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ON THE LACK OF NULL-CONTROLLABILITY
OF THE HEAT EQUATION ON THE HALF SPACE

S. Micu * and E. Zuazua •

Abstract: We study the null-controllability property of the linear heat equation

on the half-space with a L2 Dirichlet boundary control. We rewrite the system on the

similarity variables that are a common tool when analyzing asymptotic problems. By

separation of variables the multi-dimensional control problem is reduced to an infinite

family of one-dimensional controlled systems. Next, the results for this type of systems

proved in [18] are used in order to show that, roughly speaking, controllable data have

Fourier coefficients that grow exponentially for large frequencies. This result is in contrast

with the existing ones for bounded domains that guarantee that every initial datum

belonging to a Sobolev space of negative order may be driven to zero in an arbitrarily

small time.

1 – Introduction. Problem formulation

Let Ω be a smooth domain of Rn with n ≥ 1. Given T > 0 and an open

non-empty subset of the boundary of Ω we consider the linear heat equation:





ut −∆u = 0 in Q,

u = v 1Σ0 on Σ,

u(x, 0) = u0(x) in Ω ,

(1.1)

where Q = Ω×(0, T ), Σ = ∂Ω×(0, T ) and Σ0 = Γ0×(0, T ), Γ0 being an open,
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non-empty subset of ∂Ω and where 1Σ0 denotes the characteristic function of the

subset Σ0 of Σ.

In (1.1), v ∈ L2(Σ) is a boundary control that acts on the system through the

subset Σ0 of the boundary and u = u(x, t) is the state.

System (1.1) is said to be null-controllable at time T if for any u0 ∈ L2(Ω)

there exists a control v ∈ L2(Σ0) such that the solution of (1.1) satisfies

u(x, T ) = 0 in Ω .(1.2)

When Ω is a bounded domain of class C2 it is well-known that system (1.1)

is null-controllable for any T > 0. We refer to D.L. Russell [20] for some partic-

ular examples treated by means of moment problems and Fourier series and to

A. Fursikov and O.Yu. Imanuvilov [9] and G. Lebeau and L. Robbiano [17] for

the general result covering any bounded smooth domain Ω and open, non-empty

subset Γ0 of ∂Ω. Both the approaches of [9] and [17] are based on the use of

Carleman inequalities.

None of the approaches mentioned above apply when Ω is an unbounded

domain.

This paper is devoted to analyze the particular case in which Ω is a half-space:

Ω = Rn
+ =

{
x = (x′, xn) : x

′ ∈ Rn−1, xn > 0
}

(1.3)

and

Γ0 = ∂Ω = Rn−1 =
{
(x′, 0) : x′ ∈ Rn−1

}
.(1.4)

As we shall see, the situation is completely different to the one we have described

above and, roughly speaking, one may say that there is no initial data in any

negative Sobolev space that may be driven to zero in finite time. Therefore, in

some sense, the situation is the opposite one to the one we encounter in the case

of bounded domains.

There is a weaker notion of controllability. It is the so called approximate

controllability property. System (1.1) is said to be approximately controllable

in time T if for any u0 ∈ L2(Ω) the set of reachable states, R(T ;u0) = {u(T ) :
u solution of (1.1) with v ∈ L2(Σ0)}, is dense in L2(Ω).

With the aid of classical backward uniqueness results for the heat equation

(see, for instance, J.L. Lions and E. Malgrange [16] and J.M. Ghidaglia [10]), it

can be seen that null-controllability implies approximate controllability. Moreover

one can easily prove the approximate controllability directly both in the case of

bounded and unbounded domains.

Thus, taking into account that approximate controllability holds, it is natural

to analyze whether null-controllability holds as well.
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As we mentioned above, we start analyzing the case where Ω is a half-space

and Γ0= ∂Ω. Thus, we consider the system:




ut −∆u = 0 in Q = Rn
+×(0, T ),

u = v on Σ = Rn−1×(0, T ),
u(x, 0) = u0(x) in Rn

+ .

(1.5)

It is easy to see that we may not expect the null controllability result of the

case where Ω is bounded to be true in this case. Indeed, the null-controllability

of (1.5) with initial data in L2
(
Rn
+

)
and boundary control in L2(Σ) is equivalent

to an observability inequality for the adjoint system

{
ϕt +∆ϕ = 0 on Q,

ϕ = 0 on Σ .
(1.6)

More precisely, it is equivalent to the existence of a positive constant C > 0

such that

‖ϕ(0)‖2L2(Rn
+) ≤ C

∫

Σ

∣∣∣∣
∂ϕ

∂xn

∣∣∣∣
2

dx′ dt(1.7)

holds for every smooth solution of (1.6).

When Ω is bounded, Carleman inequalities provide the estimate (1.7) and,

consequently, null-controllability holds (see for instance [9], [7]).

In the case of a half-space it is easy to see that (1.7) may not hold. Indeed,

let ϕ0 ∈ D
(
Rn
+

)
and ϕ0

k(x) = ϕ0(x′, xn− k) with k > 0 large enough. Let ϕk be

the solution of (1.6) with initial datum ϕ0
k at time t = T , i.e. ϕk(T ) = ϕ0

k in Rn
+.

It is easy to see that

‖ϕk(0)‖2L2(Rn
+)

/∫

Σ

∣∣∣∣
∂ϕk
∂xn

∣∣∣∣
2

dΣ −→ ∞, as k →∞ .(1.8)

Indeed, from the representation formula

ϕk(x, t) =
1(

2
√
π(T − t)

)n
∫

Rn
e
−
||x−ξ||2

4(T−t) ϕ̃0
k(ξ) dξ

where ϕ̃0
k is an odd extension of ϕ

0
k from Rn

+ to Rn, we obtain that (ϕk)x(x
′, 0, t)

decays exponentially when k →∞. Consequently
∫
Σ |(ϕk)x|

2 dΣ tends to zero

when k goes to infinity whereas ‖ϕk(0)‖2L2(Rn
+)
= ‖ϕ(0)‖2

L2(Rn
+)
remains constant.

