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FOR NONLIPSCHITZ OPTIMIZATION PROBLEMS
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Abstract: In this paper, we are concerned with a multiobjective optimization

problem (P ) . Using a notion of approximation derived from Jourani and Thibault , we

give necessary and sufficient optimality conditions for (P ) . We establishe also duality

theorems.

1 – Introduction

Many authors studied optimality conditions for vector optimization problems

where the objectives are defined by single-valued mappings and obtained optimal-

ity conditions in terms of Lagrange–Kuhn–Tucker multipliers. Lin [15] has given

optimality conditions for differentiable vector optimization problems by using the

Motzkin’s theorem. Censor [5] gives optimality conditions for differentiable con-

vex vector optimization by using the theorem of Dubovitskii–Milyutin. When the

objective functions are locally Lipschitzian, Minami [17] obtained Kuhn–Tucker

type or Fritz–John type optimality conditions for weakly efficient solutions in

terms of the generalized gradient. Also in the literature, some optimality condi-

tions for set-valued optimization problems are studied (see Corley [6], Luc [16],

Amahroq and Taa [3], ...).

Let us first recall that a feasible point x∗ is called an efficient solution of (P )

if, for any feasible x, fi (x) ≤ fi (x
∗) for all i ∈ I implies fi (x) = fi (x

∗) for all i;

whereas a feasible point x∗ is called a weakly efficient solution if no feasible x sat-

isfies fi (x) < fi (x
∗) for all i. Characterization of efficient solutions (and weakly
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efficient solutions ) for a constrained multi-objective programming problem are of

practical interest, since multipliers associated with the dual optimality conditions

have useful economic interpretations, for instance in Welfare Economics [4].

Consider the following multi-objective nonsmooth programming problem

(P ) :

{
Min (f1 (x) , ..., fp (x))

subject to : gj (x) ≤ 0, j = 1, ..., m ,

where the functions fi and gj , defined on a Banach space X, i ∈ I = {1, ..., p},

j ∈ J = {1, ...,m} , admit approximations.

In general, problem (P ) is nonconvex and the Kuhn–Tucker optimality condi-

tions (see Theorem 3.1) established by Amahroq and Gadhi [2] are only necessary.

Under what assumptions, are the Kuhn–Tucker conditions also sufficient for the

optimality of problem (P )? In [13], Kim and Lee considered the optimization

problem (P ) when the data are Locally Lipschitz. They give duality theorems

by using the concepts of pseudoinvexity and quasiinvexity.

In this note, we extend Kim and Lee’s findings by seeing if they are valid

for larger class of problems with ϕ = (f1, ..., fp) and g = (g1, ..., gm) admitting

approximations [1]. Based on necessary optimality conditions given by Amahroq

and Gadhi [2] (see Theorem 3.1), our approach consists of formulating the Mond–

Weir dual problem (D) and establishing duality theorems for (P ) and (D) without

any constraint qualification. We give also sufficient optimality conditions for (P ) .

Such a notion of approximation allows applications to continuous functions.

Note that for a continuous function, symmetric subdifferentials [19], upper semi-

continuous convexificators [9], and upper semicontinuous approximate Jacobians

[10] are approximations. Naturally, for a locally Lipschitz function, most known

subdifferentials such as the subdifferentials of Clarke, Michel–Penot, Ioffe–Mordu-

khovich and Treiman can be chosen as approximations.

The outline of the paper is as follows: preliminary results are described in

Section 2; necessary and sufficient optimality conditions are given in Section 3;

Sections 4 is reserved for duality results.

2 – Preliminaries

Let X and Y be two Banach spaces. We denote by L (X,Y ) the set of contin-

uous linear mappings between X and Y, BY the closed unit ball of Y centered at

the origin, SY the unit sphere of Y and X∗ the continuous dual of X. We write

〈., .〉 for the canonical bilinear form with respect to the duality 〈X∗, X〉 .
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In all the sequel we will need the following definition. It was introduced for the

first time by Jourani and Thibault [12] and revised after by Allali and Amahroq

[1]. Here we adopt the latest definition of approximation [1].

Definition 2.1 ([1]). Let f be a mapping fromX into Y, x ∈ X andAf (x) ⊂

L (X,Y ) . Af (x) is said to be an approximation of f at x if, for each ε > 0, there

exists δ > 0 such that

f (x)− f (x) ∈ Af (x) (x− x) + ε ‖x− x‖BY(2.1)

for all x ∈ x+ δBX .

It is easy to see that f + g has Af (x) + Ag (x) as an approximation at x

whenever Af (x) and Ag (x) are approximations of f and g at x.

