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BOUNDARY VALUES, FOURIER–SATO TRANSFORM
AND LAPLACE TRANSFORM

P. Schapira

Abstract: In the first part of this paper we describe the well-known Fourier–Sato’s

transform of conic sheaves and we show how this theory permits to define the boundary

value of holomorphic cohomology classes associated to conic sheaves and in particular

cohomology classes supported by non necessarily convex cones. As an example, we treat

the case of quadratic cones.

Next, we recall the recent result of [7] on the Laplace transform of holomorphic

cohomology classes associated to constructible sheaves, and give a link between all these

constructions.

1 – Introduction

Let M be a real analytic manifold of dimension n, X a complexification of M ,

γ a cone in TMX, the normal bundle to M in X. When γ is open and convex (i.e.

the fibers of γ over M are convex), Sato’s theory, as explained in [9], allows one

to define the boundary value of holomorphic functions defined in tuboids with

profile γ. But in fact, this theory also applies to the non open and non convex

case, even if it has never been written down explicitely, and one of the aims of

this paper is to fill up this gap of the literature. Hence, it should be clear that

the results obtained here are more or less well-known from some specialists. Note

that boundary values of holomorphic cohomology classes defined in non convex

cones are constructed “à la main” in some situations in [2].

In order to describe our results, consider a (non necessarily convex) locally

closed cone γ as above, and let C∧
γ denote the Fourier–Sato transform of the sheaf

Cγ . Assume that for some local system L on M , some integer d, and some locally
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closed cone λ in T ∗
MX, one has:

Hn−d(C∧
γ ) ' Cλ ⊗ L .

(Here, we write L instead of π−1L for short.) Then:

Hd
γ (TMX; νM (OX)) ' Γλ(T

∗
MX; CM ⊗ L∗ ⊗ orM )

where νM (OX) is the specialization of the sheaf OX along M , CM is the sheaf of

Sato’s microfunctions, L∗ is the dual of L and orM is the orientation sheaf. As

we shall see, this formula appears as an immediate corollary of Sato’s theory.

Then comes the problem of calculating the Fourier–Sato transform C∧
γ of Cγ .

We consider various examples and in particular the case of a quadratic cone.

This last example has already been considered in a different language and with

a different method by Faraut–Gindikin [3].

We end this paper by briefly recalling the main theorem of [7] on the Laplace

transform of cohomology classes associated to conic R-constructible sheaves (and

in particular to tempered distributions supported by non convex cones) and show

a link between all the above constructions.

2 – Review on the Fourier–Sato transform

The Fourier transform for sheaves on sphere bundles has been introduced by

Sato (see [9]), then extended to conic sheaves on vector bundles by [1]. We refer

to [5] for a detailed construction and for historical comments.

On a topological space X, one denotes by Db(CX) the derived category of

the category of bounded complexes of sheaves of C-vector spaces on X. If X is

a real manifold, one denotes by orX the orientation sheaf on X and by ωX the

dualizing complex, ωX ' orX [dimX]. If f : Y → X is a morphism of manifolds,

one sets orY/X = orY ⊗ f−1orX .

Let τ : E →M be a finite dimensional real vector bundle over a real manifold

M with fiber dimension n, π : E∗ → M the dual vector bundle. Denote by p1
and p2 the first and second projection defined on E ×M E∗, and define:

P =
{

(x, y) ∈ E ×M E∗; 〈x, y〉 ≥ 0
}

,

P ′ =
{

(x, y) ∈ E ×M E∗; 〈x, y〉 ≤ 0
}

.



BOUNDARY VALUES, FOURIER–SATO, AND LAPLACE TRANSFORM 77

Consider the diagram:

Denote by Db
R+(CE) the full triangulated subcategory consisting of conic ob-

jects, that is, of objects F such that for all j, H j(F ) is locally constant on the

orbits of the action of R+ on E.

Definition 2.1. Let F ∈ Db
R+(CE), G ∈ Db

R+(CE∗). One sets:

F∧ = Rp2!(p
−1
1 F )P ′ ,

G∨ = Rp1!(p
−1
2 G)P ⊗ orE/M [n] .

