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COMPLEX POWERS OF THE WAVE OPERATOR

M.S. Joshi

1 – Introduction

In the late 1940s, Marcel Riesz in his paper “L’intégrale de Riemann–Liouville

et le Problème de Cauchy” ([7]) constructed a holomorphic family of kernels, Ks,

s ∈ C, associated to the wave operator, tu, on the product of a Riemannian

manifold and R which can be regarded as its complex powers.

The family has the properties

K1 = tu ,

Kr ◦Ks = Kr+s , r, s ∈ C ,

K0 = Id ,

and K−1 equals the forward fundamental solution of the wave operator. Our

purpose, in this paper, is to give a new direct and short construction and to use

this construction to obtain a good understanding of the micro-local properties of

these kernels. We proceed by using a modification of the method of descent to

construct the kernels.

The complex powers of elliptic operators and their micro-local properties are

well understood — Seeley showed that they form a holomorphic family of pseudo-

differential operators in [8]. However for the wave operator, it is clear that such

a result can not be true as its fundamental solutions have singularities which are

not on the diagonal reflecting the fact it is not hypo-elliptic and so even the −1th

power is not pseudo-differential.

In fact, the forward fundamental solution lies in a class of distributions which

is now well understood. It is a paired Lagrangian distribution or a pseudo-

differential operator with singular symbol. That is its wavefront set lies in a
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union of two Lagrangian submanifolds, the conormal bundle to the diagonal, ∆,

and the conormal bundle to the light cone, C, and it is a Lagrangian distribution

away from the intersection of these two submanifolds and its behaviour at the

intersection is controlled by the behaviour elsewhere (see for example [3] or [5].)

This is therefore a natural class in which to look for the complex powers. We

show that

Ks ∈ I
2s,s− 1

2

phg (N∗(∆), N∗(C))

and compute the principal symbol on each Lagrangian submanifold. We thus

achieve a good micro-local understanding of the complex powers. For the reader

not familiar with paired Lagrangian distributions, this implies that if P is a zeroth

order pseudo-differential operator which is smoothing near N ∗(∆) ∩N∗(C) then

PKs ∈ I
2s(N∗(∆)) + Is−

1
2 (N∗(C))

and in addition nothing special happens at the intersection.

We set about proving this by using the theory of Fourier integral operators

to reduce to the constant coefficient case. We understand the constant coeffi-

cient case by showing an equivalence with an alternative definition in terms of

the inverse Fourier transform of a regularisation of (τ 2 − ξ2)s. This allows us

to determine the micro-local properties directly and to compute the principal

symbols.

2 – Complex powers of the wave operator

In this section, we define the complex powers of the wave operator on the

cartesian product of R and a Riemannian manifold M ; we then proceed to show

that they form a holomorphic family satisfying the group law.

We use the holomorphic family of distributions, χα+, on R these are a holo-

morphic extension of the distributions

χa+ = H(x)xa/Γ(a+ 1) , <a > −1 ,

where H is the Heaviside function and Γ is the Gamma function. These have the

property that

χ−k+ = δ
(k−1)
0 , k = 0, 1, 2, 3, ...

A full account of these distributions can be found in section 3.2 of [2], Vol. 1.

The forward fundamental solution of the wave operator on M ×R×R can be

written as K(x, x′, t, r), since the wave operator is constant coefficient in t and r.
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Let πr denote the projection

(x, x′, t, r) 7→ (x, x′, t) .

Definition 2.1. For <s¿ 0, Ls = 2eiπ(s+1)(πr)∗ (χ
2(−s−1)
+ (r)K(x, x′, t, r)).

The problem here is that we are taking a product not permitted by the calculus

of wavefront sets but this is permissible provided one of the factors is sufficiently

smooth, which is why we take <s¿ 0. The push forward is well defined because

for (x, x′, t) in a compact set, it is compactly supported in r. We will use analytic

continuation to extend to all s ∈ C. The family is holomorphic where defined

because it is the product of a holomorphic function and a linear function of a

holomorphic family of distributions. The fact that K is supported in the set
{
(x, x′, t, r) : t ≥ 0, d(x, x′)2 + r2 ≤ t2

}

immediately implies that Ls is supported in the set
{
(x, x′, t) : t ≥ 0, d(x, x′)2 ≤ t2

}

which is the forward light cone.

To carry out the analytic continuation we need to show that

(D2
t −∆)k Ls−k

for any s and large k is independent of k. We commence by showing that

(D2
t −∆)k L−k = Id .

