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Abstract: In the context of classical general relativity, we consider the matter

Einstein equations for perfect fluids on Gowdy spacetimes with plane-symmetry. Such

spacetimes admit two commuting Killing vector fields and contain gravitational waves;

the fluid variable may exhibit shock waves. We establish the existence of a bounded

variation solution to the Cauchy problem, which is defined globally until either a true

singularity occurs in the geometry (e.g. the vanishing of the area of the 2-dimensional

space-like orbits of the symmetry group) or a blow-up of the energy density takes place.

1 – Introduction

Vacuum Gowdy spacetimes are inhomogeneous spacetimes admitting two com-

muting spatial Killing vector fields [7]. The existence of vacuum spacetimes with

Gowdy symmetry was established by Moncrief [12]. Much attention has been

focused on these solutions of the Einstein equations, which play an important

role in cosmology for instance. Numerical work was performed recently to un-

derstand the formation and properties of the singularities which arise even in the

vacuum. The dynamics of solutions and, in particular, the long-time asymptotics

of solutions have been found to be particularly complex [1]. In comparison, much

less emphasis has been put on matter models. Recently, in [3] the authors initi-
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ated a rigorous mathematical treatment of the coupled Einstein–Euler system on

Gowdy spacetimes. A Cauchy problem was considered in which the unknowns are

the density and velocity of the fluid together with the components of the metric

tensor. The local existence of a solution to the Cauchy problem in the class of

solutions with (arbitrary large) bounded total variation was proved. The forma-

tion of shock waves in the fluid is not an obstacle to the existence of solutions,

understood in a weak sense.

In the present paper we continue the analysis of [3] and establish a global

existence result: the solution of the Euler–Einstein equation is globally defined

until the geometry becomes truly singular or the sup norm of the density blows up.

Our result can be interpreted as a global stability result of the Gowdy spacetimes

in presence of matter allowing shock waves. For previous work in this direction

with a different matter model see [2].

2 – The Euler–Einstein system

In this section we present the model to be studied in this paper and explain

several basic properties. We are interested in the evolution of a compressible

perfect fluid in a plane-symmetric spacetime, under the assumption that the

metric has the polarized Gowdy symmetry, characterized by three scalar

coefficients a, b, c

ds2 = e2a (−dt2 + dx2) + e2b (e2c dy2 + e−2c dz2).(2.1)

That is, the only non-zero covariant components of the metric (gαβ)α,β=0,...,3 are

g00 = −e2a , g11 = e2a , g22 = e2b+2c , g33 = e2b−2c.

All variables are assumed to depend on the time variable t and the space variable

x, only. The coefficient e2b is essentially the area of the 2-surfaces of the group

of symmetry.

We consider perfect fluids with energy density µ > 0 and pressure p. These

thermodynamical variables are related via the equation of state of the fluid

p = p(µ).

Although the remaining results of this section do not depend on a specific choice

of the equation of state, we shall, in subsequent sections make use of the “ultra-

relativistic” equation of state where p = µ c2
s where the sound speed cs is a con-

stant with 0<cs<1. The 4-velocity vector (u
α)α=0,...,3 of the fluid is normalized
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to be of unit length

uα uα = −1,

where the Einstein convention on repeated indices is used and, as usual, indices

are raised and lowered with the metric, for instance

uα = gαβ uβ .

We then define the scalar velocity v and the relativistic factor ξ = ξ(v) by

(uα)α=0,...,3 = e−a ξ(1, v, 0, 0) , ξ = (1− v2)−1/2,

where it should be observed that |v|<1.

The matter is described by the energy-momentum tensor

Tαβ = (µ+ p)uαuβ + p gαβ ,(2.2)

from which we extract fields τ , S and Σ defined from the “first three” components

T 00 = e−2a
(
(µ+ p) ξ2 − p

)
=: e−2aτ,

T 01 = e−2a(µ+ p) ξ2v =: e−2aS,

T 11 = e−2a
(
(µ+ p) ξ2v2 + p

)
=: e−2aΣ.

(2.3)

We shall also need T 22 = pe−2(b+c) to compute the evolution equations. Note

that given µ and v (which we consider as our primary unknowns) it is easy to

determine the conservative variables τ , S and Σ. These calculations take place

in Minkowski spacetime, i.e., the expressions are independent of the geometry

variables a, b and c.

The Einstein field equations read

Gαβ = κTαβ ,(2.4)

where Gαβ is the Einstein tensor and κ is a normalization constant (of the order

of 1/c4
l ). Recall that the Einstein tensor is determined from the Ricci tensor

which itself depends upon second order derivatives of the metric coefficients.

