PORTUGALIAE MATHEMATICA Vol. 61 Fasc. 3 – 2004 Nova Série

A NEW PROOF OF THE EXISTENCE OF HIERARCHIES OF POISSON–NIJENHUIS STRUCTURES*

J. Monterde

Recommended by Michèle Audin

Abstract: Given a Poisson–Nijenhuis manifold, a two-parameter family of Poisson–Nijenhuis structures can be defined. As a consequence we obtain a new and noninductive proof of the existence of hierarchies of Poisson–Nijenhuis structures.

1 - Introduction

One of the main characteristics of the theory of Poisson–Nijenhuis structures is the possibility of constructing from a Poisson–Nijenhuis structure, a hierarchy of new ones. The different proofs of the existence of such a hierarchy that can be found in the literature all used proof by induction ([3], [9]).

The aim of this note is to obtain, from a single Poisson–Nijenhuis structure, (P, N), a two-parameter family of Poisson–Nijenhuis structures (P_t, N_s) , $t, s \in \mathbb{R}$. Such a family provides a noninductive way of proving the existence of the well known hierarchy of associated Poisson–Nijenhuis structures. In fact, we can say that the two-parameter family is a kind of integration of the hierarchy: all the structures of the hierarchy can be obtained as successive partial derivatives evaluated at (0,0) of the two-parameter structures (P_t, N_s) .

In Section 2.2, we prove a consequence of this approach related to generating operators of Gerstenhaber brackets. Let $(A, [\![\ , \]\!], \wedge)$ be a Gerstenhaber alge-

Received: April 8, 2003; Revised: November 7, 2003.

AMS Subject Classification: Primary 58F05, 53C15; Secondary 58F07.

Keywords: Poisson-Nijenhuis structure; Gerstenhaber algebra; generating operator.

^{*}This work has been partially supported by a Spanish MCyT grant BFM2002-00770.

bra. If δ is a generating operator of a Gerstenhaber bracket and N is a degree 0 Nijenhuis endomorphism of the associative algebra (A, \wedge) , then $[\delta, i_N]$ is a generating operator of the deformation by N of the Gerstenhaber bracket, where i_N denotes the extension, as a degree 0 derivation, of N to the whole algebra. This is Theorem 1. In Corollary 5 we apply the results of Section 2 to the different Gerstenhaber brackets which can be associated to a Poisson–Nijenhuis structure.

2 - Nijenhuis tensors and their integral flow

Let (E, [,]) be a graded Lie algebra. In the applications that we shall give here, (E, [,]) will be the vector space of smooth vector fields over a manifold $M, \mathfrak{X}(M)$, together with the usual Lie bracket of vector fields, or the vector space of differential 1-forms, $\Omega^1(M)$, with the Lie bracket of 1-forms associated to a Poisson structure, or that of differential forms, $\Omega(M)$, together with the Koszul–Schouten bracket of differential forms on a Poisson manifold.

We can define the Frölicher–Nijenhuis bracket, $[\ ,\]_{FN}$ of two degree 0 endomorphisms of $E,\,N,L,$ as

(2.1)
$$[N, L]_{FN}(X,Y) := [NX, LY] + [LX, NY] - N([LX, Y] + [X, LY]) - L([NX, Y] + [X, NY]) + (NL + LN)[X, Y],$$

for all $X, Y \in E$.

The Frölicher-Nijenhuis bracket of N with itself is called the Nijenhuis torsion of N, and N is said to be Nijenhuis if its Nijenhuis torsion vanishes.

Definition 1. Let $(E, [\ ,\]_{\nu})$ be a graded Lie algebra. Given a degree 0 endomorphism, N, we can define the deformation of the Lie bracket, $[\ ,\]_{\nu}$, by means of N as

$$[X,Y]_{N,\nu} = [NX,Y]_{\nu} + [X,NY]_{\nu} - N[X,Y]_{\nu}$$

for all $X, Y \in E$. \square

If the Nijenhuis torsion of N vanishes, then $[\ ,\]_{N.\nu}$ is a Lie bracket.

Occasionally, the deformed bracket will be simply denoted by $[,]_N$.

Let Φ_t be a one-parameter group of graded automorphisms of degree 0 of the vector space E and let N be its infinitesimal generator, $N = \frac{d}{dt}|_{t=0}\Phi_t$.

Then

$$\frac{d}{dt}[X,Y]_{\Phi_t} = [\Phi_t NX,Y] + [X,\Phi_t NY] - \Phi_t N[X,Y]$$

and, in particular,

$$\frac{d}{dt}|_{t=0}[X,Y]_{\Phi_t} = [X,Y]_N .$$

So, we can think of the deformed bracket as the first derivative evaluated at t = 0 of the one-parameter family of deformed brackets $[,]_{\Phi_t}$.

