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Abstract: Given a locally convex space E with nonstandard extension ∗E in a poly-

saturated model of Analysis, we distinguish very large infinite and very small infinitesimal

elements of ∗E, show that E is normable if and only if the former do not exist (Theo-

rem 3.1) and show that the existence of continuous norms on E is a necessary condition

for validity of Inverse Function Theorems (Theorem 2.2). We use a stronger version of

the embedding of standard sets in hyperfinite sets (Lemma 4.1).

1 – Introduction

All we need from the basic Theory of Infinitesimals and non-standard exten-

sions ∗(·) is contained in [4] and a good introduction to this subject can be found

in [3]; nevertheless we describe some notation and terminology for the reader’s

convenience. As for the general Theory of Locally Convex Spaces we use [1].

The set of standard elements of an extension ∗X is denoted σX; we assume

that our non-standard models are polysaturated ([4, 7.6]); K denotes any of the

scalar fields R — of real numbers — or C — of complex numbers. A scalar is

finite if its absolute value is bounded above by some standard hyperreal number,

and is infinitesimal if its absolute value is bounded above by all standard positive

hyperreal numbers. Nonfinite scalars are called infinite.

Let E denote a vector space over K and Γ be a right directed family of

seminorms making E a locally convex space. We say that a vector v ∈ ∗E is finite

if γ(v) is finite in ∗R for every standard seminorm γ ∈ σΓ and write fin(∗E) for

the set of finite vectors; O denotes the set of finite scalars. The vector v ∈ ∗E
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is infinitesimal if γ(v) is infinitesimal in ∗R, for all γ ∈ σΓ. We write v ≈ w

when v − w is infinitesimal and say that v and w are infinitely near. The set of

infinitesimal vectors is denoted µ(∗E).

If γ ∈ Γ, γ is a norm and v is a non zero vector, then ∗Rγ(v) = ∗R, but, as
shown in the following example, one cannot guarantee that ∗Cv contains finite non
infinitesimal vectors: it may happen that scalar multiples of an infinite vector are

either infinite or infinitesimal; one might say that such a vector is “abnormaly”

large.

Example 1.1. Say E is the space of entire functions, with the usual gauge

of norms γn (n ∈ N) given by

γn(f) = max
{

|f(z)| : |z| ≤ n
}

and define

v(z) = eΩz (z ∈ C) where 0 < Ω ∈ ∗R\O .

The function v is infinite, for γ1(v) = eΩ. Moreover, if 0 6= λ = ea+ib ∈ ∗C we

have

γn(λv) = ea+Ωn (n ∈ N) .

We show that for any λ ∈ ∗C,

λv ∈ fin(∗E) ⇒ λv ∈ µ(∗E) .

Suppose λv is finite. If, for some N ∈ σN there was r ∈ σR such that a+ΩN > r,

then a+Ω(N +1) > (r+Ω) ∈ ∗R+\O so λv would be infinite; hence a+Ωn ≤ r,

for all r ∈ σR and all n ∈ σN, in particular ea+Ωn ≈ 0 for all standard n, i.e., λv

is infinitesimal.

On the other direction: an infinitesimal vector v may be so small that its

scalar multiples λv (λ ∈ ∗K) are always infinitesimal.

Example 1.2 Let C(R)c denote the space of continuous real functions of one
real variable with the topology of compact convergence. The scalar multiples of

a function f ∈ ∗C(R)c such that f−1(0) ⊇ O are all infinitesimal, since they all

have standard seminorms zero.

The existence of very large or very small vectors does point to particular stan-

dard properties of the locally convex space, as we intend to show from section 2

on.

With the exception of Lemma 4.1 on polysaturation and the Main Theo-

rem 3.1, we postpone proofs of lemmas, corollaries and other theorems to sec-

tion 4.
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2 – Very small infinitesimal vectors

From now on E denotes a non trivial locally convex space with gauge of

continuous seminorms Γ.

A vector v ∈ ∗E is a very small infinitesimal if all its scalar multiples λv

(λ ∈ ∗K) are infinitesimal.

The following theorem shows that Example 1.2 actually describes very small

infinitesimals:

Theorem 2.1. Given a locally convex space E, the very small infinitesimal

vectors of ∗E are the elements of
⋂

{γ−1(0) : γ ∈ σΓ}; therefore ∗E has non zero

such vectors if and only if its gauge of continuous seminorms Γ does not contain

norms.