Hence (1.8) follows.

We refer to L. Rosier [19] for a similar negative result in the context of exact

controllability of linear, constant coefficient pde in one space dimension.
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However, this translation invariance argument does not allow to exclude

weighted versions of the inequality (1.7), and therefore, the null-controllability

of suitable initial data u0 may not be excluded.

This paper is devoted to analyze the class of initial data u0 such that the

solution of (1.5) may be driven to zero in time T by means of a L2-control v.

In the case of bounded domains, using Fourier series expansion, the control

problem may be reduced to a moment problem. However, since we are working on

Rn
+, we can not use Fourier series. Nevertheless, it was observed by M. Escobedo

and O. Kavian in [4] that, on suitable similarity variables and at the appropriate

scale, solutions of the heat equation on conical domains may be indeed developed

in Fourier series on a weighted L2-space.

We adapt this idea to our problem. Using similarity variables and weighted

Sobolev spaces and developing solutions in Fourier series we reduce the con-

trol problem to a sequence of one-dimensional controlled systems. The null-

controllability properties of this type of systems were studied in [18] where it

was proved that no initial datum u0 belonging to any Sobolev space of nega-

tive order may be driven to zero in finite time. Moreover, this negative result

was complemented by showing that there exist initial data with exponentially

growing Fourier coefficients for which null-controllability holds in finite time with

L2-controls.

We use the results of the one-dimensional case to show that, roughly speaking,

the controllable initial data of the multi-dimensional problem have exponentially

growing Fourier coefficients.

The paper is organized in the following way. In Section 2 we introduce the

similarity variables. In Section 3, devoted to the 1− d control problem, we recall
some of the results proved in [18]. In Section 4, we discuss the multi-dimensional

case and we give the main results. Finally, in Section 5, we briefly comment the

case of general conical domains and discuss some other extensions of the results

of this paper and open problems.

2 – Similarity variables and weighted Sobolev spaces

In this section we recall some basic facts about the similarity variables and

weighted Sobolev spaces for the heat equation. We refer to [4] and [14] for further

developments and details.
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2.1. The similarity variables

We consider the solutions u = u(x, t) of





ut −∆u = 0 in Q,

u = v on Σ,

u(x, 0) = u0(x) in Ω ,

(2.1)

where {
Ω = Rn

+,

Q = Rn
+×(0, T ) , Σ = Rn−1×(0, T ) = ∂Ω×(0, T ) .

(2.2)

We now introduce the new space-time variables

y = x
/√

t+ 1 ; s = log(t+ 1) .(2.3)

Then, given u = u(x, t) solution of (2.1) we introduce

w(y, s) = esn/2 u(es/2y, es − 1) .(2.4)

It follows that u solves (2.1) if and only if w satisfies





ws −∆w −
y · ∇w
2

− n

2
w = 0 in Q̃,

w = ṽ on Σ̃,

w(y, 0) = u0(y) in Ω ,

(2.5)

where

ṽ(y′, s) = esn/2 v(es/2y′, es − 1) .(2.6)

Here and in the sequel we use the notation y′= (y1, ..., yn−1) so that y = (y
′, yn).

On the other hand,

Q̃ = Ω×(0, S) = Rn−1×(0, S);

Σ̃ = ∂Ω×(0, S) = Rn−1×(0, S);
S = log(T + 1) .(2.7)

Obviously, analyzing the null controllability of system (2.1) in time T is equiv-

alent to studying the null controllability of system (2.5) in time S = log(T + 1).

Therefore, in the sequel, we shall analyze system (2.5).

The elliptic operator involved in (2.5) may also be written as

Lw := −∆w − y · ∇w
2

= − 1

K(y)
div(K(y)∇w)(2.8)
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where K = K(y) is the Gaussian weight

K(y) = exp
(
|y|2/4

)
.(2.9)

We first analyze this operator in the whole space.

2.2. Weighted spaces and spectral analysis in the whole space

We introduce the weighted L2-space: L2(K) = {f : Rn→R :
√
Kf ∈ L2(Rn)}

endowed with the natural norm ‖f‖L2(K) =

(∫

Rn
|f |2K(y) dy

)1/2
. Obviously, it

is a Hilbert space.

We then define the unbounded operator L on L2(K) by setting

Lw = −∆w − y · ∇w
2

,

as above, and D(L) = {w ∈ L2(K) : Lw ∈ L2(K)}.
Integrating by parts it is easy to see that

∫

Rn
(Lw)wK dy =

∫

Rn
|∇w|2K dy .

Therefore it is natural to introduce the weighted H1-space:

H1(K) =
{
f ∈ L2(K) : ∂f/∂xi ∈ L2(K), i = 1, ..., n

}

endowed with the norm

‖f‖H1(K) =

[∫

Rn

(
|f |2 + |∇f |2

)
K dy

]1/2
.

In a similar way, for any s ∈ N we may introduce the space

Hs(K) =
{
f ∈ L2(K) : Dαf ∈ L2(K), ∀α : |α| ≤ s

}
.