By making explicit the equations (2.1)–(2.4) and after very tedious calculations

we arrive at the following constraint equations

2 at bt + 2 ax bx + b2t − 2 bxx − 3 b
2
x − c2

t − c2
x = κ e2a τ,

−2 at bx − 2 ax bt + 2 btx + 2 bt bx + 2 ct cx = κ e2a S,
(2.5)
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and evolution equations for the geometry

att − axx = b2t − b2x − c2
t + c2

x +
κ

2
e2a (−τ +Σ− 2 p),

btt − bxx = −2b2t + 2b
2
x +

κ

2
e2a (τ − Σ),

ctt − cxx = −2 bt ct + 2 bx cx.

(2.6)

Note that the evolution equations contain second-order time derivatives of a, b

and c, whereas the constraint equations contain only zero- or first-order time

derivatives.

The evolution equations for the fluid are a consequence of the Einstein field

equations and are obtained by expressing the Bianchi identities

Gαβ
;β = 0

(satisfied by any metric) in terms of the energy-momentum tensor

Tαβ
;β = 0,

where ;β denotes covariant differentiation. This leads us to the Euler equations

for the fluid
τt + Sx = T1,

St +Σx = T2,
(2.7)

in which the source terms are

T1 = −τ (at + 2bt)− S (2ax + 2bx)− Σ at − 2 p bt,

T2 = −τax − S (2 at + 2 bt)− Σ (ax + 2bx) + 2 p bx.
(2.8)

Note that the principal part of (2.7) (obtained by replacing T1 and T2 by 0) is

nothing but the special relativistic Euler equations, which model the dynamics

of the fluid in flat Minkowski spacetime. Note also T1= T2=0 precisely when a,

b and c are constants, in which case (2.1) becomes the flat metric.

This completes the description of the matter Einstein equations under study

in the present paper. Let us observe a key property of the constraints. By defining

H := e2b
(
2 at bt + 2 ax bx + b2t − 2 bxx − 3 b

2
x − c2

t − c2
x − κ e2a τ

)
,

K := e2b
(
−2 at bx − 2 ax bt + 2 btx + 2 bt bx + 2 ct cx − κ e2a S

)
,

(2.9)

the equations (2.5) are equivalent to

H = K = 0.(2.10)
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It is straightforward to check that if equations (2.6) and (2.7) hold everywhere

then H and K satisfy the linear hyperbolic system

Ht +Kx = 0,

Kt +Hx = 0.
(2.11)

Thus if the constraint equations (2.5) (that is, (2.10)) are satisfied at t = 0 and if

we then solve the evolution equations (2.6) and (2.7), then the constraint equa-

tions are satisfied for all times t ≥ 0.

3 – Existence result

We propose here to reformulate the Einstein–Euler equations in the form of

a nonlinear hyperbolic system of balance laws with integral source-term, in the

variables (µ, v) and

w := (at, ax, βt, βx, ct, cx),

where β = e2b. It is convenient to also set α = e2a. The system of equations for

the fluid variables has the form

τ(µ, v)t + S(µ, v)x = T1(µ, v, w, α, b),

S(µ, v)t +Σ(µ, v)x = T2(µ, v, w, α, b),
(3.1)

in which the source terms are

T1(µ, v, w, α, b) = −τ(µ, v) (w1 + e−2b w3)− S(µ, v) (2w2 + e−2b w4)

− Σ(µ, v)w1 − p(µ) e−2b w3,

T2(µ, v, w, α, b) = −τ(µ, v)w2 − S(µ, v) (2w1 + e−2b w3)

− Σ(µ, v) (w2 + e−2b w4) + p(µ) e−2b w4.

(3.2)

Choosing the equation of state to be p = µc2
s, the evolution equations for the

geometry read

w1t − w2x =
e−4b

4
(w2

3 − w2
4)− w2

5 + w2
6 −

κ

2
(1 + c2

s)αµ,

w2t − w1x = 0,

w3t − w4x = κ (1− c2
s)αe

2b µ,

w4t − w3x = 0,

w5t − w6x = e−2b (−w3 w5 + w4 w6),

w6t − w5x = 0,

(3.3)
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while the constraints are

w3x = D(µ, v, w, α, b)

= w1 w4 + w2 w3 +
e−2b

2
w3 w4 − 2e

2b w5 w6 + κα e2b S(µ, v),

w4x = E(µ, v, w, α, b)

= w1 w3 + w2 w4 +
e−2b

4
(w2

3 + w2
4)− e2b (w2

5 + w2
6 + κα τ(µ, v)).

