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Abstract: Let G be a Lie group and S ⊂ G a Lie semigroup. Neeb [Glasg. Math. J.,

34 (1992), 379–394] studied the free group on a generating Lie semigroup (S,G) using the

image i∗(π1(S)), where i : S → G is the inclusion mapping. Now, take G a noncompact

semi-simple Lie group, G = KAN its Iwasawa decomposition and S a subsemigroup

which contains a large Lie semigroup. With these assumptions, San Martin–Santana

[Monatsh. Math., 136, (2002), 151–173] showed that the homotopy groups πn(S) and

πn(K(S)) are isomorphic, where K(S) ⊂ K is a compact and connected subgroup. Here,

using the technique developed in the above papers we extend the study of free group

G(S) and prove that the results of Neeb can be applied for semigroups containing a ray

semigroup.

1 – Introduction

Let G be a Lie group and take S ⊂ G a generating Lie semigroup, that is,

a closed subsemigroup which is generated by one-parameter semigroups. The

free group G(S), the largest covering group of G into which S lifts, was studied

in Neeb [5]. Consider the homomorphism i∗ : π1(S) → π1(G) induced by the

inclusion mapping i : S → G, in the reference [5] Neeb proved that the image

i∗(π1(S)) is the fundamental group of G(S) and that this subsemigroup S satisfies
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the hypothesis for the existence of a universal covering semigroup S̃. Moreover

several other properties regarding the covering space S̃ were given.

In this paper, we study the results of [5] with the weaker assumption that S

is a connected semigroup containing a ray semigroup T with nonempty interior.

This extends the theory to a larger class of semigroups including several ones (like

e.g. Sl+(n,R)) which are not Lie semigroups. Moreover, we give a description of
the free group on S. An application of our results is a quick computation of the

universal covering of Sl+(n,R) and of semigroups in rank one groups.
More precisely, consider a connected noncompact semi-simple Lie group G

with finite center and take S ⊂ G a connected subsemigroup containing a ray

semigroup with nonempty interior. Denote by G = KAN the Iwasawa decom-

position of G. With these assumptions, San Martin–Santana [10] proved that

the homotopy groups πn(S) and πn(K(Θ)) are isomorphic, where K(Θ) ⊂ G is

a compact subgroup of K. We first extend the results of [5]. After this, we get

a description of the free group G(S) using the isomorphism πn(S) ' πn(K(Θ))

shown in [10]. In this direction, we have the result that provides us the free

group G(S) from K(Θ) ⊂ S. And finally, we compute some free groups over

semigroups.

2 – Preliminaries

In this section, we establish our notations and recall some background results.

We work in the context of [10] and follow closely the notation of Warner [12].

Let G be any connected noncompact Lie group with finite center and denote

by g its Lie algebra. We can describe the flag manifolds of G directly from the

simple roots of g. Choose an Iwasawa decomposition g = k ⊕ a ⊕ n. Let Π be

the set of roots of the pair (g, a) and Π+ [respectively Σ] be the set of positive

[respectively simple] roots. Let m be the centralizer of a in k. The standard

minimal parabolic subalgebra of g is given by p = m ⊕ a ⊕ n, where n is the

nilpotent subalgebra

n =
∑

α∈Π+

gα ,

with gα standing for the α-root space. We denote by B the maximal flag manifold
of G and it is defined by the set of subalgebras Ad(G) p, where Ad stands for the

adjoint representation of G in g. There is an identification of B with G/P where
P is the normalizer of p in G. Furthermore, the subgroup P is equal to MAN ,

with A = exp a, N = exp n and M as the centralizer of A in K = exp k.
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Given a subset Θ ⊂ Σ, let n− (Θ) be the subalgebra spanned by the root

spaces g−α, α ∈ 〈Θ〉. We denote by pΘ the parabolic subalgebra

pΘ = n−(Θ)⊕ p ,

where 〈Θ〉 is the set of positive roots generated by Θ. The set of parabolic

subalgebras conjugate to pΘ is identified with the homogenous space G/PΘ, where

PΘ is the normalizer of pΘ in G:

PΘ =
{

g ∈ G : Ad(g)pΘ = pΘ

}

.

