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ON PARA-KÄHLERIAN MANIFOLDS M(J, g)
AND ON SKEW SYMMETRIC KILLING

VECTOR FIELDS CARRIED BY M

I. Mihai, L. Nicolescu and R. Rosca

Abstract: Para-complex manifolds and, in particular, para-Kählerian manifolds

have been for the first time studied by Rashevski [Ra], Libermann [L] and Patterson

[Pa]. In the last two decades, several authors have dealt with such type of manifolds, as

for instance [R1], [R2], [Cr], [GM], [RMG], [CFG] and some others. A para-Kählerian

manifold is a manifold endowed with an almost product structure (called also a para-

complex structure) J and a pseudo-Riemannian metric g, which satisfy the conditions of

compatibility g ◦ (J × J) = −g and ∇J = 0, where ∇ is the Levi–Civita connection with

respect to g.

In the present paper, adopting P. Libermann stand point, we study some prop-

erties of a para-Kählerian manifold M and emphasize the case when M carries a non

null skew symmetric Killing vector field (in the sense of R. Rosca [R4], [R5]).

1 – Preliminaries

A para-Kählerian manifold is a manifold M endowed with an almost product

structure J (i.e. an involutive endomorphism of TM) and a pseudo-Riemannian

metric g, which satisfy the conditions of compatibility

(1.1) g(JZ,Z ′) + g(Z, JZ ′) = 0 , ∇J = 0 ,

where ∇ is the Levi–Civita connection with respect to g. From these conditions,

it follows that dimM = 2m, g is neutral and

(1.2) Tr J = 0, NJ = 0, ∇Ω = 0, dΩ = 0 ,

where Ω is the symplectic form determined by J and g, i.e. Ω(Z,Z ′) = g(JZ,Z ′),

∀Z,Z ′ ∈ ΓTM (ΓTM denotes the set of sections of the tangent bundle TM).
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Following [P], we set:

Aq(M,TM) = Hom
( q∧

TM,TM
)

and notice that elements of Aq(M,TM) are vector valued q-forms (called also

TM -valued forms). Denote by [ : TM → T ∗M the g-musical isomorphism (i.e.

the canonical isomorphism defined by g) and by d∇: Aq(M,TM)→Aq+1(M,TM)

the exterior covariant derivative operator with respect to ∇. It should be noticed

that generally d∇
2

= d∇ ◦ d∇ 6= 0, unlike d ◦ d = 0. If we denote by p ∈ M the

generic element of M , then the canonical TM -valued 1-form dp ∈ A1(M,TM) is

also called the soldering form of M . Since ∇ is symmetric, one has d∇(dp) = 0.

The operator dω = d+ e(ω) acting on
∧
M is called the cohomology operator

[GL]; e(ω) means the exterior product by the closed 1-form ω ∈
∧1M , i.e. dωu =

du+ω∧u, for any u ∈
∧
M (dω ◦dω = 0). If dωu = 0, it is said that u is dω-closed

and if ω is exact, then u is said to be a dω-exact form.

Any vector field Z ∈ ΓTM such that

d∇(∇Z) = ∇2Z = σ ∧ dp ∈ A2(M,TM) ,

for some 1-form σ is said to be an exterior concurrent vector field [PRV]. The

1-form σ is called the concurrence form and is expressed by σ=f[(X), f ∈C∞M .

One may consider on M a field of adapted Witt vector frames

W = vect
{
ha, ha∗ | a ∈ {1, ...,m}; a

∗ = a+m
}
,

where h are null real vector fields which satisfy g(ha, ha∗) = 1 and all the other

products are 0. With respect to the operator J , the vector fields h satisfy

(1.3) Jha = ha , Jha∗ = −ha∗ ,

and the above relations define a J-null vector basis on M .

If W ∗ = covect{ωa, ωa∗} is the associated cobasis of W , then the soldering

form dp, the structure 2-form Ω and the metric tensor g are expressed by

dp = ωA ⊗ hA , A ∈ {a, a∗} ,(1.4)

Ω = Σωa ∧ ωa∗ ,(1.5)

g = 〈dp, dp〉 = Σωa ωa∗ ,(1.6)

which shows that the para-Hermitian metric g is exchangeable with Ω.