2.1. The integral flow of a (1,1)-tensor field

As examples and because we will need them in the applications that we shall give later, let us recall how to construct the one-parameter groups of graded endomorphisms from their infinitesimal generators in some cases.

Let M be a manifold and let N be a (1,1) tensor on M, i.e., N is a bundle map $N: TM \to TM$. We shall denote its transpose by $N^*: T^*M \to T^*M$.

Let us consider the (1,1)-tensor field defined by the formal series exp(tN). It has been previously used, for example in [3], page 41, as a way of justifying why the deformed bracket is called a deformed bracket. Such an expression, $exp(tN) = \sum_{i=0}^{\infty} \frac{1}{i!} t^i N^i$, is in principle just a formal expression. But for each point $m \in M$, N_m is an endomorphism of $T_m M$, and then, as is well known, the series $exp(tN_m)$ is always convergent. Therefore, $\Phi_t = exp(tN)$ is a well-defined automorphism of the vector bundle TM for all $t \in \mathbb{R}$.

Associated to the tensor field N we can define a zero-degree derivation of the algebra of differential forms on M, $\Omega(M)$. This derivation is denoted by i_N , and it is defined as the extension as a derivation of the map, $f \mapsto i_N f := 0$ for any smooth function f and for any differential 1-form α , $\alpha \mapsto i_N \alpha := N^* \alpha$.

The transpose of Φ_t is $\Phi_t^* = exp(tN^*)$, and it can be extended as an automorphism of $\Omega(M)$ which we shall also denote by Φ_t , in an abuse of notation. Note that this automorphism is the identity on $\Omega^0(M) = C^{\infty}(M)$. The derivative with respect to t of the automorphism Φ_t^* gives rise to the derivation i_N . Note that the following conditions are satisfied

$$\Phi_t^{*'} = \Phi_t^* \circ i_N = i_N \circ \Phi_t^* ,$$

$$\Phi_0^* = Id , \quad \Phi_{t+s}^* = \Phi_t^* \circ \Phi_s^* .$$

It is in this sense that we can think of Φ_t^* as the integral flow of the zero-degree derivation i_N . Analogous relations are valid for Φ_t . Now we have all the ingredients to study what happens when N is a Nijenhuis tensor.

It is well known that if N is Nijenhuis, then all the powers of N are also Nijenhuis. Moreover, the Frölicher-Nijenhuis brackets $[N^k, N^\ell]_{FN}$ vanish for all $k, l \in \mathbb{N}$. This is the so-called hierarchy of Nijenhuis operators.

Since N^k is the k^{th} -derivative at t=0 of the one-parameter group Φ_t , it is natural to ask whether Φ_t is also Nijenhuis. Below, we shall give a noninductive proof of the existence of the hierarchy of Nijenhuis operators. We shall obtain a direct proof of the following statement: N is Nijenhuis if and only if Φ_t is Nijenhuis.

Proposition 1. Let $(E, [\ ,\])$ be a graded Lie algebra. Let Φ_t be a one-parameter group of graded automorphisms of degree 0 of the vector space E, and let N its infinitesimal generator. Then N is Nijenhuis if and only if Φ_t is Nijenhuis. In other words,

$$[\Phi_t X, \Phi_t Y] = \Phi_t [X, Y]_{\Phi_t} ,$$

for all $t \in \mathbb{R}$ if and only if the torsion of N vanishes.

Proof: First note that the second derivative of the Nijenhuis torsion of Φ_t evaluated at t=0 is exactly the Nijenhuis torsion of N, up to a constant factor. Indeed,

$$\frac{d^2}{dt^2}|_{t=0}[\Phi_t, \Phi_t]_{FN} = 2\frac{d}{dt}|_{t=0}[\Phi_t, N \circ \Phi_t]_{FN}
= 2([N, N]_{FN} + [Id, N^2]_{FN}) = 2[N, N]_{FN}.$$

Therefore, if we suppose first that Φ_t is Nijenhuis, then N also is Nijenhuis.

Reciprocally, let us now suppose that N is Nijenhuis. The converse needs a kind of double integration process. We shall show as a first step that the Frölicher–Nijenhuis bracket of N with Φ_t vanishes.