(3.4)

Moreover, the functions α, b (and a, β) are determined by imposing that

lim
x→−∞

(a, b, c) = (0, 0, 0)

thus

α(t, x) = e2a(t,x) , a(t, x) =

∫ x

−∞
w2(t, y) dy,

b(t, x) =
1

2
lnβ(t, x) , β(t, x) = 1 +

∫ x

−∞
w4(t, y) dy.

(3.5)

Obviously, we are interested in solutions such that β remains positive.

The equations (3.3) consist of three sets of two equations associated with

the propagation speeds ±1, the speed of light (after normalization). The left-

hand sides of (3.1) are the standard relativistic fluid equations in a Minkowski

background, with wave speeds

λ± =
v ± cs
1± v cs

.

Note that λ−< λ+ for all v with |v| < 1. To formulate the initial-value problem

it is natural to prescribe the values of µ, v, w on the initial hypersurface at t = 0,

denoted by (µ0, v0, w0), and to set

α0(x) = e2a0(x) , a0(x) =

∫ x

−∞
w0

2(y) dy,

b0(x) =
1

2
lnβ0(x) , β0(x) = 1 +

∫ x

−∞
w0

4(y) dy.
(3.6)

Our main result is the following:

Theorem 3.1. Consider the (µ, v, w)-formulation of the Einstein–Euler equa-

tions on a polarized Gowdy spacetime with plane-symmetry and restrict attention

to perfect fluids governed by the linear pressure law

p(µ) = c2
s µ , cs ∈ (0, 1),(3.7)

where cs > 0 denotes the sound speed.
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Let the initial data (µ0, v0, w0) be functions with bounded total variation,

TV (µ0, v0, w0) <∞,

satisfying the constraints (3.4). Suppose also that the corresponding functions

α0, b0 given by (3.6) are measurable and bounded,

sup |(α0, b0)| <∞.

Then the Cauchy problem associated with (3.1)–(3.5) admits a solution µ, v, w

(in the sense of distributions) which are measurable and bounded functions such

that for some increasing function C(t)

TV (µ, v, w)(t) + sup |(α, b)(t, ·)| ≤ C(t) , t ≥ 0,

and are defined up to a maximal time T ≤ ∞. If T <∞ then either the geometry

variables α, b given by (3.5) blow up, that is:

lim
t→T

(
sup

R
|α(t, ·)|+ |b(t, ·)|

)
=∞,

or the energy density blows up:

lim
t→T

sup
R
|µ(t, ·)| =∞.

Hence, the solution exists until either a singularity occurs in the geometry

(e.g. the area β of the 2-dimensional space-like orbits of the symmetry group van-

ishes) or the matter collapses to a point. To our knowledge this is the first global

existence result for the Euler–Einstein equations on spacetimes with Gowdy sym-

metry. If a shock wave forms in the fluid, the functions µ, v will be discontinuous

and, as the consequence of (3.4), w3x= βtx and w4x= βxx might also be discon-

tinuous. In fact, Theorem 3.1 allows not only such discontinuities in second-order

derivatives of the geometry components (i.e. at the level of the curvature of the

metric), but also discontinuities in the first-order derivatives which propagate at

the speed of light. The latter correspond to Dirac distributions in the curvature

of the metric.

Remark 3.2. 1. The first results on shock waves and the Glimm scheme in

special and general relativity are due to Smoller and Temple [13] (flat Minkowski

spacetime) and Groah and Temple [8, 9] (spherically symmetric spacetimes).

The novelty in [3] and in the present paper is the generalization to a model

allowing gravitational waves in addition to the shock waves.
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2. It would be interesting to extend Theorem 3.1 in the following direction.

It was checked in [12] that, when the initial (Riemannian) metric is close to the

flat metric, the equations for a vacuum, polarized Gowdy spacetime have actually

globally defined solution up to time t = +∞ (where a physical singularity is

expected). It is natural to ask the question whether such Gowdy spacetimes are

globally stable when matter is included. It is conceivable that if the geometry is

almost flat initially and the density is small and supported in a small compact

interval (or decay rapidly at spatial infinity), the weak solution of the Euler–

Einstein system is actually globally defined in time. Such a result would be

consistent with theoretical results [5] and numerical experiments obtained with

spherically symmetric spacetimes [10].