Proof: Just observe that zero is the only hyperreal number whose hyperreal

multiples are all infinitesimal.

These non zero very small elements also have to do with Inverse Function

Theorems: if they exist one cannot expect the set of linear homeomorphisms

between a pair of locally convex spaces to be open, even in the weak sense of

convergence structures ([2]), as we shall now explain.

Given internally linear maps φ, ψ ∈ ∗L(E,E), we say that φ is an infinitesimal

perturbation of ψ if they differ infinitesimally on finite elements, i.e., φ(v) ≈ ψ(v)

whenever v ∈ fin(∗E).

Theorem 2.2. If a locally convex space has very small infinitesimal vec-

tors, i.e., it does not admit continuous norms, then there exists an infinitesimal

perturbation of the identity function which is not injective.

Proof. Given a very small infinitesimal vector v ∈ ∗E, Transfer of [1, 7.2.2c]

implies that the internally finite dimensional space ∗Kv has an internal topological
supplement F , i.e., ∗E is the internal topological direct sum ∗Kv ⊕ F . The

projection πF :
∗E → F is an internally continuous infinitesimal perturbation of

the identity.

In other words, the existence of continuous norms is a necessary condition for

the preservation of homeomorphy with nearness.

Large vectors have a stronger relation to norms.
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3 – Ultra infinite vectors

Definition 3.1. A vector v ∈ ∗E is ultra infinite if v is infinite and ∗Kv ∩
fin(∗E) ⊆ µ(∗E).

The following examples essentially describe ultra infinite vectors.

Example 3.1. E = RN with pointwise convergence. Take an internal

sequence of infinite Ωn such that

0 <
Ωn+1

Ωn
∈ ∗N\σN (n ∈ N)

— e.g. (Ωn) with infinite Ω ∈ ∗N — This sequence is ultra infinite.

Going a little further:

Example 3.2. If E is the countable product of normed spaces (En, ‖ · ‖n),

E =
∏∞
n=1En, then for all r > 0, there exists a sequence (vn), such that

∀n ∈ N
[

0 6= vn ∈ En ∧ ‖vn+1‖n+1 ≥ r‖vn‖n ≥ r
]

.

Therefore, by Transfer ([4]), there exists an internal sequence v = (vn) ∈
∗E such

that

‖vn+1‖n+1 ≥ Ω‖vn‖n ≥ Ω (n ∈ ∗N)

with Ω a fixed infinite positive hyperreal. The vector v is ultra infinite.

And we shall generalize these ideas in order to prove our Main Theorem:

Theorem 3.1. A locally convex space E is normable if and only if ∗E does

not contain ultra infinite vectors.

By a normable space we mean a locally convex space whose topology is de-

finable by a single norm.

As we observed above, if E admits a continuous norm ‖ · ‖ say, then {‖λv‖ :

λ ∈ ∗K} = ∗[0,+∞[ whenever v 6= 0, thus ∗E contains no ultra infinite vectors.

This shows that the “only if” statement holds.

For the proof of the “if” part, recall the following from [1, 6.8.5].

Theorem 3.2. Every locally convex space is a dense subspace of a reduced

projective limit of Banach spaces.
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Then consider a refinement of Example 3.2:

Theorem 3.3. Let A be an infinite set and Eα a non trivial semi normed

space, for each α ∈ A. The product ∗E = ∗
∏

α∈AEα has ultra infinite elements.

Now observe that:

Lemma 3.1. If v is a ultra infinite vector of ∗E and w ≈ v, then w is also

ultra infinite.

And conclude:

Corollary 3.1. If E is the reduced projective limit of a system ((Ei)i∈J ;

(Tj,k)j≤k) of (semi) normed spaces and E is not (semi) normable, then E has

ultra infinite vectors.

This together with Lemma 3.1 proves theMain Theorem 3.1 for, if E is not

normable the corresponding reduced limit is of course not normable.

4 – Proofs

We need the following consequence of polysaturation

Lemma 4.1. If A is an infinite set, there exists a hyperfinite set C =

{α1, α2, ..., αω} such that the following two conditions hold.

1) σA ⊆ C = {α1, α2, ..., αω} ⊆
∗A, for some ω ∈ ∗N.

