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Abstract: This paper is devoted to the study of nonconvex differential inclusions

by using some concepts of regularity in nonsmooth analysis. In section 2, we prove that

the nonconvex sweeping process introduced by J.J. Moreau in 1970’s has the same set

of solutions of a differential inclusion with convex compact values. Using this result,

we deduce, in section 3, some existence results in the finite dimensional setting of the

nonconvex sweeping process. In section 4, we introduce a new concept of uniform regu-

larity over sets for functions to prove the existence of viable solutions for another type

of nonconvex differential inclusions.

Introduction

In this paper, we study, on one hand, nonconvex sweeping processes (Sections

2 and 3) and, on the other hand, the existence of viable solutions for a class of

nonconvex differential inclusions (Section 4).

We consider the following differential inclusion:

(P1)

{

ẋ(t) ∈ −N(C(t);x(t)) a.e. t ≥ 0

x(0) = x0 ∈ C(0), x(t) ∈ C(t), ∀ t ≥ 0 ,

where C is an absolutely set-valued mapping (see (1.1) below) taking its values in

Hilbert spaces and N(C(t);x(t)) denotes a prescribed normal cone to the set C(t)

at x(t). The problem (P1) is the so-called “sweeping process problem” (in French,

rafle). It was introduced by Moreau in [28, 29] and studied intensively by himself

Received : December 13, 2000; Revised : August 1, 2001.
Mathematics Subject Classification (2000): 34A60, 34G25, 49J52, 49J53.
Keywords: sweeping process; directional regularity; Fréchet normal regularity.
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in many papers (see for example [28, 29, 30]). This problem is related to the mod-

elization of elasto-plastic materials (for more details see [31, 32]). The existence

of solutions of (P1) was resolved by Moreau in [30] for convex-valued mappings

C taking their values in general Hilbert spaces. In [41, 42] Valadier proved for

the first time the existence of solutions of (P1) without convexity assumptions

on C for some particular cases in the finite dimensional setting. Since, many

authors attacked the study of the existence of solutions for nonconvex sweeping

processes (see for instance [2, 9, 12, 16, 21, 37] and the references therein). The

first part of the present paper is mainly concerned with the following problem:

Under which conditions the solution set of (P1) can be related to the solution set

of the following convex compact differential inclusion (P2)?

(P2)

{

ẋ(t) ∈ −|v̇(t)| ∂dC(t)(x(t)), a.e. t ≥ 0

x(0) = x0 ∈ C(0) ,

where v is an absolutely continuous function given as in (1.1) and ∂dC(t)(·) stands

for a prescribed subdifferential of the distance function dC(t) associated with the

set C(t).

This problem was considered by Thibault in [38] for convex-valued mappings

C in the finite dimensional setting. His idea was to use the existence results for

differential inclusions with convex compact values which is the case for (P2) to

prove existence results of the sweeping process (P1). It is interesting to point out

that his approach is new and different from those used by the authors who have

studied the existence of solutions of the sweeping process (P1).

In the second part (Section 4) of this paper, we consider the following class

of differential inclusion (DI):

ẋ(t) ∈ G(x(t)) + F (t, x(t)) a.e. [0, T ] ,

where T > 0 is given, F : [0, T ]×H⇒H is a continuous set-valued mapping, G :

H⇒H is an upper semicontinuous set-valued mapping such that G(x) ⊂ ∂Cg(x),

with g : H → R is a locally Lipschitz function (not necessarily convex) and H is

a finite dimensional space. Here ∂Cg(x) denotes the Clarke subdifferential of g

at x (see the definition given in Section 1). By using some new concepts of reg-

ularity in nonsmooth analysis, we prove (Theorem 4.2) under natural additional

assumptions the existence of viable solutions for (DI), that is, a solution x of

(DI) such that x(t) ∈ S, for all t ∈ [0, T ], where S is a given closed subset in H.

Our main existence result in Theorem 4.2 is used to get existence results for a

particular type of differential inclusions introduced by Henry [25] for the study

of some economic problems.
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1 – Preliminaries

Throughout this paper, we will let H denote a Hilbert space and C : R⇒H
denote a set-valued mapping satisfying for any y ∈ H and any t, t′ ∈ R

(1.1) |d(y, C(t))− d(y, C(t′))| ≤ |v(t)− v(t′)|,

where v : R → R is an absolutely continuous function with |v̇(t)| 6= 0 a.e. t ∈ R
and d(·, S) (or dS(·)) stands for the usual distance function to S, i.e., d(x, S) :=

inf
u∈S

‖x − u‖. Hereafter, an absolutely continuous mapping means a mapping

x : [0,+∞[→ H such that x(t) = x(0) +

∫ t

0
ẋ(s) ds, ∀t ∈ [0,+∞[, with ẋ ∈

L1
H([0,+∞[).

Let f : H −→ R ∪ {+∞} be a lower semicontinuous (l.s.c.) function and let

x be any point where f is finite. We recall that the Clarke subdifferential of f at

x is defined by (see [34])

∂Cf(x) =
{

ξ ∈ H : 〈ξ, h〉 ≤ f↑(x;h), J for all h ∈ H
}

,

where f↑(x;h) is the generalized Rockafellar directional derivative given by

f↑(x;h) := lim sup
x′→f x

t↓0

inf
h′→h

t−1[f(x′ + th′)− f(x′)] ,

where x′ −→f x means x′ −→ x and f(x′) −→ f(x).

If f is Lipschitz around x, then f ↑(x;h) coincides with the Clarke directional

derivative f0(x; .) defined by f0(x;h) = lim sup
x′→x

t↓0

t−1[f(x′ + th)− f(x′)].

Recall also (see e.g., [26]) that the Fréchet subdifferential ∂F f(x) is given by

the set of all ξ ∈ H such that for all ε > 0 there exists δ > 0 such that

〈ξ, x′ − x〉 ≤ f(x′)− f(x) + ε‖x′ − x‖, for all x′ ∈ x+ δB .

Here B denotes the closed unit ball centered at the origin of H. Note that one

always has ∂F f(x) ⊂ ∂Cf(x). By convention we set ∂F f(x) = ∂Cf(x) = ∅ if

f(x) is not finite.

Let S be a nonempty closed subset of H and x be a point in S. Let us recall

(see [34, 26]) that the Clarke normal cone (resp. Fréchet normal cone) of S at

x is defined by NC(S;x) := ∂CψS(x) (resp. NF (S;x) := ∂FψS(x)), where ψS
denotes the indicator function of S, i.e., ψS(x

′) = 0 if x′ ∈ S and +∞ otherwise.

We consider now the following notion of regularity for sets.
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Definition 1.1 ([7, 11, 35]). Let S be a nonempty closed subset of H and

let x be a point in S. We will say that S is normally Fréchet regular at x if one

has NF (S;x) = NC(S;x).

We summarize, in the following proposition, some results needed in the sequel.

Proposition 1.1 ([7, 11]). Let S be a nonempty closed subset in H and let

x ∈ S. Then

i) ∂FdS(x) = NF (S;x) ∩ B;

ii) If S is normally Fréchet regular at x, then it is tangentially regular at x

in the sense of Clarke [18]. If, in addition, H is a finite dimensional space,

then one has the equivalence.

Note that is the infinite dimensional setting, one can construct subsets that

are tangentially regular but not normally Fréchet regular. For more details, we

refer the reader to [7, 11].

Let F be a given set-valued mapping from [0,+∞[×H to the subsets of H.