Note that Af (x) is a singleton if and only if f is Fréchet differentiable at x.

In [1], it is shown that when f is a locally Lipschitz function, it admits as an

approximation the Clarke subdifferential of f at x; i.e.

Af (x) = ∂f (x) := cl co
{
Lim∇f (xn) ; xn ∈ dom∇f and xn → x

}
.

In order to give an example of non locally Lipschitz function, let us recall the

following definition.

Definition 2.2 ([19]). Let f : X → R := [−∞,+∞] be an extended-real-

-valued function and x ∈ dom(f). The symmetric subdifferential of f at x is

defined by

∂0f (x) := ∂f (x) t [−∂(−f) (x)]

where ∂f (x) := lim sup

x
f
→x, ε↘0

∂̂εf (x) and ∂̂εf (x) is the ε-Fréchet subdifferential of f

at x. For more details see [19].

Note that sufficient conditions for the upper semicontinuity of ∂0f (.) can be

found in [8] and [14]. It has been proved by Amahroq and Gadhi [2] that if f is

continuous then ∂0f (x) is an approximation of f at x.

Remark 2.1. By a similar argument to that used in [1], Theorem 2.3 of [10]

(Mean value theorem) implies that the upper semicontinuous hull of an approxi-

mate Jacobian [10, 11],

−−−−→
∂∗f (x) := ∂∗f (x) ∪

{
M ∈ Rn×n : xk → x, Mk ∈ ∂

∗f (xk) , Mk →M
}
,

is an approximation.
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Here, ∂∗f (x) denotes the approximate Jacobian of f at x. For more details

on this notion, we refer the interested reader to [10, 11].

Let C := {x ∈ X : gj (x) ≤ 0, j = 1, ..., m} . Assuming that g admits an ap-

proximation at x, the following regularity condition is an adaptation of Amahroq

and Gadhi’s regularity [2] to our case.

Definition 2.3 ([2]). The problem (P ) is said to be regular at x ∈ C if there

exist a neighborhood U of x and δ, γ > 0 such that :

∀y∗ ∈ [0,+∞[m , ∀x ∈ U, ∀x∗ ∈ Ag (x) , ∃ξ ∈ δBX such that

〈y∗, g (x)〉+ 〈y∗ ◦ x∗, ξ〉 ≥ γ ‖y∗‖ .

For the rest of the paper ( Section 3 and Section 4 ), we suppose that X

is separable and that the functions fi, i = 1, ..., p, and gj , j = 1, ...,m, admit

approximations Afi
(x) and Agj

(x) at x. Moreover, the functions fi and gj are

assumed to have the following properties

• If x∗n ∈ µ
∗
nAgj

(xn) , where x
∗
n
w∗

→ x∗ in X∗, µ∗n→ µ∗ in R and xn→ x in X,

then x∗ ∈ µ∗Agj
(x).

• There exists δ > 0 such that for every x ∈ x+ δBX , the function fi admits

an approximation Afi
(x) at x and Afi

(x) is bounded w∗-closed.

• There exists δ > 0 such that for every x ∈ x+ δBX the function gj admits

an approximation Agj
(x) at x.

• For each ε > 0 there exists δ > 0 such that for all x ∈ x+ δBX

Afi
(x) ⊂ Afi

(x) + εBX∗ .

• For each ε > 0 and for each µ∗n → µ∗ in [0, 1] there exist δ > 0 and n0 ∈ N
such that

µ∗nAgj
(x) ⊂ µ∗Agj

(x) + εBX∗ for all n ≥ n0 and x ∈ x+ δBX .

3 – Necessary and sufficient optimality conditions

The following theorem is a direct consequence of Theorem 2 of [2]. It gives

necessary optimality conditions for the multi-objective optimization problem (P ) .
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Theorem 3.1 (Necessary optimality conditions). Suppose that x is an effi-

cient solution of (P ) . Under the above regularity condition, there exist vectors

p∗ =
(
λ∗1, ..., λ

∗
p

)
∈ Rp, ‖p∗‖ = 1 and y∗ = (µ∗1, ..., µ

∗
m) ∈ Rm such that

0 ∈
p∑

i=1

λ∗iAfi
(x)+

m∑

j=1

µ∗jAgj
(x) ,(3.1)

µ∗jgj (x) = 0, gj (x) ≤ 0 for any j = 1, ..., m ,(3.2)

(
λ∗1, ..., λ

∗
p, µ

∗
1, ..., µ

∗
m

)
≥ 0 .(3.3)

Remark 3.1. With appropriate data, Zowe and Kurcyusz’s regularity [20]

implies the regularity of [2]. For more details, we refer the reader to [2].