ON PARA-KÄHLERIAN MANIFOLDS M(J, g) 217

Let now θAB ∈
∧1M (resp. ΘA

B ∈
∧2M) be the local connection forms in the

tangent bundle TM (resp. the curvature 2-forms in TM). Then the structure

equations (E. Cartan) may be written in indexless form as:

∇h = θ ⊗ h ∈ A1(M,TM) ,(1.7)

dω = −θ ∧ ω ,(1.8)

dθ = −θ ∧ θ +Θ .(1.9)

By (1.1), (1.2) and (1.7) the connection forms θ satisfy

(1.10) θab + θb
∗

a∗ = 0 , θa
∗

b = 0 , θab∗ = 0 ,

which shows that the connection matrix Mθ is the Chern–Libermann matrix

(1.11) Mθ =

(
θab 0
0 θa

∗

b∗

)
.

Further by (1.10) and (1.9) one has

(1.12) Θa
b +Θb∗

a∗ = 0 , Θa∗

b = 0 , Θa
b∗ = 0 .

We also recall that

θR = Σθaa = −Σθa
∗

a∗ ,(1.13)

ΘR = dθR = ΣΘa
a = −ΣΘa∗

a∗(1.14)

are called the Ricci 1-form and the Ricci 2-form of M , respectively.

Denote now by

(1.15) Sp = span{ha}p, S∗
p = span{ha∗}p , ∀ p ∈M .

Then S and S∗ defines two self orthogonal distributions associated with the J-null

vector basis W = vect{hA}.

If TpM is the tangent space of M at ∀ p ∈ M , one has the standard decom-

position [L], [R1]

(1.16) TpM = Sp ⊕ S
∗
p

and

(1.17) JSp = Sp , JS∗
p = S∗

p .
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Next denote by

ψ = ω1 ∧ ... ∧ ωm ,(1.18)

ψ∗ = ωm+1 ∧ ... ∧ ω2m(1.19)

the simple unit m-forms which correspond to S and S∗ respectively. By (1.5),

(1.10) and (1.13) exterior differentiation of (1.18) and (1.19) gives

dψ = −θR ∧ ψ ,(1.20)

dψ∗ = θR ∧ ψ
∗ .(1.21)

The above equations show that both m-forms ψ and ψ∗ are exterior recurrent

[D] and have −θR and θR respectively as recurrence 1-forms. Hence ψ and ψ∗

are locally completely integrable.

Further since ψ annihilates S∗ and ψ∗ annihilates S, it follows from (1.20),

(1.21) and by Frobenius theorem that both distributions S and S∗ are involutive.

It is worth to notice that in this situation −θR (resp. θR) is an element of the

first class of cohomology H1(S∗,R) (resp. of H1(S,R)).

Moreover, since

(Sp)
⊥ = Sp, (S∗

p)
⊥ = S∗

p , Ω|Sp = 0, Ω|S∗p = 0 ,

it is seen that S and S∗ are two Lagrangian polarizations of the symplectic

structure defined by (W,Ω). We recall that in [R2], S and S∗ have been defined

as the natural polarizations of M(J, g).

We conclude this section with the following meaningful remark. Consider the

TM -valued 1-form

(1.22) Jdp = ωa ⊗ ha − ω
a∗ ⊗ ha∗ .

Clearly by (1.3) we have 〈dp, Jdp〉 = 0 and 〈dp, dp〉 = −〈Jdp, Jdp〉 = g.

Therefore one has the following.

Proposition. To any para-Kählerian manifold M(J, g) of soldering form

dp and metric tensor g corresponds by orthogonality of line elements a para-

Kählerian manifold of soldering form Jdp and metric tensor −g.
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2 – Principal Lagrangian submanifolds

Let now Y ∗ ∈ S∗ be any vector field of the self orthogonal distribution S∗.

Since iY ∗ψ = 0, then by (1.20) it quickly follows:

(2.1) LY ∗ψ = −θR(Y
∗)ψ

(L: Lie derivative), that is Y ∗ defines an infinitesimal conformal transformation

of ψ.

In similar manner, for all Y ∈ S one gets by (1.21)

(2.2) LY ψ
∗ = θR(Y )ψ∗ .