Note that this construction yields the flag manifold BΘ = G/PΘ.

Let

a+ =
{

H ∈ a : α(H) > 0 for all α ∈ Σ
}

be the Weyl chamber associated to Σ. We say that X ∈ g is split-regular in

case X = Ad(g) (H) for some g ∈ G, H ∈ a+. Analogously, x ∈ G is said to be

split-regular in case x = ghg−1 with h ∈ A+ = exp a+, that is, x = expX, with

X split-regular in g.

Given two subsets Θ1 ⊂ Θ2 ⊂ Σ, the corresponding parabolic subgroups sat-

isfy PΘ1
⊂ PΘ2

, so that there is a canonical fibration G/PΘ1
→ G/PΘ2

, with

gPΘ1
7→ gPΘ2

. Alternatively, the fibration assigns to the parabolic subalgebra

q ∈ BΘ1
the unique parabolic subalgebra in BΘ2

containing q. In particular,

B = B∅ projects onto every flag manifold BΘ.

Recall that the fiber PΘ/P of B → BΘ is obtained from the structure of the
parabolic subgroup PΘ. In order to state the Bruhat–Moore decomposition we

need to fix some notation. Denote by aΘ the annihilator of Θ in a:

aΘ =
{

H ∈ a : α(H) = 0 for all α ∈ Θ
}

.

Put LΘ as the centralizer of aΘ in G and MΘ (K) = LΘ ∩K as the centralizer

of aΘ in K. The Lie algebra lΘ of LΘ decomposes as lΘ = mΘ ⊕ aΘ with mΘ

reductive. Let M0
Θ be the connected subgroup whose Lie algebra is mΘ and put

MΘ = MΘ (K)M
0
Θ, it follows that the identity component of MΘ is M

0
Θ. With

this we can state the Bruhat–Moore Theorem (see [12, Thm.1.2.4.8] for details):

1. PΘ=MΘAΘNΘ, where AΘ=exp aΘ and NΘ is the unipotent radical of PΘ.

2. PΘ =MΘ (K)AN .
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2.1. Semigroups and homotopy

In this subsection, we recall some basic facts from the general theory of semi-

groups and their action on flag manifolds. We use the control sets created by this

action to study the homotopy type of the semigroup. Let G be a connected Lie

group with Lie algebra g. A subsemigroup S ⊂ G is called ray semigroup if there

exists a subset U ⊂ g such that S is generated by the one-parameter semigroups

exp (tX), X ∈ U , t ≥ 0, that is,

S = 〈exp
(

R+U
)

〉 .

In this case, S is said to be generated by U (see e.g. Hilgert–Hofmann–Lawson

[2]).

A semigroup is said to be a Lie semigroup (or infinitesimally generated semi-

group) provided it is the closure of a ray semigroup (see e.g. [3] and [5]). Here,

as in [10], it is not necessary to ask for S to be closed.

We restrict our attention to semigroups which have nonempty interior. If S

is generated by U ⊂ g, this condition holds if and only if g is generated by U .

Furthermore, in case U is generating, intS is dense in S (see Hofmann–Ruppert

[4, Thm. 2.8]).

Now, let G be a semi-simple Lie group with finite center. Take S a subsemi-

group of G with intS 6= ∅. Consider the action of S in the flag manifolds of G.

It was proved in San Martin–Tonelli [11, Thm. 6.2] that S is not transitive in BΘ
unless S = G. Moreover, there exists just one closed invariant subset CΘ ⊂ BΘ
such that Sx is dense in CΘ for all x ∈ CΘ. This subset is called the invariant

control set of S in CΘ. Since S is not transitive, CΘ 6= BΘ.
The fact that Sx is dense in CΘ for all x ∈ CΘ implies the existence of an

open subset C0Θ ⊂ CΘ such that for all x, y ∈ C0Θ there exists g ∈ S with gx = y.

