PORTUGALIAE MATHEMATICA Vol. 61 Fasc. 4 – 2004 Nova Série

BROWN-McCOY SEMISIMPLICITY OF CERTAIN BANACH ALGEBRAS

W.D. MUNN

Recommended by Jorge Almeida

Abstract: It is shown that if S is a free group, a free semigroup, or a free inverse semigroup then the Brown–McCoy radical of the Banach algebra $l^1(S)$ is zero.

Let S be a semigroup. We denote by $l^1(S)$ the Banach algebra consisting of all functions $a: S \to \mathbb{C}$ (the complex field), with finite or countably infinite support and such that $\sum_{x \in S} |a(x)| < \infty$, where addition and scalar multiplication are defined pointwise, multiplication is convolution and the norm of the element a is $\sum_{x \in S} |a(x)|$ ([1]). The semigroup algebra $\mathbb{C}[S]$ consists of all functions $a: S \to \mathbb{C}$ of finite support: this is clearly a subalgebra of $l^1(S)$. It is convenient to identify the elements of S with the corresponding characteristic functions: thus, if S is infinite, we can write $a \in l^1(S)$ in the form $\sum_{n=1}^{\infty} \alpha_n x_n$, where (α_n) is a sequence of complex numbers with $\sum_{n=1}^{\infty} |\alpha_n| < \infty$ and (x_n) is a sequence of distinct elements of S.

The Brown-McCoy radical of an algebra A is denoted by B(A). A survey of the basic properties of this radical may be found in [7, Ch. 7, §37]. In particular, B(A) contains the Jacobson radical of A; and, assuming that A is nontrivial, $B(A) = \{0\}$ if and only if A is a subdirect product of simple algebras with unity. The purpose of the present paper is to show that $B(A) = \{0\}$ if $A = l^1(S)$, where S is a free group, a free semigroup or a free inverse semigroup.

Received: July 14, 2003; Revised: October 16, 2003.

W.D. MUNN

We note, in passing, that if S is a free group of rank at least two or a free semigroup of rank at least two then $l^1(S)$ is also primitive [10, 3; 9, 2].

The set of all congruences on a semigroup S is denoted by $\Lambda(S)$ and, for $\rho \in \Lambda(S)$, the ρ -class containing $x \in S$ is denoted by $x\rho$. We write $\Lambda_f(S) := \{\rho \in \Lambda(S) : S/\rho \text{ is finite}\}$. Observe that $\Lambda_f(S)$ is closed under finite intersections. Recall that S is termed residually finite if and only if, for every pair $(x, y) \in S \times S$ with $x \neq y$ there exists $\rho \in \Lambda_f(S)$ such that $(x, y) \notin \rho$. Thus S is residually finite if and only if $\bigcap \{\rho : \rho \in \Lambda_f(S)\} = \iota_S$, the identity relation on S. It is convenient here to introduce a further concept. We say that S is residually M-finite if and only if there exists a nonempty subset M of $\Lambda_f(S)$ such that (i) M is closed under finite intersections and (ii) $\bigcap \{\rho : \rho \in M\} = \iota_S$. Note that if S is residually M-finite then it is residually finite and that if S is residually finite then it is residually finite.

Lemma. Let S be an infinite residually M-finite semigroup such that, for all $\rho \in M$, the finite-dimensional algebra $\mathbb{C}[S/\rho]$ is semisimple. Then $B(l^1(S)) = \{0\}$.

Proof: Let $\rho \in M$. Define a surjective homomorphism $\theta_{\rho} \colon l^1(S) \to \mathbb{C}[S/\rho]$ by the rule that

$$\theta_{\rho}\left(\sum_{n} \alpha_{n} x_{n}\right) := \sum_{n} \alpha_{n}(x_{n} \rho) ,$$

where (α_n) is a sequence of complex numbers with $\sum_n |\alpha_n| < \infty$ and (x_n) is a sequence of distinct elements of S. By hypothesis, $\mathbb{C}[S/\rho]$ is semisimple and so, for some positive integer k_ρ , $\mathbb{C}[S/\rho]$ is a direct sum of ideals $A_{\rho,i}$ $(i=1, 2, ..., k_\rho)$, each of which is a finite-dimensional simple algebra with unity. Hence, for each $i \in \{1, 2, ..., k_\rho\}$, there exists a surjective homomorphism $\phi_{\rho,i} : \mathbb{C}[S/\rho] \to A_{\rho,i}$; further,

(1)
$$\bigcap_{i=1}^{k_{\rho}} \ker \phi_{\rho,i} = \{0\}$$

We now show that $l^1(S)$ is a subdirect product of the algebras $A_{\rho,i}$ ($\rho \in \Lambda_f(S)$; $i = 1, 2, ..., k_{\rho}$). Since each $A_{\rho,i}$ is a simple algebra with unity, this will establish the result.