To do this we use an alternative representation for s a negative integer,

(2.1) Ls = eiπ(s+1)
(πr)∗

(
r2(−1−s)K(x, x′, t, r)

)

Γ
(
−2(s+ 1) + 1

) ,

which follows from the fact that K is even in r. This definition will make sense

for any negative integer s as in this case r2(−1−s) is smooth; we denote these

additional kernels L′s. Now, let φ ∈ C∞0 (X × X × R) and then in the case of

s = −1, we have
〈
(D2

t −∆)L′−1, φ
〉
=
〈
K, (D2

t −∆)t π∗r φ
〉

(2.2)

=
〈
K, (D2

t −∆−D2
r)
t π∗r φ

〉
(2.3)

=
〈
δ(t, r) δx′(x), π

∗
r φ
〉

(2.4)

=
〈
δ(t, r) δx′(x), φ

〉
.(2.5)



348 M.S. JOSHI

This means that (D2
t −∆)L′−1 = Id when the kernels are interpreted as operators.

And for −s− 1 an integer greater than zero we have

〈
(D2

t −∆)L′s, φ
〉
= eiπ(s+1)

〈
K, (D2

t −∆)t r2(−s−1) π∗r φ
〉

Γ
(
2(−s− 1) + 1

)(2.6)

= eiπ(s+1)

〈
K, (D2

t −∆−D2
r)
t r2(−s−1) π∗r φ

〉

Γ
(
2(−s− 1) + 1

)(2.7)

+ eiπ(s+1)

〈
K, D2

rr
2(−s−1) π∗r φ

〉

Γ
(
2(−s− 1) + 1

)(2.8)

= −eiπ(s+1)

〈
K,

(
∂
∂r

)2

r2(−s−1) π∗r φ

〉

Γ
(
2(−s− 1) + 1

)(2.9)

= 〈L′s+1, φ〉 .(2.10)

The first term in (2.8) vanishes because r2(−s−1)δ(t, r) = 0.

So using the equality of L−k and L′k, for k a large positive integer, we have

that

(D2
t −∆)kL−k = δx′(x) δ(t) .

Now, using a similar argument, we can show that

(D2
t −∆)kLs = Ls+k

where both are defined. Putting these two facts together and regarding the Ls
as operators we have that

L−k ◦ (D
2
t −∆)k ◦ Ls = L−k ◦ Lk+s

and thus

Lp ◦ Ls = Ls+p

for p a large negative integer.

It remains to extend the composition law to all p ∈ C with <p ¿ 0. We do

this (see [7], p.197) by using

Theorem 2.1. If f is a holomorphic function on a half p1ane <z < α,

dominated by a non-vanishing holomorphic function and vanishes on the integers

then f is identically zero.
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Now, K ∈ (C0)′ so if we let φ ∈ C∞0 (X ×X × R) and choose ψ(r) ∈ C∞0 (R)

so that ψ ≡ 1 on a sufficiently large set then as K is supported inside the light

cone, we have

|〈Ls, φ〉| ≤
2

|Γ(−2s− 1)|
‖K‖0

∥∥∥χ−2s−2
+ (r)ψ(r)φ(x, x′, t)

∥∥∥
C0

(2.11)

≤
C ′

|Γ(−2s− 1)|
|C2s| |eπi(s+1)| .(2.12)

Thus, we have that

(2.13) |〈Ls+p, φ〉| ≤
C ′∣∣∣Γ(−2(s+ p)− 1)

∣∣∣
|C2(s+p)| |eπi(s+p+1)| .

We need to establish a similar bound for 〈Ls ◦ Lp, φ〉. Picking ψ(r) ∈ C∞0 (R)

identically 1 on a sufficiently large set we obtain

〈Ls ◦ Lp, φ〉 = 2eiπ(s+p)
∫
· · ·
∫
χ

2(−s−1)
+ (r − r′)χ

2(−p−1)
+ (r′)

·K(x, x′, t− t′, r − r′)K(x′, x′′, t′, r′) dr′ dt′ dx′ ·(2.14)

· ψ(r)φ(x, x′, t) dt dx dx′′

= 2eiπ(s+p)
∫ ∫

χ
2(−s−1)
+ (r − r′)χ

2(−p−1)
+ (r′) b(r′, r − r′)ψ(r) dr dr′ ,(2.15)

where

(2.16) b(r, s)=

∫
· · ·
∫
K(x, x′, t− t′, s)K(x′, x′′, t′, r)φ(x, x′′, t) dt dx dx′ dt′ dx′′ .

The advantage of this representation is that b(r, s) is continuous which allows us

to remove it from the integral. Now, b(r, s) is defined by a push-forward of a

paired Lagrangian distribution but points near the flow out are wiped out by the

push-forward and we only retain points that are conormal to r = 0 or to s = 0.

