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RANDOM EVOLUTIONS PROCESSES INDUCED
BY DISCRETE TIME MARKOV CHAINS

M. Keepler

Abstract: Research on the random evolution of a family of semigroups induced

by a finite-state, continuous-time, stationary Markov chain was begun by Griego and

Hersh in 1969. Subsequently limit theorems and applications for random evolutions

have appeared in many places and the theory of random evolutions has been extended

and generalized in many directions. In this paper, we extend the theory of random

evolutions to discrete time Markov chains. Also, we use the idea of a reversed Markov

chain to exhibit subtle connections between forward and backward random evolutions.

Aside from their probabilistic significance, the results contribute to the general theory of

discrete semigroups.

1 – Introduction

A random evolution describes a situation in which a Markov process con-

trols the development of another process, the other process being described by

operators on a Banach space. A connection between random evolutions and

products of random matrices is made by Cohen in [3]. This connection is then

used in predicting the long-run growth rate of a single-type, continuously chang-

ing population in a randomly varying environment using only a sample of the

continuous-time random evolution taken at time t = 1. In [4 and 5], he describes

in more detail how a population in a random environment can be modeled by a

continuous-time random evolution observed at discrete points in time and why

eigenvalue inequalities arise naturally. The discrete random evolution considered
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by Korolyuk and Swishchuk [17] can be considered as an imbedded random evo-

lution, as can the ones considered by Cohen [3–5], in analogy with the notation

of an imbedded Markov chain. Conditions necessary for a discrete time Markov

chain to be imbeddable in a continuous time Markov chain with the same state

space were formulated by Kingman in [16].

Griego and Hersh [7 and 8] were the first to find that certain abstract Cauchy

problems are related to random evolutions. In [11] we gave an alternative formu-

lation of random evolutions that furnished both the backward and forward equa-

tions for random evolutions. Forward random evolutions provide a probabilistic

approach to the study of a different class of Cauchy problems to those of the back-

ward random evolutions of Griego–Hersh. The theory of random evolutions was

extended to the case where the inducing Markov chain is non-stationary in [12],

there an explicit connection between random evolutions and the famous Phillips

Perturbation series is developed. Earlier in this journal [14], the author stud-

ied random evolutions with underlying continuous-time, countable state space

Markov chains.

In this paper we consider random evolutions with underlying discrete-time

Markov chains. The proofs utilize the sample path methods of [8 and 15]. The

sample path approach gives additional insight as to how the random evolution

structure relates to the mechanisms of the Markov chain.

Surveys of the early literature on random evolutions are given in the papers of

Cohen [5] and Hersh [9]. Applications and limit theorems for random evolutions

are given in the book of Ethier–Kurtz [6]. In his book [10], Iordache studies

the role played by random evolutions and other dynamical systems in chemical

engineering. Abstract mathematical models of evolutionary stochastic systems

in random media, namely, random evolutions are studied in detail by Korolyuk

and Swishchuk in the monograph [17]. There the random evolutions studied are

induced by semi-Markov processes, for the most part. The reader is referred

to Ethier–Kurtz [6] and Korolyuk–Swishchuk [17] for the necessary facts about

semigroups and to Adke and Manjunath [1] and Chung [2] for information about

Markov chains.

2 – We use the following notation and assumptions

Z = {0, 1, 2, ...} .

{X(n); n ∈ Z} is a stationary Markov chain taking values in {1, 2, ..., N} and
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having transition matrix P , where

P = 〈pαβ〉 , 1 ≤ α, β ≤ N with

pαβ ≥ 0 for 1 ≤ α, β ≤ N and
N
∑

β=1

pαβ = 1 .

Pj [·] denotes the probability measure define on the sample paths X(·), given that

X(0) = j; Ej [·] denotes integration with respect to Pj [·].

f̃ = 〈fj〉1≤j≤N ∈ B̃ = BN

where B is a fixed Banach space. We equip B̃ with any appropriate norm so that

‖f̃‖ → 0 as ‖fi‖ → 0 for each i. Let {Ti, 1 ≤ i ≤ N} be bounded linear operators

defined on B. We define the backward random evolution {R(n) : n ∈ Z} by

R(n) = TX(0) TX(1) · · ·TX(n) , n ≥ 1 ,

with R(0) = I, the identity operator. For n ∈ Z define R̃(n) on B̃ = BN ,

specified componentwise, by

(R̃(n) f̃)j = Ej [R(n) fX(n)] .

Theorem 1. (i) {R̃(n); n ∈ Z} is a discrete semigroup of bounded, linear

operators on B̃, and

(ii) ũ(n) = R̃(n) f̃ solves the initial value problem

(2.1)
uj(n+ 1) =

N
∑

k=1

pjk Tj uk(n) ,

ũ(0) = f̃ ∈ B̃ .

Proof of (i): (See Griego–Hersh [8, page 410]).

