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FROM A SINGLE CHAIN
TO A LARGE FAMILY OF SUBMODULES

Laszlo Fuchs and Sang Bum Lee

Abstract: By making use of an ingenious idea of Paul Hill [8], we prove a gen-

eral lemma showing how to obtain from a continuous well-ordered ascending chain

of submodules of certain types a large collection of submodules of the same type.

Several applications are exhibited.

Introduction

Suppose that a module M (over any ring) has a continuous well-ordered

ascending chain 0 = M0 < M1 < · · · < Mα < · · · <
⋃

α<τ Mα = M (α < τ) of

submodules Mα which are assumed to have prescribed properties. Can we find

a large collection of submodules in M with the same properties? In some ar-

guments the existence of a chain is insufficient, it is necessary to have a large

supply of submodules (e.g. in the application of Shelah’s Singular Compactness

Theorem).

The answer to the above question is that in certain cases we can find a large

collection of submodules with the same properties — as was demonstrated by

P. Hill [8]. He gave an interesting construction showing how to create from a

chain of ‘nice’ subgroups in an abelian torsion group a large collection of ‘nice’

subgroups (here ‘nice’ has a well-defined meaning, see Section 4). This idea has

been applied to several other situations; see e.g. [1], [6], [11]. In the present note,
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we will imitate Hill’s method in a fairly general setting and, starting from a given

continuous chain, we will construct a large collection of submodules such that the

submodules in the collection will admit the same kind of continuous chains.

We will list several (old and new) applications of our construction to various

modules and abelian groups.

1 – Preliminaries

In this note all groups are abelian, and all modules are unital over a com-

mutative ring R with 1. genM stands for the minimal cardinality of generating

systems of the module M .

Recall Hill’s definition of a totally projective p-group A [8]:

A has a family F of ’nice’ subgroups (for the definition of ‘nice’ subgroup see

item 8 in Section 4 below) such that

H1. 0, A ∈ F ;

H2. F is closed under arbitrary sums ;

H3. if B ∈ F , and if the subset X ⊂ M has cardinality ≤ ℵ0, then there is

a C ∈ F such that B ∪X ⊂ C and genC/B ≤ ℵ0 .

Hill calls this the 3rd Axiom of Countability. Griffith [7] showed that H2 can

be replaced by the weaker condition:

G2. F is closed under unions of chains.

The following condition used by Fuchs [4] is even weaker than G2:

F2. There is a continuous chain of subgroups

0 = N0 < N1 < · · · < Nα < · · · < Nτ = A ,

where the links Nα are nice subgroups and factor groups Nα+1/Nα are

countable. (Here continuous means that for every limit ordinal β < τ ,

Nβ =
⋃

α<β Nα holds.)

The implications H2⇒G2⇒F2 are obvious. Hill [8] found an ingenious direct

proof of the implication F2⇒H2 (assuming H1 and H3). It has various versions,

depending on the hypotheses imposed on the links of the original chain; see e.g.

[1], [6], [11]. Theorem 2.1 gives a more general version for modules.
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We will need the general definition of an H(κ)-family, where κ denotes an

infinite cardinal. By an H(κ)-family in the module M is meant a collection F of

submodules of M such that

H1. 0,M ∈ F ;

H2. F is closed under arbitrary sums ;

H3. if B ∈ F and the subset X ⊂ M has cardinality ≤ κ, then there is a

C ∈ F such that B ∪X ⊂ C and genC/B ≤ κ .

2 – The general lemma

We are now ready to formulate and prove the main result of this note. Recall

that a ring R is said to be κ-coherent if gen I ≤ κ for each of its ideals I.

Theorem 2.1 (Generalized Hill’s Lemma). Suppose κ is an infinite cardinal

and the ring R is κ-coherent. Let the R-module M be the union of a continuous

well-ordered ascending chain of submodules

(1) 0 = M0 < M1 < · · · < Mα < · · · < Mτ = M (α < τ)

for some ordinal τ such that for each α+ 1 < τ ,

Mα+1 = Mα +Aα

holds for some submodule Aα with genAα ≤ κ. Then:

(i) M admits an H(κ)-family F of submodules ;

(ii) every C ∈ F has a continuous well-ordered ascending chain of submodules

with union C such that

(a) every successor submodule in the chain is obtainable from its prede-

cessor by adding some Aα ;

(b) the factors are isomorphic to factors in the chain (1) .

Proof: To start with, note that the hypothesis guarantees thatMβ=
∑

α<βAα

for all β≤τ . Thus every a∈M is contained in the sum of a finite number of Aα’s.