The following properties were proved in [4] and [14]:
∫
f2 |y|2K dy ≤ 16

∫
|∇f |2K dy , ∀ f ∈ H1(K) ,(2.10)

the embedding H1(K) ↪→ L2(K) is compact ,(2.11)

L : H1(K)→ (H1(K))′ is an isomorphism ,(2.12)

D(L) = H2(K) ,(2.13)

L−1 : L2(K)→ L2(K) is self-adjoint and compact ,(2.14)

the eigenvalues of L are λj =
n+ j − 1

2
, j ≥ 1 ,(2.15)
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and the corresponding eigenspaces

Ker(L− λjI) = span
{
Dαϕ1 : |α| = j − 1

}
,(2.16)

where ϕ1 is the eigenfunction associated to the first eigenvalue λ1, which is simple,

and is explicitly given by

ϕ1(y) = K−1(y) = exp(−|y|2/4) .(2.17)

In one space dimension all the eigenvalues are simple. In dimensions n ≥ 2
the multiplicity µj of all the eigenvalues λj with j ≥ 2 is greater than one,
µj =

(n+j−2
n−1

)
. We can then choose the eigenfunctions {ϕj,`} j≥1

1≤`≤µj

such that they

constitute an orthonormal basis of L2(K). Note that ϕj,` denotes an eigenfunc-

tion associated to the eigenvalue λj and ` = 1, ..., µj , µj being the multiplicity of

λj .

Using this spectral decomposition the solutions of the heat equation in similar-

ity variables in the whole space can be easily developed in Fourier series. Namely,

if w solves 


ws + Lw −

n

2
w = 0 in Rn×(0,∞),

w(y, 0) = u0(y) in Rn ,
(2.18)

with

u0(y) =
∞∑

j=1

µj∑

`=1

aj,` ϕj,`

then,

w(y, s) =
∞∑

j=1

e−λjs
[ µ∑̀

`=1

aj,` ϕj,`(y)

]
.

2.3. Spectral analysis on the half-space

This similarity transformation may be used in any conical domain of Rn.

Indeed, under the condition that Ω is a cone (i.e. λΩ = Ω, ∀λ > 0), the equation
in the similarity variables is still posed in the domain Ω for any s > 0. The

operator L with Dirichlet boundary conditions on a cone has basically the same

properties as above, except for the fact that the spectrum is not the same (see

[14]).

However, when Ω = Rn
+, the spectrum may be easily computed explicitly.

In fact, with ϕj,` as above, it is easy to see that ϕj,` is an eigenfunction of
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L satisfying the Dirichlet homogeneous boundary condition on ∂Ω = Rn−1, i.e.

on yn = 0, provided ϕj,` is odd with respect to yn. Taking into account that

ϕj,` = cj,`D
αK−1 for a suitable α = (α1, ..., αn) with |α| = j−1, we see that this

holds if and only if αn is odd.

In one space dimension (n = 1) we deduce that ϕj is an eigenfunction of L

in Ω = (0,∞) with Dirichlet boundary conditions on the left extreme y = 0,

i.e. such that ϕj(0) = 0, if and only if j is even. Consequently, in this case the

eigenfunctions are

φm(y) = ϕ2m(y) , m ≥ 1 ,(2.19)

and the corresponding eigenvalues

ωm = λ2m =
2m

2
= m, m ≥ 1 .(2.20)

When n ≥ 2, and Ω = Rn
+ we have to exclude only the eigenvalue λ1. There-

fore

ωm = λm+1 =
n+m

2
, m ≥ 1 ,(2.21)

and the corresponding eigenfunctions are then multiples of

Dα(K−1), with |α| = m, αn= odd .(2.22)

Obviously, in this case, the multiplicity µ̂m of each eigenvalue is strictly less

that µm. We shall denote by {φm,`} m≥1

`=1,···,µ̂m

an orthonormal basis of L2
(
Rn
+;K

)

constituted by the eigenfunctions of L vanishing on yn = 0.

Here and in the sequel, by L2
(
Rn
+;K

)
we denote the weighted L2-space:

L2(Rn
+;K) =

{
f : Rn

+→R :
√
Kf ∈ L2 (Rn

+

)}

endowed with the canonical norm. We will also use the weighted Sobolev spaces:

H1(Rn
+;K) =

{
f ∈ L2(Rn

+;K) : ∇f ∈ (L2(Rn
+;K))

n
}

and

H1
0 (Rn

+;K) =
{
f ∈ H1(Rn

+;K) : f = 0 in yn = 0
}
,

endowed with the canonical norms. Finally, by H−1
(
Rn
+;K

)
we denote the dual

of H1
0

(
Rn
+;K

)
.
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3 – The 1− d control problem

In this section we recall some of the main results for the 1−d control problem
in the half-line proved in [18]. We consider the control problem





ut − uxx = 0, x > 0, t > 0,

u(0, t) = v(t), t > 0,

u(x, 0) = u0(x), x > 0 .

(3.1)

Here, u = u(x, t) is the state and v = v(t) is the control.

Given T > 0 we are interested on the structure of the space of initial data

that may be driven to zero in time T by means of a control v ∈ L2(0, T ). In

other words, we want to describe the space of data u0 for which there exists

v ∈ L2(0, T ) such that the solution of (3.1) satisfies

u(x, T ) = 0 , ∀x > 0 .(3.2)

We define w by means of the similarity transformation (2.4). Then, u solves

(3.1) and satisfies (3.2) if and only if w solves





ws − wyy −
y wy
2
− 1
2
w = 0, y > 0, 0 < s < S,

w(0, s) = ṽ(s), 0 < s < S,

w(y, 0) = u0(y), y > 0 ,

(3.3)

and satisfies

w(y, S) = 0 , ∀ y > 0 ,(3.4)

with

S = log(T + 1) ,(3.5)

and ṽ as in (2.6).

Obviously, v ∈ L2(0, T ) if and only if ṽ ∈ L2(0, S). Therefore, the problem is

reduced to analyze the structure of the space of initial data u0 for which there

exists ṽ ∈ L2(0, S) such that the solution of (3.3) satisfies (3.4).

Let us rewrite the initial datum u0 as

u0(y) =
∑

m≥1

am φm ,(3.6)

where, recall, {φm}m≥1 is an orthonormal basis of L2(R+;K) constituted of eigen-

functions of the operator L in H1
0 (R+;K) and eigenvalues ωm= m.
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The following controllability result was proved in [18]:

Theorem 3.1. There is no non-trivial initial datum u0 which is null-control-

lable in finite time and with Fourier coefficients {am} satisfying

|am| ≤ Cδ e
δm , ∀m ≥ 1 ,(3.7)

for all δ > 0.

