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NON VANISHING CONJUGACY CLASSES FOR
AN IRREDUCIBLE CHARACTER OF Sn

M. Purificação Coelho* and M. Antónia Duffner*

Abstract: An irreducible character of the symmetric group Sn is a triangular char-

acter if it is associated to a partition of the form (m,m − 1, ..., 2, 1). We prove that an

irreducible character χ is triangular if and only if it vanishes on all conjugacy classes

whose cycle decomposition contains at least one transposition.

Furthermore if the character χ is not triangular and χ 6= [2, 2], there is a class

where a transposition and a cycle of length one occur, for which χ does not vanish.

1 – Introduction

Let Sn be the symmetric group of degree n, and χ be an irreducible com-

plex character of Sn. There is a natural one-to-one correspondence between

the irreducible characters of Sn and the nonincreasing partitions of n. So if

m1 ≥ m2 ≥ ... ≥ mt ≥ 1 andm1+m2+...+mt = n, denote by [m1,m2, ...,mt] the

irreducible character of Sn which is associated to the partition (m1,m2, ...,mt).

Such a partition can be pictured by t left-justified rows of boxes, where the num-

ber of boxes in the ith row is mi, and which is called a Young frame.

If α ∈ Sn, let α = α1α2...αr be its cycle decomposition. Let ki be the length of

the cycle αi. Clearly ki ≥ 1 and
∑

i ki = n. We will identify the conjugacy class

of the permutation α with the sequence (k1, k2, ..., kr), where the ki appear in

an arbitrary order. Collecting parts of equal length repetitions may be indicated

by the use of superscripts. As for example we represent by (k1, 1
t) the class

(k1, 1, ..., 1), where the 1 appears t = n− k1 times. The class (k1, 1
t) where t = 0

is just the class (n).
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It is important to know in some problems, if a nonlinear character vanishes

in a particular conjugacy class of Sn. For example it is known that χ is self

associated if and only if χ is zero on all odd permutations. In [2] some classes are

described where the character does not vanish. In [3, Corollary 2.4.9] a necessary

condition is given for the classes where the value of a character is not zero.

2 – Triangular characters

An irreducible character χ of Sn is said to be a triangular character,

if χ = [m,m− 1, ..., 1], where m ≥ 1.

Of course, for each n, the symmetric group Sn admits at most one triangular

character. And this happens if and only if n is a triangular number.

The main theorems give a complete description of the triangular characters,

as being the only irreducible characters that vanish on all the conjugacy classes

whose cycle decomposition contains a transposition.

Theorem 2.1. Let χ = [m1, ...,mt] be an irreducible nontriangular character

of Sn, where n > 1. Then

a) There exists a permutation σ containing a transposition in its cycle decom-

position and such that χ(σ) 6= 0.

b) There exists a permutation σ1 containing a transposition in its cycle de-

composition and such that if σ1 belongs to a class (k1, ..., ku, 2
r, 1t) and

σ2 belongs to (k1, ..., ku, 2
r−1, 1t+2), then one of the following conditions

holds:

i) |χ(σ1)| = |χ(σ2)| 6= 0;

ii) χ(σ1) 6= 0 and χ(σ2) = 0;

iii) χ(σ1) = 0 and χ(σ2) 6= 0.

Theorem 2.2. Let χ be an irreducible nontriangular character of Sn, where

n > 2 and χ 6= [2, 2] (if n = 4). There is a permutation π whose cycle decompo-

sition contains at least one transposition and a cycle of length one and such that

χ(π) 6= 0.

Triangular characters are self associated characters; thus they vanish on all

odd permutations. Moreover they vanish on all classes whose cycle decompo-

sition contains a cycle of even length, which is easy to prove by applying the
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Murnagham–Nakayama Rule [1]. In particular they vanish on all the conjugacy

classes whose cycle decomposition contain at least one cycle of length two.

From the previous remarks and [3, Corollary 2.4.9] we conclude the following

result.

Proposition 2.3. Let χ = [m,m− 1, ..., 1] be a triangular character of Sn.

If k1 ≥ ... ≥ kr and χ does not vanish on the class (k1, ..., kr), then k1, ..., kr are

odd integers and (k1, ..., kr) ¹ (2m− 1, 2m− 5, ...).

This is not a sufficient condition, since we have that (32, 14) ¹ (7, 3), but the

character [4, 3, 2, 1] of S10 vanishes on the class (3
2, 14).

However it is easy to get the converse for cycles.

Proposition 2.4. Let χ = [m,m− 1, ..., 1] be a triangular character of Sn,

and σ ∈ Sn a cycle of length p. Then χ(σ) 6= 0, if and only if p is odd and

p ≤ 2m− 1.

3 – Proofs

The proofs of the propositions are essentially based on the Murnagham–

Nakayama rule [1] for the Young frames.

Recall that the boundary of a frame is the set of boxes whose right edge,

bottom edge, or bottom right vertex belong to the geometric boundary of the

frame. A regular boundary part of a frame is a set of successive boundary boxes

whose deletion leads to another frame.