4 – Glimm scheme and uniform estimates

We follow the notation and the general strategy in [3]. The main difference

with [3] is that we are not introducing an augmented system for the second order

derivatives, and we are not writing a separate equation for the component a of the

metric. The main new difficulty is to establish uniform bounds for the geometry

variables.

The Glimm scheme for a general hyperbolic system of the form (u = h(µ, v, w)

being the conservative variables)

∂tu+ ∂xf(u) = g(u, α, b),(4.1)

is decomposed into a step based on solving the Riemann problem for the homo-

geneous system

∂tu+ ∂xf(u) = 0

and a step based on solving the ordinary differential equation

∂tu = g(u, α, b).

Given a vector u∗ and constants α, b we denote by u(t) = St(u∗, α, b) the solution

of
u′(t) = g(u(t), α, b) , t ≥ 0,

u(0) = u∗.
(4.2)

Consider first the Riemann problem. In our formulation (3.1)–(3.5) of the

Einstein–Euler system, the source-term depends on the integral quantities α, b,
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which should be updated at each discrete time. We take them to be constants in

each cell of the mesh, as will be defined shortly.

Given two constant vectors ul, ur, a point (t∗, x∗), and some constants α, β,

the generalized Riemann problem is the Cauchy problem for the system (4.1)

with initial data

u(t∗, x) =

{
u−, x < x∗,

u+, x > x∗.
(4.3)

The classical Riemann problem is obtained by neglecting the source term g(u, α, b);

let us denote its solution by uC(t, x;u−, u+; t∗, x∗). Let u
G(t, x;u−, u+, α, b; t∗, x∗)

be the approximate solver of the generalized Riemann problem defined for all

t > t∗ and x ∈ R by

uG(t, x;u−, u+, α, b; t∗, x∗) = uC(t, x;u−, u+; t∗, x∗)

+

∫ t−t∗

0
g
(
Sτu

C(t, x;u−, u+; t∗, x∗), α, b
)
dτ.

(4.4)

Observe that uG at a given time t only depends upon uC at the same time t.

Our generalization of the Glimm method is based on the approximate Rie-

mann solver just introduced. Let s and r denote time and space mesh lengths

satisfying s/r < 1, the ratio s/r being kept constant while r, s → 0. Let a =

(ak)k=0,1,... be an equidistributed sequence in (−1, 1). We define an approximate

solution ur = ur(t, x) of the general Cauchy problem consisting of the system

(4.1) and prescribed initial data u0:

u(0, x) = u0(x) , x ∈ R.(4.5)

To u0 = h(µ0, v0, w0) we also associate the function α0 and b0 determined by

(3.6).

First, ur(0, x) is defined to be a piecewise constant approximation of u
0, say

ur(0, x) = u0
(
(h+ 1)r

)
, x ∈ [hr, (h+2)r), h even.(4.6)

The piecewise constant functions αr, br are defined in the first time slab by

αr(t, x) = e
2
∫ (h+1)r

−∞
w2,r(0,y) dy

,

br(t, x) =
1

2
ln

(
1 +

∫ (h+1)r

−∞
w4,r(0, y) dy

)
, x ∈ [hr, (h+2)r), t ∈ [0, s).

If ur(t, x) is known for t < ks for some integer k ≥ 0 and if αr, βr are known

for all t < (k+1)s we set

ur(ks+, x) = ur

(
ks−, (h+1+ak)r

)
, x ∈ [hr, (h+2)r), k+h even.(4.7)
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Then, in each region ks ≤ t < (k+1)s, (h−1)r ≤ x < (h+1)r (k+h even), the

function ur is defined as the approximate solution to the generalized Riemann

problem with data ur(ks, (h−1)r), ur(ks, (h+1)r) and α(ks, hr) centered at the

point (ks, hr), that is

ur(t, x) = uG
(
t, x; ur(ks, (h−1)r), ur(ks, (h+1)r); ks, hr

)
,

t ∈ [ks, (k+1)s), x ∈ [(h−1)r, (h+1)r), k+h even.
(4.8)

The functions αr, βr are then defined by

αr(t, x) = e
2
∫ (h+1)r

−∞
w2,r((k+1)s,y) dy

,

br(t, x) =
1

2
ln

(
1 +

∫ (h+1)r

−∞
w4,r((k+1)s, y) dy

)
,

x ∈ [hr, (h+2)r), t ∈ [(k+1)s, (k+2)s).

This completes the description of our generalization to the Glimm scheme.