The first derivative of $[N, \Phi_t]_{FN}$ is $[N, N \circ \Phi_t]_{FN}$. An easy computation using Eq. (2.1) shows that, for any $X, Y \in E$,

$$[N, N \circ \Phi_t]_{FN}(X, Y) =$$

$$= N \circ [N, \Phi_t]_{FN}(X, Y) + [N, N]_{FN}(\Phi_t X, Y) + [N, N]_{FN}(X, \Phi_t Y) .$$

Moreover, $[N, \Phi_0]_{FN} = [N, Id]_{FN} = 0$. Therefore, if N is Nijenhuis, we find that $[N, \Phi_t]_{FN}$ is a solution of the first-order differential equation, $\Psi'_t = N \circ \Psi_t$, with the initial condition $\Psi_0 = 0$. But the trivial solution, $\Psi_t = 0$, is a solution of the same differential equation with the same initial condition, so, by uniqueness

of solutions of first-order differential equations with identical initial conditions, $[N, \Phi_t]_{FN} = 0$.

Now, let us show that Φ_t is Nijenhuis. We shall prove in fact that, for any $t, s \in \mathbb{R}$, $[\Phi_t, \Phi_s]_{FN} = 0$. The first derivative of $[\Phi_t, \Phi_s]_{FN}$ with respect to t is $2[N \circ \Phi_t, \Phi_s]_{FN}$. Once again, a simple computation using Eq. (2.1) shows that

$$[N \circ \Phi_t, \Phi_s]_{FN}(X, Y) = N \circ [\Phi_t, \Phi_s]_{FN}(X, Y)$$

$$+ [N, \Phi_s]_{FN}(\Phi_t X, Y) + [N, \Phi_s]_{FN}(X, \Phi_t Y)$$

$$- \Phi_s \circ [N, \Phi_t]_{FN}(X, Y) - [\Phi_{t+s}, N]_{FN}(X, Y) ,$$

where we have applied $\Phi_t \circ \Phi_s = \Phi_{t+s}$. Therefore, since $[N, \Phi_t]_{FN} = 0$ for all $t \in \mathbb{R}$, we find that $[\Phi_t, \Phi_s]_{FN}$ is a solution of $\Psi'_t = N \circ \Psi_t$. Moreover it satisfies the initial condition, $[\Phi_0, \Phi_s]_{FN} = [Id, \Phi_s]_{FN} = 0$. Using the same arguments as before, we obtain $[\Phi_t, \Phi_s]_{FN} = 0$. In particular, $[\Phi_t, \Phi_t]_{FN} = 0$.

Remark 1. Note that we have shown that N is Nijenhuis if and only if

$$\Phi_{-t}[\Phi_t X, \Phi_t Y] = [X, Y]_{\Phi_t} .$$

In other words, the conjugation of the old Lie bracket by Φ_t is precisely its deformation by Φ_t . \square

Corollary 1 (The hierarchy of Nijenhuis tensors). If N is Nijenhuis, then $[N^k, N^\ell]_{FN} = 0$ for any $k, \ell \in \mathbb{N}$.

Proof: Let us recall that in the proof of Proposition 1 we proved that if N is Nijenhuis then $[\Phi_t, \Phi_s]_{FN} = 0$ for any $t, s \in \mathbb{R}$. Now taking successive partial derivatives with respect to t and s and evaluating them at t = 0 and s = 0, we deduce that $[N^k, N^\ell]_{FN} = 0$.

2.2. Relationship with Gerstenhaber brackets

We will show an application to the computation of a generating operator of a Gerstenhaber bracket.

If **A** is a \mathbb{Z}_2 -graded commutative, associative algebra, then an *odd Poisson* bracket or a \mathbb{Z}_2 -Gerstenhaber bracket on **A** is, by definition, a bilinear map, $[\![,]\!]$, from $\mathbf{A} \times \mathbf{A}$ to \mathbf{A} , satisfying, for any $f, g, h \in \mathbf{A}$,

$$\bullet \quad \llbracket f,g \rrbracket = -(-1)^{(|f|-1)(|g|-1)} \llbracket g,f \rrbracket, \quad \text{(skew-symmetry)}$$

- $\bullet \ \ \llbracket f, \llbracket g, h \rrbracket \rrbracket = \llbracket \llbracket f, g \rrbracket, h \rrbracket + (-1)^{(|f|-1)(|g|-1)} \llbracket g, \llbracket f, h \rrbracket \rrbracket, \ \ (\text{graded Jacobi identity})$
- $[f, gh] = [f, g]h + (-1)^{(|f|-1)|g|}g[f, h],$ (Leibniz rule)
- |[f,g]| = |f| + |g| 1 (mod. 2).

An algebra **A** together with a bracket satisfying the above conditions is called an *odd Poisson algebra* or a \mathbb{Z}_2 -Gerstenhaber algebra.