Moreover, for any δ > 0 and S > δ there exist non-trivial initial data u0 that

are null-controllable in time S and such that

C1
eδm

m3/4
≤ |am| ≤ C2

eδm

m3/4
, ∀m ≥ 1 ,(3.8)

for suitable positive constants C1, C2 > 0. In this case a control f ∈ L2(0, S)

with supp(f) ⊆ [0, δ] can be found.

Theorem 3.1 indicates, roughly speaking, that null-controllable initial data

have exponentially growing Fourier coefficients. Actually, the Fourier coefficients

need to be exponentially large for any 0 ≤ s < S along the controlled trajectory.

Observe that u0 ∈ H−α(R+;K) with α > 0 if
∑

m≥1 |am|2m−α < ∞. Con-
sequently the null-controllable initial data that Theorem 3.1 provides satisfying

(3.8) do not belong to any Sobolev space of negative order H−α(R+;K).

On the other hand, if u0 ∈ H−α(R+;K) for some α > 0, we have

|am| = |〈u0, φm〉| ≤ ‖u0‖H−α(R+;K) ‖φm‖Hα(R+;K) .

Taking into account that ‖φm‖Hα(R+;K) grows polynomially asm→∞ we deduce

that (3.7) holds and therefore u0 is not null-controllable, except when u0 ≡ 0.
Theorem 3.1 refers to the null-controllability of system (3.3) in the similarity

variables. However, due to the equivalence of the null-controllability of system

(3.1) and (3.3) the same holds for (3.1):

Corollary 3.1. There is no non trivial initial datum u0 which is null-control-

lable in finite time for system (3.1) by means of L2 boundary controls and such

that

|am| ≤ Cδ e
δm , ∀m ≥ 1 ,(3.9)

for all δ > 0.

Moreover, for any δ > 0 and T > eδ − 1 there exist non-trivial initial data u0
for system (3.1) that are null-controllable in time T with L2 controls supported

in [0, δ] and such that its Fourier coefficients {am} satisfy (3.8).



THE HEAT EQUATION ON THE HALF SPACE 11

Remark 3.1. According to Corollary 3.1 we deduce, in particular, that the

following initial data are not null-controllable in any time T for system (3.1):

• u0(x) = xk exp(−x2/2), ∀ k ≥ 0;
• u0 ∈ D(R+).

As we mentioned in the introduction, this result is in contrast with the existing

ones for bounded intervals that guarantee that any initial datum in any Sobolev

space of negative order is null-controllable in an arbitrarily short time.

The examples we have mentioned above show that the lack of null-controllabi-

lity on the half-line is not due to the lack of regularity or to the lack of decay at

infinity of the initial data. In fact, there is no initial datum u0 ∈ D(R+), except

for the trivial one, that is null-controllable in any time!

4 – The multi-dimensional case: The half space

In this section we discuss the case where Ω=Rn
+, n≥2, and the control acts

on the whole boundary ∂Ω. As we shall see, the situation is similar to the one

encountered in one space dimension. Namely:

a) Initial data with Fourier coefficients that grow less than any exponential

are not null-controllable in any time;

b) There are initial data with exponentially growing Fourier coefficients that

are null-controllable.

4.1. Reduction to the one-dimensional case

We consider the system in the similarity variables





ws −∆w −
y · ∇w
2

− n

2
w = 0 in Ω×(0, S),

w = v on ∂Ω×(0, S),
w(y, 0) = u0(y) in Ω ,

(4.1)

where

Ω = Rn
+ , ∂Ω = Rn−1 .(4.2)

The space variable y = (y1, ..., yn) will be split as y = (y
′, yn) with y′ =

(y1, ..., yn−1).
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According to the analysis of Section 2.3 the eigenvalues of the corresponding

elliptic operator Lw = −∆w − y·∇w
2 are:

ωm =
n+m

2
, ∀m ≥ 1 .(4.3)

The corresponding eigenfunctions are of the form

φ = Dα[K−1] = Dα[e−|y|
2/4](4.4)

with α = (α1, ..., αn) such that
{ |α| = α1 + · · ·+ αn = m,

αn = odd .
(4.5)

We denote by µ̂m the multiplicity of the eigenvalues ωm, which coincides with

the number of multi-indexes α satisfying (4.5).

The eigenfunctions may be chosen to constitute an orthonormal basis of

L2
(
Rn
+; K

)
. We shall denote them as {φm,`} m≥1

1≤`≤µ̂m

. Then,

φm,` = Cm,`D
α[e−|y|

2/4](4.6)

for some α as in (4.5).

We shall re-index the elements of the orthonormal basis {φm,`} m≥1

1≤`≤µ̂m

in a

different way. Let us define the set E = {(α′, 2 j − 1) : j ∈ N∗, α′ ∈ Nn−1}. For
each (α′, 2 j − 1) ∈ E there is an unique eigenfunction

φα′,j = Cα′,j D
(α′,2j−1)[e−|y|

2/4]

which belongs to the orthonormal basis {φm,`} m≥1

1≤`≤µ̂m

. In fact, all the elements

of the orthonormal basis can be obtained in this way. Hence, {φα′,j}(α′,2j−1)∈E
forms an orthonormal basis of L2(Rn

+,K).

To each eigenfunction φα′,j corresponds an eigenvalue ωm =
n+m
2 where

m = |α′|+ 2 j − 1.
Any initial datum u0 can be developed in Fourier series as

u0(y) =
∑

α′∈Nn−1

[
∑

j≥1

aα′,j φα′,j

]
.(4.7)

To simplify things we suppose that the control v = v(y′, s) lies in L2(0, S;

L2(∂Ω;K)), i.e.

