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Abstract: It is shown that if S is a free group, a free semigroup, or a free inverse

semigroup then the Brown–McCoy radical of the Banach algebra l1(S) is zero.

Let S be a semigroup. We denote by l1(S) the Banach algebra consisting of

all functions a : S → C (the complex field), with finite or countably infinite sup-
port and such that

∑

x∈S |a(x)|<∞, where addition and scalar multiplication are

defined pointwise, multiplication is convolution and the norm of the element a is
∑

x∈S |a(x)| ([1]). The semigroup algebra C[S] consists of all functions a : S → C
of finite support: this is clearly a subalgebra of l1(S). It is convenient to iden-

tify the elements of S with the corresponding characteristic functions: thus, if S

is infinite, we can write a ∈ l1(S) in the form
∑

∞

n=1 αnxn, where (αn) is a sequence

of complex numbers with
∑

∞

n=1 |αn|<∞ and (xn) is a sequence of distinct

elements of S.

The Brown–McCoy radical of an algebra A is denoted by B(A). A survey of

the basic properties of this radical may be found in [7, Ch. 7, §37]. In particular,

B(A) contains the Jacobson radical of A; and, assuming that A is nontrivial,

B(A) = {0} if and only if A is a subdirect product of simple algebras with unity.

The purpose of the present paper is to show that B(A) = {0} if A = l1(S),

where S is a free group, a free semigroup or a free inverse semigroup.
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We note, in passing, that if S is a free group of rank at least two or a free

semigroup of rank at least two then l1(S) is also primitive [10, 3; 9, 2].

The set of all congruences on a semigroup S is denoted by Λ(S) and, for

ρ ∈ Λ(S), the ρ-class containing x ∈ S is denoted by xρ. We write Λf (S) :=

{ρ∈Λ(S) : S/ρ is finite}. Observe that Λf (S) is closed under finite intersections.

Recall that S is termed residually finite if and only if, for every pair (x, y) ∈ S×S

with x 6= y there exists ρ ∈ Λf (S) such that (x, y) /∈ ρ. Thus S is residually finite

if and only if
⋂

{ρ : ρ ∈ Λf (S)} = ιS , the identity relation on S. It is convenient

here to introduce a further concept. We say that S is residually M-finite if and

only if there exists a nonempty subset M of Λf (S) such that (i) M is closed

under finite intersections and (ii)
⋂

{ρ : ρ ∈ M} = ιS . Note that if S is residually

M-finite then it is residually finite and that if S is residually finite then it is

residually Λf (S)-finite.

Lemma. Let S be an infinite residually M-finite semigroup such that, for all

ρ ∈ M, the finite-dimensional algebra C[S/ρ] is semisimple. Then B(l1(S))={0}.

Proof: Let ρ ∈ M. Define a surjective homomorphism θρ : l
1(S)→ C[S/ρ]

by the rule that

θρ

(

∑

n

αn xn

)

:=
∑

n

αn(xn ρ) ,

where (αn) is a sequence of complex numbers with
∑

n |αn| <∞ and (xn) is a

sequence of distinct elements of S. By hypothesis, C[S/ρ] is semisimple and so,
for some positive integer kρ, C[S/ρ] is a direct sum of ideals Aρ,i (i=1, 2, ..., kρ),

each of which is a finite-dimensional simple algebra with unity. Hence, for each

i ∈ {1, 2, ..., kρ}, there exists a surjective homomorphism φρ,i : C[S/ρ]→ Aρ,i ;

further,

(1)

kρ
⋂

i=1

kerφρ,i = {0} .

We now show that l1(S) is a subdirect product of the algebras Aρ,i (ρ∈Λf (S);

i = 1, 2, ..., kρ). Since each Aρ,i is a simple algebra with unity, this will establish

the result.

For each pair (ρ, i), with ρ ∈ Λf (S) and i ∈ {1, 2, ..., kρ}, write ψρ,i := φρ,i◦θρ.

Then ψρ,i : l
1(S)→ Aρ,i is a surjective homomorphism. Let a ∈ l

1(S) be such

that ψρ,i(a) = 0 for all ρ ∈ Λf (S) and all i ∈ {1, 2, ..., kρ}. Thus, from (1),

(2) (∀ ρ ∈ Λf (S)) θρ(a) = 0 .
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Suppose that a 6= 0. Then a =
∑

n αnxn for some sequence (αn) of complex

numbers, not all zero, such that
∑

n |αn| <∞ and some sequence (xn) of distinct

elements of S. Choose a positive integer m such that αm 6= 0. Since
∑

n |αn|

converges, there exists a positive integer p > m such that
∑

n>p |αn| <
1
2 |αm|.

Now, since S is residually M-finite, for each pair (r, s) of positive integers with

r < s ≤ p, there exists ρrs ∈ M such that (xr, xs) /∈ ρrs. Write ρ :=
⋂

(r,s) ρrs.