Moreover, C0Θ is dense in CΘ. This subset C
0
Θ is called the set of transitivity of

CΘ, and it is given by C
0
Θ = (intS)x ∩ (intS)

−1 x, for all x ∈ CΘ. In case S is a

ray semigroup, it follows that C0Θ = intCΘ (see [11, §2] ).

We introduce here the notion of parabolic type of a semigroup. This concept

distinguishes the semigroups according to the geometry of their invariant con-

trol sets. Precisely, there exists Θ ⊂ Σ such that π−1Θ (CΘ) ⊂ B is the invariant
control set in the maximal flag manifold. Among the subsets Θ satisfying this

property, there is one which is maximal, in the sense that it contains all the others.

We denote this subset by Θ (S) and say that it is the parabolic type of S.

We also denote this type of S by the corresponding flag manifold B (S) = BΘ(S)
(see San Martin [8] and [11] for further discussions about this).
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We end this section with the theorem that gives the homotopy type of S (see

[10], for a complete study of this). But before, it is necessary recall the concept

of reversibility and of homotopy group .

A subsemigroup T of a group L is left reversible if for any finite subset

{h1, ..., hk} ⊂ L, k ≥ 1

(h1T ) ∩ · · · ∩ (hkT ) 6= ∅ .

The n-th homotopy group πn (X,x0) of a space based at x0 ∈ X is the set of

homotopy classes of pointed maps γ : (Sn, s0)→ (X,x0) where Sn stands for the
n sphere and s0 is a base point in Sn, for example, s0 = (1, 0, ..., 0).
In the remainder of this subsection consider G a noncompact semi-simple Lie

group with finite center and S ⊂ G a subsemigroup with nonempty interior in G.

Let C be an invariant control set of S in G/AN and C0 its set of transitivity.

Fix x ∈ C0 and denote by ex (or simply by e) the map e : S → C0 given by

e (g) = gx. It was proved in [10] that the induced homomorphisms e∗ between

the homotopy groups are isomorphisms. We sketch here the proof: firstly, it was

proved that C0 is diffeomorphic to C
0
Θ × F0 where F0 = P 0Θ/AN is the identity

component of F = PΘ/AN and secondly it was shown that C0Θ is contractible.

Then, any cycle in C0 is homotopic to one in F0. Hence in order to prove the

surjectivity of e∗ it is enough to show the existence of a cross section σ : F → intS

for the evaluation map. The injectivity of e∗ is obtained as follows. Fix basic

points x ∈ C0 and g0 ∈ intS such that g0x = x. Assuming that γ : (Sn, s0) →
(S, g0) satisfies e∗[γ] = [e ◦ γ] = 1, one proves that [γ] = 1, that is, there is a

homotopy based at g0 carrying γ into g0. This homotopy can be constructed from

homotopies inside S carrying γ successively into smaller groups until it reaches

AΘNΘ. Using reversibility properties of S ∩AΘNΘ, one obtains that there exists

an unbased homotopy between γ and a constant cycle g1. Hence a standard

argument shows that [γ] = 1.

Now, with the next definition we can summarize the above remarks in a

theorem.

Definition 2.1. Let T1 ⊂ T2 be subsemigroups with nonempty interior in G.

Given a flag manifold BΘ = G/PΘ, we say that T1 is Θ-large (or BΘ-large) in T2
provided the invariant control set for both T1 and T2 on BΘ coincide. Also, T1 is
large in T2 in case T1 is Θ-large for every Θ.

Theorem 2.2. Assume that S is connected and contains a Θ(S)-large ray

semigroup T with nonempty interior. Let C be an S-i.c.s. in G/AN and C0 its

interior. Then the homomorphism e∗ : πn (S)→ πn (C0) induced by an evaluation
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map e : S → C0, e (g) = gx, x ∈ C0, is an isomorphism. The same statement is

true with e defined in intS instead of in S.