Now, since on the diagonal K is a conormal distribution of order −2 we obtain

(2.17) b(r, s) =

∫ ∫
ei(rγ+sτ) c(r, s, γ, τ) dγ dτ + C∞ ,

where c is a product type symbol in (γ, τ) of order (−2,−2). This means that

b is paired Lagrangian distribution associated to N ∗(s = 0), N∗(t = 0) and

N∗(s = t = 0) with symbolic order −2,−2,−4. This shows that b ∈ H
7
4 (R2) and

so by the Sobolev embedding theorem b is continuous.



350 M.S. JOSHI

Hence, we have

|〈Ls ◦ Lp, φ〉| ≤ sup(|b|)
∫
|ψ(r)|

∫
χ

2(−s−1)
+ (r − r′)χ

2(−p−1)
+ (r′) dr′ dr(2.18)

= sup(|b|)
∫
|ψ(r)|χ

2(−s−p−1)
+ (r) dr(2.19)

≤
sup(|b|)∣∣∣Γ(2(−s− p− 1) + 1)

∣∣∣
|C2(−s−p−1)| |eiπ(s+p)| .(2.20)

Thus, if we regard 〈Lp◦Ls−Lp+s, φ〉 as a function of p, it satisfies the hypotheses

of Theorem 2.1 and so is identically zero, which proves the composition law.

We are now in a position to define Ls, for all complex s, by analytic extension.

Definition 2.2. Ls = (D2
t −∆)kLs−k where <(s− k)¿ 0.

We must check that this is independent of the choice of k. But if k > l we

have

(2.21) (D2
t −∆)kLs−k = (D2

t −∆)l (D2
t −∆)k−lLs−k = (D2

t −∆)l Ls−l ,

so it is well defined.

Using analyticity, we can extend the previously proven relations to the whole

complex plane. Thus, we have

Theorem 2.2. Ls is an entire holomorphic family of kernels supported in

the forward light cone such that

Lp ◦ Ls = Lp+s where s, p ∈ C ,(2.22)

L0 = Id ,(2.23)

L1 = D2
t −∆ ,(2.24)

L−1 = the forward fundamental solution .(2.25)

3 – Paired Lagrangian distributions

Paired Lagrangian distributions were first introduced by Melrose and Uhlmann

in [6] to give a symbolic method of constructing parametrices to real principal

operators. However the calculus introduced there is too narrow for our purposes

as it has strong constraints on the allowable singularities — it only contains Lj ,
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for j = −1, 0, 1, 2, ... . We therefore work within the calculus developed in [3] of

which a full account will appear in [5]. We recall the necessary facts from [3], [5]

in this section.

Definition 3.1. If X is a smooth manifold then the pair of embedded, conic,

Lagrangian submanifolds (Λ0,Λ1) ⊂ T ∗(X) − {0} form a one-sided pair, if they

intersect cleanly and Λ1 is a submanifold with boundary equal to the intersection.

Proposition 3.1. If f is a homogeneous symplectomorphism from an open

conic neighbourhood U in T ∗(X) to a neighbourhood V in T ∗(Y ) and (Λ0,Λ1)

is a one-sided intersecting pair then if F is a kth order Fourier integral operator

associated to f then

F : Im,pphg

(
Λ0 ∩ U, Λ1 ∩ U

)
→ Im+k,p+k

phg

(
f(Λ0 ∩ U), f(Λ1 ∩ U)

)
.

Proposition 3.2. The distribution equal to the inverse Fourier transform of

the distribution (ξ1 − i0)
s a(ξ) on Rn, where a is a classical symbol of order m,

is an element of

I
m+s+n

4
,m+n

4
− 1

2

phg

(
N∗(x = 0), N∗(x′′ = 0, x1 ≥ 0)

)
,

where x = (x1, x
′′).

The most important thing we will need is a version of Egorov’s theorem for

operators with Schwartz kernels equal to paired Lagrangian distributions.

Theorem 3.1. If (Λ0,Λ1) is a one-sided intersecting pair in

(T ∗(X)− {0})× (T ∗(X)− {0}) ,

f is a homogeneous symplectomorphism from T ∗(Y ) − {0} to T ∗(X) − {0} and

F is an elliptic Fourier operator associated to f with parametrix G then for

P ∈ Im,pphg (Λ0,Λ1) we have that

FPG ∈ Im,pphg

(
(f × f)−1Λ0, (f × f)

−1Λ1

)

and the symbols are the pull-backs by f × f .
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4 – Complex powers of the constant coefficient wave operator

We shall deduce the micro-local properties of our kernels by reducing to the

constant coefficient wave operator, ∆F , on Rn. In this section, we therefore

study ∆F on Rn. Applying the constant coefficient wave operator is equivalent

to multiplying the Fourier transform by τ 2 − ξ2, so naively, we would like to

define the sth complex power to be multiplication of the Fourier transform by

(τ2 − ξ2)s but the problem is that the zeroes of τ 2 − ξ2 introduce singularities.