The main result of the theory is the following.

Theorem 2.2.

(i) There is a natural isomorphism

F∧ ' Rp2∗ RΓP (p
−1
1 F ) ;

(ii) The two functors (·)∧ and (·)∨ are inverse to each other, hence define

equivalences of categories

Db
R+(CE) ' Db

R+(CE∗) .

(iii) In particular, let F1 and F2 belong to D
b
R+(CE). Then there is a natural

isomorphism:

RHom(F1, F2) ' RHom(F∧
1 , F∧

2 ) .

Moreover, the following formulas are of constant use.

Rτ !F ' RΓM (F )|M ' Rπ∗(F
∧) ' (F∧)|M ,(2.1)

Rτ∗F ' F |M ' Rπ!(F
∧)⊗ orE∗/M [n] ' RΓM (F∧)⊗ orE∗/M .(2.2)
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Example 2.3:

(i) Let γ be a closed proper convex cone in E with M ⊂ γ. Then:

(Cγ)
∧ ' CInt γ◦ .

Here γ◦ is the polar cone to γ, a closed convex cone in E∗ and Int γ◦

denotes its interior.

(ii) Let γ be an open convex cone in E. Then:

(Cγ)
∧ ' Cγ◦a ⊗ orE∗/M [−n] .

Here λa = −λ, the image of λ by the antipodal map.

(iii) In particular, applying Theorem 2.2 (iii), we get for F a conic sheaf on

E, and γ an open convex cone:

RΓ(γ;F ) ' RΓγ◦a(E∗;F∧ ⊗ orE∗/M ) [n] .

A useful property of the Fourier–Sato transform is that it commutes to base

change. More precisely, consider a morphism of manifolds: f : N → M . It

defines morphisms of vector bundles:

Theorem 2.4. Let F ∈ Db
R+(CE) and let G ∈ Db

R+(Cf∗E). Then there are

natural isomorphisms:
(f−1

τ F )∧ ' f−1
π (F∧) ,

(Rfτ !G)∧ ' Rfπ !(G
∧) .

3 – Review on specialization and microlocalization

We shall describe here the functor of specialization and its Fourier transform,

Sato’s functor of microlocalization. For a detailed exposition, see [5].

Let X be a real manifold (let’s say of class C∞), M a closed submanifold.

Denote by τ : TMX → M and π : T ∗
MX → M the normal bundle and the
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conormal bundle to M in X, respectively. Let F ∈ Db(CX). The specialization

of F along M , denoted νM (F ), is an object of Db
R+(CTMX). Its cohomology

objects are described as follows. If V is an open cone in TMX, then

Hj(V ; νM (F )) ' lim
−→
U

Hj(U ;F )

where U ranges over the family of open subsets of X which are “tangent” to V ,

that is, open tuboids in X with wedge M whose “profiles” is V . (For a precise

definition, refer to [5].)

The microlocalization of F along M , denoted µM (F ), is the Fourier–Sato

transform of νM (F ), hence is an object of Db
R+(CT ∗

M
X). It satisfies:

Rπ∗ µM (F ) ' RΓM (F ) ,

Hj(µM (F ))(x0;ξ0) ' lim
−→
U,Z

Hj
U∩Z(U ;F ) .

In the last formula, (x0; ξ0) ∈ T ∗
MX, U ranges over the family of open neighbor-

hoods of x0 in X and Z ranges over the family of closed tuboids in X with wedge

M whose profiles λ in TMX satisfy (x0; ξ0) ∈ Intλ◦a. (For a precise definition,

refer to [5].)

Now assume M is a real analytic manifold of dimension n and X is a complex-

ification of M . (This situation may be immediately generalized by considering

“totally real submanifolds” of X.) In such a case, one of the main results of

Sato’s theory asserts that the object µM (OX) is concentrated in degree n (see [9]

and also [8]). This leads to the following definition.

Definition 3.1.

(i) The sheaf of Sato’s hyperfunctions on M is defined by:

BM = Hn
M (OX)⊗ orM ,

(ii) The sheaf of Sato’s microfunctions on T ∗
MX is defined by:

CM = Hn(µM (OX))⊗ orM .