Remark 2.3. This theorem implies that the homotopy groups of S and intS

are isomorphic to the homotopy groups of the compact group K (Θ (S)) ≈ F0.

In other words, e is a weak homotopy equivalence.

Remark 2.4. It is also important to note that under the assumptions of last

theorem, there exists z ∈ intS such that K (Θ (S)) z ⊂ intS. Furthermore, for

any z satisfying this condition, the coset K (Θ (S)) z is a deformation retract of

intS (see [10, Thm. 4.15]).

Now, consider the image of the fundamental group of S under the map i∗ :

π1(S) → π1(G). As a consequence of the Remark 2.4, the image i∗(π1(S)) is

described by the inclusion of the subgroup K (Θ (S)) in G. In fact, the following

proposition, shown in [10], holds for all the homotopy groups. We will repeat the

proof because this result has a good insertion here.

Proposition 2.5. Assume that S ⊂ G admits a Θ(S)-large ray semigroup

with nonempty interior. Then the image i∗πn (S) in πn (G) coincides with the

image j∗πn (K (Θ(S))) where j : K (Θ(S))→ G is the inclusion.

Proof: By Proposition 2.3 of [10], the homomorphism induced by the in-

clusion intS ↪→ S is an isomorphism of homotopy groups. Hence it is enough

to prove the claim with intS in place of S. Since there exists z ∈ intS such

that K (Θ(S)) z ⊂ intS is a deformation retract of intS (see [10, Thm. 4.15]),

it follows that the inclusion K (Θ(S)) z ↪→ intS induces an isomorphism of ho-

motopy groups. Hence i∗πn (S) is the image of the homomorphism induced by

K (Θ(S)) z ↪→ G. By right translation this image coincides with j∗πn(K(Θ(S)).

3 – Covering semigroup

In this section, we show that the same results in [3] Section 3 (see also [5])

hold under weaker assumptions. In [3] and [5] Lie semigroups were studied.

However, here we assume S a connected semigroup containing a ray semigroup

with nonempty interior.

If S contains a ray semigroup, then the Theorem 2.1 of [4] ensures the existence

of an analytical path φ : [0, 1] → G such that φ(0) = 1 and φ(t) ∈ int(S) for all
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t ∈ (0, 1]. Moreover, it is possible to prove that S and intS are path connected.

This fact is proved, for example in [5], taking S as a generating Lie semigroup.

Hence, using a similar technique of [3], [4] and [5], we extend the Proposition 1.2

of [5] to a connected semigroup that contains a ray semigroup with nonempty

interior.

Lemma 3.1. If S is path connected and contains a ray semigroup with

nonempty interior then int(S) is also path connected.

Proof: As S contains a ray semigroup then int(S) and int(S−1) are nonempty.

Let a, b ∈ int(S) and take U = a(int(S−1)) ∩ b(int(S−1)). Then U is an open

subset in G containing 1 in its interior. Hence, U ∩ int(S) 6= ∅, because 1 ∈ S and

int(S) is dense in S. Now, taking s0 ∈ U ∩ int(S) it follows that a, b ∈ s0(int(S)).

However, s0S is path connected and it is contained in int(S). Therefore, a and b

can be linked by a path in int(S).

Lemma 3.2. Let C be a path component in S and suppose that S contains a

ray semigroup with nonempty interior. Then int(C) is path connected and dense

in C.

Proof: Consider a, b ∈ C and φ : [0, 1] → S an analytical curve such that

φ(0) = 1 and φ(t) ∈ int(S) with t ∈ (0, 1]. If γ : [0, 1] → S is an arbitrary path

linking a and b, then t → γ(t)φ(1) is a path linking a′ = aφ(1) and b′ = bφ(1)

inside int(S). This implies that a′ and b′ lie in the same path component of

the open manifold int(S). But, the path t → aφ(t) links a and a′ and the path

t→ bφ(t) links b and b′. Hence, there exists a path connecting a and b in int(S).

Therefore int(C) is path connected and it is dense in C.