A solution x(·) of the differential inclusion

(1.2) ẋ(t) ∈ F (t, x(t)) a.e. t ≥ 0

is taken to mean an absolutely continuous mapping x(·) : [0,+∞[→ H which,

together with ẋ(·), its derivative with respect to t, satisfy (1.2).

2 – Nonconvex sweeping process

Our main purpose of this section(1) is to show, for a large class of set-valued

mappings, that the solution set of the two following differential inclusions are the

same:

(P1)











ẋ(t) ∈ −NC(C(t);x(t)), a.e. t ≥ 0 (1)

x(0) = x0 ∈ C(0) (2)

x(t) ∈ C(t) ∀t ≥ 0 (3)

and

(P2)

{

ẋ(t) ∈ −|v̇(t)| ∂CdC(t)(x(t)), a.e. t ≥ 0 (4)

x(0) = x0 ∈ C(0) (2) .

(1) While writing the present paper we have received the preprint [37] by Thibault, which
contains similar results of this section in the proximal smooth case.
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that is, a mapping x(·) : [0,+∞[ → H is a solution of (P1) if and only if it is a

solution of (P2).

It is easy to see that one always has (P2) + (3) ⇒ (P1). Indeed, let x(·) :

[0,+∞[→ H be a solution of (P2) satisfying (3). Then a.e. t ≥ 0 we have

ẋ(t) ∈ −|v̇(t)| ∂CdC(t)(x(t)) ⊂ −N
C(C(t);x(t))

and hence x(·) is a solution of (P1).

The use of (P2) as an intermediate problem to prove existence results of the

sweeping process (P1) is due to Thibault [38]. His idea was to use the existence

results for differential inclusions with compact convex values which is the case of

the problem (P2) to prove an existence result of the sweeping process (P1). Note

that all the authors (for example [2, 21]), who have studied the sweeping process

(P1), have attacked it by direct methods for example by proving the convergence

of the Moreau catching-up algorithm or by using some measurable arguments

and new versions of the well known theorem of Scorza-Dragoni.

Recall that, Thibault [38] showed that, when C has closed convex values

in a finite dimensional space H, any solution of (P2) is also a solution of (P1)

and as (P2) has always at least one solution by Theorem VI.13 in [17], then he

obtained the existence of solutions of the convex sweeping process (P1) in the

finite dimensional setting. His idea is to show the viability of all solutions of

(P2), that is, any solution of (P2) satisfies (3) and so it is a solution of (P1) by

using the implication (P2)+(3)⇒ (P1). Recently, Thibault in [37] used the same

idea to extend this result to the proximal smooth case.

In this section we will follow this idea to extend his result in [38] to the

nonconvex case by using powerful results by Borwein et al. [5] and recent results

by Bounkhel and Thibault [11]. We begin with the following theorem.

Theorem 2.1. Any solution of (P1) with the Fréchet normal cone satisfies

the inequality ‖ẋ(t)‖ ≤ |v̇(t)| a.e. t ≥ 0.

Proof: Let x(·) : [0,+∞[→ H be an absolutely continuous solution of (P1)

with the Fréchet normal cone, that is, −ẋ(t) ∈ NF (C(t);x(t)) a.e. t ≥ 0, x(0) =

x0 ∈ C(0), and x(t) ∈ C(t) ∀t ≥ 0. Fix any t ≥ 0 for which ẋ(t) and v̇(t) exist

and fix also ε > 0. If ẋ(t) = 0, then we are done, so let suppose that ẋ(t) 6= 0.

By the definition of the Fréchet normal cone, there exists δ := δ(t, ε) such that

(2.1) 〈 − ẋ(t), x− x(t)〉 ≤ ε‖x− x(t)‖ ∀x ∈ (x(t) + δB) ∩ C(t) .
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On the other hand there exists a mapping θ : R+ → H such that lim
r→0+

θ(r) = 0

and x(t−r) = x(t)−rẋ(t)−rθ(r), for r small enough. Fix now r > 0 small enough

such that 0 < r < min
{

1,
δ

3‖ẋ(t)‖

}

, ‖θ(r)‖ ≤
δ

3
and |v(t − r) − v(t)| ≤

δ

3
. By

(1.1) and (3) one has x(t−r) ∈ C(t−r) ⊂ C(t)+ |v(t−r)−v(t)|B. So there exists

xt ∈ C(t) and bt ∈ B such that x(t − r) = xt − ξt where ξt = |v(t − r) − v(t)|bt.

Therefore xt = x(t − r) + ξt = x(t) − rẋ(t) − rθ(r) + ξt ∈ (x(t) + δB) ∩ C(t),

since ‖xt − x(t)‖ = ‖− rẋ(t) − rθ(r) + ξt‖ ≤ ‖ẋ(t)‖ + ‖θ(r)‖ + ‖ξt‖ ≤
δ

3
+
δ

3
+

|v(t− r)− v(t)| ≤ δ. Thus, by (2.1)

〈 − ẋ(t),−rẋ(t)− rθ(r) + ξt〉 ≤ ε ‖rẋ(t) + rθ(r)− ξt‖

and hence

r〈 − ẋ(t),−ẋ(t)− θ(r) + r−1ξt〉 ≤ ε r
[

‖ẋ(t) + θ(r)‖+ r−1|v(t− r)− v(t)|
]

and so

〈ẋ(t), ẋ(t)〉 ≤ 〈 − ẋ(t), θ(r)− r−1ξt〉+ ε
[

‖ẋ(t) + θ(r)‖+ r−1|v(t− r)− v(t)|
]

≤ ‖ẋ(t)‖
[

‖θ(r)‖+ r−1|v(t− r)− v(t)|
]

+ ε
[

‖ẋ(t) + θ(r)‖+ r−1|v(t− r)− v(t)|
]

.

By letting ε, r → 0+, one gets ‖ẋ(t)‖2 ≤ ‖ẋ(t)‖|v̇(t)| and then ‖ẋ(t)‖ ≤ |v̇(t)|.

This completes the proof.

The following corollary generalizes Theorem 5.1 of Colombo et al. [21].

Corollary 2.1. Assume that C(t) is normally Fréchet regular for every t ≥ 0.

Then any solution of (P1) satisfies the inequality ‖ẋ(t)‖ ≤ |v̇(t)| a.e. t ≥ 0.

Now, we prove that, under the normal Fréchet regularity assumption, any

solution of (P1) must be a solution of (P2).

Theorem 2.2. Assume that C(t) is normally Fréchet regular for every t ≥ 0.

Then any solution of (P1) is also a solution of (P2).

Proof: Let x(·) be a solution of (P1), that is, x(0) = x0 ∈ C(0), x(t) ∈ C(t)

∀t ≥ 0 and −ẋ(t) ∈ NC(C(t);x(t)) a.e. t ≥ 0. Then, by the Fréchet normal

regularity one has −ẋ(t) ∈ NC(C(t);x(t)) = NF (C(t);x(t)) a.e. t ≥ 0. By

Theorem 2.1 one has ‖ẋ(t)‖ ≤ |v̇(t)| a.e. t ≥ 0. If ẋ(t) = 0, then −ẋ(t) ∈
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|v̇(t)| ∂CdC(t)(x(t)), because x(t) ∈ C(t). So we assume that ẋ(t) 6= 0 (and hence

v̇(t) 6= 0). Then, by Proposition 1.1 i), one gets

−ẋ(t)

|v̇(t)|
∈ NF (C(t);x(t)) ∩ B = ∂FdC(t)(x(t)) ⊂ ∂CdC(t)(x(t)) .