Therefore one may say that the m-form ψ (resp. the m-form ψ∗) is

S∗-conformal invariant (resp. S-conformal invariant).

Further denote by X ∈ ΓTM any vector field which annihilates the Ricci

1-form θR. Making use of (1.14) one derives from (2.1) and (2.2)

d(LXψ) = −θR ∧ LXψ +ΘR ∧ iXψ ,(2.3)

d(LXψ
∗) = θR ∧ LXψ

∗ −ΘR ∧ iXψ
∗ .(2.4)

By reference to [R3], [Pap], the above equations show that the Lie derivatives

with respect to X of both m-forms ψ, ψ∗ are exterior quasi recurrent and have

ΘR ∧ iXψ and −ΘR ∧ iXψ
∗ as exterior recurrence difference respectively.

Now, in consequence of the splitting (1.16) and of (1.4), we set

(2.5) dpS = ωa ⊗ ha , dpS∗ = ωa∗ ⊗ ha∗ ,

for the line elements of the principal Lagrangian foliations S and S∗ on M(J, g).

Operating on dpS and dpS∗ by the covariant differential operator d∇, one

easily gets

d∇(dpS) = 0 , d∇(dpS∗) = 0 .

This shows the significant fact that dpS (resp. dpS∗) is the soldering form of

the leaf MS of S through p (resp. the leaf MS∗ of S∗ through p).

Next we denote like usual by ∗ the Hodge star operator and recall that on an

m-dimensional oriented manifold M , ∗ maps scalar or TM -valued q-forms into

scalar or TM -valued (n− q)-forms.

Comming back to the case under discussion, one gets by (1.2) and (2.5)

(2.6) ∗dpS = Σ(−1)a ω1 ∧ ... ∧ ω̂a ∧ ... ∧ ωm ⊗ ha

(the roof ̂ indicates the missing term).
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Operating on (2.6) by d∇, the above relation moves after some calculations to

(2.7) d∇(∗dpS) = −θR ∧ ∗dpS .

Hence ∗dpS is an exterior recurrent TM -valued form, having −θR as recur-

rence 1-form. Therefore by reference to [Pap] one may say that line element dpS
is exterior co-recurrent.

In similar manner, one finds that the same property holds good for the line

element dpS∗ , but with θR as recurrence form.

Since dpS and dpS∗ are dual TM -valued forms, it follows, according to a

known theorem, that the necessary and sufficient condition in order that dpS and

dpS∗ be harmonic TM -valued forms onM(J, g) is that the Ricci 1-form vanishes.

In this case following [Cru], it is proved that M(J, g) is equipped with a spin

Euclidean connection.

Let denote by T⊥
pS
(MS) (resp. T

⊥
pS∗

(MS∗)) the normal space ofMS at pS ∈MS

(resp. of MS∗ at pS∗ ∈MS∗). By (1.17), one has

(2.8) JTpS (MS) = T⊥
pS
(MS) , JTpS∗ (MS∗) = T⊥

pS∗
(MS∗) .

The above prove that with respect to the para-complex operator J , MS and

MS∗ are anti-invariant submanifolds [YK] of M .

In addition, if M admits a spin Euclidean connection (i.e. θR = 0), we have

seen that the soldering forms of MS and MS∗ are harmonic. Then according to

the improper immersions theory, we agree to say that MS and MS∗ are improper

minimal submanifolds of M(J, g).

Moreover, since in the actual discussion θR = 0, it follows by (1.20) and

(1.21) that both simple unit m-forms ψ and ψ∗ are harmonic. Then since

MS ∩MS∗ = {0}, we are in the condition of Tachibana’s theorem [T] in case

of proper immersions. As a consequence of this fact, we may say that M(J, g) is

the local product

M =MS ×MS∗ ,

where MS and MS∗ are anti-invariant and improper minimal submanifolds of

M(J, g).

Summarizing, we proved the following.