A linear map of odd degree, $\Delta : \mathbf{A} \to \mathbf{A}$, such that, for all $a, b \in \mathbf{A}$,

$$[\![f,g]\!] = (-1)^{|f|} \left(\Delta(fg) - (\Delta f)g - (-1)^{|f|} f(\Delta g) \right) \,,$$

is called a generator or a generating operator of this bracket.

Lemma 1. Assume that $(A, [\![\ , \]\!], \wedge)$ is a Gerstenhaber algebra. Let δ be a generator of the bracket. Let Φ be an automorphism of the associative algebra (A, \wedge) .

Then, a generating operator of the conjugation of the bracket by the automorphism Φ is the conjugation of the generating operator, $\Phi^{-1} \circ \delta \circ \Phi$.

Let us suppose now that Φ_t is a one-parameter group of automorphisms of the associative algebra (A, \wedge) . It is easy to check that now, the infinitesimal generator, $N = \frac{d}{dt}|_{t=0}\Phi_t$, is a derivation of (A, \wedge) .

Theorem 1. Let $(A, [\![,]\!], \wedge)$ be a Gerstenhaber algebra. Let δ be a generator of the Gerstenhaber bracket $[\![,]\!]$. Let Φ_t be a one-parameter group of automorphisms of the associative algebra (A, \wedge) , and let N be its infinitesimal generator. If N is Nijenhuis, then the deformed Gerstenhaber bracket, $[\![,]\!]_N$, is generated by $[\delta, N]$.

Proof: By Remark 1 we know that the deformed bracket $[\![,]\!]_{\Phi_t}$, agrees with the conjugation by Φ_t of the bracket $[\![,]\!]$. Now, by lemma 1, $\Phi_{-t} \circ \delta \circ \Phi_t$ is a generating operator of $[\![,]\!]_{\Phi_t}$. By taking derivatives with respect to t at t = 0 we find that $[\delta, N]$ is a generating operator of $[\![,]\!]_N$.

Let us apply this result to a particular case: the deformation by a Nijenhuis tensor of the Schouten–Nijenhuis bracket of multivector fields.

Let M be a manifold and let us consider the Gerstenhaber algebra $(\Gamma(\Lambda TM), [\ ,\]_{SN}, \wedge)$, where $[\ ,\]_{SN}$ denotes the Schouten–Nijenhuis bracket. Let δ be a generating operator of this bracket (see [5]).

Let N be a Nijenhuis tensor with respect to the usual Lie bracket of vector fields. We know that the deformed bracket, $[\ ,\]_N$, is also a Lie bracket on $\mathfrak{X}(M)$. It is then possible to define a Gerstenhaber bracket on the algebra of multivector fields, extending the deformed bracket, $[\ ,\]_N$, as a biderivation on the algebra of multivector fields. We shall denote the resulting Gerstenhaber bracket by $[\ ,\]_{SN}^N$.

Corollary 2. If δ is a generator of the Schouten-Nijenhuis bracket, then the Gerstenhaber bracket, $[\ ,\]_{SN}^N$, is generated by $[\delta, i_N]$.

Proof: Let Φ_t be the one-parameter group of automorphism of TM having N as infinitesimal generator. Let us, by an abuse of language, also denote by Φ_t the extension of $\Phi_t: TM \to TM$ as an automorphism of the whole algebra of multivector fields. The one-parameter group of automorphisms of the algebra of multivector fields Φ_t has the derivation i_N as infinitesimal generator (see subsection 2.1).

By Theorem 1, the deformation by i_N of the Schouten–Nijenhuis bracket is a Gerstenhaber bracket with $[\delta, i_N]$ as a generating operator. Finally, it is easy to check that the deformation by i_N of the Schouten–Nijenhuis bracket agrees with the Gerstenhaber bracket, $[\ ,\]_{SN}^N$. Indeed, one can check that they agree when acting on a pair of smooth functions and/or vector fields. \blacksquare

3 – Poisson–Nijenhuis structures

Let us first recall the definition of Poisson-Nijenhuis structures. Among all the equivalent definitions we prefer the one from [3].