Thus ẋ(t) ∈ −|v̇(t)| ∂CdC(t)(x(t)), which ensures that x(·) is a solution of (P2)

and so the proof is finished.

Now we proceed to prove the converse of Theorem 2.2, for a large class of

set-valued mappings. We recall (see e.g., [5]) the notion of Gâteaux directional

differentiability. A locally Lipschitz function f : H → R is directionally Gâteaux

differentiable at x̄ ∈ H in the direction v ∈ H if lim
t→0

t−1[f(x̄+ tv)− f(x̄)] exists.

We call such a limit the Gâteaux directional derivative of f at x̄ in the direction v

and we denote it by ∇Gf(x̄; v). When this limit exists for all v ∈ H and is linear

in v we will say that f is Gâteaux differentiable at x̄ and the Gâteaux derivative

satisfies ∇Gf(x̄; v) = 〈∇Gf(x̄), v〉 for all v ∈ H. If ∇Gf(·) is continuous around

x̄, then f will be called continuously Gâteaux differentiable at x̄. We say that

f is directionally regular at x̄ in a direction v ∈ H provided that f ↑(x̄; v) the

generalized Rockafellar directional derivative (or f 0(x̄; v) the Clarke directional

derivative because f is locally Lipschitz) of f at x̄ in the direction v coincides

with f−(x̄; v) the lower Dini directional derivative of f at x̄ in the same direction

v, where f−(x̄; v) := lim inf
t→0+

t−1[f(x̄+ tv)− f(x̄)].

Theorem 2.3 (An abstract formulation). Let h : [0,+∞[→ [0,+∞[ be

a positive function. Assume that for every absolutely continuous mapping x(·) :

[0,+∞[→ H the following property (A) is satisfied: for a.e. t ≥ 0 and for any

x(t) in the tube U(h(t)) := {u ∈ H : 0 < dC(t)(u) < h(t)} one has

i) ProjC(t)(x(t)) 6= ∅ and dC(t) is directionally regular at x(t) in both direc-

tions ẋ(t) and p(x(t))− x(t) for some p(x(t)) ∈ ProjC(t)(x(t)).

Then every solution z of (P2) in C(t) + h(t)B for all t ≥ 0 must lie in C(t) for all

t ≥ 0.

Before giving the proof of Theorem 2.3, we prove the following Lemmas.

Lemma 2.1. Let S be a closed nonempty subset of H and u is any point

outside S such that ProjS(u) 6= ∅. Assume that dS is directionally regular at u in

the direction ū−u, for some ū ∈ ProjS(u). Then ∂
CdS(u) ⊂ {ξ ∈ H : ‖ξ‖ = 1}.
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Proof: Fix any u /∈ S with ProjS(u) 6= ∅ and any ξ ∈ ∂CdS(u). As the

inequality ‖ξ‖ ≤ 1 always holds, we will prove the reverse inequality, i.e., ‖ξ‖ ≥ 1.

Firstly, we fix ū ∈ ProjS(u) 6= ∅ and we show that

(2.2) (1− δ)dS(u) = dS(u+ δ(ū− u)), for all δ ∈ [0, 1].

Observe that one always has

dS(u) ≤ dS(u+ δ(ū− u)) + δ‖ū− u‖ = dS(u+ δ(ū− u)) + δ dS(u) ,

and so (1− δ)dS(u) ≤ dS(u+ δ(ū− u)). Conversely,

dS(u+ δ(ū− u)) = dS(ū+ (1− δ)(u− ū)) ≤ (1− δ)‖ū− u‖ = (1− δ) dS(u) .

Now, let δn be a sequence achieving the limit in the definition of d−S (u; ū−u) the

lower Dini directional derivative of dS at u in the direction ū−u. Then, by (2.2),

one gets

d−S (u; ū−u) = lim
n
δ−1n [dS(u+δn(ū−u))−dS(u)] = lim

n
δ−1n [(1−δn)dS(u)−dS(u)] ,

and hence d−S (u; ū− u) = −dS(u). Finally, by the directional regularity of dS at

u in the direction ū − u and by the definition of the Clarke subdifferential one

gets

〈ξ, ū− u〉 ≤ d0S(u; ū− u) = d−S (u; ū− u) = −dS(u) = −‖ū− u‖ ,

and so
〈

ξ,
u− ū

‖ū− u‖

〉

≥ 1 ,

which ensures that ‖ξ‖ ≥ 1.

The following lemma is a direct consequence of Corollary 9 in [5]. We give its

proof for the convenience of the reader.

Lemma 2.2. Let S be a closed nonempty subset of H, u /∈ S and v ∈ H.

Then the following are equivalent:

1) 〈∂CdS(u), v〉 = {d
0
S(u; v)};

2) dS is directionally regular at u in the direction v;

3) dS is Gâteaux differentiable at u in the direction v.
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Proof: The equivalence between 1) and 3) is given in [5]. The implication

1)⇒2) is obvious. So we proceed to proving the reverse one, i.e., 2)⇒1). By The-

orem 8 in [5] one has −dS is directionally regular at u, hence (−dS)
0(u, v) =

(−dS)
−(u, v) and hence d0S(u,−v) = −d−S (u, v). By 1) one has d0S(u, v) =

d−S (u, v). Therefore, one obtains d0S(u,−v) = −d0S(u, v). Now, as we can easily

check that 〈∂CdS(u), v〉 = [−d0S(u,−v), d
0
S(u, v)], then one gets 〈∂CdS(u), v〉 =

{d0S(u; v)}. This completes the proof of the lemma.

Proof of Theorem 2.3: We Prove the theorem for all t ∈ [0, 1] and we can

extend the proof to [0,+∞[ in the evident way by considering next the interval

[1, 2] etc. We follow the proof of Proposition II.18 in Thibault [38]. Let z be a

solution of (P2) satisfying z(t) ∈ C(t) + h(t)B for all t ∈ [0, 1]. Consider the real

function f defined by f(t) = dC(t)(z(t). The function f is absolutely continuous

because of (1.1). Put Ω := {t ∈ [0, 1] : z(t) /∈ C(t)}. Ω is an open subset in

[0, 1] because Ω = {t ∈ [0, 1] : f(t) > 0}. Assume by contradiction that Ω 6= ∅.

As 0 /∈ Ω there exists an interval ]α, β[⊂ Ω such that f(α) = 0 (it suffices to

take ]α, β[ any connected component of ]0, 1[∩Ω). Since f, v and z are absolutely

continuous, then their derivatives exist a.e. on [0, 1]. Fix any t ∈]α, β[ such that

ḟ(t), v̇(t) and ż(t) exist. Observe that for such t and for every δ > 0 we have

δ−1[f(t+ δ)− f(t)] = δ−1[dC(t+δ)(z(t+ δ))− dC(t)(z(t))]

= δ−1[dC(t+δ)(z(t) + δż(t) + δε(δ))− dC(t+δ)(z(t) + δż(t))]

+ δ−1[dC(t+δ)(z(t) + δż(t))− dC(t)(z(t) + δż(t))]

+ δ−1[dC(t)(z(t) + δż(t))− dC(t)(z(t))] ,

where ε(δ)→ 0+ as δ → 0+ and hence

δ−1[f(t+ δ)− f(t)] ≤ ε(δ) + δ−1|v(t+ δ)− v(t)|

+ δ−1[dC(t)(z(t) + δż(t))− dC(t)(z(t))] .

Thus for such t we have

ḟ(t) ≤ |v̇(t)|+ lim sup
δ→0+

δ−1[dC(t)(z(t) + δż(t))− dC(t)(z(t))]

≤ |v̇(t)|+ d0C(t)(z(t); ż(t)) .