We can surmount this problem by regarding (τ 2−ξ2)s as the boundary value of a

holomorphic function defined in an open cone. (For a discussion of distributions

as holomorphic boundary values see [2].)

For the complex powers of the constant coefficient wave operator, we therefore

take the representation

(4.1) Ks =

(
1

2π

)n+1

lim
ε→0+

∫
ei(x.ξ+tτ)

(
(τ − i ε)2 − ξ2

)s
dξ dτ .

Provided we can show this makes sense, it is clear that

K1 = D2
t −D

2
x ,

K0 = Id ,

Kr+s = Kr ◦Ks ,

when we regard Ks as a convolution operator.

Proposition 4.1. The boundary value distribution ((τ − i0)2 − ξ2)s is well

defined and tempered.

Proof: The imaginary part of (τ − iε)2 − ξ2 zero if and only ετ = 0 and so

then τ will be zero and then (τ − iε)2 − ξ2 < 0. So, if we cut along the positive

real axis (τ 2− ξ2)s is well-defined on =τ < 0. We take the argument of −1 to be

π.

It is easily checked that |((τ−iε)2−ξ2)|−1 ≤ Cε−2 locally and so the boundary

value distribution exists. The distribution ((τ − i0)2 − ξ2)s is tempered as it is

homogeneous of order 2s.

We now establish the properties of Ks as paired Lagrangian distributions. In

this case, the Lagrangians are the conormal bundle to the origin, Λ0, and the

closure of the conormal bundle of the light cone, Λe1, i.e. N
∗(|x| = t, t > 0).
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Theorem 4.1. Ks ∈ I
2s+n+1

4
,s+n+1

4
− 1

2

phg (Λ0,Λ
e
1). On Λ0 away from Λe1, the

symbol of Ks is ((τ − i0)2 − ξ2)s and on Λe1 away from Λ0 the symbol has the

asymptotic expansion

∞∑

j=0

(±1)j ei
π
2
(s+j) s(s− 1) · · · (s− j + 1)

j!
(2|ξ|)s−j t−s−j−1/Γ(−s− j)

with respect to the phase functions x.ξ ± t|ξ|.

Note our orders here are slightly different as we are working with the constant

coefficient kernel. If we take the full kernel, we get

Ks(x− y, t− t
′) ∈ I

2s,s− 1
2

phg (N∗(∆), N∗(C)) .

Proof: We have defined Ks to be the inverse Fourier transform of

((τ − i0)2 − ξ2)s, so away from τ 2 − ξ2 = 0, it is clear that we have an ele-

ment of I
2s+n+1

4

phg (Λ0). The characteristic variety has two components τ = |ξ|

and τ = −|ξ| and thus the flow out will also. We discuss τ = |ξ|, as τ = −|ξ|

will be the same with a few sign changes. We cut off close to τ = |ξ|, letting

ψ(ξ, τ) = φ(1− |ξ|−1 |τ |), where φ is a cut-off function, we compute

K ′
s =

(
1

2π

)n+1 ∫
ei(x.ξ+tτ) ψ(ξ, τ)

(
(τ − i0)2 − ξ2

)s
dξ dτ(4.2)

=

(
1

2π

)n+1 ∫
ei(x.ξ+tτ) ψ(ξ, τ) (τ − i0− |ξ|)s (τ + |ξ|)s dξ dτ(4.3)

=

(
1

2π

)n+1 ∫
ei(x.ξ+tτ+t|ξ|) (τ − i0)s φ(|ξ|−1 τ) (τ + 2|ξ|)s dξ dτ .(4.4)

We want to write K ′
s as a Fourier integral operator applied to a distribution

associated with the model; we can rewrite the last integral as

(4.5)

∫
ei(〈x−y,ξ〉+〈t−r,τ〉+t|ξ|) a(x, ξ, t, τ)
∫
ei(〈y,η〉+rγ)(γ − i0)s φ(|η|−1 γ) (γ + 2|η|)s dη dγ dy dr dτ dξ + C∞ ,

where a is a symbol which is identically one in a conic neighbourhood of τ = 0 and

zero outside a conic neighbourhood. From Proposition 3.2 and Proposition 3.1,

it now follows that Ks ∈ I
2s+n+1

4
,s+n+1

4
− 1

2

phg (Λ0,Λ
e
1). To find the symbol on the

flow out, we just take the Fourier transform of the Taylor expansion of (τ +2|ξ|)s

term by term.
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For the general case we will need a more invariant formulation of the symbols’

values. The forward light cone is generated by the flow out of the characteristic

variety at the origin, {x = 0, t = 0}, by the Hamiltonians of p± = τ ± |ξ|. These

therefore yield natural coordinates, (ξ, t), on Λe1. We can also think of these

coordinates as being given by the geodesic flow at time t with initial point

x = 0 , t = 0 , τ = ±|ξ| .