Theorem. Let MS and MS∗ be the two principal Lagrangian submani-

folds of a 2m-dimensional para-Kählerian manifold M(J, g). Let θR be the Ricci

1-form on M , dpS and dpS∗ the soldering forms of MS and MS∗ and ψ (resp.ψ∗)

the volume element of MS (resp. MS∗). One has the following properties:
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i) ψ (resp. ψ∗) is S∗-conformal invariant (resp. S-conformal invariant);

ii) if X is any vector field ofM which annihilates θR, then the Lie derivatives

of ψ and ψ∗ with respect to X are quasi recurrent;

iii) dpS and dpS∗ are exterior co-recurrent with −θR and θR respectively as

recurrence forms;

iv) if M admits a spin Euclidean connection (i.e. θR = 0), then M may be

viewed as the local product

M =MS ×MS∗ ,

such that MS and MS∗ are both improper minimal and anti-invariant

submanifolds of M .

3 – J-skew symmetric Killing vector fields

We assume in this Section that a para-Kählerian manifold M(J, g) carries a

J-skew symmetric Killing vector field X. Then, following R. Rosca [R4] (see also

[DRV], [MMR]) such a vector field is defined by

(3.1) ∇X = X ∧ JX ⇔ ∇X = [(JX)⊗X − [(X)⊗ JX ,

where ∧ means the wedge product of vector fields (∧(X, ·) is a linear operator

which is skew symmetric with respect to 〈 , 〉, ∀X ∈ ΓTM).

In order to simplify, we write

(3.2) α = [(X) , β = [(JX) , 2l = ‖X‖2 .

Setting

(3.3) X = Σ(Xaha +Xa∗ha∗) ,

then since W = {h} is a Witt vector basis, it follows that

α = Σ(Xaωa∗ +Xa∗ωa) ,(3.4)

β = Σ(Xaωa∗ −Xa∗ωa) .(3.5)

In these conditions it quickly follows from (3.1)

(3.6) dl = 2lβ ⇒ dβ = 0 ,

which shows that JX is a gradient vector field.
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Next making use of the structure equations (1.7) and taking account of (3.3)

one derives

(3.7) dα = 2β ∧ α ⇔ d−2βα = 0 .

Now since β is an exact form, the above equation shows that in terms of

dω-cohomology α is a d−2β-exact form. On the other hand, since (∇J)Z = 0 and

J2 = Id, one gets from (3.1)

(3.8) ∇JX = β ⊗ JX − α⊗X .

But since by (1.1) one has α(JX) = 0, it follows from (3.8)

(3.9) ∇JXJX = −‖X‖2 JX , β(JX) = −‖X‖2

and by (3.1) one finds at once [X, JX] = 0. Then we may say that JX is affine

geodesic which commutes with X. One also checks the Ricci identity

LZg(X, JX) = g(∇ZX, JX) + g(X,∇ZJX) , Z ∈ ΓTM .

Let now Σ be the exterior differential system which defines the skew symmetric

Killing vector fieldX. By (3.6) and (3.7) it is seen that the characteristic numbers

of Σ are r = 3, s0 = 1, s1 = 2. Since r = s0 + s1, Σ is in involution in the sense

of E. Cartan [C] and we may say that the existence of X depends on 2 arbitrary

functions of 1 argument.

We denote by DX = {X, JX} the holomorphic distribution [GM] defined by

X and JX. Then on behalf of (3.1) and (3.3), if X ′, X ′′ are any vector fields of

DX one has ∇X′X ′′ ∈ DX . This as is known proves that DX is an autoparallel

foliation and that its leaves MX are totally geodesic surfaces of M . Then by

Frobenius’ theorem putM⊥
X the 2-codimensional submanifold orthogonal toMX .

Since M⊥
X is defined by α = 0, β = 0, it is seen by (3.1), (3.8) that X

and JX are geodesic normal sections of M⊥
X . Therefore we conclude by the

following significative fact: any para-Kählerian manifold M which carries a

J-skew symmetric Killing vector field X may be viewed as the local Rieman-

nian product

M =MX ×M
⊥
X ,

such that:

i) MX is a para-holomorphic totally geodesic surface tangent to X and JX;

ii) M⊥
X is a 2-codimensional totally geodesic submanifold of M .
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By (3.1) and (3.8) one has

∇JXX +∇XJX = −2 ‖X‖2X

and by (3.9) it is easily seen that the conditions:

i) X is a null vector field (see [DRV]);

ii) JX is a geodesic;

iii) X and JX are left invariant;

are mutually equivalent.