Call a subset S of τ closed if every β ∈ S satisfies

Mβ ∩Aβ ≤
∑

α∈S, α<β

Aα .
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For a closed subset S, we set M(S) =
∑

α∈S Aα. Our claim is that

F =
{

M(S) | S a closed subset in τ
}

is a desired H(κ)-family in M . The following four steps will provide a proof.

Step 1. Unions of closed subsets of τ are again closed.

Suppose that Si (i ∈ I) are closed subsets of τ , and β ∈
⋃

i∈I Si. Then β ∈ Sj

for some j ∈ I, and Mβ ∩ Aβ is evidently contained in the sum of the Aα for

α < β with α ∈ Sj , and a fortiori with α ∈
⋃

i∈I Si.

Step 2. Every subset of τ of cardinality ≤ κ is contained in a closed subset

of τ of cardinality ≤ κ.

By Step 1, it suffices to verify this for a finite subset X of τ . We induct on

the largest ordinal β contained in X. If β = 0, then the claim is true, as {0}

is evidently a closed subset of τ . By the assumed κ-coherency, the submodule

Mβ ∩Aβ is at most κ-generated, so it contains a generating set {ai | i ∈ I} with

|I| ≤ κ. All the ai’s are in Mβ , so each ai is contained in a finite sum of the

Aα’s with α < β. By induction, the finite index set of these Aα’s is contained in

a closed subset of τ , thus there is a closed subset S ′ ⊂ τ such that |S ′| ≤ κ and

all the ai are contained in M(S ′). There is no loss of generality in assuming that

S′ ⊂ β, since otherwise S ′ can be replaced by the closed subset S ′ ∩ β. To show

that S = S ′ ∪ {β} is a closed subset of τ , it suffices to check the definition for β.

This is easy: M(S ′) contains the ai, hence it contains Mβ ∩Aβ .

Step 3. F is an H(κ)-family of submodules in M .

Obviously, both ∅ and τ are closed subsets of τ . Since by Step 1 the equality
∑

i∈I M(Si) = M(
⋃

i∈I Si) holds for closed subsets Si ⊂ τ , the collection F is

closed under arbitrary unions. If T is a closed subset of τ and X is a subset of

M of cardinality ≤ κ, then there is a closed subset S ⊂ τ such that |S| ≤ κ,

X ⊂ M(S), where genM(S) ≤ κ. Since gen[M(S ∪ T )/M(T )] ≤ κ, F satisfies

condition H3 as well.

Step 4. Let S be a closed subset of τ , and β∈S. AsMβ∩Aβ ≤
∑

α∈S,α<β Aα ≤

Mβ implies (
∑

α∈S,α<β Aα) ∩Aβ = Mβ ∩Aβ , we have the natural isomorphisms

(

∑

α∈S,α≤β

Aα

)

/

(

∑

α∈S,α<β

Aα

)

=

(

∑

α∈S,α<β

Aα +Aβ

)

/

(

∑

α∈S,α<β

Aα

)

∼= Aβ / (Mβ ∩Aβ) ∼= Mβ+1 /Mβ .
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Thus M(S) has a chain of submodules
∑

α∈S,α<β Aα for β ∈ S such that

the factors in the chain are isomorphic to the corresponding factors in (1).

This proves (b), while (a) is obvious from the construction.

Remark 2.2. The proof above shows that if, for some α, the submodule

Aα can be chosen as a complement of Mα in Mα+1, then in the chain of M(S),

in the link corresponding to α ∈ S, Aα will be a summand as well.

Very often the rank version of Theorem 2.1 (see [6, XVI.8.11]) is more useful

whenever we deal with torsion-free modules over integral domains R. In this

case we need a modification in the definition of H(κ)-family: we will say F is an

H?(κ)-family in the R-module M if M is torsion-free and satisfies H1, H2 and

the rank version of H3:

H3?. If B ∈ F and the subset X ⊂ M has cardinality ≤ κ, then there is a

C ∈ F such that B ∪X ⊂ C and rkC/B ≤ κ.

The above proof applies to verify:

Theorem 2.3. Suppose R is a domain. Let the torsion-free R-module M be

the

union of a continuous well-ordered ascending chain of submodules

(2) 0 = M0 < M1 < · · · < Mα < · · · (α < τ)

such that for each α+1 < τ , Mα+1 = Mα +Aα holds for some submodule Aα of

rank ≤ κ. Then:

(i) M admits an H?(κ)-family F of submodules ;

(ii) every C ∈ F has a continuous well-ordered ascending chain of submodules

with union C such that

(a) every successor submodule is obtainable from its predecessor by

adding some Aα ;

(b) its factors are isomorphic to factors in the chain (2) .