The symbol of a Lagrangian distribution is a section of the Maslov bundle ten-

sored with the half-density bundle over the Lagrangian submanifold so to spec-

ify it we need to choose a trivialization of the Maslov bundle. Now over any

Lagrangian submanifold which is a conormal bundle there is a canonical trivial-

ization of the Maslov bundle — see [1] and when two Lagrangian submanifolds

intersect cleanly there is a canonical isomorphism between the two Maslov bun-

dles over the intersection — see [6] or [5]. This means that there is a canonical

trivialization of the Maslov bundle of Λe1 over Λ0 ∩Λ
e
1 this trivialization can then

be extended to all of Λe1 by transport by the Hamiltonians of τ = ±|ξ|. This

construction of a trivialization will also work in the curved case — if we use the

geodesic flow on the manifold. We shall refer to this trivialization as the natural

trivialization induced by the origin and the geodesic flow.

Corollary 4.1. The principal symbol on Λe1 away from the intersection with

Λ0 is
t−s−1

Γ(−s)
(2|ξ|)s ei

π
2
s |dt|

1
2 |dξ|

1
2

in the coordinates induced by the geodesic flow from (0, 0, ξ,±|ξ|) with respect

to the natural trivialization of the Maslov bundle induced by the origin and the

geodesic flow.

Proof: We must check that the trivialization of the Maslov bundle given by

the phase φ = x.ξ±t|ξ| agrees with the natural trivialization on the flow out. Let

λ1 = Tp(Λ
e
1), λ2 be the tangent space to the fibre and let ψ(x, t) be a generating

function parametrizing a Lagrangian, Γ = (x, t, ψ′x,t), transversal to the fibre and

to Λ. Letting µ = Tp(Γ) we have that the transition function is given by

ei
π
4
(σ(λ1,λ2;µ)+S(φ,ψ))

where σ is the cross ratio as defined in [1] and S(φ, ψ) is the signature of the

matrix (
φ′′ξξ φ′′ξ(x,t)
φ′′(x,t)ξ φ′′(x,t)(x,t) − ψ

′′
(x,t)(x,t)

)
.
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It will be enough to do all this at some fixed point. Take φ = x.ξ + |ξ|t. We

choose a point, p = (0, 0, ξ, |ξ|), at the intersection. We then have that λ1 is the

span of {ξj
∂
∂τ + |ξ|

∂
∂ξj
,
∑
l
∂
∂xl
−

ξj
|ξ|

∂
∂τ } and λ2 is the span of { ∂

∂ξj
, ∂∂τ }. Thus we

need ψ giving µ transversal to λ1. (Transversality to the fibre is automatic.) Let

ψ(x, t) = x.ξ + |ξ|t+ t2

2 we have

Γ = {(x, t, ξ, |ξ|+ t)}

and µ is the span of { ∂
∂xj

, ∂∂t +
∂
∂τ }. Transversality is clear and our matrix is

(4.6)




0 Id
ξ

|ξ|

Id 0 0

ξt

|ξ|
0 −1



.

Executing a change of variables, this will have the same signature as

(4.7)




Id 0
1

2

ξ

|ξ|

0 −Id −
1

2

ξ

|ξ|

1

2

ξt

|ξ|
−
1

2

ξt

|ξ|
−1




.

This has signature −1 as signature is a homotopy type invariant in the space of

invertible matrices and the off diagonal elements can be shrunk to zero.

We are left to compute σ(λ1, λ2;µ) this is defined to be equal to σ(λρ1, λ
ρ
2;µ

ρ)

where the superscript ρ denotes that the subspaces have been intersected by

(λ1 ∩ λ2)
⊥ and reduced by λ1 ∩ λ2 then λρ1, λ

ρ
2, µ

ρ are all transversal one-

dimensional Lagrangian subspaces (λ1∩λ2)⊥

λ1∩λ2
. Picking symplectic linear coordi-

nates, (r, η), such that

λ1 = {r = 0} ,

λ2 = {η = 0} ,

µ = {ξ = Ax} ,

σ(λρ1, λ
ρ
2;µ

ρ) is the signature of A. Of course, A is a 1× 1 matrix here, so we just

need to know its sign. It is easily calculated to be 1.