Now, as z is a solution of (P2) we have
−ż(t)

|v̇(t)|
∈ ∂CdC(t)(z(t)) and hence

〈

−ż(t)

|v̇(t)|
, ż(t)

〉

∈ 〈∂CdC(t)(z(t)), ż(t)〉 = {d0C(t)(z(t); ż(t))} (by Lemma 2.2).
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On the other hand as z(t) ∈ U(h(t)) and by the hypothesis (A) and Lemma

2.1 one gets
‖ − ż(t)‖

|v̇(t)|
= 1 and hence ‖ż(t)‖ = |v̇(t)|. Therefore

d0C(t)(z(t); ż(t)) = −

〈

ż(t)

|v̇(t)|
, ż(t)

〉

= −
‖ż(t)‖2

|v̇(t)|
= −|v̇(t)| .

Now, for such t ∈ ]α, β[ we have ḟ(t) ≤ 0. So, as f is absolutely continuous we

have f(θ) = f(α) +

∫ θ

α
ḟ(t) dt ≤ 0 for every θ ∈ ]α, β[. But by the definition of f

we have f(θ) ≥ 0 for every θ. Thus f(θ) = 0 which contradicts that ]α, β[ ⊂ Ω.

Hence Ω = ∅. This completes the proof.

Now, we have the following corollary.

Corollary 2.2. Put h(t) :=2

∫ t

0
|v̇(s)| ds and assume that the hypothesis (A)

holds. Then for every solution z of (P2), one has z(t) ∈ C(t) for all t ≥ 0.

Proof: It is sufficient to show that every solution of (P2) satisfies the hy-

pothesis (A). Indeed, let z be a solution of (P2). Then for a.e. t ≥ 0 one has

‖ż(t)‖ ≤ |v̇(t)|. So, by (1.1) one gets

dC(t)(z(t)) ≤ ‖z(t)− z(0)‖+ |v(t)− v(0)| ≤
∫ t

0
|v̇(s)| ds+

∫ t

0
‖ż(s)‖ ds ≤ h(t) .

This ensures that z(t) ∈ C(t) + h(t)B.

Using Corollary 2.2 one gets the nonemptiness of the set of solutions of both

problems (P1) and (P2) in the finite dimensional setting and that these two sets of

solutions are the same. Note that this result is more strongly than the existence

results of the problem (P1) proved in [2, 21], because it is not necessary that

a solution of (P1) is to be a solution of (P2). Note also that their existence

results for the problem (P1) have been obtained, respectively, for any Lipschitz

set-valued mapping C taking its values in a finite dimensional space, and for

any Lipschitz set-valued mapping C having locally compact graph and taking its

values in a Hilbert space. Their proofs are strongly based on new versions of

Scorza-Dragoni’s theorem.

Theorem 2.4. Assume that dimH < +∞ and the hypothesis (A) holds

with h(t) := 2

∫ t

0
|v̇(s)| ds. Then both problems (P1) and (P2) have the same set

of solutions which is nonempty.
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Proof: By corollary 2.2 and the implication (P2) + (3) ⇒ (P1), it is suf-

ficient to show that (P2) admits at least one solution. Indeed, we put ft(x) :=

−|v̇(t)| dC(t)(x) and we observe that this function satisfies all hypothesis of Lemma

II.15 in Thibault [38] (we can apply directly Theorem VI.13 in Castaing and Val-

adier [17] as in the lemma I.15 in [38]). Then one gets by this lemma that (P2)

admits at least one solution.

In order to give a concrete application of our abstract result in Theorem 2.3,

we recall the definition of proximal smoothness for subsets introduced by Clarke

et al. [19], which is a generalization of convex subsets. For the importance of

this notion of smoothness we refer the reader to [19, 12, 33].

Definition 2.1. Let S be a closed nonempty subset in H. Following Clarke

et al. [19] we will say that S is r-proximally smooth if dS is continuously Gâteaux

differentiable on the tube U(r) := {u ∈ H : 0 < dS(u) < r}.

Corollary 2.3. Put h(t) := 2

∫ t

0
|v̇(s)| ds and assume that C(t) is r(t)-pro-

ximally smooth for all t ≥ 0 with h(t) ≤ r(t). Then for every solution z of (P2),

one has z(t) ∈ C(t) for all t ≥ 0.

Proof: It is easily seen by Lemma 2.2 that under the r(t)-proximal smooth-

ness of C(t) for all t ≥ 0 with h(t) ≤ r(t), the hypothesis (A) holds. So, we can

directly apply Corollary 2.2.

We close this section by establishing the following result. It is the combination

of Theorem 2.2 and Corollary 2.2. It proves the equivalence between (P1) and

(P2) for any set-valued mapping C satisfying the following hypothesis (A′): given

a positive function h : [0,+∞[ → [0,+∞[. For every absolutely continuous

mapping x(·) : [0,+∞[→ H and for a.e. t ≥ 0 the two following assertions hold:

1) C(t) is Fréchet normally regular at x(t) ∈ C(t);

2) for every x(t) ∈ U(h(t)) : ProjC(t)(x(t)) 6= ∅, dC(t) is directionally regular

at x(t) in both directions ẋ(t) and p(x(t)) − x(t), for some p(x(t)) ∈

ProjC(t)(x(t)).

Theorem 2.5. Assume that (A′) holds with h(t) := 2

∫ t

0
|v̇(s)| ds. Then

(P1) is equivalent to (P2).
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Remark 2.1. Note that under the r(t)-proximal smoothness of C(t) for all

t ≥ 0 with h(t) ≤ r(t), we can show (see Clarke et al. [19] for the part 1 in

(A′)) that the hypothesis (A′) holds too. So we obtain the following result, also

obtained in [38].

Theorem 2.6. Put h(t) := 2

∫ t

0
|v̇(s)| ds and assume that C(t) is r(t)-pro-

ximally smooth for all t ≥ 0 with h(t) ≤ r(t). Then (P1) is equivalent to (P2).

3 – Existence results of (P1) and (P2)

Throughout this section , H will be a finite dimensional space. Our aim here

is to prove the existence of solutions to (P1) and (P2) by a new and a direct

method and under another hypothesis which is incomparable in general with the

hypothesis (A) given in the previous section. Note that in the recent preprint by

Thibault [37] the same method is used to prove general existence results of (P1)

by using a recent viability result by Frankowska and Plaskacz.

We begin by recalling the following proposition (see e.g. [20])

Proposition 3.1 ([20]). Let X be a finite dimensional space. Let F : X⇒X

be an upper semicontinuous set-valued mapping with compact convex images and

let S ⊂ domF be a closed subset in X. Then the two following assertions are

equivalent:

i) ∀x ∈ S, ∀p ∈ Π(S;x), σ
(

F (x),−p
)

≥ 0;

ii) ∀x0 ∈ S, ∃ a solution x(·) : [0,+∞[ → H of the differential inclusion

ẋ(t) ∈ F (x(t)) a.e. t ≥ 0 such that x(0) = x0 and x(t) ∈ S for all t ≥ 0.

Here Π(S;x) denotes the set of all vectors ξ ∈ H such that dS(x+ ξ) = ‖ξ‖.

We prove the following result that is the key of the proof of Theorem 3.1.