‖v‖2L2(0,S;L2(∂Ω;K)) =

∫ S

0

∫

Rn−1
v2(y′, s)K(y′) dy′ ds < ∞ .(4.8)
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Here and in the sequel by K(·) we denote the n− 1-dimensional gaussian weight

K(y′) = exp
(
|y′|2/4

)
.(4.9)

Note that K denotes as well the gaussian weight in n variables.

The control v ∈ L2(0, S;L2(Rn−1;K)) may also be developed in Fourier series

as

v(y′, s) =
∑

α′∈Nn−1

vα′(s)ψα′(y
′)(4.10)

where {ψα′}α′∈Nn−1 is the orthonormal basis of L2(Rn−1;K) constituted by the

eigenfunctions of the operator −∆′ − y′·∇′

2 in Rn−1. Here and in the sequel ∆′

and ∇′ stand for the Laplacian and gradient operators in the n− 1-variables y ′.
The eigenfunctions ψα′ are also explicit:

ψα′(y
′) = dα′ D

α′
[
e−|y

′|2/4
]
, with α′ ∈ Nn−1 .(4.11)

To each eigenfunction ψα′ corresponds an eigenvalue νj =
n−2+j

2 where j =

|α′|+ 1 (see Section 2.2).
Let us remark that

φα′,j = Cα′,j D
α′
[
e−|y

′|2/4
] ∂2j−1

∂y2j−1n

[
e−|yn|

2/4
]

=
Cα′,j
dα′

ψα′(y
′)

∂2j−1

∂y2j−1n

[
e−|yn|

2/4
]
=

Cα′,j
Cjdα′

ψα′(y
′)φj(yn) .

Taking into account that φj and ψα′ are both normalized in L
2(Rn;K) and

L2(Rn−1;K) respectively, it follows that
Cα′,j

Cjdα′
= 1. Hence

φα′,j = ψα′(y
′)φj(yn) .(4.12)

Now, we reduce the controllability problem (4.1) to a family of one-dimensional

control problems. Let us decompose the initial datum u0 as in (4.7) and the con-

trol v as in (4.10).

Then, the solution w of problem (4.1) can be written as

w(y, s) =
∑

α′∈Nn−1

[
∑

j≥1

wα′,j(s) φα′,j(y)

]
=

∑

α′∈Nn−1

zα′(yn, s) ψα′(y
′)

where zα′(yn, s) is the solution of the one-dimensional heat equation




zs −
∂2z

∂y2n
− yn
2

∂z

∂yn
+ |α′|−1

2 z = 0, yn > 0, 0 < s < S,

z(0, s) = vα′(s), 0 < s < S,

z(yn, 0) = z0(yn), yn > 0 ,

(4.13)
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with z0 such that
∑

j≥1

aα′,j φα′,j =
∑

j≥1

aα′,j φj(yn)ψα′(y
′) = z0(yn)ψα′(y

′) .(4.14)

Obviously, (4.13) is a 1−d control problem similar to the one we have consid-
ered in Section 3. In fact, the equation arising in (4.13) can be easily transformed

into (3.3) multiplying z by a suitable time-dependent exponential. This explains

the analogy between the results of Sections 3 and 4. We have

Lemma 4.1. Let α′ ∈ Nn−1 and let us consider an initial datum for (4.1) of

the form u0(y) =
∑

j≥1 aα′,j φα′,j . Let also z0 be such that u0(y) = z0(yn)ψα′(y
′).

Then u0 is L
2(0, S;L2(Rn−1,K)) null-controllable if and only if the initial datum

z0 of (4.13) is L
2(0, S) null-controllable.

Proof: Let us suppose first that the initial datum z0 of (4.13) is L
2(0, S)

null-controllable. Hence, there exists vα′ ∈ L2(0, S) such that z(yn, S) = 0.

If we define now v(y′, s) = vα′(s)ψα′(y
′) ∈ L2(0, S;L2(Rn−1,K)) we obtain

that the corresponding solution of (4.1) is w(y, s) = z(yn, s)ψα′(y
′). Therefore,

the initial datum u0 of (4.1) is L
2(0, S;L2(Rn−1,K)) null-controllable.

Let us now suppose that the initial datum u0 of (4.1) is L
2(0, S;L2(Rn−1,K))

null-controllable. Hence, there exists v ∈ L2(0, S;L2(Rn−1,K)) such that the

corresponding solution of (4.1), w, satisfies w(y, s) = 0.

Let us now introduce the adjoint system




ξs +∆ξ +
y · ∇ξ
2

+
n

2
ξ = 0, y ∈ Rn

+, 0 < s < S,

ξ(y′, 0, s) = 0, y′ ∈ Rn−1, 0 < s < S,

ξ(y, T ) = ξ0(y), y ∈ Rn
+ .

(4.15)

Multiplying in (4.1) by ξK and integrating by parts we deduce that

∫

Rn
+

w ξK dy

∣∣∣∣
S

0
−
∫ S

0

∫

Rn−1
v(y′, s)

∂ξ

∂yn
(y′, 0, s)K(y′) dy′ ds = 0 .(4.16)

Therefore,

w(y, S) = 0 in Rn
+(4.17)

if and only if
∫ S

0

∫

Rn−1
v(y′, s)

∂ξ

∂y
(y′, 0, s)K(y′) dy′ ds = −

∫

Rn
+

u0(y) ξ(y, 0)K(y) dy ,(4.18)

for all ξ0 ∈ L2(Rn
+;K).
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Let us now consider ξ0 = ψα′(y
′) ζ0(yn) where ζ0(yn) ∈ L2(R+,K). The cor-

responding solution of the adjoint system (4.15) is ξ(y, s) = ψα′(y
′) ζ(yn, s) where

ζ is the solution of the adjoint one-dimensional system





ζs +
∂2ζ

∂y2n
+
yn
2

∂ζ

∂yn
− |α′|−1

2 ζ = 0, yn > 0, 0 < s < S,

ζ(0, s) = 0, 0 < s < S,

ζ(yn, 0) = ζ0(yn), yn > 0 .