The argument is similar for φ = x.ξ − t|ξ|.
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5 – The symbols in the general case

Our final task is to reduce the variable coefficient case to the constant coeffi-

cient case. We do this by reducing to the constant coefficient case using Fourier

integral operators. Our proof mimics that of Duistermaat and Hörmander to

construct a parametrix for an operator of real principal type. We commence by

checking that our two representations in the constant coefficient case are equal.

Lemma 5.1. If M = Rn then Ls(x, x
′, t) = Ks(x− x

′, t).

Proof: As we have two holomorphic families, it is enough to show equality

for <s ¿ 0 and =s > 0. Letting K(x, t, r) be the forward fundamental solution

of the wave equation on Rn
x × Rt × Rr, we compute

Ls = eiπ(s+1) 2(πr)∗ (χ
2(−1−s)
+ (r)K)(5.1)

= eiπ(s+1) 2

(2π)n+2

∫
ei(〈x,ξ〉+tτ)

[
lim
δ→0+

∫
eirη χ

2(−1−s)
+ (r)

·
1

(τ − iδ)2 − ξ2 − η2
dr dη

]
dξ dτ

(5.2)

= ieiπ(2s+1) 2

(2π)n+2

∫
ei(〈x,ξ〉+tτ)

[
lim
δ→0+

∫
(−η − i0)1+2s

a2
δ − η

2
dη

]
dξ dτ ,(5.3)

where (τ − iδ)2 − ξ2 = a2
δ and we can take =aδ < 0.

We want to evaluate the inner integral, this is equal to a contour integral

along the real axis with a small semi-circular detour below the axis at the origin,

using Cauchy’s theorem. Taking =s > 0 and considering a large semi-circular

contour below the axis, we conclude from Cauchy’s Residue theorem that

∫
(−η − i0)1+2s

a2
δ − η

2
dη = −2πiRes

(
(−η − i0)1+2s

a2
δ − η

2
, aδ

)
(5.4)

= −iπ e−iπ(2s+1)(a2
δ)
s(5.5)

and hence,

(5.6) Ls =
1

(2π)n+1

∫
ei(〈x,ξ〉+tτ)

(
(τ − i0)2 − ξ2

)s
dξ dτ .

Now, the principal symbol of the variable coefficient wave operator is

τ2 −
∑
gij(x) ξi ξj where g is the Riemann metric on M whereas that of the

constant coefficient wave operator, D2
t −∆F , is τ

2 − ξ2.
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Lemma 5.2. Let q ∈ T ∗(M × R) − 0 be a point in the characteristic

variety of the wave operator then there exists a homogeneous symplectomor-

phism, f , from a conic neighbourhood U in T ∗(Rn+1) − 0 to a conic neighbour-

hood V ⊂ T ∗(M × R) − 0 containing the bicharacteristic through q such that

f∗(τ2 −
∑
gij(x) ξi ξj) = τ2 − ξ2.

Proof: We prove that there exist homogeneous symplectic coordinates, (y, η),

in a conic neighbourhood of the bicharacteristic such that in these coordinates

τ2 −
∑

gij(x) ξi ξj = η1 η2 .

This will mean that we can in particular do so for the constant coefficient wave

operator and so the result follows.

We can write

(5.7) τ 2 −
∑

gij(x) ξi ξj =

(
τ −

(∑
gij(x) ξi ξj

) 1
2

)(
τ +

(∑
gij(x) ξi ξj

) 1
2

)
.

These factors are homogeneous of degree one, Poisson commute and have non-

vanishing differentials near the characteristic variety and we can therefore extend

them to a homogeneous, symplectic coordinate system, (y, η), in a small conic

neighbourhood W (see [2], Chap. 21). To get the coordinates along a bicharac-

teristic, we simply extend via the bicharacteristic flows.

To reduce to the model we now work with quantizations of f that is operators

which are Fourier integral operators with respect to Γ′f — the twisted graph of

f . We denote the twisted wavefront set of Fourier integral operators by WF′

WF′(K) =
{
(x, t, ξ, x′, t′, ξ′τ ′) : (x, t, ξ, τ, x′, t′,−ξ′,−τ ′) ∈WF(K)

}
.

Proposition 5.1. Given q ∈ T ∗(M × R) − 0, there exist classical Fourier

integral operators A ∈ I0(M×R×Rn×R, Γ′f ) and B ∈ I0(Rn×R×M×R, Γ′f−1)

such that q /∈WF′(AB− I) and (q, f(q)) /∈WF′((D2
t −∆)A−A(D2

t −∆F )). If q

is in the characteristic variety of the wave operator then the result holds for the

entire bicharacteristic through q.