Now following [KN], if we set

(3.10) AXX = −∇XX = ‖X‖2 JX ,

one checks the general formula

1

2
LZ ‖X‖

2 = g(Z,AXX) , Z ∈ ΓTM .

Next since div JX = tr[∇JX] (Hermitian trace understood) one gets by an

easy calculation div JX = −2‖X‖2, and taking account of (3.6) one gets

(3.11) divAXX = −8l‖X‖2 = −4‖X‖2 .

Next by (3.6) one may write

∇2l = ∇‖X‖2 = 2‖X‖2 JX

(∇ denotes the gradient of a scalar) and by (3.11) one finds

(3.12) div∇‖X‖2 = −8‖X‖4 .

Since one has ‖∇‖X‖2‖2 = −4‖X‖6, it is seen by (3.12) that ‖∇‖X‖2‖2 and

div∇‖X‖2 are functions of ‖X‖2. Hence following a known definition (see also

[W]), ‖X‖2 is an isoparametric function.

Further with respect to the Witt basis one has

(3.13) ‖∇X‖2 = 2g(∇haX,∇ha∗X) = 2‖X‖4 .

But if Z ∈ ΓTM one has as is known [P], ∆‖Z‖2 = − div∇‖Z‖2 and in

consequence of (3.13) one gets

(3.14) ∆‖X‖2 = 8‖X‖4 .
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Now making use of the general Bochner formula

2〈tr∇2X,X〉+ 2‖∇X‖2 +∆‖X‖2 = 0

(for any vector field X), one finds by (3.13) and (3.14)

(3.15) 〈tr∇2X, ·〉+ 6‖X‖4 = 0 .

Recalling now that for any Killing vector field X one has

〈tr∇2X, ·〉+R(X, ·) = 0

(R denotes the Ricci tensor field of ∇), one derives at once from (3.15), that in

the case under discussion one has

R(X,X) = 6‖X‖4 ⇒ Ric(X) = 6‖X‖2

(Ric(X) is the Ricci curvature of M with respect to X).

We associate to X and JX the following two null vector fields:

(3.16) Y = X + JX ∈ S , Y ∗ = X − JX ∈ S∗ .

By (3.1) and (3.3) one gets at once

(3.17) ∇Y = (β − α)⊗ Y , ∇Y ∗ = (β + α)⊗ Y ∗ ,

which show that Y and Y ∗ are recurrent vector fields. It should be noticed, since

Y and Y ∗ are null vector fields, that they are also defined as geodesic vectors.

Moreover operating on (3.17) by d∇ a short calculation gives

d∇(∇Y ) = ∇2Y = 2(α ∧ β)Y ,

d∇(∇Y ∗) = ∇2Y ∗ = −2(α ∧ β)Y ∗ ,

which defines Y and Y ∗ also as 2-recurrent vector fields [EM].

We remark that the wedging of Y and Y ∗ is (up to 2) the covariant derivative

of JX, i.e.

∇JX =
1

2
(Y ∧ Y ∗) .

Next operating on (3.1) and (3.8) by d∇, one derives

(3.18) ∇2X = 2(α ∧ β)⊗ JX , ∇2JX = 2(α ∧ β)⊗X .
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So, if we set F = ∇X, we get

d∇
2

F = ∇2X ∧ β −∇2JX ∧ α = 0 .

Hence the d∇
2

-differential of F is closed; it follows that ∇3X is a 0-element

of A3(M,TM).

Since g(X, JX) = 0, the para-holomorphic sectional curvature KX∧JX defined

by X is expressed by

KX∧JX =
g
(
R(X, JX) JX, X

)

‖X‖2 ‖JX‖2
,

where R denotes the Riemannian curvature tensor. But

R(X, JX) JX = ∇2JX(X, JX)

and making use of (3.18) one finds

KX∧JX = ‖X‖2 =
1

6
Ric(X) ,

which relates the para-holomorphic sectional curvature defined by X to Ric(X).