It is easy to see that R̃(n) is a bounded linear operator. Thus, we need to

check the semigroup property. It suffices to show that for each i,

(

R̃(n+m) f̃
)

i
=

(

R̃(n) R̃(m) f̃
)

i
.
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Now,
(

R̃(n+m) f̃
)

i
= Ei

[

R(n+m) fX(n+m)

]

= Ei

[

Ei

[

R(n+m) fX(n+m) | Fn
]

]

(where Fn is the σ-algebra generated by the random variables X(k), 0≤k≤n)

= Ei

[

Ei

[

R(n)R(m) ◦ θn fX(m) ◦ θn | Fn
]

]

(θn is the shift operator defined by the requirement that X(k, θnw)=X(k+n, w)

for every k ∈ Z)

= Ei

[

R(n)Ei

[

R(m) ◦ θn fX(m) ◦ θn | Fn
]

]

= Ei

[

R(n)EX(n)

[

R(m) fX(m)

]

]

(by the Markov property of X)

= Ei

[

R(n) (R̃(m) f̃)X(n)

]

= (R̃(n) R̃(m) f̃)i .

Proof of (ii):

uj(n+ 1) = Ej

[

R(n+ 1) fX(n+1)

]

=
N
∑

k=1

Ej

[

R(n+ 1) fX(n+1); X(1) = k
]

=
N
∑

k=1

Tj pjk Ek[R(n) fX(n)]

(by the Markov property of X

=
N
∑

k=1

pjk Tj uk(n) .

Now, consider the forward random evolution

S(0) = I ,

S(n) = TX(n) TX(n−1) · · ·TX(0) , n ≥ 1 .

Define S̃(n) on B̃ by

(S̃(n) f̃)j =
N
∑

k=1

Ek

[

S(n) fk ; X(n) = j
]

.
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Theorem 2. (i) {S̃(n); n ∈ Z} is a discrete semigroup of bounded linear

operators in B̃, and

(ii) w̃(n) = S̃(n) f̃ solves the initial value problem

(2.2) wj(n+ 1) =
N
∑

i=1

pij Tj wi(n) , w̃(0) = f̃ .

Proof of (ii):

wj(n+ 1) =
N
∑

R=1

Ek

[

S(n+ 1)fk ; X(n+ 1) = j
]

=
N
∑

k=1

N
∑

i=1

Ek

[

TX(n+1) Tx(n) · · ·TX(0) fk ; X(n) = i, X(n+ 1) = j
]

=
N
∑

i=1

pij Tj

N
∑

k=1

Ek

[

TX(n) · · ·TX(0) fk ; X(n) = i
]

=
N
∑

i=1

pij Tj wi(n) .

The proof of part (i) is like that of part (i) of Theorem 1 with changes sug-

gested by the proof of Theorem 1 in [15].

Let A = diag(T1, T2, ..., TN ) then by (2.1) and (2.2) we have, in matrix form,

ũ(n+ 1) = AP ũ(n) and

w̃(n+ 1) = AP T w̃(n) .

3 – In order to compare the backward and forward random evolutions further,

we now assume that the transition matrix P of X has one as a simple eigenvalue.

Thus, P has a unique left eigenvector p = 〈pα〉,
∑N

α=1 pα = 1. Such a Markov

chain has an associated reversed chain X̂ with transition matrix P̂ = 〈p̂αβ〉,

1 ≤ α, β ≤ N , where p̂αβ =
pβ
pα

pβα.

Now, define the backward forward random evolutions induced by X̂, R̂(n)

and Ŝ(n) respectively. As in Theorems 1 and 2, the expectation operators,
˜̂
R(n)

and
˜̂
S(n) are discrete semigroups of bounded linear operators on B̃, and
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(i) ũ(n) =
˜̂
R(n)f̃ solves the initial value problem

(3.1)
uj(n+ 1) =

N
∑

k=1

p̂jk Tj uk(n)

ũ(0) = f̃ .

(ii) w̃(n) =
˜̂
S(n)f̃ solves the initial value problem

(3.2)
wj(n+ 1) =

N
∑

i=1

p̂ij Tj wi(n)

w̃(0) = f̃ .

With some manipulation of the matrices defined above we obtain the following

comparison theorem.

Theorem 3. Let
∏

= diag(p1, p2, ..., pN ).

Then equations (2.1) and (2.2) may be written in matrix form as

ũ(n+ 1) = AP ũ(n)

and w̃(n+ 1) = AP T w̃(n) , respectively .

Similarly, (3.1) and (3.2) in matrix form are

ũ(n+ 1) = A
[

∏−1P T
∏

]

ũ(n)

and w̃(n+ 1) = A
[

∏

P T
∏−1

]

w̃(n) , respectively .