Then ρ ∈ M; also, for each pair (r, s) with r < s ≤ p, we have that (xr, xs) /∈ ρ,

that is, xrρ 6= xsρ. In particular, xrρ 6= xmρ for all r such that r 6= m and

1 ≤ r ≤ p. Let β denote the coefficient of xmρ in θρ(a) and let T be the set of

all positive integers t such that t > p and xtρ = xmρ. If T = ∅ then β = αm 6= 0.

On the other hand, if T 6= ∅ then

|β| ≥ |αm| −

∣

∣

∣

∣

∑

t∈T

αt

∣

∣

∣

∣

≥ |αm| −
∑

t∈T

|αt| ≥ |αm| −
∑

n>p

|αn| >
1

2
|αm| .

Thus, in either case, β 6= 0. However, by (2), θρ(a) = 0, which implies that β = 0.

From this contradiction we see that a = 0. Hence l1(S) is a subdirect product of

the algebras Aρ,i (ρ ∈ Λf (S); i = 1, 2, ..., kρ), as required.

Theorem 1. Let GX and SX denote, respectively, the free group and the free

semigroup on a nonempty set X. Then B(l1(GX)) = {0} and B(l
1(SX)) = {0}.

Proof: Note that SX can be regarded as a subsemigroup of GX . Let S be

an infinite subsemigroup of GX . It suffices to show that B(l
1(S)) = {0}.

Let ρ ∈ Λf (GX) and let Tρ := {wρ : w ∈ S}. Then Tρ is a subsemigroup of the

finite group GX/ρ and so is itself a finite group. Thus, by Maschke’s theorem,

C[Tρ] is semisimple. Write ρS := ρ ∩ (S×S). Then ρS is a congruence on S

and S/ρS ∼= Tρ. Hence ρS ∈ Λf (S) and C[S/ρS ] is semisimple. Let M := {ρS :

ρ ∈ Λf (GX)}. Since Λf (GX) is closed under finite intersections, so also is M.

Further, by [8, Theorem 8.18], GX is residually finite and so
⋂

{ρS : ρ∈Λf (GX)}=
⋂

{ρ : ρ ∈ Λf (GX)} ∩ (S×S) = ιS . Thus S is residually M-finite. Applying the

lemma, we see that B(l1(S)) = {0}.

By an inverse semigroup we mean a semigroup S such that

(∀ x ∈ S) (∃! x′ ∈ S) xx′x = x and x′xx′ = x′ .

A basic account of such semigroups is provided in [4, Chapter V]; for an extended

discussion, see [6].

Theorem 2. Let FIX denote the free inverse semigroup on a nonempty setX.

Then B(l1(FIX)) = {0}.
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Proof: Write S :=FIX . By [12, Theorem 3.6], S is residually finite. Further,

by [4, Proposition V.1.6], for all ρ ∈ Λf (S), S/ρ is a finite inverse semigroup and

so C[S/ρ] is semisimple [14, Theorem 4; 11, Theorem 4.4]. The result now follows
by the lemma.

We conclude with some remarks about the semigroup algebra F [S] of a semi-

group S over an arbitrary field F [13]. Theorems analogous to those above hold

for S a free group, a free semigroup or a free inverse semigroup, the analogue of

Theorem 1 being deducible from more general results of Jespers and Puczylowski

[5, Corollary 6 and Corollary 13].

To obtain these theorems, we may proceed as follows. First, note that

the lemma still holds if we replace ‘C[S/ρ]’ by ‘F [S/ρ]’ and ‘l1(S)’ by ‘F [S]’.
As in the proof of Theorem 1, consider an infinite subsemigroup S of GX . Choose

a prime p different from the characteristic of F and let Π := {ρ ∈ Λf (GX) :

GX/ρ is a p-group}. For ρ ∈ Π, let Tρ := {wρ : w ∈ S}. Then Tρ is a sub-

semigroup of the finite p-group GX/ρ and so is itself a finite p-group. Thus,

by Maschke’s theorem, F [Tρ] is semisimple. Further, S/ρS ∼= Tρ, where ρS :=

ρ ∩ (S×S). Now GX is residually Π-finite [8, Chapter 8, Problem 16]. Hence,

taking M := {ρS : ρ ∈ Π}, we see that S is residually M-finite. It follows from

the modified lemma that B(F [S]) = {0}. In particular, B(F [GX ]) = {0} and

B(F [SX ]) = {0} ([5]).

Next, let S := FIX , the free inverse semigroup on X. For a proper ideal T of

S we define the Rees congruence ρT on S by

(x, y) ∈ ρT ⇐⇒ x = y or x, y ∈ T .

The proof of [12, Theorem 3.6] shows that S is residually M-finite, where M :=

{ρ ∈ Λf (S) : ρ=ρT for a proper ideal T of S}. Further, by [12, Theorem 3.2(iii)],

S has only trivial subgroups. Hence, for all ρ ∈ M, S/ρ has only trivial sub-

groups and so F [S/ρ] is semisimple [14, 11]. The modified lemma now shows

that B(F [S]) = {0}.
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