Hence, a hyperfunction is nothing but a microfunction globally defined in the

fibers of π. Denote by spec the natural isomorphism:

spec : BM ' π∗ CM .
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If u is an hyperfunction, Sato defines its analytic wave front set as:

WF (u) = supp(spec(u)) ,

a closed conic subset of T ∗
MX.

Since ΓM (T ∗
MX; CM ) ' AM (the sheaf of real analytic functions on M), one

sees that a hyperfunction is a real analytic function if and only if its wave front

set is contained in the zero-section.

An important property (proved by Kashiwara) is that the sheaf CM is conically

flabby (see [9]).

Applying Theorem 2.2, one gets:

Corollary 3.2. Let F ∈ Db
R+(CTMX). Then:

Rτ∗ RHom(F, νM (OX)) ' Rπ∗ RHom(F∧ ⊗ orM [n], CM ) .

This corollary applies in particular when F = Cγ , γ being a cone in TMX.

4 – Boundary values

In this section, we shall apply Corollary 3.2 to various geometrical situations.

As above, let M be a real analytic manifold of dimension n and let X be

a complexification of M . First, assume to be given a morphism (a “boundary

values morphism”):

(4.1) b : orM [−n]→ F .

It defines CM → F ⊗ orM [n] and also, applying the Fourier–Sato transform on

the vector bundle TMX:

b : CM → F∧ ⊗ orM [n] .

Using Corollary 3.2, we get the commutative diagram:
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Next, we specialize our study to the case where F is associated to a cone. Let

γ be a locally closed cone of TMX, d an integer, and assume that there exists a

locally closed cone λ in T ∗
MX and a local system L on M such that

(4.2) Hn−d(C∧
γ ) ' Cλ ⊗ L .

Denote by L∗ the dual local system to L.

Proposition 4.1. Assume (4.2). Then there is a natural isomorphism:

(4.3) Hd
γ (TMX; νM (OX)) ' Γλ(T

∗
MX; CM ⊗ orM ⊗ L∗) .

Proof: Applying Corollary 3.2, we get the isomorphisms:

RΓγ(TMX; νM (OX)) ' RHom(Cγ , νM (OX))

' RHom(C∧
γ ⊗ orM [n], CM ) .

Now apply Hd to both sides. Since the sheaf CM is conically flabby, it is injective

in the category of conic sheaves of C-vector spaces on T ∗
MX. Hence we get the

isomorphism:

(4.4) Hd
γ (TMX; νM (OX)) ' Hom(Hn−d(C∧

γ )⊗ orM , CM ) ,

and the result follows.

Remark 4.2.

(i) In practice, L will be of rank one, and locally, it can be forgotten, as well

as orM .

(ii) The result is of particular interest when λ is a closed cone and L is of

rank one. In such a case, the right hand-side of (4.3) is nothing but the

space of hyperfunctions on M with wave front set contained in λ (locally

on M , see the remark above).

(iii) If for some j, Hn−j(C∧
γ ) = 0, then Hj(γ; νM (OX)) = 0.

(iv) Using formula (2.1), we get that if γ is an open cone in TMX, then

Hn−d(M ;Rτ !Cγ⊗orM ) ' Hn−d(T ∗
MX;C∧

γ ⊗orM ). Using equation (4.4),

we get the pairing:

Hn−d(M ;Rτ !Cγ ⊗ orM )⊗Hd(γ; νM (OX))→ Γ(M ;BM ) .
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Now assume M is a vector space, identify X to M ×
√
−1M and let

γ = M × γ̃, where γ̃ is an open cone of
√
−1M . Then Hn−d(M ;Rτ !Cγ⊗

orM ) ' Hn−d
c (

√
−1M ;Cγ̃) ' Hd(γ̃) (homology of γ̃ in degree d). Hence

we get a pairing:

Hd(γ̃)⊗Hd(γ; νM (OX))→ Γ(M ;BM ) .

Given a cycle c ∈ Hd(γ̃), we get a map Hd(γ; νM (OX)) → Γ(M ;BM ).

This map is already considered (in some special situations) in [2] where

its injectivity (which, of course, does not hold in general) is discussed.