Lemma 3.1. Let C : R+⇒H be a set-valued mapping satisfying (1.1). For

all (t, x) ∈ gphC and all (q, p) ∈ R+∂
F∆C(t, x) one has

σ(F (t, x),−(q, p)) ≥ 0 ,

for the set-valued mapping F : R+ × H⇒R+ × H defined by F (t, x) := {1} ×

{−β(t) ∂CdC(t)(x)}, where β : R+ → R+ is any positive function satisfying

|v̇(t)| ≤ β(t) a.e. t ≥ 0. Here ∆C : R+ ×H → R+ denotes the distance function

to images associated with C and defined by ∆C(t, x) := dC(t)(x).
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Proof: It is sufficient to show the inequality above for only (q, p) ∈ ∂F∆C(t, x).

Assume the contrary. There exist (t̄, x̄) ∈ gphC and (q̄, p̄)(6= (0, 0)) ∈ ∂F∆C(t̄, x̄)

such that

(3.1) σ(F (t̄, x̄),−(q̄, p̄)) < 0 .

Fix ε > 0. By the definition of the Fréchet subdifferential there exists η > 0 such

that for all |t− t̄| ≤ η, and all ‖x− x̄‖ ≤ η one has

(3.2) q̄(t− t̄) + 〈p̄, x− x̄〉 ≤ dC(t)(x) + ε(|t− t̄|+ ‖x− x̄‖) .

Taking t = t̄ in (3.2) one obtains p̄ ∈ ∂FdC(t̄)(x̄).

By (1.1) there exists for any t ∈ R+, some xt ∈ C(t) such that

‖xt − x̄‖ ≤ |v(t)− v(t̄)| .

Taking now x = xt in (3.2) for all t sufficiently near to t̄ one gets

q̄(t− t̄) ≤ 〈 − p̄, xt − x̄〉+ ε(|t− t̄|+ ‖xt − x̄‖)

≤ ‖p̄‖ |v(t)− v(t̄)|+ ε(|t− t̄|+ |v(t)− v(t̄)|) ,

and hence

(3.3) |q̄| ≤ ‖p̄‖ |v̇(t)| ≤ ‖p̄‖β(t) .

If p̄ = 0, then q̄ = 0, which is impossible. Assume that p̄ 6= 0, then
p̄

‖p̄‖
∈

∂FdC(t̄)(x̄), which ensures that

(

1,−β(t̄)
p̄

‖p̄‖

)

∈ F (t̄, x̄). Thus by (3.1) one gets
〈(

1,−β(t̄)
p̄

‖p̄‖

)

,−(q̄, p̄))

〉

< 0 and hence ‖p̄‖β(t̄) < |q̄|, which contradicts (3.3).

This completes the proof.

Now, we are ready to prove our main result of this section.

Theorem 3.1. Assume that there is a continuous function β : [0,+∞[ →

[0,+∞[ satisfying |v̇(t)| ≤ β(t) a.e. t ≥ 0 and that the set-valued mapping

G : (t, x) 7→ ∂FdC(t)(x) is u.s.c. on R × H. Then there exists a same solution

x(·) : [0,+∞[→ H for both problems (P1) and (P2), that is, (P1) and (P2) have

a same nonempty set of solutions.
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Proof: Fix x0 ∈ C(0). Put S :=gphC and F (t, x) :={1}×{−β(t) ∂FdC(t)(x)}.

It is well known that Π(S; (t, x)) is always included in the Fréchet normal cone

NF (S; (t, x)) and hence by Proposition 1.1 part i) one gets Π(S; (t, x)) ⊂

R+∂
F∆C(t, x) for all (t, x) ∈ S. Therefore, Lemma 3.1 yields

σ(F (t, x),−(q, p)) ≥ 0 ,

for all (t, x) ∈ S and all (q, p) ∈ Π(S; (t, x)). Now, as G is u.s.c. on R×H and β

is continuous, then F is u.s.c. on R×H and hence it satisfies the hypothesis of

Proposition 3.1 and then there exists a solution (s(·), x(·)) : [0,+∞[→ R×H of

the differential inclusion














(ṡ(t), ẋ(t)) ∈ F (s(t), x(t)) a.e. t ≥ 0

(s(0), x(0)) = (0, x0) ∈ S

(s(t), x(t) ∈ S ∀t ≥ 0 .

Fix any t ≥ 0 for which we have x(t) ∈ C(s(t)) and (ṡ(t), ẋ(t)) ∈ F (s(t), x(t)) =

{1} × {−β(s(t)) ∂FdC(s(t))(x(t))}. Then
{

ṡ(t) = 1 and

ẋ(t)) ∈ −β(s(t)) ∂FdC(s(t))(x(t)) .

Thus, as s(0) = 0 we get s(t) = t. Consequently, one concludes that x(t) ∈ C(t)

and ẋ(t) ∈ −β(t) ∂FdC(t)(x(t)) ⊂ NF (C(t), x(t)). This ensures that x(·) is a

solution of (P1). To complete the proof we need by Theorem 2.2 to show that

C(t) is normally Fréchet regular for all t ≥ 0. Indeed, consider any t̄ ≥ 0 and

any x̄ ∈ C(t̄). Then the u.s.c. of G ensures that ∂FdC(t̄)(·) is closed at x̄ in the

following sense: for every xn → x̄ and every ξn → ξ̄ with ξn ∈ ∂FdC(t̄)(xn) one

has ξ̄ ∈ ∂FdC(t̄)(x̄). Thus, by Theorem 5.1 in [10] and Corollary 3.1 in [11] one

concludes that C(t) is normally Fréchet regular.

In order to make clear the importance of this result we give a concrete appli-

cation. To this end, we need some new results by Bounkhel and Thibault [12]

concerning proximally smooth subsets.

Theorem 3.2 ([12]). Assume that C satisfies (1.1) and C(t) is r(t)-pro-

ximally smooth for all t ≥ 0 with r(t) bounded below by a positive number.

Then the graph of G is closed and hence G is u.s.c. on R×H.

Now another existence result of solutions of proximally smooth case in the

finite dimensional setting of both problems (P1) and (P2) can be deduced from

Theorem 3.1 and Theorem 3.2. We give it in the following theorem.
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Theorem 3.3. Under the hypothesis of Theorem 3.2, there exists a solution

of both problems (P1) and (P2).

4 – Existence criteria of viable solutions of nonconvex differential in-

clusions

It is well known that the solution set of the following differential inclusion

(4.1)

{

ẋ(t) ∈ G(x(t))

x(0) = x0 ∈ Rd ,

can be empty when the set-valued mapping G is upper semicontinuous with

nonempty nonconvex values. In [14], the authors proved an existence result of

(4.1), by assuming that the set-valued mappingG is included in the subdifferential

of a convex lower semicontinuous (l.s.c.) function g : Rd → R. This result has

been extended in many ways.

1 – The first one was by [3], where the author replace the convexity assumption

of g by its directional regularity in the finite dimensional setting. The infinite

dimensional case with the directional regularity assumption on g and some other

additional hypothesis has been proved by [4, 3].

2 – The second extension was by [1]. An existence result has been obtained

for the following nonconvex differential inclusion

(4.2)

{

ẋ(t) ∈ G(x(t)) + f(t, x(t)) a.e.

x(0) = x0 ∈ Rd ,

under the assumption that G is an upper semicontinuous set-valued mapping

with nonempty compact values contained in the subdifferential of a convex lower

semicontinuous function, and f is a Caratheodory single-valued mapping.

3 – The third way was to investigate the existence of a viable solution of (4.1)

(i.e., a solution x(·) such that x(t) ∈ S(t), where S is a set-valued mapping). The

first existence result of viable solutions of (4.1) has been established by Rossi [36].

Later, Morchadi and Gautier [27] proved an existence result of viable solution of

the inclusion (4.2).