Now, we can show that S and int(S) are path connected. In the remainder of

this section, we assume S connected and containing a generating ray semigroup

with nonempty interior.

Proposition 3.3. Let S be a connected subsemigroup of a Lie group G con-

taining a generating ray semigroup with nonempty interior. Then S and int(S)

are path connected.

Proof: It is enough to prove that S is path connected. Consider C a path

component of S.
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Denote by g the Lie algebra of G. Let T0 = 〈expR+E〉 be the semigroup of
S generated by a generating subset E ⊂ g. Since E generates g it follows that

int(T0) 6= ∅. Hence, U = int(T0) int(T
−1
0 ) is an open subset of G containing 1.

Now, taking p ∈ C we see that pU ∩ S is an open subset of S containing p.

On the other hand, if q ∈ pU ∩ S then int(T0) is path connected (as T0 is path

connected this follows from Lemma 3.1). Hence, q int(T0) and p int(T0) are path

connected subsets of S such that q int(T0)∩p int(T0) 6= ∅. Therefore, this subsets

are contained in the same path component of S. Now considering cl(int(T0)), the

above assertions are also true, and as 1 ∈ cl(int(T0)) then q ∈ C, showing that

pU ∩ S ⊂ C is an open set in S and it contains p.

In order to show that C is closed, take a ∈ cl(C). If S1 denotes the path

component of 1 then CS1 is path connected and contains C. Hence cl(C) cl(S1) =

cl(C) and then aS1 is a path connected subset of cl(C) containing the open subset

a(intS1). By Lemma 3.2, int(C) is dense in C and then aS1 ∩ C 6= ∅. As C is a

path component we have aS1 ⊂ C and hence a ∈ C. Then, we conclude, finally,

that C is closed.

Hence we can summarize the above results in a theorem that extends the

Proposition 1.2. of [5].

Theorem 3.4. Take a Lie group G and consider S ⊂ G a connected semi-

group that contains a generating ray semigroup with nonempty interior and the

element 1. Then the following assertions hold:

1. there exists an analytical path α : [0, 1]→ G such that

α(0) = 1 and α((0, 1]) ⊆ int(S) .

2. the interior int(S) is a dense semigroup ideal.

3. S and int(S) are path connected.

4. S is locally path connected.

5. S is semi-locally simply connected.

Proof: For (1), see the comments at the beginning of this section. The

second item follows from [4, Thm. 2.1]. The Proposition 3.3 implies (3). Finally,

in order to obtain (4) and (5), take T = 〈exp(R+E)〉 the subsemigroup generated
by E, where E ⊂ g is a subset that generates g as Lie algebras and suppose that

T ⊂ S. Let s ∈ S and U be an open subset of G containing s. Then, s−1U is
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an open subset of G containing 1 and s−1U ∩ T contains a path connected and

simply connected neighborhood V of 1, with respect to T (cf. [5, Prop. 1.2]). But

s ∈ sV ⊂ sT ⊂ sS ⊂ S and V ⊂ s−1U imply that sV ⊆ U ∩ S. Therefore sV is

a path connected and simply connected neighborhood of s which is contained in

S ∩ U .

Remark 3.5. Once we have the above theorem, the results in [3] section

3 can be proved in the same way, but with the assumptions on S weaker than

originally taken. Hence, we will state here, without proof, some of those results

that will be necessary for our goal.

In the next proposition, we remark that the ideal I does not need to be dense

in S, as assumed in [3].

Proposition 3.6. Let I be a path connected semigroup ideal in the path

connected topological monoid S. Suppose that there exists a path β : [0, 1]→ S

such that

β(0) = 1 and β(]0, 1]) ⊆ I .

Then the inclusion i : I → S induces an isomorphism

i∗ : π1(I)→ π1(S) .

With this result and denoting by S̃ the universal covering group of S we have

the following

Corollary 3.7. The inclusions i : int(S) → S, ĩ : int(S̃) → S̃ induce iso-

morphisms

i∗ : π1(int(S))→ π1(S) and ĩ∗ : π1(int(S̃))→ π1(S̃) .