(v) Let γ be an open tube in X, γ̄ its closure, and assume that γ is topologi-

cally convex and γ̄ contains M . The natural morphism Cγ̄ → CM defines

by duality the boundary values morphism (of 4.1) orM [−n]→ Cγ , from

which one deduces the morphism Γ(γ;OX) → B(M). This purely topo-

logical construction of the boundary value morphism first appeared in

[10] (see also [5], pp. 467).

Example 4.3:

(i) Let γ be an open convex cone in TMX. Then:

Γ(γ; νM (OX)) ' Γγ◦a(T ∗
MX; CM ) ,

and Hj((γ; νM (OX)) = 0 for j 6= 0.

(ii) Assume n > 1 and choose γ = TMX\M. The Fourier–Sato’s functor ap-

plied to the exact sequence of sheaves Cγ → CTMX → CM →
+1

gives rise to

the distinguished triangle: C∧
γ → orM [−n]→ CT ∗

M
X→

+1
. Hence, H1(C∧

γ ) '
CT ∗

M
X , Hn−1(C∧

γ ) ' orM , and the other groups are zero. We get:

H0(γ; νM (OX)) ' ΓM (T ∗
MX; CM ) ' Γ(M ;AM ) ,

Hn−1(γ; νM (OX)) ' Γ(T ∗
MX; CM ⊗ orM ) ' Γ(M ;BM ⊗ orM ) ,

Hj(γ; νM (OX)) ' 0 for j 6= 1, n− 1 .

(Of course, this result is classical, and can easily be obtained without the

explicit use of the Fourier–Sato transform.)
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5 – Fourier–Sato transform of quadratic cones

Let E denote the the Euclidian space Rn, with coordinates x = (x1, . . . , xn),

and set x = (x′, x′′) with x′ = (x1, . . . , xp) and x′′ = (xp+1, . . . , xn). Let q = n−p

and assume q > 1. We denote by u = (u′, u′′) the dual coordinates on the dual

space E∗.

Let γ denote the closed solid cone in E,

γ = {x; x′
2 − x′′

2 ≥ 0}

and let λ denote the closed solid cone in E∗:

λ = {u; u′
2 − u′′

2 ≤ 0} .

Lemma 5.1. We have:

C∧
γ ' Cλ [−p] .

Proof: For u ∈ E∗, set:

γu = {x ∈ γ; 〈x, u〉 ≤ 0} .

Then (C∧
γ )u ' RΓc(E;Cγu

). We have (see [5], Ex. III 5):

RΓc(E;Cγ) ' C[−p] .

Hence it is enough to check that:

(i) if u /∈ λ, RΓc(E;Cγu
) = 0;

(ii) if u ∈ λ\{0}, the morphism

RΓc(E;Cγ) −→ RΓc(E;Cγu
)

is an isomorphism.

Let us prove (i). Let u = (u′, u′′). We may assume u′′ = 0. Let f be the

projection Rp×Rq→Rp, (x′, x′′) 7→ x′, and set γ̃u = f(γu). The fibers of f above

γ̃u are closed balls and γ̃u is a closed half plane. Hence RΓc(γ̃u;Cγ̃u
) = 0, and (i)

follows.

Let us prove (ii). We may assume u = (0, . . . , 0, 1). Let f be the projection

Rn → Rn−1, x 7→ (x1, · · · , xn−1). Set γ̃−u = f(γ\γu). Then the fibers of f above
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γ̃−u are intervals (0, a] for some a ∈ R. Hence Rf !Cγ\γu
= 0, and we obtain

RΓc(M ;Cγ\γu
) = 0, which implies (ii).

Now assume M is an open subset of E, X a complexification of M (of course

this situation could be generalized to manifolds). We change our notations and

denote by γ the cone M +
√
−1{y; y′2 − y′′2 ≥ 0} in TMX and similarly for λ in

T ∗
MX.

Applying Lemma 5.1 and Proposition 4.1, we get:

Proposition 5.2. One has the isomorphism:

Hq
γ(TMX; νMOX) ' Γλ(T

∗
MX; CM ) .