For the application of the Murnagham–Nakayama Rule we can take advantage

of the fact that the order of the cycles of a permutation is arbitrary. So if the

diagram does not contain regular parts of a certain length, which corresponds to

the order of a cycle of a permutation, we can start from this cycle to prove that

the required character vanishes on this permutation. It is also convenient to take

the cycles of length one last; if there remains a frame which one must reduce by

cutting out single spaces, the number of ways in which this can be done is equal

to the degree of the representation corresponding to the diagram obtained.

Consider the sequence (p1, ..., ps+1) (s ≥ 0), that is obtained in the following

way: Let p1 be the number of boxes of the boundary of the frame associated with

χ. If p1 6= n, after deleting these p1 boxes, we obtain another frame. Let p2 be

the number of boxes of the boundary of this new frame. One continues in this

way until there is nothing left.
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Let χ′ be the character that corresponds to the diagram obtained, if we remove

successively p1, ..., ps boxes. Note that if s = 0, then χ
′ = χ, and if s > 0 we

denote by χ′′ the diagram obtained after removing p1, ..., ps−1 boxes.

Let t ∈ {1, ..., s+ 1}. There is just one way of removing p1, ..., pt boxes of the

diagram χ. If we denote by λ the character associated to the diagram obtained,

and if σ belongs to the conjugacy class (p1, ..., pt, k1, ..., kr) and σ
′ to the class

(k1, ..., kr), for some integers ki, such that
∑

pi+
∑

ki = n, then |χ(σ)| = |λ(σ′)|.

Recall that two characters of Sn are associated if their corresponding frames

are reflections about the main diagonal of each other. The reflection of ε =

[1, 1, ..., 1], the alternating character, is [n] the principal character. If χ1 and χ2

are associated, then χ1(σ) = ε(σ)χ2(σ), and thus |χ1(σ)| = |χ2(σ)|. So whenever

two characters are associated to conjugate diagrams, we will analyse just one of

them.

Proof of Theorem 2.1: Let us classify all the characters χ which are not

triangular in five classes and some subclasses depending on the frame χ′. In each

case we will exhibit permutations σ and σ1 satisfying the conditions a) and b),

respectively. The permutations will be represented by the lengths of the cycles

that appear in its cycle factorization (k1, k2, ..., kq), in the following order: When

applying the Nakayama Rule k1 is the number of boxes we remove from the

diagram in the first place, and so on.

Note that χ′ = [m′, 1r], for some m′ ≥ 1 and r ≥ 0. We may assume that

m′ ≥ r + 1, since the characters [m′, 1r] and [r + 1, 1m
′−1] are associated. So

consider the following classes:

(1) m′ ≥ 2, r ≥ 1 and m′ + r > 3.

(2) m′ > 1 and r = 0.

(3) m′ = 2 and r = 1 and χ′′ is not a triangular character.

(4) m′ = 1 and r = 0 and χ′′ is not a triangular character.

(5) χ′′ = [4, 3, 2, 1] or χ′′ = [3, 2, 1].

Let us now list permutations satisfying in each case the conditions a) and b).

(1) a) If r is even and m′ = r+1, take σ, σ1 ∈ (p1, p2, ..., ps, 2
m′−1, 1); we have

χ(σ2) = 0.

b) If r is odd and m′ = r + 1, take σ, σ1 ∈ (p1, p2, ..., ps, 2
m′−2, 13); we

have χ(σ2) = 0.

c) If m′ > r + 1, take σ, σ1 ∈ (p1, p2, ..., ps,m
′ − 1, 2, 1r−1); we have

|χ(σ2)| = |χ(σ1)| = 1.
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(2) Take σ, σ1 ∈ (p1, p2, ..., ps, 2, 1
m′−2); we have |χ(σ2)| = |χ(σ1)| = 1.

(3) In this case we have χ′′ = [3 + v, 3, 2, 1u], for some u, v ≥ 0 and we can

assume that v ≥ u. Since χ′′ is not a triangular character we can not have

u = v = 1. So consider the following subclasses:

a) u > 1, take σ, σ1 ∈ (p1, p2, ..., ps−1, v + 2, u+ 2, 2
2); we have |χ(σ2)| =

|χ(σ1)| = 1, if v = u+ 2, and χ(σ2) = 0, if v 6= u+ 2.

b) u = v = 0, take σ, σ1 ∈ (p1, p2, ..., ps−1, 3, 2
2, 1); we have χ(σ2) = 0.

c) u ∈ {0, 1} and v > u, take σ, σ1 ∈ (p1, p2, ..., ps−1, 2, v + 4, u + 2); we

have |χ(σ2)| = |χ(σ1)| = 1.