For each pair (ρ, i) , with $\rho \in \Lambda_f(S)$ and $i \in \{1, 2, ..., k_\rho\}$, write $\psi_{\rho,i} := \phi_{\rho,i} \circ \theta_{\rho}$. Then $\psi_{\rho,i} : l^1(S) \to A_{\rho,i}$ is a surjective homomorphism. Let $a \in l^1(S)$ be such that $\psi_{\rho,i}(a) = 0$ for all $\rho \in \Lambda_f(S)$ and all $i \in \{1, 2, ..., k_\rho\}$. Thus, from (1),

(2)
$$(\forall \rho \in \Lambda_f(S)) \quad \theta_\rho(a) = 0$$
.

394

$BROWN-McCOY\,SEMISIMPLICITY\,OF\,CERTAIN\,BANACH\,ALGEBRAS$

Suppose that $a \neq 0$. Then $a = \sum_{n} \alpha_{n} x_{n}$ for some sequence (α_{n}) of complex numbers, not all zero, such that $\sum_{n} |\alpha_{n}| < \infty$ and some sequence (x_{n}) of distinct elements of S. Choose a positive integer m such that $\alpha_{m} \neq 0$. Since $\sum_{n} |\alpha_{n}|$ converges, there exists a positive integer p > m such that $\sum_{n>p} |\alpha_{n}| < \frac{1}{2} |\alpha_{m}|$. Now, since S is residually M-finite, for each pair (r, s) of positive integers with $r < s \leq p$, there exists $\rho_{rs} \in M$ such that $(x_{r}, x_{s}) \notin \rho_{rs}$. Write $\rho := \bigcap_{(r,s)} \rho_{rs}$. Then $\rho \in M$; also, for each pair (r, s) with $r < s \leq p$, we have that $(x_{r}, x_{s}) \notin \rho$, that is, $x_{r}\rho \neq x_{s}\rho$. In particular, $x_{r}\rho \neq x_{m}\rho$ for all r such that $r \neq m$ and $1 \leq r \leq p$. Let β denote the coefficient of $x_{m}\rho$ in $\theta_{\rho}(a)$ and let T be the set of all positive integers t such that t > p and $x_{t}\rho = x_{m}\rho$. If $T = \emptyset$ then $\beta = \alpha_{m} \neq 0$. On the other hand, if $T \neq \emptyset$ then

$$|\beta| \geq |\alpha_m| - \left|\sum_{t \in T} \alpha_t\right| \geq |\alpha_m| - \sum_{t \in T} |\alpha_t| \geq |\alpha_m| - \sum_{n > p} |\alpha_n| > \frac{1}{2} |\alpha_m|$$

Thus, in either case, $\beta \neq 0$. However, by (2), $\theta_{\rho}(a) = 0$, which implies that $\beta = 0$. From this contradiction we see that a = 0. Hence $l^1(S)$ is a subdirect product of the algebras $A_{\rho,i}$ ($\rho \in \Lambda_f(S)$; $i = 1, 2, ..., k_{\rho}$), as required.

Theorem 1. Let G_X and S_X denote, respectively, the free group and the free semigroup on a nonempty set X. Then $B(l^1(G_X)) = \{0\}$ and $B(l^1(S_X)) = \{0\}$.

Proof: Note that S_X can be regarded as a subsemigroup of G_X . Let S be an infinite subsemigroup of G_X . It suffices to show that $B(l^1(S)) = \{0\}$.

Let $\rho \in \Lambda_f(G_X)$ and let $T_{\rho} := \{w\rho \colon w \in S\}$. Then T_{ρ} is a subsemigroup of the finite group G_X/ρ and so is itself a finite group. Thus, by Maschke's theorem, $\mathbb{C}[T_{\rho}]$ is semisimple. Write $\rho_S := \rho \cap (S \times S)$. Then ρ_S is a congruence on S and $S/\rho_S \cong T_{\rho}$. Hence $\rho_S \in \Lambda_f(S)$ and $\mathbb{C}[S/\rho_S]$ is semisimple. Let $M := \{\rho_S : \rho \in \Lambda_f(G_X)\}$. Since $\Lambda_f(G_X)$ is closed under finite intersections, so also is M. Further, by [8, Theorem 8.18], G_X is residually finite and so $\bigcap\{\rho_S \colon \rho \in \Lambda_f(G_X)\} = \bigcap\{\rho \colon \rho \in \Lambda_f(G_X)\} \cap (S \times S) = \iota_S$. Thus S is residually M-finite. Applying the lemma, we see that $B(l^1(S)) = \{0\}$.

By an inverse semigroup we mean a semigroup S such that

$$(\forall x \in S) \quad (\exists ! x' \in S) \qquad x \, x' x = x \text{ and } x' x \, x' = x'$$

A basic account of such semigroups is provided in [4, Chapter V]; for an extended discussion, see [6].