Definition 2. Given a Poisson bivector, P, on a differentiable manifold, M, we can define a Lie algebra bracket on $\Omega(M)$ by

$$\begin{split} & \llbracket \alpha, \beta \rrbracket_{\nu(P)} \ = \ \mathcal{L}_{\#_P \alpha} \beta - \mathcal{L}_{\#_P \beta} \alpha - dP(\alpha, \beta) \ , \\ & \llbracket \alpha, f \rrbracket_{\nu(P)} \ = \ P(\alpha, df) \ , \\ & \llbracket f, g \rrbracket_{\nu(P)} \ = \ 0 \ , \end{split}$$

for all $\alpha, \beta \in \Omega^1(M)$ and $f, g \in C^{\infty}(M)$, where $\#_{P}\alpha$ denotes the vector field defined by $(\#_{P}\alpha)(f) = P(\alpha, df)$ for any $f \in C^{\infty}(M)$, and extending the Lie algebra bracket to the whole $\Omega(M)$ by the Leibniz rule. This bracket is known as the Koszul–Schouten bracket associated to the Poisson bivector P. \square

The adjoint operator N^* can be seen as a $C^{\infty}(M)$ -linear map $N^*: \Omega^1(M) \to \Omega^1(M)$ as usual.

Definition 3. A Nijenhuis tensor N and a Poisson tensor P on a manifold M are called compatible, that is, the pair (P, N) is called a Poisson–Nijenhuis structure, if

i)
$$N \circ \#_P = \#_P \circ N^*$$

and if

$$[\alpha, \beta]_{\nu(NP)} = [\alpha, \beta]_{N^*, \nu(P)},$$

for all $\alpha, \beta \in \Omega(M)$.

Note that the compositions $N \circ \#_P$ and $\#_P \circ N^*$ define two not necessarily skewsymmetric (2,0)-tensor fields, denoted by NP and PN^* , such that $N \circ \#_P = \#_{NP}$ and $\#_P \circ N^* = \#_{PN^*}$. The tensor fields are then

$$(NP)(\alpha, \beta) = P(\alpha, N^*\beta), \quad (PN^*)(\alpha, \beta) = P(N^*\alpha, \beta).$$

Thus, the first condition in the definition of a Poisson–Nijenhuis manifold can be written as $NP = PN^*$. This condition guarantees that

$$N \circ \#_P = \#_{NP} = \#_{PN^*} = \#_P \circ N^*$$
.

In addition we can deduce that $NP = PN^*$ is skewsymmetric.

The second condition can be expressed in another way. Let us define the concomitant C(P, N) by

$$C(P,N)(\alpha,\beta) = [\alpha,\beta]_{\nu(NP)} - [\alpha,\beta]_{N^*.\nu(P)},$$

for all $\alpha, \beta \in \Omega^1(M)$. Because $N \circ \#_P = \#_P \circ N^*$, C(P, N) is a tensor field of type (3,0). Thus the second condition is just the vanishing of C(P,N).

The concomitant C(P, N) can be also written as

$$C(P,N)(\alpha,\beta) = \mathcal{L}_{P\alpha}(N^*\beta) - N^*\mathcal{L}_{P\alpha}\beta - \mathcal{L}_{P\beta}(N^*\alpha) + N^*\mathcal{L}_{P\beta}\alpha$$

$$+ dNP(\alpha,\beta) - N^*dP(\alpha,\beta)$$

$$= (\mathcal{L}_{P\alpha}N^*)\beta - (\mathcal{L}_{P\beta}N^*)\alpha + dNP(\alpha,\beta) - N^*dP(\alpha,\beta) .$$

Let us recall the definition of compatibility of Poisson structures.

Definition 4. Poisson structures P_0 and P_1 on the same manifold M are compatible if the sum $P_0 + P_1$, is also a Poisson structure. \square

Remark 2. Let us recall that this is equivalent to

$$\#_{P_0}[\![\alpha,\beta]\!]_{\nu(P_1)} + \#_{P_1}[\![\alpha,\beta]\!]_{\nu(P_0)} = [\#_{P_0}\alpha,\#_{P_1}\beta] + [\#_{P_1}\alpha,\#_{P_0}\beta]$$
 for all $\alpha,\beta \in \Omega^1(M)$. \square

Let us recall the following

Proposition 2 (see [3]). If (P, N) is a Poisson-Nijenhuis structure, then the (2,0)-tensor, NP, defined by $NP(\alpha,\beta) = P(\alpha,N^*\beta)$, is a Poisson bivector that is compatible with P.

4 – The hierarchy of Poisson–Nijenhuis structures

In this section we shall obtain a noninductive proof of the existence of the hierarchy of Poisson–Nijenhuis structures constructed from an initial one.

Proposition 3. Let N be a (1,1)-tensor field on M, and let $\Phi_t = exp(tN)$. The pair (P,N) is a Poisson-Nijenhuis structure if and only if (P,Φ_t) is a Poisson-Nijenhuis structure.