4 – The recent extension of (4.1) and (4.2) is given by [39]. The author proved

an existence result of viable solutions for the following differential inclusion

(DI)

{

ẋ(t) ∈ G(x(t)) + F (t, x(t)) a.e.

x(t) ∈ S ,
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when F : [0, T ]×H⇒H is a continuous set-valued mapping, G : H⇒H is an upper

semicontinuous set-valued mapping such that G(x) ⊂ ∂g(x), where g : H → R is

a convex continuous function and S(t) ≡ S and the set S is locally compact in

H, with dimH < +∞.

Our aim in this section is to establish an extension of the existence result of

(4.1) that cover all the other extensions given in the finite dimensional setting,

like the ones proved by [3, 1, 14, 39]. The infinite dimensional case is extremely

long and delicate. It will be provided in [6]. We will prove an existence result

of viable solutions of (DI) when F is a continuous set-valued mapping, G is an

u.s.c. set-valued mapping, g is a uniformly regular locally Lipschitz function over

S (see Definition 4.1), and S is a closed subset in H, with dimH < +∞.

In all the sequel, we will assume that H is a finite dimensional space.

We begin by recalling the following lemma proved in [39].

Lemma 4.1 ([39]). Assume that

i) S is nonempty subset in H, x0 ∈ S, and K0 := S∩(x0+ρB) is a compact

set for some ρ > 0;

ii) P : [0, T ]×H⇒H is an u.s.c. set-valued mapping with nonempty compact

values;

iii) For any (t, x) ∈ I × S the following tangential condition holds

(4.3) lim inf
h↓0

h−1dS(x+ hP (t, x)) = 0 .

Let a ∈ ]0,min{T, ρ
(M+1)}[, where M := sup{‖P (t, x)‖ : (t, x) ∈ [0, T ]×K0}.

Then for any ε ∈]0, 1[, any set N ′ = {t′i : t
′
0 = 0 < ... < t′ν′ = a}, and any

u0 ∈ F (0, x0), There exist a set N = {ti : t0 = 0 < ... < tν = a}, step functions

f , z, and x defined on [0, a] such that the following conditions holds for every

i ∈ {1, ..., ν}:

1) {t′0, ..., t
′
k(i)} ⊂ {t0, ..., ti}, where k(i) is the unique integer such that k(i) ∈

{0, 1, ..., ν ′ − 1} and t′k(i) ≤ ti < t′k(i)+1;

2) 0 < tj+1 − tj ≤ α, for all j ∈ {0, ..., i− 1}, where

α := ε min{1, t′1 − t
′
0, ..., t

′
ν′ − t

′
ν′−1} ;

3) f(0) = u0, f(t) = f(θ(t)) ∈ F (θ(t), x(θ(t))) on [0, ti] where θ(t) = tj if

t ∈ [tj , tj+1[, for all j ∈ {0, 1, ..., i− 1} and θ(ti) = ti;
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4) z(0) = 0, z(t) = z(tl+1) if t ∈ ]tl, tl+1], l ≤ i− 1 and ‖z(t)‖ ≤ 2ε(M +1)T ;

5) x(t) = x0 +

∫ t

0
f(s) ds+ z(t), for all t ∈ [0, ti], x(tj) = xj ∈ K0 and

(4.4) ‖xj − xj′‖ ≤ |tj − tj′ | (M + 1) ,

for j, j′ ∈ {0, 1, ..., i}.

Now, we introduce our concept of regularity that will be used in this last

section of the paper.

Definition 4.1. Let f : H → R ∪ {+∞} be a l.s.c. function and let O ⊂

domf be a nonempty open subset. We will say that f is uniformly regular over

O if there exists a positive number β ≥ 0 such that for all x ∈ O and for all

ξ ∈ ∂P f(x) one has

〈ξ, x′ − x〉 ≥ f(x′)− f(x) + β‖x′ − x‖2, for all x′ ∈ O .

We will say that f is uniformly regular over closed set S if there exists an open

set O containing S such that f is uniformly regular over O.

The class of functions that are uniformly regular over sets is so large. We

state here some examples.

1 – Any l.s.c. proper convex function f is uniformly regular over any nonempty

subset of its domain with β = 0.

2 – Any lower-C2 function f is uniformly regular over any nonempty con-

vex compact subset of its domain. Indeed, let f be a lower-C2 function over

a nonempty convex compact set S ⊂ domf . By Rockafellar’s result (see for in-

stance Theorem 10.33 in [35] or Proposition 3.1 in [22]) there exists a positive real

number β such that g := f+ β
2 ‖·‖

2 is a convex function on S. Using the definition

of the subdifferential of convex functions and the fact that ∂Cf(x) = ∂g(x)− βx

for any x ∈ S, we get the inequality in Definition 4.1 and so f is uniformly regular

over S.

One could think to deal with the class of lower-C2 instead of our class of

uniformly regular functions. The inconvenience of the class of lower-C2 functions

is the need of the convexity and the compactness of the set S to satisfy the

Definition 4.1 which is the exact property needed in our proofs. However, we

can find many functions that are uniformly regular over nonconvex noncompact
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sets. To give an example we need to recall the following result by Bounkhel and

Thibault [12] proved for Hilbert spaces H.

Theorem 4.1 ([12]). Let S be a nonempty closed subset in H and let r > 0.

Then S is r-proximally smooth if and only if the following holds

(Pr)























for all x ∈ H, with dS(x) < r, and all ξ ∈ ∂PdS(x) one has

〈ξ, x′ − x〉 ≤
8

r − dS(x)
‖x′ − x‖2 + dS(x

′)− dS(x),

for all x′ ∈ H with dS(x
′) ≤ r .

From Theorem 4.1 one deduces that for any r-proximally smooth set S (not

necessarily convex nor compact) the distance function dS is uniformly regular

over S + (r − r′)B := {x ∈ H : dS(x) ≤ r − r′} for every r′ ∈ ]0, r].

Some properties for uniformly regular locally Lipschitz functions over sets that

will be needed in the next theorem can be stated in the following proposition.

Other important properties for l.s.c. uniformly regular functions are obtained in

a forthcoming paper by the author.

Proposition 4.1. Let f : H → R be a locally Lipschitz function and let

∅ 6= S ⊂ domf . If f is uniformly regular over S, then the following hold:

i) the proximal subdifferential of f is closed over S, that is, for every xn →

x ∈ S with xn ∈ S and every ξn → ξ with ξn ∈ ∂P f(xn) one has

ξ ∈ ∂P f(x).

ii) ∂Cf(x) = ∂P f(x) for all x ∈ S;

iii) the proximal subdifferential of f is upper hemicontinuous over S, that is,

the support function x 7→ 〈v, ∂P f(x)〉 is u.s.c. over S for every v ∈ H.

Proof: i) Let O be an open set containing S as in Definition 4.1. Let

xn → x ∈ S with xn ∈ S and let ξn → ξ with ξn ∈ ∂
P f(xn). Then by Definition

4.1 one has

〈ξn, x
′ − xn〉 ≥ f(x′)− f(xn) + β‖x′ − xn‖

2, for all x′ ∈ O .

Letting n to +∞ we get

〈ξ, x′ − x〉 ≥ f(x′)− f(x) + β‖x′ − x‖2, for all x′ ∈ O .