Proof: If q is characteristic, let f be the symplectomorphism from Lemma 5.2.

Otherwise considering the square root of the modulus of τ 2 −
∑
gij(x) ξi ξj as

a symplectic coordinate we see that such coordinates exist in a conic neigh-

bourhood, V , of q. To do the two cases at once, let W be the set {q}, if q is

non-characteristic and the set of points in the bicharacteristic through q, if q is

characteristic.
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Let A1 be an element of I0(M×R×Rn×R, Γ′f ) which is elliptic on (W, f(W ))

and has a classical symbol and let B1 ∈ I
0(Rn × R×M × R, Γ′f−1) satisfy

W ∩WF′(A1B1 − I) = ∅

then from the calculus of FIOs, we have that the principal symbol of

Q = B1(D
2
t −∆)A1

is τ2 − ξ2 and that

(W, f(W )) ∩WF′
(
(D2

t −∆)A−A(D2
t −∆F )

)
= ∅ .

This reduces us to proving that if Q is a first order classical pseudo-differential

operator then there exists zeroth-order, classical, pseudo-differential operator A2

which is micro-elliptic on W , such that

(5.8) (D2
t −∆F +Q)A2 −A2(D

2
t −∆F ) ∈ Ψ−∞

and putting A = A1A2 our result follows.

To solve (5.8), we rewrite it in the form

(5.9) [D2
t −∆F , A2] +QA2 ∈ Ψ−∞ .

If we denote the principal symbol of Q by q1 and of A2 by a0 then the vanishing

of the principal symbol requires,

(
2τ

∂

∂t
− 2ξ.

∂

∂x

)
a0 + q1 a0 = 0 .

Dividing this through by |τ, ξ| gives us

(
2

τ

|τ, ξ|

∂

∂t
− 2

ξ

|τ, ξ|
.
∂

∂x

)
a0 +

q1
|τ, ξ|

a0 = 0 .

The coefficients of this equation are homogeneous of degree zero and so if we

specify non-zero, degree 0 homogeneous initial data on a non-characteristic, conic

hypersurface, we can solve to obtain a non-zero degree 0 homogeneous function.

So, letting A0 have principal symbol a0, we have solved our equation up to ze-

roth order. We now use an iterative process to obtain lower order terms. We

now choose A−1, A−2, ... such that Aj is classical and has homogeneous principal

symbol of degree j and such that

(5.10) [D2
t −∆F , A0 +A−1 + ...+A−N ] + q(A0 +A−1 + ...+A−N ) ∈ Ψ−N−1.
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The condition on AN is therefore

(5.11) [D2
t −∆F , A−N ] + q A−N = R−N ∈ Ψ−N

or, in terms of principal symbols, we have

(5.12)

(
2τ

∂

∂t
− 2ξ.

∂

∂x

)
a−N + q1 a−N = r−N .

If we divide through as before and pick initial data of homogeneity −N − 1 this

will have a solution of homogeneity −N − 1.

And so having constructed {Aj} we pick A2 ∼
∑
Aj and we are done.

Theorem 5.1. If A and B are as in Proposition 5.1 then

(q, q) /∈WF′(AKF,sB −Ks)

and if q is characteristic, the bicharacteristic through (q, q) in the first variable

does not meet WF′(AKF,sB −Ks).

Proof: We will first of all, assume that <s ¿ 0 and then use the micro-

locality of the wave operator to deduce the general case.

In this proof, all our operators are constant coefficient in r and so we will

regard our kernels as functions of (x, x′, t, t′, r) and we let

W̃F(L) =
{
(x, t, ξ, τ, x, t, ξ, τ, r, η) : (x, t, ξ, τ, x, t,−ξ,−τ, r, η) ∈WF(L)

}
.

We denote by Ā and B̄, the operators with kernels A(x, t, x′, t′) δ(r) and

B(x, t, x′, t′) δ(r).

We can write

AKF,sB −Ks = A
(
(πr)∗ (χ

s
+(r)KF )

)
B − (πr)∗ (χ

s
+(r)K)

= (πr)∗
(
χs+(r) (ĀKF B̄ −K)

)
.