Proof: We remark that we know that N is Nijenhuis if and only if Φ_t is also Nijenhuis. So we need only prove that the compatibility conditions are satisfied.

Let us suppose first that (P, Φ_t) is a Poisson-Nijenhuis structure. Then, by taking the first derivative at t = 0 of the compatibility conditions between P and Φ_t , we obtain those for P and N.

Reciprocally, let us suppose that (P, N) is a Poisson–Nijenhuis structure. We shall consider the tensor field $\Phi_{-t}P\Phi_t^*$ defined by

$$\Phi_{-t}P\Phi_t^*(\alpha,\beta) := P(\Phi_{-t}^*\alpha,\Phi_t^*\beta) .$$

The first derivative of $\Phi_{-t}P\Phi_t^*$ is $\Phi_{-t}(PN^*-NP)\Phi_t^*=0$. Therefore, $\Phi_{-t}P\Phi_t^*$ is constant. But since its value at t=0 is P, $\Phi_{-t}P\Phi_t^*=P$, or, equivalently, $\Phi_tP=P\Phi_t^*$.

Let us now study the second compatibility condition between P and Φ_t .

The first derivative of $C(P, \Phi_t)(\alpha, \beta)$ is $C(P, \Phi_t \circ N)(\alpha, \beta)$, and a simple computation using Eq. (3.1) shows that it is equal to

$$(4.1) \quad \Phi_t(C(P,N)(\alpha,\beta)) + C(P,\Phi_t)(\alpha,N^*\beta) + (\mathcal{L}_{PN\beta}\Phi_t^*)\alpha - (\mathcal{L}_{P\beta}\Phi_t^*)N^*\alpha .$$

The first term vanishes because we suppose that (P, N) is a Poisson–Nijenhuis structure. We shall see that the two last terms also vanish. Let us denote them by

$$H_t(\alpha, \beta) := (\mathcal{L}_{PN\beta}\Phi_t^*)\alpha - (\mathcal{L}_{P\beta}\Phi_t^*)N^*\alpha$$
.

The first derivative of H_t with respect to t is

$$(\mathcal{L}_{PN\beta}\Phi_t^*N^*)\alpha - (\mathcal{L}_{P\beta}\Phi_t^*N^*)N^*\alpha =$$

$$= H_t(N^*\alpha, \beta) + \Phi_t^*((\mathcal{L}_{PN\beta}N^*)\alpha - (\mathcal{L}_{P\beta}N^*)N^*\alpha).$$

Now, let us recall that the following identity (See formula 7.13 [6])

$$\mathcal{L}_{NX}(N^*) = \mathcal{L}_X(N^*)N^*$$

is a condition equivalent to the vanishing of the Nijenhuis torsion of N. It is now clear that the two last terms vanish.

Then, we find that H_t satisfies the equation $H'_t(\alpha, \beta) = H_t(N^*\alpha, \beta)$ with initial condition $H_0(\alpha, \beta) = (\mathcal{L}_{PN\beta}Id)\alpha - (\mathcal{L}_{P\beta}Id)\alpha = 0$. Therefore, $H_t = 0$ for all $t \in \mathbb{R}$.

Let us return to $C(P, \Phi_t)$. By Eq. (4.1), $C(P, \Phi_t)$ satisfies $C(P, \Phi_t)'(\alpha, \beta) = C(P, \Phi_t)(\alpha, N^*\beta)$, and the initial condition, $C(P, \Phi_0) = C(P, Id) = 0$. Therefore, $C(P, \Phi_t) = 0$ for all $t \in \mathbb{R}$.

Corollary 3. If (P, N) is a Poisson–Nijenhuis structure, then, for any $t, s \in \mathbb{R}$,

- (1) $(\Phi_s P, \Phi_t)$ is a Poisson-Nijenhuis structure, and
- (2) $\Phi_s P$ and $\Phi_t P$ are compatible Poisson bivectors.

Proof: The first statement is just a consequence of the following relation, which can be obtained from equation (3.1),

$$C(P,\Phi_t)'(\alpha,\beta) = C(P,N)(\Phi_t^*\alpha,\beta) + C(P,N)(\alpha,\Phi_t^*\beta) - C(\Phi_tP,N)(\alpha,\beta)$$
.

Then, if (P, N) is a Poisson-Nijenhuis structure, both C(P, N) and $C(P, \Phi_t)$ vanish, and $C(\Phi_t P, N) = 0$. This means that $(\Phi_t P, N)$ is a Poisson-Nijenhuis structure (note that by Propositions 2 and 3, $\Phi_t P$ is a Poisson bivector). By applying Proposition 3 to $(\Phi_t P, N)$ we find that $(\Phi_t P, \Phi_s)$ is a Poisson-Nijenhuis structure for all $t, s \in \mathbb{R}$.