To give sufficient optimality conditions, we shall need additional assumption

on the data. The definitions that we propose below are more comprehensive

than Giorgi and Guerraggio’s [7]; however, they are identical when the data are

Lipschitz and the Clarke’s subdifferential is taken as the approximation.

Definition 3.1. Suppose that a function g : X→ R admit an approximation

Ag (x) ⊂ L (X,R) for all x ∈ X. Then:

1. Let η : X×X → X be a mapping; we say that g is (η,Ag)-pseudoinvex if

g (y) < g (x) implies 〈ξ, η (y, x)〉 < 0 ,

∀x, y ∈ X, ∀ξ ∈ Ag (x) .

2. Let η : X×X → X be a mapping; we say that g is (η,Ag)-quasiinvex if

g (y) ≤ g (x) implies 〈ξ, η (y, x)〉 ≤ 0 ,

∀x, y ∈ X, ∀ξ ∈ Ag (x) .

3. Let η : X×X → X be a mapping; we say that g is strictly (η,Ag)-pseudo-

invex if

g (y) ≤ g (x) implies 〈ξ, η (y, x)〉 < 0 ,

∀x, y ∈ X with x 6= y, ∀ξ ∈ Ag (x) .
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Theorem 3.2 (Sufficient optimality conditions). Let x ∈ C and suppose that

1. The functions fi are (η,Afi
)-pseudoinvex for all i = 1, ..., p,

2. The functions gj are
(
η,Agj

)
-quasiinvex for all j = 1, ..., m,

3. It is true all the thesis of Theorem 3.1.

Then, x is a weakly efficient solution of (P ) .

Proof: By contradiction, suppose that x is not a weakly efficient solution of

(P ) . Then, there exists x ∈ X such that




(
f1 (x)− f1 (x) , ..., fp (x)− fp (x)

)
∈ − IntRp

+ ,

gj (x) ≤ 0 for all j = 1, ...,m .

Consequently, for every i ∈ {1, ..., p} ,

fi (x)− fi (x) < 0 .

On the one hand, from the (η,Afi
)-pseudoinvexity of fi, we have

〈ξ, η (x, x)〉 < 0 for all ξ ∈ Afi
(x) .(3.4)

On the other hand, from hypothesis 3, there exist ai ∈ Afi
(x) and bj ∈ Agj

(x)

such that 



λ∗i ≥ 0,
(
λ∗1, ..., λ

∗
p

)
6= 0 ,

p∑

i=1

λ∗i ai+
m∑

j=1

µ∗jbj = 0 .
(3.5)

Combining (3.4) and (3.5) ,
〈
−

m∑

j=1

µ∗jbj , η (x, x)

〉
< 0 .(3.6)

Combining (3.2) and (3.3) , one has

µ∗j

(
gj (x)− gj (x)

)
≤ 0 .

from the (η,Agj
)-quasiinvexity of gj , we get

〈
m∑

j=1

µ∗jbj , η (x, x)

〉
≤ 0 ,

which is a contradiction.
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4 – Duality Theorems

In this section, we suppose also that the functions fi, i = 1, ..., p, and gj ,

j = 1, ...,m, admit approximations Afi
(x) and Agj

(x) at every point x. Using

the necessary optimality conditions of Theorem 3.1, we formulate the Mond–Weir

dual problem (D) [18] and establish duality theorems for (P ) and (D) .

Consider the Mond–Weir dual problem (D) of (P ) ,

(D) : Max ϕ (v) =
(
f1 (v) , ..., fp (v)

)

s.t. 0 ∈
p∑

i=1

λ∗iAfi
(v)+

m∑

j=1

µ∗jAgj
(v) ,(4.1)

µ∗jgj (v) ≥ 0, for any j = 1, ..., m ,(4.2)
(
λ∗1, ..., λ

∗
p, µ

∗
1, ..., µ

∗
m

)
≥ 0 ,

(
λ∗1, ..., λ

∗
p

)
6= (0, ..., 0) .(4.3)

Remark 4.1. In formulating (D) , we do not use the equality in (4.2).

Remark 4.2. In the hypotheses of Theorem 3.1, the set of feasible points of

(D) is nonempty.

In the following result, we establish weak duality relations between problems

(P ) and (D) . The argument is similar to that used by Kim and Lee in [13], but

we give the proof in a more general situation.