(4.19)

From (4.18) we obtain that

∫ S

0

∫

Rn−1
v(y′, s)ψα′(y

′)
∂ζ

∂yn
(0, s)K(y′) dy′ ds =

= −
∫

Rn
+

u0(y)ψα′(y
′) ζ(yn, 0)K(y) dy

for all ζ0 ∈ L2(R+,K).

By taking into account that

∫

Rn
+

u0(y)ψα′(y
′) ζ(yn, 0)K(y) dy =

∫

R+

z0(yn) ζ(yn, 0)K(yn) dyn

we obtain that, for all ζ0 ∈ L2(R+,K),

∫ S

0
vα′(s)

∂ζ

∂yn
(0, s) ds = −

∫

R+

z0(yn) ζ(yn, 0)K(yn) dyn ,(4.20)

where vα′(s) =
∫
Rn−1 v(y′, s)ψα′(y

′)K(y′) dy′.

Since vα′ ∈ L2(0, S), from (4.20) it follows that the initial datum z0 of (4.13)

is L2(0, S) null-controllable and the proof finishes.

Remark 4.1. The previous Lemma allows us to reduce the multi-dimensional

problem to a family of one-dimensional problems depending on α′.

Roughly speaking, if all the corresponding 1−d problems are null-controllable
then the multi-dimensional problem is null-controllable. Note however that, in

this situation, whether the control lies in L2(0, S;L2(Rn−1,K)) depends heavily

on how the size of the control of the 1− d problem (4.13) depends on α′.
On the other hand, if there exists at least one 1−d problem which is not

null-controllable then the multi-dimensional problem is not null-controllable.
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4.2. Main results

As an immediate corollary of the results of Section 3, the following holds:

Theorem 4.1. Assume that the initial datum u0 with Fourier coefficients

{aα′,j}(α′,j)∈E is null-controllable for system (4.1) in time S.
Assume also that, for some α′, the corresponding Fourier coefficients {aα′,j}j

satisfy

|aα′,j | ≤ Cδ e
δm, as m→∞(4.21)

for all δ > 0. Then, necessarily,

aα′,j = 0 , ∀ j ≥ 1 .(4.22)

Proof: Since u0 =
∑

α′∈Nn−1

∑
j≥1 aα′,j φα′,j is null-controllable it follows

that, for each α′∈Nn−1, w0 =
∑

j≥1 aα′,j φα′,j is null-controllable. This is a direct

consequence of the orthogonality of the traces of the normal derivatives of the

eigenfunctions
∂φα′,j(y)

∂ν

∣∣∣
∂Ω
in L2(∂Ω;K|∂Ω). If the control corresponding to u0

is
∑

α′∈Nn−1 vα′(s)ψα′(y
′) then the control corresponding to w0 is vα′(s)ψα′(y

′).

Let z0 be such that w0 = z0 ψα′ . From Lemma 4.1 it follows that the solution of





zs −
∂2z

∂y2n
− yn
2

∂z

∂yn
+
|α′| − 1
2

z = 0, yn > 0, 0 < s < S,

z(0, s) = vα′(s), 0 < s < S,

z(yn, 0) = z0(yn), yn > 0 ,

(4.23)

is null-controllable.

Let us now define ζ(yn, s) = z(yn, s) e
−
|α′|
2
s. Then ζ satisfies





ζs −
∂2ζ

∂y2n
− yn
2

∂ζ

∂yn
− 1

2 ζ = 0, yn > 0, 0 < s < S,

ζ(0, s) = vα′(s), 0 < s < S,

ζ(yn, 0) = z0(yn), yn > 0 .

(4.24)

We can now apply Theorem 3.1 to deduce that aα′,j= 0, for all j ≥ 1 and the
proof finishes.

As a positive counterpart to this result we now show that there are initial

data with coefficients that grow exponentially and that are null-controllable:
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Theorem 4.2. Let the sequence of coefficients {aα′,j} be such that
aα′,j = 0 , ∀α′ 6= γ ,(4.25)

where γ = (γ1, ..., γn−1) is a given multi-index and such that

aγ,j = F (j) ejS/2 , ∀ j ≥ 1 ,(4.26)

where

F (z) =
sin(i δ z)

i δ z
(4.27)

with δ > 0.

Then:

(a) The corresponding initial datum u0 is null-controllable by means of a

control v ∈ L2(0, S;L2(Rn−1;K)) in time S = δ.

(b) There exist positive constants C1, C2 > 0 such that

C1
e2δj

j3/4
≤ |aγ,j | ≤ C2

e2δj

j3/4
, ∀ j .(4.28)

Proof: From (4.25) it follows that the corresponding initial datum u0 has

the form:

u0 =
∑

j≥1

aγ,j φγ,j =

[
∑

j≥1

aγ,j φj

]
ψγ .

Hence, the initial datum u0 is null-controllable if and only if the following

one-dimensional problem is null-controllable




zs −
∂2z

∂y2n
− yn
2

∂z

∂yn
+
|γ| − 1
2

z = 0, yn > 0, 0 < s < S,

z(0, s) = vα′(s), 0 < s < S,

z(yn, 0) = z0(yn), yn > 0 ,

(4.29)

where z0 =
∑

j≥1 aγ,j φj .

Now we only have to apply Theorem 3.1 to this one-dimensional problem and

the proof finishes.

Undoing the similarity transformation, i.e. going back to the original space-

time variables (x, t) and to the state u, as a consequence of Theorem 4.1 and 4.2

we can immediately deduce the corresponding results for the original system




ut −∆u = 0 in Rn
+×(0, T ),

u = v on Rn−1×(0, T ),
u(x, 0) = u0(x) in Rn

+ .