The second statement is a consequence of the first.

Remark 3. In [10] it is observed that if (P, N) is a Poisson-Nijenhuis structure, then not only the elements of the hierarchy are again Poisson-Nijenhuis structures, but so is any structure of the kind $((\sum_{i=0}^{\infty} a_i N^i) \circ P, \sum_{j=0}^{\infty} b_j N^j)$, where the series involved are convergent power series with constant coefficients. So, the first statement of the corollary is a particular case of this observation. The novelty here is that we have obtained it before proving the existence of the hierarchy, whereas in [10], it is a consequence of the existence of such a hierarchy. In fact, Corollary 3 is a condensed way of writing the hierarchy, as the next corollary will show. \square

Remark 4. What we have found is a kind of surface in the set of all Poisson–Nijenhuis structures. If we write $x(t,s) = (\Phi_t P, \Phi_s)$ then

$$x(0,0)=(P,Id), \quad x_t(0,0)=(NP,Id), \quad x_s(0,0)=(P,N) \ ,$$
 $x_{tt}(0,0)=(N^2P,Id), \quad x_{ts}(0,0)=(NP,N), \quad x_{ss}(0,0)=(P,N^2) \ .$ \square

Corollary 4 (The hierarchy of Poisson–Nijenhuis structures). If (P, N) is a Poisson–Nijenhuis structure, then, for any $k, \ell \in \mathbb{N}$,

- (1) $(N^k P, N^\ell)$ is a Poisson-Nijenhuis structure, and
- (2) $N^k P$ and $N^{\ell} P$ are compatible Poisson bivectors.

Proof: As before, we need only take partial derivatives with respect to t and s of the compatibility conditions between $\Phi_s P$ and Φ_t and evaluate them at t=0 and s=0.

Corollary 5. If (P, N) is a Poisson-Nijenhuis structure, then

$$[\![\alpha,\beta]\!]_{\nu(\Phi_t P)} = [\![\alpha,\beta]\!]_{\Phi_t^* \cdot \nu(P)} = \Phi_{-t}^* [\![\Phi_t^* \alpha,\Phi_t^* \beta]\!]_{\nu(P)}.$$

Proof: It is a consequence of the fact that (P, Φ_t) is a Poisson–Nijenhuis structure and of the fact that, for any Poisson–Nijenhuis structure, (P, N), N^* is Nijenhuis with respect to the bracket $[\![\ , \]\!]_{\nu(P)}$ (see [3] lemma 4.2), and then of Formula 2.2.

This last result has an interpretation in terms of generating operators. Let us recall that a generating operator of the Koszul–Schouten bracket, $[\![,]\!]_{\nu(P)}$, is $\mathcal{L}_P = [i_P, d]$, where d denotes the exterior derivative (see [5]). Now, as a consequence of Lemma 1, we can state the following

Corollary 6. If (P, N) is a Poisson-Nijenhuis structure then,

$$\mathcal{L}_{\Phi_t P} = \Phi_{-t}^* \circ \mathcal{L}_P \circ \Phi_t^*$$
.

Proof: Two generating operators of the same Gerstenhaber bracket differ by a derivation of degree -1. In this case, it is easy to check that $\mathcal{L}_{\Phi_t P} - \Phi_{-t}^* \circ \mathcal{L}_P \circ \Phi_t^*$ is the null derivation. \blacksquare

Remark 5. We have worked here with the definition of Poisson–Nijenhuis manifolds given in [3], but the same results can be obtained for similar, but not fully equivalent, definitions, for example, the one given in [9]. The key point is to observe that the statement in Proposition 1 is also valid in the following form: Let $F \subset E$ be a vector subspace, then $[N, N]_{FN}$ vanishes on F if and only if $[\Phi_t, \Phi_t]_{FN}$ vanishes on F, Φ_t being a one-parameter group of graded automorphisms and N is its infinitesimal generator. \square

Remark 6. Recently, the notion of Jacobi-Nijenhuis structure has also been studied, see for example [7], [8] or [2]. It is not difficult to see that a proof of the existence of hierarchies of Jacobi-Nijenhuis manifolds can also be obtained using similar arguments to those advanced in this note. \Box

5 – An example

The initial Poisson bivector, taken from [1] for n = 5, is

$$P = \begin{pmatrix} 0 & 0 & -a_1 & a_1 & 0 \\ 0 & 0 & 0 & -a_2 & a_2 \\ a_1 & 0 & 0 & 0 & 0 \\ -a_1 & a_2 & 0 & 0 & 0 \\ 0 & -a_2 & 0 & 0 & 0 \end{pmatrix},$$

where $\{a_1, a_2, b_1, b_2, b_3\}$ are the coordinates for \mathbb{R}^5 .