We are now in position to state our convergence result:

Theorem 4.1. Let the initial data u0 in (4.5) be a function with bounded

variation and α0, b0 be bounded functions. Consider the approximate solutions

ur = (µr, vr, wr) constructed by the generalized version of the Glimm scheme,

as defined above. Then the solutions are well-defined (for all r) on any interval

[0, T ] in which the variables µr, αr, br satisfy the uniform bound

sup
t∈[0,T ], x∈R

µr + |αr|+ |br| ≤ C1(4.9)

for some constant C1 independent of r. Moreover, there exists constants c2, C2>0

(depending on C1 and T ), such that the approximate solutions ur = ur(t, x) sat-

isfies for all t ∈ [0, T ] and x ∈ R

c2 ≤ µr(t, x) ≤ C2 , |vr(t, x)| ≤ 1− c2,(4.10)

|wr(t, x)| ≤ C2,(4.11)

TV
(
(µr, vr, wr)(t)

)
≤ C2.(4.12)

This theorem can be proven along similar lines as the ones in [3] and therefore

we will only indicate the key steps and stress the differences with [3]. There are

three main issues:
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• First of all we must check that, as long as the condition (4.9) hold, no

further singularity can occur in the approximate solution. That is, we

must check that the density µ remains bounded away from the vacuum,

corresponding to µ = 0), and that the velocity v is bounded away from the

speed of light ±1. Both values are singularities to be avoided in the fluid

equations.

• Second, we must derive a uniform bound on the amplitude of the solution,

i.e. in addition to the bounds above, we must get an upper bound for the

density together with the estimate (4.11).

• Most importantly, we must control the total variation of the solution ur.

See the discussion at the end of this section.

First, the derivation of (4.10)–(4.11) follows from the following key observation

concerning the source-term.

Lemma 4.2. For α, b fixed, the trajectories of the ordinary differential equa-

tion (4.2) are globally defined in time unless the energy density µ blows up.

In particular, the fluid variables remain bounded away from the singularities

µ = 0 and v = ±1.

Proof: Given constants α, b, we consider the ordinary differential equations

τ(µ, v)t = T1(µ, v, w, α, b),

S(µ, v)t = T2(µ, v, w, α, b),

coupled with

w1t =
e−4b

4
(w2

3 − w2
4)− w2

5 + w2
6 −

κ

2
(1 + c2

s)αµ,

w2t = 0ϕ

w3t = κ (1− c2
s)α e2b µ,

w4t = 0,

w5t = e−2b (−w3 w5 + w4 w6),

w6t = 0,

We can derive a system for µ, v:

µt = f1(µ, v),

vt = f2(v),
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where

f1(µ, v) := −µ
1 + c2

s

1− c2
s v

2

(
(1− v2)w1 + e−2b (w3 + v w4)

)
,

f2(v) :=
1− v2

1− c2
s v

2

(
− v (1− c2

s)w1 − (1− c2
s v

2)w2 + v c2
s e
−2b (w3 + v w4)

)
.

The function f2(v) depends smoothly upon v∈(−1, 1) and vanishes at v=±1.

Trajectories t 7→ v(t) cannot exit the interval (−1, 1). On the other hand, the

function f1(µ, v) is linear in µ,

f1(µ, v) = f̃1(v)µ,

where f̃1(v) is smooth for |v| < 1, and in particular f1 vanishes at µ = 0.

It follows that µ stays positive. Hence we have

µ > 0 , −1 < v < 1.

To see that (µ, v, w) do not blow up in finite time we consider the variables

z1 = log

(
1 + v

1− v

)
,

z2 = log µ.

which satisfy

z1t =
2

1− c2
sv

2

(
− v(1− c2

s)w1 − (1− c2
sv

2)w2 + v c2
se
−2b (w3 + v w4)

)
,

z2t = −
1 + c2

s

1− c2
sv

2

(
(1− v2)w1 + e−2b (w3 + v w4)

)
,

where v = v(z1) ∈ (−1, 1). Note that the coefficients in front of w1, w2, w3, w4

are uniformly bounded a priori.

The functions w2, w4, w6 are obviously constant, so, for some constants C1, C2,

etc, and some uniformly bounded functions B1(t), B2(t) which need not be posi-

tive, we end up with the system

w1t = C1 w
2
3 − w2

5 + C2 e
z2 + C3,

w3t = C4 e
z2 ,

w5t = C5 w3 w5 + C6,

z1t = B1(t)w1 +B2(t)w3 +B3(t),

z2t = B4(t)w1 +B5(t)w3 +B6(t).
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Suppose that the density variable z2 remains bounded, and let us check that the

other components of the solution cannot blow up. First of all, it follows from

the w3-equation that w3 is bounded or all times, and the above system takes the

form
w1t = −w2

5 +B7(t),

w5t = B8(t)w5 + C6,

z1t = B1(t)w1 +B9(t),

z2t = B4(t)w1 +B10(t).