Remark 5.3. The case of quadratic cones has already been considered by

Faraut–Gindikin [3], with a different formulation and a different method. Their

method consists in representing cohomology classes in the non convex tube γ as

an integral of holomorphic functions in convex tubes.

6 – Formal and temperate cohomology

In order to state the next result on the Laplace transform, we need to briefly

recall the functors of formal (see [6]) and temperate cohomology (see [4]).

Let M be a real manifold, and let R-cons(CM ) denote the category of

R-constructible sheaves on M , Db
R−c(CM ) its derived category. The functors

T hom(·,DbM ) of [4] and the dual functor ·
w
⊗ C∞M of [6], are defined on the cate-

gory R-cons(CM ), with values in the category Mod(DM ) of DM -modules on M .

(The first functor is contravariant).

They are characterized as follows. Denote by DbM the sheaf of Schwartz’s

distributions on M and by C∞M the sheaf of C∞ functions on M . Let Z (resp. U)

be a closed (resp. open) subanalytic subset of M . Then these two functors are

exact and moreover:

T hom(CZ ,DbM ) = ΓZ(DbM ) ,

CU

w
⊗ C∞M = I∞M\U ,

where ΓZ(DbM ) denotes as usual the subsheaf of DbM of sections supported by

Z and I∞M\U denotes the ideal of C∞M of sections vanishing up to order infinity on

M\U .
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These functors being exact, they extend naturally to the derived category

Db
R−c(CX). We keep the same notations to denote the derived functors.

Now let X be a complex manifold and denote by X the complex conjugate

manifold and by XR the real underlying manifold. Let OX be the sheaf of holo-

morphic functions on X, let DX be the sheaf of finite order holomorphic differ-

ential operators on X. The functors of moderate and formal cohomology are

defined for F ∈ Db
R−c(CXR) by:

T hom(F,OX) = RHomD
X
(OX , T hom(F,DbXR)) ,

F
w
⊗ OX = RHomD

X
(OX , F

w
⊗ C∞XR

) .

7 – Laplace transform

Consider now a complex vector space E of complex dimension n, and denote

by j : E ↪→ P its projective compactification. Let Db
R−c,R+(CE) denote the full

triangulated subcategory of Db
R−c(CE) consisting of R+-conic objects (i.e. objects

whose cohomology is R-constructible and locally constant on the orbits of the

action of R+ on E).
Let F ∈ Db

R−c,R+(CE) and set for short

THom(F,OE) = RΓ(P; T hom(j!F,OP)) ,

F
W
⊗ OE = RΓ(P; j!F

w
⊗ OP) .

Remark that if E is a real n-dimensional vector space and E its complexi-

fication, then THom(orE [−n],OE) ' S ′(E), the Schwartz’s space of tempered

distributions on E and CE

W
⊗ OE ' S(E), the space of rapidly decreasing

C∞-functions on E.

Theorem 7.1 ([7]). The Laplace transform extends naturally as isomor-

phisms:

TL : THom(F,OE) ' THom(F∧[n],OE∗) ,(7.1)

WL : F
W
⊗ OE ' F∧[n]

W
⊗ OE∗ .(7.2)
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We may summarize the previous isomorphisms by the following diagrams.

Let F ∈ Db
R−c,R+(CE) and assume to be given a “boundary value morphism”

b : CE [−n]→ F . We get the diagram, in which we neglect orE for short:
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[8] Martineau, A. – Théorèmes sur le prolongement analytique du type “Edge of
the Wedge”, Sém. Bourbaki, 340 (1967/68).

[9] Sato, M., Kawai, T. and Kashiwara, M. – Hyperfunctions and pseudo-differen-

tial equations, In “Hyperfunctions and pseudo-differential equations” (Komatsu,
ed.), Proceedings Katata 1971, Lecture Notes in Mathematics Springer, 287 (1973),
pp. 265–529.

[10] Schapira, S. – Microfunctions for boundary value problems, in “Algebraic Analy-
sis Vol. II”, (Papers dedicated to Prof. Sato), (M. Kashiwara and T. Kawäı, eds.),
Academic Press (1988), pp. 809–819.

Pierre Schapira,
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