2) For all standard αi, there exists a standard αj such that i < j.

Observe that the indices in assertion 2 above need not be standard.

Proof of Lemma 4.1: Take A well ordered without last element. A set C

verifying 1 exists because our model is polysaturated ([4, 7.6.2]). If necessary,

internally reorder C so that the hyperfinite order given by the indices in ∗N is

induced by the extended order on ∗A; in so doing the order on C induces the

original order in σA too. Now, if αi ∈
σA, there exists b ∈ σA, such that αi < b;

by 1, b must be some αj and, as the order in
σA and in (the indices of) C agree,

one must have i < j.
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We have all we need from Model Theory.

Proof of Theorem 3.3: Since each Eα is non trivially semi normed, the

semi norms γα on Eα (α ∈ A) have the following property:

(P) Given n∈N, {α1, ..., αn}⊆A and r ∈ ]0,+∞[, there exists (vα1
, ..., vαn) ∈

∏n
i=1Eαi

, such that

γαi+1
(vαi+1

) ≥ r γαi
(vαi

) > r (1 ≤ i ≤ n− 1) .

By Lemma 4.1, there exists a strictly hyperfinite set such that

σA ⊆ C = {α1, ..., αn, ..., αω} ⊆
∗A .

If α ∈ σA and α = αi, then there exists j > i such that αj ∈
σA. Pick an

infinite positive hyperreal number Ω. By Transfer of the above property

(P), there exists (vα1
, ..., vαω) ∈

∏ω
i=1Eαi

, such that

γαi+1
(vαi+1

) ≥ Ω γαi
(vαi

) > Ω (1 ≤ i ≤ ω − 1) .

∗A\C is internal, therefore the vector v = (vα;α ∈
∗A), given below is in

∗E.

vα =

{

vα if α ∈ C,

0 if α ∈ ∗A\C .

Now, as C ⊇ σA, v is infinite. Suppose λv is finite for some scalar λ. Then

for each standard α, there exists a finite positive hyperreal number kα, such that

γα(λvα) ≤ kα, so that if α = αi, then i < ω and there also exists j such that

i < j < ω, αj is standard and

Ωj−i γαi
(λvαi

) ≤ γαj
(λvαj

) ≤ kαj
∈ O ;

it follows that

γα(λvα) ≈ 0 (α ∈ σA)

i.e. λv is infinitesimal. As λ was arbitrary, v is ultra infinite.

Proof of Lemma 3.1: Say v is ultra infinite and v ≈ w, so that

(1) γ(v) ≈ γ(w) (γ ∈ σΓ) .

If γ0 is a standard semi norm such that γ0(v) is infinite, then γ0(w) is infinite too,

by (1) and w itself is infinite. If λ ∈ ∗K and γ(λw) is finite, for every standard
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seminorm γ, then |λ| must be infinitesimal — otherwise γ0(λw) would be infi-

nite — and, by (1), γ(λv) is also finite for all standard seminorms γ, forcing

γ(λw) to be infinitesimal too, again by (1), because v is ultra infinite.

Proof of Corollary 3.1: Let πj denote the projection into the j-th factor

of E =
∏

i∈J Ei. Since E is not (semi) normable we may assume

(2) πj(E) 6= {0} (j ∈ J) .

In particular Ej 6= {0} (j ∈ J) so that, by Theorem 3.3, ∗F has a ultra infinite

vector say y. Let J be a hyperfinite set such that σJ ⊆ J ⊆ ∗J . Recall that J is

directed and pick k ∈ ∗J such that j ≤ k for all j ∈ J .

As the Tjk : Ek → Ej are internally linear continuous for all j ∈ ∗J , we have

γj(xj) ≤Mjk γk(xk) (x = (xj) ∈
∗E; j ∈ J )

and, by (2), we may assume all the Mjk > 0.

Choose a positive infinitesimal number ε such that Mjk ε ≈ 0 (j ∈ J ). Since

E is reduced, we may pick x ∈ ∗E such that γk(xk − yk) < ε. For each j ∈ σJ we

have

γj(xj − yj) ≤Mjk γk(xk − yk) < εMjk ≈ 0

because σJ ⊆ J . Therefore x ≈ y and, by Lemma 3.1, x is also ultra infinite.
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