Let us consider the tensor fields given by

$$N = \begin{pmatrix} f & 0 & 0 & 0 & 0 \\ 0 & L(a_2, b_3) & 0 & 0 & 0 \\ 0 & 0 & f & 0 & 0 \\ 0 & 0 & 0 & f & f - L(a_2, b_3) \\ 0 & 0 & 0 & 0 & L(a_2, b_3) \end{pmatrix},$$

where f is a constant and L a function depending on the variables a_2, b_3 . An easy computation shows that (P, N) is a Poisson-Nijenhuis structure.

The integral flow of N is

$$\Phi_t = \begin{pmatrix} e^{ft} & 0 & 0 & 0 & 0 \\ 0 & e^{L(a_2,b_3)t} & 0 & 0 & 0 \\ 0 & 0 & e^{ft} & 0 & 0 \\ 0 & 0 & 0 & e^{ft} & e^{ft} - e^{L(a_2,b_3)t} \\ 0 & 0 & 0 & 0 & e^{L(a_2,b_3)t} \end{pmatrix}.$$

And the 1-parameter family, $\Phi_s P$ of compatible Poisson bivectors is

$$\begin{pmatrix} 0 & 0 & -a_1e^{fs} & a_1e^{fs} & 0\\ 0 & 0 & 0 & -a_2e^{L(a_2,b_3)s} & a_2e^{L(a_2,b_3)s}\\ a_1e^{fs} & 0 & 0 & 0 & 0\\ -a_1e^{fs} & a_2e^{L(a_2,b_3)s} & 0 & 0 & 0\\ 0 & -a_2e^{L(a_2,b_3)s} & 0 & 0 & 0 \end{pmatrix}.$$

By our results, each pair $(\Phi_s P, \Phi_t)$ is a Poisson-Nijenhuis structure for all $t, s \in \mathbb{R}$.

ACKNOWLEDGEMENT – Thanks are due to the referee for his careful reading of the manuscript, and his most valuable suggestions, and helpful comments which clarified and improved the paper.

REFERENCES

- [1] Damianou, P.A. Master symmetries and R-matrices for the Toda lattice, Lett. in Math. Phys., 20 (1990), 101–112.
- [2] IGLESIAS-PONTE, D. and MARRERO, J.C. Generalized Lie bialgebroids and strong Jacobi-Nijenhuis structures, *Extracta Mathematicae*, 17(2) (2002), 259–271.
- [3] KOSMANN-SCHWARZBACH, Y. and MAGRI, F. Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A, 53 (1990), 35–81.
- [4] Kosmann-Schwarzbach, Y. The Lie bialgebroid of a Poisson–Nijenhuis manifold, *Lett. in Math. Phys.*, 38 (1996), 412–428.
- [5] Koszul, J.L. Crochet de Schouten–Nijenhuis et cohomologie, in: Astérisque, hors série, Elie Cartan et les mathématiques d'aujourd'hui, Soc. Math. Fr. (1985), 257–271.
- [6] MAGRI, F. Eight lectures on integrable systems, in "Integrability of Nonliner Systems, Proc.", Pondicherry, India, 1996, Lecture Notes in Physics, 495 (1997), 256–296.

- [7] MARRERO, J.C.; MONTERDE, J. and PADRN, E. Jacobi-Nijenhuis manifolds and compatible Jacobi structures, *C.R. Acad. Sci. Paris*, t. 329, Srie I, (1999), 797–802.
- [8] Nunes da Costa, J.M. and Petalidou, F. Reduction of Jacobi-Nijenhuis manifolds, *J. of Geometry and Physics*, 41 (2002), 181–195.
- [9] NUNES DA COSTA, J.M. and MARLE, CH.-M. Reduction of bihamiltonian manifolds and recursion operators, in "Proc. 6th Int. Conf. on Diff. Geom. and Appl." (J. Janyska et al., Eds.), Brno, Czech Rep., 1995 (1996), 523–538.
- [10] Vaisman, I. The Poisson–Nijenhuis manifolds revisited, *Rendiconti Sem. Mat. Torino*, 52 (1994), 377–394.

J. Monterde,

Dept. de Geometria i Topologia, Universitat de València, Avda. Vicent Andrés Estellés, 1, E-46100-Burjassot (València) – SPAIN E-mail: monterde@uv.es