(4.30)
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Recall that the control v = v(x′, t) of system (4.30) and the control ṽ = ṽ(y′, s)

for system (4.1) are related by the transformation

ṽ(y′, s) = esn/2 v
(
es/2y′, es− 1

)
.(4.31)

Up to now we have been dealing with controls ṽ ∈ L2(0, S;L2(Rn−1;K)).

Consequently:

∫ S

0

∫

Rn−1
|ṽ(y′, s)|2 exp

( |y′|2
4

)
dy′ ds =

=

∫ S

0
esn

∫

Rn−1

∣∣∣v
(
es/2y′, es− 1

)∣∣∣
2
exp

( |y′|2
4

)
dy′ ds

=

∫ T

0
(t+ 1)n/2

∫

Rn−1
v2(x′, t) exp

( |x′|2
4 (t+ 1)

)
dx′ dt < ∞ ,

or, in other words,

∫ T

0

∫

Rn−1
v2(x′, t) exp

( |x′|2
4 (t+ 1)

)
dx′ dt < ∞ .(4.32)

The following holds:

Corollary 4.1. Assume that the initial datum u0 with Fourier coefficients

{aα′,j} in L2
(
Rn
+;K

)
is null controllable for system (4.30) in time T > 0 with

control v = v(x′, t) satisfying (4.32).

Then, if for some α′

|aα′,j | ≤ Cδ e
δj , ∀ j ,(4.33)

for all δ > 0, necessarily

aα′,j = 0 , ∀j .(4.34)

Moreover there exist initial data with Fourier coefficients as in (a)–(b) of

Theorem 4.2 that are null-controllable in time T =eδ−1 with a control v=v(x′, t)
satisfying (4.32) for system (4.30).

Remark 4.2. Very often the control is restricted to be with support on a

given subset of the boundary. Let Γ0 ⊂ Rn−1 be a bounded open subset of the

boundary of Rn
+. Let us denote by 1Γ0 the characteristic function of this set.

Consider the control problem




ut −∆u = 0 in Rn
+×(0, T ),

u = v 1Γ0 on Rn−1×(0, T ),
u(x, 0) = u0(x) in Rn

+ .

(4.35)
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The negative result of Corollary 4.1 applies in this case as well. Indeed, taking

into account that v1Γ0 satisfies (4.32) for any v ∈ L2(Γ0×(0, T )) one deduces that
if the controllable initial datum u0 for system (4.35) is such that (4.33) holds with

control v ∈ L2(Γ0×(0, T )), then, necessarily, (4.34) holds as well.

5 – Further comments and open problem

5.1. General conical domains

Assume that Ω is a conical domains, i.e. such that τ Ω = Ω for any τ > 0.

Consider the heat equation with control





ut −∆u = 0 in Ω×(0, T ),
u = v on ∂Ω×(0, T ),
u(x, 0) = u0(x) in Ω .

(5.1)

Using the similarity transformation of Section 2, system may be transformed

into 



ws −∆w −
y · ∇w
2

− n

2
w = 0 in Ω×(0, S),

w = ṽ on ∂Ω×(0, S)
w(y, 0) = w0(y) in Ω .

(5.2)

The operator L = −∆− y·∇
2 defines an isomorphism L : H1

0 (Ω;K)→ H−1(Ω;K)

with

L2(Ω;K) =

{
f : Ω→ R :

∫

Ω
f2K <∞

}

H1
0 (Ω;K) =

{
f ∈ L2(Ω;K) : ∇f ∈ (L2(Ω;K))n, f = 0 on ∂Ω

}
,

H−1(Ω;K) being the dual of H1
0 (Ω;K).

One can also obtain a spectral decomposition of L in L2(Ω;K). The eigenfunc-

tions of L may be written in separated spherical coordinates and they constitute

a two-parameter family φm,`(y) = ρm,`(r) θ`(σ) where r = |y| is the radious and
σ ∈ Sn−1 ∩ Ω.
The angular components θ` may be determined as the eigenfunctions of the

corresponding Laplace–Beltrami operator in Sn−1 ∩ Ω with Dirichlet boundary
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conditions on the boundary and the radial components ρm,`(r) are determined as

the solutions of a Bessel-like equation in R+ with the integrability condition

∫ ∞

0
rn−1 ρ2(r) er

2/4
dr < ∞ .

We denote by λm,` the associated eigenvalues.

With this Fourier decomposition in mind the null-control problem may be

reduced to a moment problem:

∫ S

0

∫

∂Ω
ṽ(y′, s) e(λm,`−

n
2
)s ∂φm,`(y)

∂ν
K(y) dσ ds = am,` ,(5.3)

{am,`} being the Fourier coefficients of the initial datum to be controlled on the
orthonormal basis {φm,`} of L2(Ω;K) and where ∂ · /∂ν denotes the derivative
in the direction of the unit outward normal.

Of course, the moment problem consists on finding ṽ(y′, s) such that (5.3)

holds for allm, ` simultaneously. However, in this case we may not use the orthog-

onality of the traces of the normal derivatives of the eigenfunctions
∂φm,`(y)

∂ν

∣∣∣
∂Ω
in

L2(∂Ω;K|∂Ω). This fact was essential in Section 4 when analyzing the problem
in Ω = Rn

+.

However, one expects negative results like those in Theorem 3.1 and 4.1 to be

true in this more general case.

The analysis of Section 4 may be easily extended to the case where, for instance

Ω =
{
y ∈ Rn : yj ≥ 0, ∀ j = 1, ..., n

}
,

or, more generally, to the case where the cone Ω is such that, by a finite number

of reflections one may cover Rn. This allows indeed to compute the spectrum of

L in H1
0 (Ω;K) which turns out to be a suitable subset of the whole spectrum of

the operator L in L2(Rn;K).