Furthermore, π1(int(S̃)) = {1}.

Corollary 3.8. Let p : S̃ → S be the covering mapping, then the following

assertions hold:

1. Let γ̃ denotes the lift of γ with γ̃(0) = 1̃. Then the mapping [γ] 7→ γ̃(1),

π1(S)→ D = p−1(1) is an isomorphism of groups.

2. D ⊆ Z(S̃) = {s ∈ S̃ : for all t ∈ S̃, st = ts}.

3. π1(S) is abelian.

4. The mapping S̃/D → S is an isomorphism of topological semigroups.
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As in [3], we can study the multiplication mapping of S̃. Since the conclusions

reached are similar, despite of our weaker assumptions, we avoid the description.

Theorem 3.9. Let D ⊆ Z(S̃) be a discrete subgroup. Then the following

assertions hold:

1. D acts properly on S̃.

2. The quotient mapping

q : S̃ → SD := S̃/D , s 7→ sD

is a covering morphism of locally compact semigroups.

Lemma 3.10. Let q : G̃→ G be the universal covering group of G, identify

π1(G) with ker q and π1(S) with p−1(1). Then there exists a continuous homo-

morphism ĩ : S̃ → G̃ such that q ◦ ĩ = i ◦ p, ĩ|π1(S)
= i∗, and the image of ĩ is the

path-component of 1 in q−1(S).

Theorem 3.11. Let j : H(S)→ S be the inclusion mapping and

j∗ : π1(H(S))→ π1(S)

the induced homomorphism. Then ker j∗ = π1(H(S̃)) and im j∗ = H(S̃)◦ ∩

π1(S).

Corollary 3.12. The mapping j∗ : π1(H(S))→ π1(S) is:

1. injective if and only if H(S̃) is simply connected.

2. surjective if and only if H(S̃) is connected.

4 – Free group

Consider the inclusion map i : S ↪→ G and take its induced homomorphism

i∗ : π1(S)→ π1(G). In [3] and [5] it was proved that the largest covering group of

G into which S lifts is isomorphic to G(S) and it coincides with G̃/im(i∗). Hence

im i∗ = π1(G(S)) (where G̃ is the universal covering of G). By Theorem 2.2 one

can find a better description of this largest covering group of G into which S

lifts. In this section, we use the cited results to obtain the Theorem 4.5, which

helps the computations of the examples in the next section. We start recalling

the following definitions (see [1] for more details).
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Definition 4.1. The pair (H, η) is called an S-group if H is a group and η

is homomorphism η : S → H such that η(S) is a set of group-generators of H.

Definition 4.2. The pair (G, γ) is called a free group on S, and denoted by

G(S) if (G, γ) is an S-group and if for all S-groups (H, η), there exists a unique

homomorphism θ : G→ H such that θγ = η.

The next Theorem, proved in [3], identifies π1(G(S)) as the image of i∗.

Theorem 4.3. im i∗ = π1(G(S)).

Proof: See [3, Thm. 3.30].

In this situation, the next statement is also trivial.

Corollary 4.4. If π1(S) = {1} then G(S) is the universal covering of G.

In the rest of this section we are assuming G a non-compact semi-simple Lie

group with finite center. Now we have the result that makes the computation

of the free group of a semigroup S easy. Note that the Remark 2.4 and the

Proposition 2.5 justify the following expression i∗(π1(K(Θ(S)))).

Theorem 4.5. Consider S ⊂ G a connected subsemigroup which contains

a Θ(S)-large ray semigroup with nonempty interior. Then π1(G(S)) =

i∗(π1(K(Θ(S)))), where i : K(Θ(S))→ G is the inclusion mapping.

Proof: The homotopy type of S is equal to that of K(Θ), hence the proof

follows straight forward from Theorem 4.3.

5 – Examples

There are many important consequences of the results in the last section.