3 – Additional hypotheses on the links

We now turn our attention to the following question: If the submodules in (1)

are assumed to have additional properties, are then these properties inherited by

the M(S)?
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We concentrate on the following two properties. A submodule N of an

R-module M is called an RD-submodule if rN = N ∩ rM for all r ∈ R, and

a pure submodule if the solvability of any finite system of equations

m
∑

k=1

rikxk = ai ∈ N (rik ∈ R, i = 1, ..., n)

(m, n are positive integers, and xk are unknowns) in M implies that the system

also has a solution in N .

Proposition 3.1. Suppose that all the submodules Mα in the chain (1) are

pure (respectively, RD-)submodules of M . Then the same holds for the submod-

ules in F .

Moreover, the links in the chains of the modules C ∈ F (see (2.1) (ii)) are

pure (resp. RD-)submodules of C.

Proof: We prove only the pure version, the other is a special case for

n = 1 = m.

So we assume that all the Mα in (1) are pure in M . To verify the purity of

M(S) for a closed S, assume that

(3)
m
∑

k=1

rik xk = ci ∈ M(S) (rik ∈ R; i = 1, ..., n)

is a system of equations in the unknowns x1, ..., xm that is solvable in M . Write

ci = aiα1
+ · · ·+ aiαh

(aiαj
∈ Aαj

) ,

where α1 < α2 < · · · < αh in S; to simplify the notation, we allow some of the

aiαj
to vanish. In addition, assume that the largest index αh occurring in the ci

has been chosen minimal, i.e. ci ∈ Mαh+1 for each i, and αh + 1 is the minimal

index with this property. We induct on αh, and assume that systems like

the one above are solvable in M(S) whenever the right hand sides are contained

in Mαh
.

As ci ∈ Mαh+1, the system has a solution y1, ..., ym ∈ Mαh+1 in view of the

purity hypothesis. We can write yk = zk + bk with zk ∈Mαh
, bk ∈ Aαh

. Thus

m
∑

k=1

rik zk =
m
∑

k=1

rik yk −
m
∑

k=1

rik bk = aiα1
+ · · ·+ aiαh

−
m
∑

k=1

rik bk ,
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whence

aiαh
−

m
∑

k=1

rik bk ∈ Mαh
∩Aαh

≤
∑

α∈S, α<αh

Aα .

We obtain
m
∑

k=1

rik zk ∈
∑

α∈S, α<αh

Aα ≤ Mαh
.

By induction hypothesis, we can find t1, ..., tm ∈ M(S) such that
∑m

k=1 rik zk =
∑m

k=1 rik tk for each i. Hence xk = tk + bk (k = 1, ...,m) is a solution in M(S).

This proves the existence of a solution of system (3) in M(S).

For the purity of the links in the chain of M(S) it suffices to observe that they

are of the form M(S ∩ β) for β ∈ S (see the proof of Theorem 2.1), and, along

with S, the intersection S ∩ β is also a closed subset of τ .

4 – Applications

We wish to consider various applications of the results proved above.

1. Pure Submodules

It is well known (and easy to see) that if R is a ring of infinite cardinality κ,

then in any R-moduleM , every element embeds in a κ-generated pure submodule.

Hence M admits a continuous well-ordered ascending chain of pure submodules

with κ-generated factors.

Corollary 4.1. Let R be a ring of cardinality κ. Every R-module has an

H(κ)-family of pure submodules.

Proof: Starting from a chain of pure submodules with at most κ-generated

factor modules, Theorem 2.1 yields such a family. The submodules Aα are cho-

sen arbitrarily satisfying only the two requirements: genAα ≤ κ and Mα+1 =

Mα +Aα.

The following corollary was proved by Hill [8] for abelian groups; it is valid

over any domain.
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Corollary 4.2. A torsion-free module M over a domain R admits an

H?(ℵ0)-family of RD-submodules.

Proof: It is straightforward to prove that M has a continuous well-ordered

ascending chain of RD-submodules with rank 1 factors. Apply the rank version

Theorem 2.3 along with Proposition 3.1.

2. Projective Dimension

Let R be any domain. It is shown in [6, p. 216] that each R-module M

of projective dimension ≤ 1 admits a continuous well-ordered ascending chain

of submodules with countably generated factors of projective dimension ≤ 1.