Theorem 2. Let FI_X denote the free inverse semigroup on a nonempty set X. Then $B(l^1(FI_X)) = \{0\}.$

W.D. MUNN

Proof: Write $S := FI_X$. By [12, Theorem 3.6], S is residually finite. Further, by [4, Proposition V.1.6], for all $\rho \in \Lambda_f(S)$, S/ρ is a finite inverse semigroup and so $\mathbb{C}[S/\rho]$ is semisimple [14, Theorem 4; 11, Theorem 4.4]. The result now follows by the lemma.

We conclude with some remarks about the semigroup algebra F[S] of a semigroup S over an arbitrary field F [13]. Theorems analogous to those above hold for S a free group, a free semigroup or a free inverse semigroup, the analogue of Theorem 1 being deducible from more general results of Jespers and Puczylowski [5, Corollary 6 and Corollary 13].

To obtain these theorems, we may proceed as follows. First, note that the lemma still holds if we replace ${}^{\circ}\mathbb{C}[S/\rho]$ by ${}^{\circ}F[S/\rho]$ and ${}^{\circ}l^{1}(S)$ by ${}^{\circ}F[S]$. As in the proof of Theorem 1, consider an infinite subsemigroup S of G_X . Choose a prime p different from the characteristic of F and let $\Pi := \{\rho \in \Lambda_f(G_X) : G_X/\rho \text{ is a } p\text{-group}\}$. For $\rho \in \Pi$, let $T_\rho := \{w\rho : w \in S\}$. Then T_ρ is a subsemigroup of the finite $p\text{-group } G_X/\rho$ and so is itself a finite p-group. Thus, by Maschke's theorem, $F[T_\rho]$ is semisimple. Further, $S/\rho_S \cong T_\rho$, where $\rho_S :=$ $\rho \cap (S \times S)$. Now G_X is residually Π -finite [8, Chapter 8, Problem 16]. Hence, taking $M := \{\rho_S : \rho \in \Pi\}$, we see that S is residually M-finite. It follows from the modified lemma that $B(F[S]) = \{0\}$. In particular, $B(F[G_X]) = \{0\}$ and $B(F[S_X]) = \{0\}$ ([5]).

Next, let $S := FI_X$, the free inverse semigroup on X. For a proper ideal T of S we define the Rees congruence ρ_T on S by

$$(x,y) \in \rho_T \iff x = y \text{ or } x, y \in T$$
.

The proof of [12, Theorem 3.6] shows that S is residually M-finite, where $M := \{\rho \in \Lambda_f(S) : \rho = \rho_T \text{ for a proper ideal } T \text{ of } S\}$. Further, by [12, Theorem 3.2(iii)], S has only trivial subgroups. Hence, for all $\rho \in M$, S/ρ has only trivial subgroups and so $F[S/\rho]$ is semisimple [14, 11]. The modified lemma now shows that $B(F[S]) = \{0\}$.

ACKNOWLEDGEMENTS – I am grateful to the referee for suggesting a major improvement in the exposition and to Dr. Michael J. Crabb for some useful general comments.

396

REFERENCES

- BARNES, P.A. and DUNCAN, J. The Banach algebra l¹(S), J. Functional Analysis, 18 (1975), 96–113.
- [2] CHAUDRY, M.A.; CRABB, M.J. and MCGREGOR, C.M. The primitivity of semigroup algebras of free products, *Semigroup Forum*, 54 (1997), 221–229.
- [3] CRABB, M.J. and MCGREGOR, C.M. Faithful irreducible *-representations for group algebras of free products, Proc. Edinburgh Math. Soc., 42 (1999), 559–574.
- [4] HOWIE, J.M. An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [5] JESPERS, E. and PUCZYLOWSKI, E.R. The Jacobson and Brown–McCoy radical of rings graded by free groups, *Comm. Algebra*, 19(2) (1991), 551–558.
- [6] LAWSON, M.V. Inverse Semigroups, World Scientific, Singapore, 1998.
- [7] MCCOY, N.H. The Theory of Rings, Macmillan, New York, 1964.
- [8] MACDONALD, I.D. The Theory of Groups, OUP, Oxford, 1968.
- [9] MCGREGOR, C.M. A representation for $l^1(S)$, Bull. London Math. Soc., 8 (1976), 156–160.
- [10] MCGREGOR, C.M. On the primitivity of the group ring of a free group, Bull. London Math. Soc., 8 (1976), 294–298.
- [11] MUNN, W.D. Matrix representations of semigroups, Proc. Cambridge Philos. Soc., 53 (1957), 5–12.
- [12] MUNN, W.D. Free inverse semigroups, Proc. London Math. Soc. (3), 29 (1974), 385–404.
- [13] OKNIŃSKI, J. Semigroup Algebras, Marcel Dekker, New York, 1991.
- [14] PONIZOVSKIĬ, J.S. On matrix representations of associative systems, Mat. Sbornik, 38 (1956), 241–260.

W.D. Munn, Department of Mathematics, University of Glasgow, Glasgow, G12 8QW – SCOTLAND, U.K.