We will investigate some infinitesimal transformations of the Lie algebra
∧
M ,

induced by the vector fields X and JX. By (2.7) and (3.7) one gets

LXα = 0 , LJXβ = −2‖X‖2 β ,(3.19)

LXβ = 0 , LJXα = −2‖X‖2α .(3.20)

From above it is seen that α and β are invariant by X and that JX defines

infinitesimal conformal transformations of α and β. In particular, X is a self-

invariant vector field whilst JX is a self-conformal vector field.

We recall now that the bracket [ , ] of two T ∗M -valued forms F = Ziω
i,

F ′ = Z ′
iω

′i is defined by

[F, F ′] = [Zi, Z
′
j ]ω

i ∧ ω′j

and the Lie derivative of [ , ] with respect to a vector field U is given by

LU [F, F
′] = [F,LUF

′] + [LUF, F
′] .

Comming back to the case under discussion and setting F = ∇X, F ′ = ∇JX

one gets by (3.19), (3.20)

LX [∇X,∇JX] = 0 ,(3.21)

LJX [∇X,∇JX] = −4‖X‖2 [∇X,∇JX] .(3.22)



226 I. MIHAI, L. NICOLESCU and R. ROSCA

Hence the bracket [∇X,∇JX] is invariant by X and JX defines an infinitesi-

mal conformal transformation of [∇X,∇JX] having −4‖X‖2 as conformal scalar.

Next following [LM] we denote by

Z 7→ −iZΩ = Ω[(Z) =[ Z

the symplectic isomorphism defined by the structure form of M(J, g).

Set V (resp. V∗) for the symplectic vector space (resp. its dual). Then if ω is

any form, its dual with respect to Ω is expressed by ω] : V∗ → V.

Comming back to the case under discussion one quickly gets by (1.1) and (3.3)

(3.23) β = [(JX) = −[X ⇒ LXΩ = 0 .

But since β is an exact form, it follows according to a known definition that

X is a global Hamiltonian vector field of Ω.

Further by (3.6) is proved the salient fact that 1
2 lg

‖X‖2

2 is a Hamiltonian

function of the symplectic form Ω. One may also say that X is a gradient of
1
2 lg

‖X‖2

2 .

Moreover consider the vector field

Xν = c JX + νX , c = const., ν ∈ C∞M .

One has
[Xν = −c β − ν α

and if ν satisfies

dν + 2 ν β = 0 ⇒ l ν = const. ,

then LXνΩ = 0. Hence we may say that Xν is a local Hamiltonian of Ω.

It should be noticed that if E∗Ω(M) = {df ]; f ∈
∧0M} and EΩ(M) = {ω];

ω ∈
∧1M} denote the space of globally Hamiltonian vector fields and the space

of local Hamiltonian vector fields, then as is known [G] one has E∗Ω(M) ⊂ EΩ(M).

Therefore the following theorem is proved.

Theorem. Let M(J, g) be a para-Kählerian manifold. The existence on

M of a J-skew symmetric Killing vector field X is determined by an exterior

differential system in involution.

Any M which carries such an X may be viewed as the local Riemannian

product M =MX ×M
⊥
X , such that:

1) MX is a totally geodesic para-holomorphic surface tangent to X and JX;

2) M⊥
X is a 2-codimensional totally geodesic submanifold of M .
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The following properties are induced by X:

i) JX is an affine geodesic which commutes with X;

ii) ‖X‖2 is an isoparametric function and the Ricci curvature Ric(X) of M

with respect to X and the para-holomorphic sectional curvature KX∧JX

defined by X are related by

Ric(X) = 6‖X‖2 = 6KX∧JX ;

iii) with X are associated two null (real) vector fields Y = X + JX, Y ∗ =

X − JX which enjoy the property to be 1-recurrent and 2-recurrent;

iv) the dual form [(X) = α (resp. [(JX) = β) of X (resp. JX) are invariant

by X and JX defines an infinitesimal conformal transformation of both

α and β, having −2‖X‖2 as conformal scalar;

v) X is a global Hamiltonian vector field of Ω and any vector field Xν =

c JX + νX (c = conts., ν ∈ C∞M) such that ν‖X‖2 = const. is a local

Hamiltonian;

vi) the Lie bracket [∇X,∇JX] is invariant by X, that is LX [∇X,∇JX] = 0.
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