In view of Theorem 2.1 we can hence conclude:

Corollary 4.3. If a module M over a domain R has projective dimension

≤1, then it admits an H(ℵ0)-family of submodules of projective dimension ≤1.

If R is not a domain, then for an R-module of projective dimension 1 we

cannot establish the existence of a chain like in the domain case, but we can still

state something relevant. It says less for projective dimension ≤ 1, but it holds

for arbitrary projective dimensions.

Corollary 4.4. If an R-module M has a chain (1) with factors of projective

dimension ≤ k, then it admits an H(ℵ0)-family of submodules of projective di-

mension ≤ k. Every submodule in this family admits a chain (1) with factors of

projective dimension ≤ k.

Proof: This follows from Theorem 2.1 at once.

Because of Proposition 3.1, similar statement can be established for the pure-

projective dimension:

Corollary 4.5. If an R-module M has a chain (1) of pure submodules with

factors of pure-projective dimension ≤ k, then it admits an H(ℵ0)-family of pure

submodules of pure-projective dimension ≤ k. Every submodule in this family

admits a chain (1) with pure submodules and factors of pure-projective dimension

≤ k.
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3. Baer Modules

Let R be a domain. By a Baer module is meant an R-module B such that

Ext1R(B, T ) = 0 for all torsion modules T .

It is shown by Eklof–Fuchs–Shelah [3] that a Baer module B admits, for some

ordinal τ , a continuous well-ordered ascending chain

0 = B0 < B1 < · · · < Bα < · · · < Bτ = B (α < τ)

of submodules such that, for each α<τ, Bα+1/Bα is a countably generated Baer

module.

From Theorem 2.1 we conclude:

Corollary 4.6 ([6, XVI.8.12]). A Baer module B admits an H(ℵ0)-family of

Baer submodules.

If we specialize to Prüfer domains, then we obtain a stronger result. Observing

that a countably generated Baer module over a Prüfer domain is projective (see

[6, XVI.8.10]), we are led to the conclusion that a module over a Prüfer domain

is a Baer module exactly if it is projective.

A generalization of the Baer property was introduced by Lee [9]. A semi-Baer

module B over a domain R is defined by the property

Ext1R(B,D) = 0 for all divisible modules D .

It is shown that such a B admits a similar chain as a Baer module, but this

time the factors are countably generated semi-Baer modules. An application of

Theorem 2.1 yields

Corollary 4.7. Every semi-Baer module B admits an H(ℵ0)-family of semi-

Baer submodules.

4. Whitehead Modules

An R-module W is said to be a Whitehead module if it satisfies

Ext1R(W,R) = 0 .
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In addition to the standard axioms ZFC of set theory, assume Gödel’s Axiom

of Constructibility. The result by Becker–Fuchs–Shelah [2] is slightly modified in

Fuchs–Salce [6, XVI.10.6] as follows.

Let µ be a regular cardinal, and R a domain of cardinality ≤ µ. An R-module

W of projective dimension ≤ 1 is a Whitehead module if and only if it is the

union of a continuous well-ordered ascending chain

0 = W0 < W1 < · · · < Wα < · · · (α < κ)

of submodules such that the factors Wα+1/Wα are µ-generated Whitehead mod-

ules of projective dimension ≤ 1 for α+ 1 < κ.

Applying Theorem 2.1 to this situation, we conclude:

Corollary 4.8. Let µ be a regular cardinal, and R a domain of cardinality

≤ µ. A Whitehead R-module W of projective dimension ≤ 1 has an H(µ)-family

of Whitehead submodules of projective dimension ≤ 1.

5. B2-Groups

A torsion-free abelian group G is called a B2-group if it is the union of a

continuous well-ordered ascending chain 0 = G0 < G1 < · · · < Gα < · · · (α<τ)

of pure subgroups Gα such that Gα+1= Gα+Bα for each α, where Bα is a Butler

group of finite rank (i.e. Bα is a pure subgroup of a finite direct sum of rank 1

torsion-free groups).

Furthermore, Albrecht and Hill [1] call G a B3-group if it admits an

H(ℵ0)-family of decent subgroups. Recall that a pure subgroup A in a torsion-

free group G is said to be decent if for any finite subset S of G, there exists a

finite rank Butler group B such that A+B contains S and is pure in G.