This ensures that ξ ∈ ∂P f(x) because O is a neighbourhood of x.
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ii) Let x be any point in S. By the part i) of the proposition we get ∂P f(x) =

∂PLf(x), where ∂PLf(x) denotes the limiting proximal subdifferential of f at x

(see for instance [20] for a broad discussion of this subdifferential). Now, as f is

Lipschitz at x we get by Theorem 6.1 in [20] ∂Cf(x) = co ∂PLf(x) = co ∂P f(x) =

∂P f(x) (“co” means “closed convex hull”). The part iii) is a direct consequence

of i) and ii) and so the proof is complete.

Now we are in position to prove our main theorem in this section.

Theorem 4.2. Let S ⊂ H and let g : H → R be a locally Lipschitz function

that is uniformly regular over S with a constant β ≥ 0. Assume that

i) S is a nonempty closed subset;

ii) G : H⇒H is an u.s.c. set-valued mapping with compact values satisfying

G(x) ⊂ ∂Cg(x) for all x ∈ S;

iii) F : [0, T ] × H⇒H is a continuous set-valued mapping with compact

values;

iv) For any (t, x) ∈ I × S the following tangential condition holds

(4.5) lim inf
h↓0

h−1 dS(x+ h(G(x) + F (t, x))) = 0 .

Then, for any x0 ∈ S there exists a ∈ ]0, T [ such that the differential inclusion

(DI) has a viable solution on [0, a].

Proof: Let L > 0 and ρ be two positives scalars such that g is L-Lipschitz

over x0 + ρB. Put K0 := S ∩ (x0 + ρB) is a compact set in H. Let M and a be

two positives scalars such that ‖F (t, x)‖+‖G(x)‖ ≤M , for all (t, x) ∈ [0, T ]×K0

and a ∈ ]0,min{T, ρ
M+1}[. Let N0 = {0, a} and εm = 1

2m , for m = 1, 2, · · · .

First, the uniform continuity of F on the compact K0 ensures the existence

of δm > 0 such that

(4.6) ‖(t, x)− (t′, x′)‖ ≤ (M + 2) δm =⇒ H(F (t, x), F (t′, x′)) ≤ εm ,

for t, t′ ∈ [0, a], x, x′ ∈ K0, where ‖(t, x)‖ = |t| + ‖x‖. Here H(A,B) stands for

the Hausdorff distance between A and B define by

H(A,B) := max
{

sup
a∈A

dB(a), sup
b∈B

dA(b)
}

.

Now, applying Lemma 4.1 for the set-valued mapping P := F + G, the scalar

εm, m = 1, 2, · · ·, the set N0 = {0, a}, and the set S, one obtains for every



302 MESSAOUD BOUNKHEL

m = 1, 2, · · · the existence of a set Nm = {tmi : tm0 = 0 < · · · < tmνm
= a},

step functions ym(·), fm(·), zm(·), and xm(·) defined on [0, a] with the following

properties:

i) Nm ⊂ Nm+1, m = 0, 1, · · ·;

ii) 0 < tmi+1 − t
m
i ≤ αm, for all i ∈ {0, · · · , νm − 1}, where

αm := εmmin{1, δm, t
m−1
1 − tm−10 , ..., tm−1νm−1

− tm−1νm−1−1
} ;

iii) fm(t) = fm(θm(t)) ∈ F (θm(t), xm(θm(t))) and ym(t) = ym(θm(t)) ∈

G(xm(θm(t))) on [0, a] where θm(t) = tmi if t ∈ [tmi , t
m
i+1[, for all i ∈

{0, 1, · · · , νm − 1} and θm(a) = a;

iv) zm(0) = 0, zm(t) = zm(ti+1) if t ∈ ]ti, ti+1], 0 ≤ i ≤ νm − 1 and

(4.7) ‖zm(t)‖ ≤ 2 εm(M + 1)T ;

v) xm(t) = x0 +

∫ t

0
(ym(s) + fm(s))ds + zm(t) and xm(θm(t)) ∈ K0, for all

t ∈ [0, a], and for i, j ∈ {0, 1, · · · , νm}

(4.8) ‖xm(tmi )− xm(tmj )‖ ≤ |tmi − t
m
j | (M + 1) .

Observe that (4.8) ensures that for i, j ∈ {0, 1, · · · , νm}

(4.9) ‖(tmi , xm(tmi ))− (tmj , xm(tmj ))‖ ≤ |tmi − t
m
j | (M + 2) .

We will prove that the sequence xm(·) converges to a viable solution of (DI).

First, we note that the sequence fm can be constructed with the relative com-

pactness property in the space of bounded functions. We don’t give the proof

of this part here. It can be found in [39, 40, 24]. Therefore, without loss of

generality we can suppose that there is a bounded function f such that

(4.10) lim
m→∞

sup
t∈[0,a]

‖fm(t)− f(t)‖ = 0 .

Now, we use our characterizations of the uniform regularity proved in Proposition

4.1 and some techniques of [12, 1, 14] to prove that the approximate solutions

xm(·) converges to a function that is a viable solution of (DI).

Put qm(t)=x0+

∫ t

0
(ym(s)+fm(s))ds. By the property iv), one has ‖żm(t)‖=0

a.e. on [0, a]. Then ‖q̇m(t)‖ = ‖ẋm(t)‖ ≤ M a.e. on [0, a] and the sequence
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qm is equicontinuous and the sequence of their derivatives q̇m is equibounded.

Hence, a subsequence of qm may be extracted (without loss of generality we may

suppose that this subsequence is qm) that converges in the sup-norm topology to

an absolutely continuous mapping x : [0, a] → H and such that the sequence of

their derivatives q̇m converges to ẋ(·) in the weak topology of L2([0, a], H). Since

‖qm(t)− xm(t)‖ = ‖zm(t)‖ and ‖żm(t)‖ = 0 a.e. on [0, a] one gets by (4.7)

(4.11)







lim
m→∞

max
t∈[0,a]

‖xm(t)− x(t)‖ = 0

ẋm(·)⇀ ẋ(·) in the weak topology of L2([0, a], H) .

Recall now that the sequence fm converges pointwisely a.e. on [0, a] to f . Then,

the continuity of F and the closedness of F (t, x(t)) entail f(t) ∈ F (t, x(t)). Fur-

ther, by the properties of the sequence xm and the closedness of K0, we get

x(t) ∈ K0 ⊂ S.

Put y(t) = −f(t) + ẋ(t). It remains to prove that y(t) ∈ G(x(t)) a.e. [0, a].

By construction and the hypothesis on G and g we have ym(t) = ẋm(t) − fm(t)

and

(4.12) ym(t) ∈ G(xm(θm(t))) ⊂ ∂Cg(xm(θm(t))) = ∂P g(xm(θm(t))) ,

for a.e. on [0, a], where the last equality follows from the uniform regularity of g

over S and the part ii) in Proposition 4.1.

We can thus apply Castaing techniques (see for example [16]). The weak

convergence (by (4.11)) in L2([0, a], H) of ẋm(·) to ẋ(·) and Mazur’s Lemma

entail

ẋ(t) ∈
⋂

m

co{ẋk(t) : k ≥ m}, for a.e. on [0, a] .

Fix any such t and consider any ξ ∈ H. Then, the last relation above yields

〈ξ, ẋ(t)〉 ≤ inf
m

sup
k≥m

〈ξ, ẋm(t)〉

and hence according to (4.12)

〈ξ, ẋ(t)〉 ≤ lim sup
m

σ(ξ, ∂P g(xm(θm(t))) + fm(t)) ≤ σ(ξ, ∂P g(x(t)) + f(t)) ,

where the second inequality follows from the upper hemicontinuity of the prox-

imal subdifferential of uniformly regular functions (see part ii) in Proposition

4.1) and the convergence pointwisely a.e. on [0, a] of fm to f , and the fact that
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xm(θm(t)) → x(t) in K0 a.e. on [0, a]. Thus, by the convexity and the closed-

ness of the proximal subdifferential of uniformly regular functions (part ii) in

Proposition 4.1) we obtain

(4.13) y(t) = ẋ(t)− f(t) ∈ ∂P g(x(t)) .

