ν0 ϕ(t)− ε+ Lεα

≤ µ+ ν ϕ(t) +
(
µ0(ν0)− µ− ε

)
+

(
ν0 − ν + L

εα

ϕ(t1)

)
ϕ(t) ,

and for t ∈ ]τ, π − τ [,

β′′(t) + β(t) + f(t, β(t)) ≤

≤ µ0(ν0) + ν0 ϕ(t)− ε+
ν − ν0

2
ϕ(τ)

≤ µ+ ν ϕ(t) +
(
µ0(ν0)− µ− ε

)
+ (ν0 − ν) (ϕ(t)− ϕ(τ)) .

On [π − τ, π] estimates are similar to those on [0, τ ]. It is then easy to see that

we can choose ε > 0 and next µ0(ν0)− µ > 0 both small enough so that

β′′(t) + β(t) + f(t, β(t)) ≤ µ+ ν ϕ(t) .

This result extends an idea due to C. Fabry [8].
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Institut de Mathématique Pure et Appliquée, U.C.L.,

Chemin dy cycloman 2, 1348 Louvain-la-Neuve – BELGIUM

E-mail: decoster@amm.ucl.ac.be

and

P. Habets,
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