(4) Now we have χ′′ = [2 + v, 2, 1u] for some u, v ≥ 0. Once more we may

assume that v ≥ u, and clearly we can not have u = v = 1.

a) u > 2, take σ, σ1 ∈ (p1, p2, ..., ps−1, v, u, 2
2); we have |χ(σ2)| =

|χ(σ1)| = 1, if v = u+ 2, and χ(σ2) = 0, if v 6= u+ 2.

b) i) u = 2, v 6= 2, v 6= 4, take σ, σ1 ∈ (p1, p2, ..., ps−1, v, 4, 2); we have

|χ(σ2)| = |χ(σ1)| = 1.

ii) u = 2, v = 2, take σ, σ1 ∈ (p1, p2, ..., ps−1, 2
4); we have χ(σ2) = 0.

iii) u = 2, v = 4, take σ, σ1 ∈ (p1, p2, ..., ps−1, 4, 2
3); we have |χ(σ2)| =

|χ(σ1)| = 2.

c) u ∈ {0, 1}, take σ, σ1 ∈ (p1, p2, ..., ps−1, u, v + 2, 2); we have χ(σ2) = 0,

if v = u = 0 and |χ(σ2)| = |χ(σ1)| = 1 in the other cases.

(5) In this case the diagram χ is not triangular, but after removing some

boundary parts of maximum length we obtain a triangular diagram.

Let t be an integer, such that if we omit the t regular boundary parts of

lengths p1, ..., pt we obtain a nontriangular diagram, which we will denote by χ
′′′,

and removing pt+1 boxes , we obtain a triangular character. There is an integer

m′′, such that χ′′′ = [m′′ + v + 1,m′′ + 1,m′′, ..., 3, 2, 1u], where u, v ≥ 0. Again

we assume that v ≥ u and we can not have u = v = 1.

Let n′ = 1+2+ ...+m′′. It is clear that if we take σ1 in the class (p1, ..., pt+1,

2, 1n
′−2), we have that χ(σ1) = 0 and χ(σ2) 6= 0. Let us now exhibit a permuta-

tion satisfying condition a).

If u = 0, take σ ∈ (p1, ..., pt, pt+1 − 1, 2, 1
n′−1).

Suppose now that u > 0. If u + v is odd, take σ ∈ (p1, ..., pt, 2
pt+1/2, 1n

′

); if

v = u and both are odd, take σ ∈ (p1, ..., pt, pt+1 − (u + 1), 2
2, 1n

′+u−3) and in

the remaining cases take σ ∈ (p1, ..., pt, pt+1 − (u+ 1), 2, 1
n′+u−1).
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Proof of Theorem 2.2: We will consider the same classes and subclasses of

the proof of Theorem 2.1. Whenever the permutation σ contains also a cycle of

length one in its cycle decomposition, we will take π = σ. In the same way if the

permutation σ1 we exhibited in the above proof satisfies |χ(σ1)| = |χ(σ2)| 6= 0

and σ2 contains in its cycle decomposition at least a transposition, we can take

π = σ2. The remaining cases are the following:

I) class (1), if r = 1 and m′ > 3.

II) class (2), if m′ = 2.

III) class (3) a), if v 6= u+ 2.

IV) class (3) c), if u = 1.

V) class (4), if u ≥ 2 and v 6= u+ 2.

VI) class (4), if u = 0.

We will exhibit in each case a permutation satisfying the required conditions

which can be verified using the Nakayama Rule once more.

I) Take π ∈ (p1, p2, ..., ps, 2, 1
m′−1).

II) In this case χ′′ = [3 + v, 3, 1u].

If v ≥ u and v 6= u + 1, or u = 0 and v = 1, take π ∈ (p1, p2, ..., ps−1,

v + 2, 2, 1u+2).

If u > 0 and v = u+ 1, take π ∈ (p1, p2, ..., ps−1, v + 3, 2, 1
u+1).

If v < u, take π ∈ (p1, p2, ..., ps−1, u+ 3, 2, 1
v+1).

III) If v = u, take π ∈ (p1, p2, ..., ps−1, v, u, 3, 2
2, 1), and if v > u take π ∈

(p1, p2, ..., ps−1, v + 2, 2, 1
u+4).

IV) Take π ∈ (p1, p2, ..., ps−1, 2, 1
v+7).

V) If v > u or v = u and both are even, take π ∈ (p1, p2, ..., ps−1, v+2, 2, 1
u),

and if v = u and both are odd, take π ∈ (p1, p2, ..., ps−1, v + 2, 2
2, 1u−2).

VI) If v > 0, take π ∈ (p1, p2, ..., ps−1, 2, 1
v+2). If v = 0, we must have

s > 1, since χ 6= [2, 2]. Let χ′′′ be the obtained diagram after removing

successively p1, ..., ps−2 boxes. Then χ
′′′ = [3 + v′, 3, 3, 1u

′
]. Assuming

that v′ ≥ u′, consider the several subcases:

If u′ = v′ = 0, take π ∈ (p1, p2, ..., ps−2, 2
2, 15).

If u′ = v′ = 1, take π ∈ (p1, p2, ..., ps−2, 3, 2
2, 14).

If u′ = v′ = 2, take π ∈ (p1, p2, ..., ps−2, 3, 2
2, 16).

If u′ = v′ > 2, take π ∈ (p1, p2, ..., ps−2, v
′ + 4, v′, 22, 1).

If v′ > u′, take π ∈ (p1, p2, ..., ps−2, v
′ + 4, 2, 13+u′

).
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