So as wavefront which is not conormal to the fibres is killed by a push-forward

we have

(x0, t0, ξ0, τ0, x1, t1, ξ1, τ1) ∈ W̃F(AKF,sB −Ks)

implies

∃ r (x0, t0, ξ0, τ0, x1, t1, ξ1, τ1, r, 0) ∈ W̃F
(
χs+(r) (ĀKF B̄ −K)

)
.
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Now the wavefront set of χs+(r) is the conormal bundle to r = 0 so this means

that either

∃ r (x0, t0, ξ0, τ0, x1, t1, ξ1, τ1, r, 0) ∈ W̃F(ĀKF B̄ −K)

or

∃ η (x0, t0, ξ0, τ0, x1, t1, ξ1, τ1, 0, η) ∈ W̃F(ĀKF B̄ −K) .

Thus, in order to show (q, q′) /∈ W̃F(AKF,sB −Ks), it is certainly sufficient

to show that there does not exist (r, η) such that

(5.13) (q, q′, r, η) ∈ W̃F(ĀKF B̄ −K) .

We prove this by using the microlocal uniqueness of the forward fundamental

solution of the wave equation, which we reprove using propagation of singularities.

For simplicity, we write tu = D2
t −∆ and tuF = D2

t −∆F . We compute

(tu−D2
r) (ĀKF B̄ −K) = tu ĀKF B̄ − ĀD

2
rB̄ − Id

= Ā(tuF −D
2
r)KF B̄ + (tu Ā− ĀtuF )KF B̄ − Id

= (Ā B̄ − Id) + (tu Ā− ĀtuF )KF B̄ .

Now, our construction of A and B ensures that W ∩WF′(AB − I) = ∅ and so

we have that (q′, q, r, η) /∈ W̃F(ĀB̄ − I) for all q′ in W . The same holds for

(tu Ā − ĀtuF )KF B̄ this is true because (tuA − AtuF ) is smoothing at (q′, p) for

any p (remember A is associated to a canonical graph) and so the lifted version

will be smooth at (q′, p, r, η). Hence,

(q′, q, r, η) /∈ W̃F
(
(tu Ā− ĀtuF )KF B̄

)

by the composition law for wavefront sets.

Now, any wavefront set of ĀKF B̄ −K with non-zero (ξ, τ, ξ′, τ ′) component

must be supported in the forward flow out as this is true of K and KF and

any additional singularities introduced by Ā and B̄ will have zero (ξ, τ, ξ′, τ ′)

component. Thus if (q′, q) ∈W , we have

(q′, q, r, η) /∈ W̃F(ĀKF B̄)

since otherwise the entire backward bicharacteristic through (q ′, q, r, η) would be

in WF′(ĀKF B̄ −K).

So, this establishes for <s¿ 0 that

(q′, q) /∈WF′(AKFB −K) ,
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which implies the result, for <s¿ 0.

Using the micro-locality of tu, we have

(q′, q) /∈WF′
(
tu(AKF,sB −Ks)

)

and

tu(AKF,sB −Ks) = AtuF KF,sB −Ks+1 + (tuA−AtuF )KF,sB .

The third term is smoothing at (q′, q) and so this implies that

(q′, q) /∈WF′(AKF,s+1B −Ks+1)

and the general case now follows by induction.

Letting Λ0 denote the conormal bundle to the diagonal and Λ1 the flow-out

of the characteristic variety’s intersection with the diagonal in positive time, i.e.

the conormal bundle to the forward light cone, we are now ready to prove the

main result

Theorem 5.2. The kernels Ls(x, x
′, t− t′) are elements of I

2s,s−1/2
phg (Λ0,Λ1).

The principal symbol of Ls on Λ0 off Λ1 is

(
(τ − i0)2 −

∑
gij(x) ξi ξj

)s

and on Λ1 off Λ0, the principal symbol is

ei
π
2
s

Γ(−s)

(
4
∑

gij(ξ)
)s/2

t−s−1 |dξ|
1
2 |dx|

1
2 |dt|

1
2

at the point induced by the geodesic flow, in the first variable, at time t from the

point (x, ξ, x, ξ, 0,±|
∑
gij(x) ξi ξj |

1
2 ) on the diagonal with respect to the natural

trivialization of the Maslov bundle given by Λ0 and the geodesic flow.

Note that the symbol on Λ0 is a function rather than a section of the Maslov

bundle tensored with the half-density bundle because the conormal structure

yields a natural trivialisation of the Maslov bundle and the half-density bundle has

the natural trivialization |dξ|
1
2 |dx|

1
2 here as it is the square root of the symplectic

density on T ∗(M) which is naturally isomorphic to N ∗(∆) via the projection in

either coordinate. This reflects the fact that the principal symbol of a pseudo-

differential operator is a function.
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Proof: We already know this for Ks in the constant coefficient case and

using the equality of Ks and Ls in that case, this is an immediate consequence

of Egorov’s theorem (Proposition 3.1).
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