Theorem 4.1 (Weak Duality). Suppose that for all i ∈ {1, ..., p} and j ∈

{1, ...,m}, fi is (η,Afi
)-pseudoinvex and gj is strictly

(
η,Agj

)
-pseudoinvex.

Then, for any feasible point x of (P ) and any feasible point (v, λ, µ) of (D) ,

there exists s ∈ {1, ..., p} such that

fs (x) ≥ fs (v) .

Proof: By contrary, suppose that there exist a feasible point x of (P ) and a

feasible point (v, λ, µ) such that

fi (x) < fi (v) for all i = 1, ..., p .

Remark that x 6= v. By the (η,Afi
)-pseudoinvexity of fi, we get

〈ξi, η (x, v)〉 < 0 for all ξi ∈ Afi
(v) , i = 1, ..., p .(4.4)
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From (4.3) and (4.4) , it follows that

〈
p∑

i=1

λiξi , η (x, v)

〉
< 0 .(4.5)

Using relation (4.1) , (4.5) becomes

m∑

j=1

µj 〈ζj , η (x, v)〉 > 0, for suitable ζ1 ∈ Ag1(v), ..., ζm ∈ Agm(v) .(4.6)

Observe that µ = (µ1, ..., µm) 6= 0. (Otherwise, we get a contradiction with (4.6))

Now, let M = {j : µj > 0} . As a consequence of (4.2) , we have

gj (v) ≥ 0 for all j ∈M .

Since gj (x) ≤ 0, one has

gj (x) ≤ gj (v) for all j ∈M .

From the strict (η,Agj
)-pseudoinvexity of gj ,

〈ζj , η (x, v)〉 < 0 for all ζj ∈ Agj
(v), j ∈M .

By definition of M, µj = 0 for any j /∈M. Thus,

m∑

j=1

µj 〈ζj , η (x, v)〉 =
m∑

j=1,j∈M

µj 〈ζj , η (x, v)〉 < 0, for all ζj ∈ Agj
(v) .(4.7)

Combining (4.6) and (4.7) , we get a contradiction.

Theorem 4.1 and Theorem 4.2 are extensions of [13, Theorem 2.1] and

[13, Theorem 2.2] obtained for Lipschitz functions.

Theorem 4.2 (Strong Duality). Let x be a weakly efficient solution for (P )

such that (P ) is regular at x. Then, there exist λ∗ ∈ Rp and µ∗ ∈ Rm such that

(x, λ∗, µ∗) is a feasible point of (D) and their objective values are equal. Moreover,

if fi is (η,Afi
)-pseudoinvex and gj is strictly (η,Agj

)-pseudoinvex, then (x, λ∗, µ∗)

is a weakly efficient solution of (D) .
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Proof: Let x∗ be a weakly efficient solution of (P ) . Let

ψ (x) = max
1≤i≤p

[
fi (x)− fi (x)

]
.

Then, following the approach of Minami [17], we can check easily that x is an

optimal solution of the following scalar optimization problem

Minψ (x) , s.t. gj (x) ≤ 0, j = 1, ...,m .

From Corollary 1 in [2],

Aψ (x) =

{
p∑

i=1

α∗i ζi : (α∗1, ..., α
∗
p) ∈ Rp, α∗i ≥ 0,

p∑

i=1

α∗i = 1, ζi ∈ Afi
(x)

}

is an approximation of ψ at x.

By Theorem 2 in [2], there exist τ ∗ > 0 and µ∗1, ..., µ
∗
m ≥ 0 such that

0 ∈ τ∗Aψ (x)+
m∑

j=1

µ∗jAgj
(x) and µ∗jgj (x) = 0, j = 1, ...,m .(4.8)

Thus, there exists
(
α∗1, ..., α

∗
p

)
∈ Rp such that α∗i ≥ 0,

p∑
i=1

α∗i = 1, and

0 ∈
p∑

i=1

τ∗α∗iAfi
(x) +

m∑

j=1

µ∗jAgj
(x) and µ∗jgj (x) = 0, j = 1, ...,m .

Setting λ∗ = τ∗(α∗1, ..., α
∗
p), we get that (x, λ∗, µ∗) is a feasible point of (D) and

the objective values of (P ) and (D) are equal.

Now, suppose that fi is (η,Afi
)-pseudoinvex and gj is strictly (η,Agj

)-pseudo-

invex. Then, from Theorem 4.1, for every feasible point (v, λ, µ) of (D) there

exists s ∈ {1, ..., p} such that

fs (x) ≥ fs (v) .

Finally, since (x, λ∗, µ∗) is a feasible point of (D) , then it is a weakly efficient

solution of (D) . The proof is thus finished.
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