For example, it is possible to compute the fundamental group of the free group

G(S) and, in some cases, to compute easily.
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5.1. S = Sl+ (n,R)

Let S = Sl+ (n,R) be the semigroup of determinant one matrices having
nonnegative entries. This is the compression semigroup of the positive orthant

Rn
+ in Rn:

Rn
+ =

{

(x1, ..., xn) : xi ≥ 0
}

.

It turns out that the type of Sl+(n,R) is the projective space Pn−1, and the
invariant control set in Pn−1 is the set [Rn

+] of lines contained in Rn
+. In our

previous notation, CΘ = [Rn
+].

The semigroup Sl+ (n,R) is closed but it is not a Lie semigroup. Now, put

L (S) =
{

X ∈ sl (n,R) : exp (tX) ∈ Sl+(n,R) for all t ≥ 0
}

for the Lie wedge of Sl+(n,R). One checks easily that L (S) = {X=(xij) : xij≥0,
i 6= j}. Put Sinf = 〈expL (S)〉 for the corresponding ray semigroup. Since L (S)

generates sl (n,R), Sinf has nonempty interior in Sl (n,R). We claim that the

invariant control set of Sinf in Pn−1 is also CΘ and C0Θ = int (CΘ). In fact,

consider matrices of the form H = diag{n− 1,−1, · · · ,−1} with respect to a

basis B = {f1, · · · , fn} such that f1 ∈ Rn
+ and span{f2, · · · , fn} ∩ Rn

+ = 0. Take

exp(tH), t ≥ 0. Since H ∈ L(S), any x ∈ CΘ is the fixed point of some element of

Sinf . Therefore, CΘ is contained in the invariant control set of Sinf . On the other

hand, since Sinf ⊂ S the other inclusion follows from the definition of invariant

control set (see San Martin [7, §2]).

Therefore, S = Sl+(n,R) contains a Θ (S)-large ray semigroup. It was proved
by Ribeiro–San Martin [6] that S is connected. Hence the isomorphism theorem

holds for Sl+(n,R). With the canonical choices, it is not difficult to check that
P 0Θ/AN is diffeomorphic to SO (n− 1). It follows that the homotopy groups of

Sl+(n,R) are isomorphic to the homotopy groups of SO (n− 1).
Now, in order to study the fundamental group of its free group we recall that

for all covering maps p, the induced map p∗ is injective. Consider n > 3, i.e.,

take the group G = Sl(n,R) and the semigroup S = Sl+(n,R), for n > 3. By

Cartan decomposition we have π1(Sl(n,R)) = π1(SO(n)) = Z2. And, as we saw
above π1(Sl

+(n,R)) = π1(SO(n − 1)) = Z2. Hence the image im i∗(π1(S)) has

one or two elements, so π1(G(Sl
+(n,R))) has at most two elements.

If we take n = 3, we have π1(G(Sl
+(3,R))) discrete.

Finally, consider n = 2, that is, G = Sl(2,R) and the semigroup S = Sl+(2,R),
by Cartan decomposition we have π1(Sl(2,R)) = π1(SO(2)) = Z. But, as we saw
above π1(Sl

+(2,R)) = π1(SO(1)) = π1({1}) = 1, hence the image im i∗(π1(S))



FREE GROUPS OF SEMIGROUPS IN SEMI-SIMPLE LIE GROUPS 351

is trivial. Therefore, π1(G(Sl
+(2,R))) is trivial, so G(Sl+(2,R)) is the universal

covering of Sl(2,R).
Similarly, considering the covering mapping

p : G(Sl+(2,R))→ Sl(2,R)

we note that the induced homomorphism

p∗ : π1(G(Sl
+(2,R)))→ π1(Sl(2,R))

is injective, or rather,

p∗ : π1(G(Sl
+(2,R)))→ Z

is injective.

We will see that the example Sl(2,R) can be generalized to rank one groups.