To complete the proof we need to show that y(t) ∈ G(x(t)).

As x(·) is an absolutely continuous mapping and g is a uniformly regular

locally Lipschitz function over S (hence directionally regular over S (see [10])),

one gets by Theorem 2 in Valadier [41, 42] (see also [8, 9]) for a.e. on [0, a]

d

dt
(g ◦ x)(t) = 〈∂P g(x(t)), ẋ(t)〉 = 〈ẋ(t)− f(t), ẋ(t)〉 = ‖ẋ(t)‖2 − 〈f(t), ẋ(t)〉 .

Consequently,

(4.14) g(x(a))− g(x0) =

∫ a

0
‖ẋ(s)‖2ds −

∫ a

0
〈f(s), ẋ(s)〉ds .

On the other hand, we have by construction ẋm(t) = ymi +fmi with ymi ∈ G(x
m
i ) ⊂

∂Cg(xmi ) = ∂P g(xmi ) for t ∈ ]tmi , ti+1[, i = 0, · · · , νm − 1. Then, by Definition 4.1

one has

g(xmi+1)− g(x
m
i ) ≥ 〈ymi , x

m
i+1 − x

m
i 〉 − β‖x

m
i+1 − x

m
i ‖

2

=

〈

ẋm(t)− fm(t),

∫ tmi+1

tm
i

ẋm(s) ds

〉

− β ‖xmi+1 − x
m
i ‖

2

≥
∫ tmi+1

tm
i

‖ẋm(s)‖2 ds −
∫ tmi+1

tm
i

〈ẋm(s), fm(s)〉 ds

− β (M + 1)2 (tmi+1 − t
m
i )2

≥
∫ tmi+1

tm
i

‖ẋm(s)‖2 ds −
∫ tmi+1

tm
i

〈ẋm(s), fm(s)〉 ds

− β (M + 1)2 εm(tmi+1 − t
m
i ) .

By adding, we obtain

(4.15) g(xm(a))− g(x0) ≥
∫ a

0
‖ẋm(s)‖2ds−

∫ a

0
〈ẋm(s), fm(s)〉ds− εm(M +1)2a .

According to (4.10) and (4.11) one gets

lim
m

∫ a

0
〈ẋm(s), fm(s)〉 ds =

∫ a

0
〈ẋ(s), f(s)〉 ds .
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Passing to the limit superior for m→∞ in (4.15) and the continuity of g yield

g(x(a))− g(x0) ≥ lim sup
m

∫ a

0
‖ẋm(s)‖2 ds −

∫ a

0
〈ẋ(s), f(s)〉 ds ,

and hence a comparison with (4.14) gives

∫ a

0
‖ẋ(s)‖2ds ≥ lim sup

m

∫ a

0
‖ẋm(s)‖2ds ,

that is

‖ẋ‖2L2([0,a],H) ≥ lim sup
m

‖ẋm‖
2
L2([0,a],H) .

On the other hand the weak lower semicontinuity of the norm ensures

‖ẋ‖L2([0,a],H) ≤ lim inf
m

‖ẋ‖L2([0,a],H) .

Consequently, we get

‖ẋ‖L2([0,a],H) = lim
m
‖ẋm‖L2([0,a],H) .

This means that the sequence ẋm(·) converges to ẋ(·) strongly in L2([0, a], H).

Hence there exists a subsequence of ẋm(·) still denoted ẋm(·) converges point-

wisely a.e. on [0, a] to ẋ(·). Finally, by the construction, one has (xm(t), ẋm(t)−

fm(t)) ∈ gphG a.e. on [0, a] and so the closedness of the graph ensures that

(x(t), ẋ(t) − f(t)) ∈ gphG a.e. on [0, a]. This completes the proof of the theo-

rem.

Remark 4.1.

1 – An inspection of our proof in Theorem 4.2 shows that the uniformity of

the constant β was needed only over the set K0 and so it was not necessary over

all the set S. Indeed, it suffices to take the uniform regularity of g locally over

S, that is, for every point x̄ ∈ S there exist β ≥ 0 and a neighbourhood V of x0
such that g is uniformly regular over S ∩ V .

2 – As we can see from the proof of Theorem 4.2, the assumption needed on

the set S is the local compactness which holds in the finite dimensional setting

for nonempty closed sets.

3 – As observed by the author in [39], under the assumptions i)–iv) of Theorem

4.2, if we assume that F ([0, T ] × S) + G(S) is bounded, then for any a ∈ ]0, T [,

the differential inclusion (DI) has a viable solution on [0, a].
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We close the paper with two corollaries of our main result in Theorem 4.2.

Corollary 4.1. Let K ⊂ H be a nonempty proximally smooth closed subset

and F : [0, T ]×H⇒H be a continuous set-valued mapping with compact values.

Then, for any x0 ∈ K there exists a ∈]0, T [ such that the following differential

inclusion
{

ẋ(t) ∈ −∂CdK(x(t)) + F (t, x(t)) a.e. on [0, a]

x(0) = x0 ∈ K ,

has at least one absolutely continuous solution on [0, a].

Proof: Theorem 4.1 shows that the function g := dK is uniformly regular

over K and so it is uniformly regular over some neighbourhood V of x0 ∈ K.

Thus, by Remark 4.1 part 1, we apply Theorem 4.2 with S = H (hence the

tangential condition (4.5) is satisfied), K0 := V ∩ S = V , and the set-valued

mapping G := ∂CdK which satisfies the hypothesis of Theorem 4.2.

Our second corollary concerns the following differential inclusion

(4.16)

{

ẋ(t) ∈ −NC(S;x(t)) + F (t, x(t)) a.e.

x(t) ∈ S, for all t, and x(0) = x0 ∈ S .

First, we recall that this type of differential inclusion has been introduced by

Henry [25] for studying some economic problems. In the case when F is an u.s.c

set-valued mapping and is autonomous (that is F is independent of t), he proved

an existence result of (4.16) under the convexity assumption on the set S and on

the images of the set-valued mapping F . In the autonomous case, this result has

been extended by Cornet [23] by assuming the tangential regularity assumption

on the set S and the convexity on the images of F with the u.s.c of F . Recently,

Thibault in [38], proved in the nonautonomous case, an existence result of (4.16)

for any closed subset S (without any assumption on S), which also required the

convexity of the images of F and the u.s.c. of F . The question arises whether

we can drop the assumption of convexity of the images of F . Our corollary here

establishes an existence result in this vein, but we will pay a heavy price for the

absence of the convexity. We will assume that F is continuous, and above all,

that the following tangential condition holds.

(4.17) lim inf
h↓0

h−1dS(x+ h(∂CdS(x) + F (t, x))) = 0 ,

for any (t, x) ∈ I × S.



NONCONVEX DIFFERENTIAL INCLUSIONS 307

Corollary 4.2. Assume that

i) F : [0, T ] × H⇒H is a continuous set-valued mapping with compact

values;

ii) S is a nonempty proximally smooth closed subset in H;

iii) For any (t, x) ∈ I×S the tangential condition (4.17) holds. Then, for any

x0 ∈ S, there exists a ∈]0, T [ such that the differential inclusion (4.16)

has at lease one absolutely continuous solution on [0, a].
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