However, the analysis of the general case remains to be done.

We refer to [14] and [3] for the analysis of the large time behaviour of solutions

of semilinear heat equations in conical domains.

We also recall that the approximate controllability problem for the semilinear

heat equation was studied in [22] in the frame of the weighted Sobolev spaces

above. The methods in [22] which are based on unique continuation properties

do apply in any conical domain. But, as we mentioned in the introduction, the

null-control property is stronger than the approximate controllability one and

requires further analysis.
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5.2. General domains

The problem of null-controllability of the heat equation arises in fact in any

domain Ω of Rn. As we have described in the introduction, when Ω is bounded

and of class C2 the null-controllability is well known. In the context of unbounded

domains, in this work we have shown the lack of null-controllability (for “nice”

initial data) when, for instance, Ω = Rn
+. As we have described in the previous

section, the approach based on the use of the similarity variables may also be

used in general conical domains. But, due to the lack of orthogonality of the

traces of the normal derivatives of the eigenfunctions, the corresponding moment

problem is more complex and remains to be solved.

When Ω is a general unbounded domain, the similarity transformation does

not seem to be of any help since the domain one gets after transformation depends

on time.

Therefore, a completely different approach seems to be needed when Ω is

not conical. However, one may still expect a bad behaviour of the null-control

problem. Indeed, assume for instance that Ω contains Rn
+. If one is able to

control to zero in Ω an initial datum u0 by means of a boundary control acting

on ∂Ω×(0, T ), then, by restriction, one is able to control the initial datum u0|Rn
+

with the control being the restriction of the solution in the larger domain Ω×(0, T )
to Rn−1×(0, T ). A careful development of this argument and of the result it may
lead to remains to be done.

The approximate control problem for the semilinear heat equation in general

unbounded domains was addressed in [23]. There an approximation method was

developed. The domain Ω was approximated by bounded domains (essentially

by Ω ∩ BR, BR being the ball of radius R) and the approximate control in the

unbounded domain Ω was obtained as limit of the approximate control on the

approximating bounded domain Ω ∩BR.

However, this approach does not apply in the context of the null-control prob-

lem.

The approach described in [13] and [15] is also worth mentioning. In this

articles is proved that, for any T > 0, the heat equation has a fundamental solution

which is C∞ away from the origin and with support in the strip 0 ≤ t ≤ T . This

allows to build a solution u of the heat equation

ut −∆u = 0 in Rn×(0, T )(5.4)

which is continuous in Rn×[0, T ], and that matches the initial and final conditions

u(x, 0) = u0 in Rn ,(5.5)
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u(x, T ) = 0 in Rn ,(5.6)

for any continuous function u0.

This may also be interpreted as a null-controllability result in a general domain

Ω. Indeed, by setting v = u|∂Ω×(0,T ), we deduce that u|Ω×(0,T ), the restriction of
u solution of (5.4)–(5.6) to Ω×(0, T ) satisfies





ut −∆u = 0 in Ω×(0, T ),
u = v on ∂Ω×(0, T ),
u(x, 0) = u0(x) in Ω,

u(x, T ) = 0 in Ω .

(5.7)

This argument applies when Ω is unbounded as well. In particular, when

n = 1 and Ω = R+, this shows that for any u0 ∈ C(R+) there exists v ∈ C[0, T ]
and a solution u of





ut − uxx = 0, 0 < x, 0 < t < T,

u(0, t) = v(t), 0 < t < T,

u(x, 0) = u0(x), 0 < x ,

(5.8)

such that

u(x, T ) = 0 in R+ .(5.9)

Note however that the solutions of (5.8)–(5.9) that the approach of [13] and

[15] provides do not feet in the context of our negative result since they grow too

fast as |x|→∞ and therefore, these are not solutions in the sense of transposition.

It is also worth comparing this result with the positive one of Section 3.

In Theorem 3.1 we prove that initial data with exponentially growing Fourier

coefficients are null-controllable by means of L2(0, T )-controls. Moreover, the

trajectory we obtain has necessarily exponentially growing Fourier coefficients

during the whole time interval. This is in agreement with the result of [13] and

[15] in which the trajectory has also a fast growth rate as |x| → ∞.

5.3. More general equations

The same problems arise in the context of more general parabolic equations

including variable coefficients, semilinear terms, ...

We refer to the works [6] and [8] for the analysis of the null-control problem

of the semilinear heat equation in bounded domains and to [12] for the case of

linear heat equations with variable coefficients.
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The approach we have adopted in this work does not seem to extend to these

more general problems even in Rn
+ except for very particular cases. Indeed,

Fourier series decompositions of the solutions apply for equations of the form

ws −∆w −
y · ∇w
2

− n

2
w + a(y)w + b(s)w = 0 .(5.10)

Obviously, in order to get an equation of the form (5.10) in the similarity

variables, the original equation

ut −∆u+ c(x, t)u = 0(5.11)

needs to have a variable coefficient c(x, t) of a very special structure.

The extension of the results of this paper in, say Rn
+, to the general case of

coefficients c ∈ L∞(Rn
+×(0, T )) remains to be done.

5.4. Necessary and sufficient conditions for null-controllability

The result of this paper show that, when Ω = Rn
+,

? Initial data with Fourier coefficients growing slower than any exponential

may not be controlled in finite time by means of controls in a suitable

weighted L2 space of the boundary;

? Some initial data with exponentially growing Fourier coefficient are con-

trollable.

It would be desirable to obtain a more explicit characterization of the Fourier

coefficients of the null-controllable initial data.
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Departamento de Matemática Aplicada, Universidad Complutense

28040 Madrid – SPAIN

E-mails: sorin@sunma4.mat.ucm.es

zuazua@eucmax.sim.ucm.es