5.2. Compression semigroup

The facts of the above example extend to the compression semigroup of a cone

in Rn. Let W ⊂ R be a pointed and generating cone and form the semigroup

SW =
{

g ∈ Sl(n,R) : gW ⊂W
}

.

It was proved in [6] that SW is connected. Again the type of SW is the projective

space, and similar to the proof for Sl+ (n,R), the semigroup generated by L (SW )
is large in SW , that is, the invariant control set of 〈expL(SW )〉 is the same of

that SW . Hence the homotopy type of SW is also SO (n− 1). Therefore, the

computations of the fundamental group of the free group on SW follow the case

Sl+ (n,R).

5.3. Rank one groups

Suppose that G is a rank one group. Then there exists just one class of

parabolic subgroups and hence just one flag manifold G/MAN . Then proper

semigroups with nonempty interior in G all have the same type, namely Θ = ∅.

The subgroupK (Θ) is the identity component ofMAN/AN , that is,K (Θ) =M0

so that every semigroup S in G admitting a large ray semigroup has the same

homotopy groups (in particular, the fundamental group), and they are isomorphic

to the homotopy groups of M0. Moreover, intS can be continuously deformed
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into M0. Summarizing, in rank one groups, M0 gives the fundamental group of

this semigroups.

For instance, if G = Sl (2,R) then M0 = {1}. Hence the fundamental group

of S is trivial and the fundamental group of the free group is computed as in the

first example.

Consider the rank one group SU(1, p), the Iwasawa decomposition of its Lie

algebra is su(1, p) = k⊕ a⊕ n where:

k =

{(

α 0
0 β

)}

,

with α and β skew Hermitian and tr(α+ β) = 0. A typical element of a is given

by the (p+ 1)× (p+ 1)-matrix

H =













0 0 · · · 0 z
0 0 · · · 0 0
...
...

...
...

z 0 · · · 0 0













,

z ∈ C. And n is the correspondent nilpotent subalgebra.

Hence the subgroup M is found by calculating XH − HX = 0 with X ∈ k.

Summarizing, M = SU(p− 1). But SU(1, p) is homeomorphic to SU(p)×T ×Rd

with T being the multiplicative group of complex numbers of modulus 1. Hence

π1(SU(1, p)) = π1(SU(p))× π1(T ) = π1(SU(p))× Z .

Hence, π1(G(S)) = i∗(π1(SU(p − 1))), where the map i∗ is induced by inclusion

map

i : S ↪→ SU(1, p) .

Then since π1(SU(p)) is trivial for all p, we conclude that π1(G(S)) is also

trivial. Therefore G(S) is isomorphic to the universal covering G̃ of G.

Take now the real hyperbolic groups, the identity component isG = SO (1, p)0.

In this case, similarly to the last group, M0 = SO (p− 1). So it gives the funda-

mental group of the Lie semigroups in SO (1, p).

It is known that SO(1, p) is homeomorphic to the topological product of

SO(1, p)∩SO(p+1) and Rd for some integer d. We have also that this intersection

consists of all matrices of the form
(

detB 0
0 B

)

,

where B is an orthogonal matrix of order p.
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Then

π1(SO(1, p)) = π1(SO(p)) .

Hence, π1(G(S)) = i∗(π1(SO(p−1))), where the map i∗ is induced by the inclusion

map

i : S ↪→ SO(1, p) .

Therefore as in the case of G = Sl (n,R), the knowledge of this free group
depends on π1(SO(p− 1)).

Moreover, it is possible to show that G(S) = G. In fact, knowing that the

inclusions SO(p) ↪→ SO(p+1) induce surjections on the level of π1, for all p, and

noting that π1(S) = π1(SO(p− 1)) and π1(G) = π1(SO(p)) we see that

i∗ : π1(S) ↪→ π1(G)

is sujective, and therefore, by Corollary 3.31 of [3], it follows that G(S) = G.

Finally, consider the connected rank one group Sp(1, p). Since this group is

homeomorphic to Sp(p)×Rd, the computation follows as in the case of rank one

group above.
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