Since in the definition of B2-groups, the subgroups in the chain are decent,

it is clear that B3-groups are B2-groups. In order to show the converse, we can

apply Theorem 2.1:

Corollary 4.9 (Albrecht–Hill [1]). A B2-group admits an H(ℵ0)-family of

decent subgroups, all of these are B2-groups.

Proof: The existence of an H(ℵ0)-family is clear, and so is the claim that

its members admit a chain required of B2-groups (cp. the argument in Step 4 in

the proof of Theorem 2.1). It remains to verify that they are themselves decent

subgroups. We refer to Lemma 5.7 in [1] to complete the proof.
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6. Butler Modules over Valuation Domains

By a Butler module B we mean a module B over a domain R satisfying

Bext1R(B, T ) = 0 for all torsion modules T ,

where Bext1R(B, T ) stands for the subgroup of Ext1R(B, T ) consisting of the

balanced extensions of T by B.

A pure submodule A of B is balanced if A is a summand in every pure sub-

module C of B for which C/A is of rank 1. Rangaswamy [11] calls A pseudo-

balanced in B if for every C of the mentioned kind either A is a summand in C

or else C/A is countably generated.

Rangaswamy [11] shows that every module M of balanced-projective dimen-

sion ≤ 1 admits a continuous well-ordered ascending chain (1) where each link is

pseudo-balanced in its successor. If we choose Aα to be a complement of Mα in

Mα+1, or just countably generated, then the proof of Theorem 2.1 (along with

Remark 1) yields:

Corollary 4.10. Let R be a valuation domain, and suppose M is an

R-module of balanced-projective dimension ≤1. Then M admits an H(ℵ0)-family

of submodules each of which has a continuous well-ordered ascending chain where

each link is pseudo-balanced in its successor. The members of this family are

pseudo-balanced in M .

Proof: The last claim follows from [11, Theorem 3.1].

7. n-Flat Modules

A module M over any ring R is called by Lee [10] n-flat if it satisfies

TorR1 (M,N) = 0 for all finitely presented modules N

with p.d.R N ≤ n.

Of course flatness of M means that the same holds for all finitely presented

N without the projective dimension restriction.

Corollary 4.11. Let R be a ring of infinite cardinality κ. Every flat (n-flat)

R-module M has an H(κ)-family of flat (n-flat) submodules.
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Proof: In view of Theorem 2.1, it suffices to establish a continuous well-

ordered ascending chain of submodules with flat (n-flat) factors. In order to

construct such a chain in M , start with a pure submodule M1 of cardinality ≤κ.

By the argument of [6, VI.9.8], both M1 and M/M1 are flat (n-flat). Hence we can

repeat this argument to obtain a submodule M2 such that M2/M1 is of cardinality

≤ κ and pure in M/M1. An obvious transfinite induction (taking unions at limit

ordinals) leads to a continuous well-ordered ascending chain of pure submodules

with at most κ-generated factors. All the factors are flat (n-flat), so this is a

chain as desired.

8. Nice Composition Chains

The original proof by Hill in [8] was concerned with totally projective p-groups.

We are going to consider a generalization to arbitrary valuation domains, as given

in Fuchs [5]. The definition given there was based on the property of simple

presentation, but we are using now a different definition that corresponds to Hill’s

definition for abelian groups. Define a module M to admit a nice composition

chain if there is a continuous well-ordered ascending chain

0 = N0 < N1 < · · · < Nα < · · · < Nκ = M

of submodules in M , where each Nα+1 is of the form Nα+1= Nα+Raα for some

aα ∈ Nα+1 which is perfect with respect to Nα. Here aα perfect with respect

to Nα means that 1) the annihilator ideal Jα of aα + Nα in the factor module

Nα+1/Nα is a principal ideal; and 2) for each s ∈ R\Jα, the element s aα has

the largest height in its coset s aα +Nα. (For abelian p-groups, conditions 1)–2)

can be replaced by the requirements that the factors are of order p and aα has

the largest height in its coset aα +Nα.)

The following corollary yields a direct generalization of Hill’s result [8, Theo-

rem 1] from abelian groups.

Corollary 4.12. Every module M over a valuation domain R with a nice

composition chain admits an H(ℵ0)-family of nice submodules with nice compo-

sition chains.

Proof: We wish to apply Theorem 2.1 with the choice Aα = Raα, where aα
is a perfect element with respect to Nα. We show that the modules M(S) are

nice in M . Again, we refer to Step 4 in the proof of Theorem 2.1, and observe

that it is readily seen that aα is a perfect element with respect to
∑

β∈S,β<α Aβ

as well.
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