Since
∏

is a diagonal matrix, we have shown (see an analogous result for

reversible countable state space Markov chains in [14])) that the forward evolution

for the reversed chain is essentially the same as the backward evolution for the

original chain and the backward evolution for the reversed chain is essentially the

same as the forward evolution for the original chain.

4 – The “jump” operator case can be handled in a similar manner. We

suppose B, B̃, A, and X are given as in Section 2 and let {Cαβ}, 1 ≤ α, β ≤ N ,

be bounded linear operators defined on the Banach space B. We define the jump

backward random evolution {R(n); n ∈ Z} by

R(n) = TX(0) CX(0)X(1) TX(1) · · ·CX(n−1)X(n) TX(n) , n ≥ 1 ,
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with R(0) = I. The expectation semigroup {R̃(n); n ∈ Z} is defined on B̃ by

{R̃(n)f̃)j = Ej[R(n)fX(n)]. With this notation the following theorem is proved

using the methods of Section 2.

Theorem 4. (i) {R̃(n) ; n ∈ Z} is a discrete semigroup of bounded linear

operators on B̃, and

(ii) ũ(n) = R̃(n)f̃ solves the initial value problem

(4.1)
uj(n+ 1) =

N
∑

k=1

Tj pjk Cjk uk(n) ,

ũ(0) = f̃ ∈ B̃ .

Now, define a jump forward random evolution {S(n) ; n ∈ Z} by reversing

the order of the operators in R(n) above. Analogous to the case of Section 2, we

define

(S̃(n) f̃)j =
N
∑

k=1

Ek

[

S(n) fk ; X(n) = j
]

.

Using the method of Section 2, we get that S̃(n) is a discrete semigroup of

bounded linear operators in B̃ and

Theorem 5. W̃ (n) = S̃(n)f̃ solves the initial value problem

(4.2)
wj(n+ 1) =

N
∑

i=1

Tj pij Cij wi(n) ,

w̃(0) = f̃ ∈ B̃ .

5 – The system of equations (2.1) taken with the system of equations (2.2)

form a formally adjoint system. The relation between (2.1) and (2.2) shows up

more clearly in the case of non-stationary transition probability matrix. Also, in

the theory of continuous-time random evolutions, the non-stationary case is both

interesting and applicable (see [12] and [17]). Thus, in this section we shall extend

the theory of backward and forward random evolutions to the nonstationary case.

Suppose X(n) is a nonstationary Markov chain on {1, 2, ..., N} with transition

matrix

P (m) = 〈pαβ(m)〉 1 ≤ α, β ≤ N ,
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such that pαβ(m) = P [X(m + 1) = β |X(m) = i] for m ∈ Z+. Let Pα,m
be the probability measure defined on sample paths for X under the condition

X(m) = α. Eα,m denotes integration with respect to Pα,m.

A backward random evolution {R(n,m) ; 0 ≤ n ≤ m} is defined by R(n,m) =

TX(n) TX(n+1) · · ·TX(m) where R(n, n) = I. For 0 ≤ n ≤ m define the operator

R̃(n,m) on B̃ by

(

R̃(n,m) f̃
)

j
= Ej,n

[

R(n,m) fX(m)

]

.

A forward random evolution {S(n,m) ; 0 ≤ n ≤ m} is defined by S(n,m) =

TX(m) TX(m−1) · · ·TX(n), where S(m,m) = I. For 0 ≤ n ≤ m define the operator

S̃(n,m) on B̃ by

(

S̃(n,m) f̃
)

j
=

N
∑

k=1

Ek,n

[

S(n,m)fk ; X(m) = k
]

.

The following two theorems are nonstationary analogues of Theorems 1 and 2.

Theorem 6. (i) {R̃(n,m) ; 0 ≤ n ≤ m} is a two-parametric family of

bounded linear operators satisfying the convolution equation (semigroup prop-

erty)

R̃(n,m) = R̃(n, l) R̃(l,m) , 0 ≤ n ≤ l ≤ m .

(ii) ũ(n,m) = R̃(n,m)f̃ solves the initial value problem

(5.1) uj(n,m) =
N
∑

k=1

pjk(n)Tj uk(n+ 1, m), ũ(n, n) = f̃ .

Theorem 7. (i) {S̃(n,m) ; 0 ≤ n ≤ m} is a two-parametric family of

bounded linear operators satisfying the convolution equation

S̃(n,m) = S̃(l,m) S̃(n, l) , 0 ≤ n ≤ l ≤ m .

(ii) w̃(n,m) = S̃(n,m) f̃ solves the initial value problem

(5.2)
wj(n,m) =

N
∑

i=1

pij(m− 1)Tj wi(n,m− 1) ,

w̃(m,m) = f̃ .
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(5.1) exhibits the backward random evolution semigroup, R̃(n,m), inherent con-

nection with the first jump of the Markov chain and (5.2) clearly shows the

inherent connection of the forward random evolution with the last jump of X.
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