The equation for w5 is affine in w5 and thus w5 cannot blow up in finite time.

In turn the w1-equation yields also a uniform bound for w1. Finally, the right-

hand sides of the equations for z1, z2 are bounded in t, and therefore z1, z2 cannot

blow up. This completes the proof of Lemma 4.2.

Second, let us emphasize that the system (4.1) under consideration has the

form

∂th
1(µ, v) + ∂xf

1(µ, v) = g1(u, α, b),(4.13)

∂th
2(w) + ∂xf

2(w) = g2(u, α, b),(4.14)

in which the map f2 is linear. The derivation of the uniform total variation bound

is based on the following two key observations.

On one hand, the homogeneous system associated with the fluid variables

(µ, v),

∂th
1(µ, v) + ∂xf

1(µ, v) = 0,

is the Euler system in Minkowski spacetime, which enjoys the following total

variation diminishing property: if (t, x) 7→ (µr, vr) is an (approximate) solution

(generated by a Glimm scheme) then TV (µr(t)) is a non-increasing function t

(cf. [13]). Moreover, the total variation TV (vr(t)) is controled also by TV (µr(t)).

In turn, for the full equations with source-terms (4.13), we can write (for some

constant C > 0)

TV ((µr, vr)(t)) ≤ C TV ((µr, vr)(0)) + C

∫ t

0
TV (g1(ur, αr, br)(t

′)) dt′.

Hence, since the solutions are already known to be uniformly bounded in ampli-

tude, we obtain

TV ((µr, vr)(t)) ≤ C TV ((µr, vr)(0))

+ C

∫ t

0

(
TV (µr, vr)(t

′) + TV (wr)(t
′)
)
dt′.

(4.15)
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On the other hand, the homogeneous system associated with the geometry

variables,

∂th
2(w) + ∂xf

2(w) = 0,

consists of linear hyperbolic equations, and it is immediate that the total variation

of the characteristic variables w1 ±w2, etc, is conserved in time. In turn, for the

full equations with source-terms we obtain

TV (wr(t)) ≤ C TV (wr(0)) + C

∫ t

0

(
TV (µr, vr)(t

′) + TV (wr)(t
′)
)
dt′.(4.16)

Applying Gronwall’s lemma to (4.15)–(4.16) we conclude that there exists a

constant C > 0 so that

TV ((µr, vr)(t))+TV (wr(t)) ≤ C eC t
(
TV ((µr, vr)(0))+TV (wr(0))

)
, t ∈ [0, T ],

which completes the derivation of the uniform total variation bounds.

5 – Uniform estimates

5.1. Vacuum Einstein equations

In this section we focus our attention on the Einstein equations in vacuum.

Taking the coupling constant κ = 0 in (2.6) we find the evolution equations for

the Gowdy metric in the vacuum

att − axx = b2t − b2x − c2
t + c2

x,

btt − bxx = −2b2t + 2b
2
x,

ctt − cxx = −2 bt ct + 2 bx cx.

(5.1)

The b-equation decouples from the a- and c-equation. By defining β := e2b, so

that βt = 2 bt e
2b and βtt = (2 btt + 4 b

2
t ) e

2b, the second equation in (4.1) takes

the form

βtt − βxx = 0,(5.2)

a linear wave equation. This motivates the choice of β (and its first order deriva-

tives) as one of the main unknowns in the system (3.1)–(3.5).
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It is easily seen that given some initial data β0
t and β0

x at time t = 0, the

solution β of the initial-value problem associated with (4.5) may vanish in finite

time unless the initial data are sufficiently close to the flat metric, that is β0
t

and β0
x are sufficiently small. This shows that, in Theorem 3.1, we could not

exclude that the function b could blow up (i.e. tends to −∞) in finite time.

As long as the solution β of (5.2) is positive, we can plug the expression of b in

the right-hand side of the c-equation in (5.1) and prescribe arbitrary initial data

c0
x, c

0
t ; this allows us to determine the solution c uniquely. Finally, after b and c

are computed, the first equation in (5.1) determines uniquely the function a from

any given initial data.

In the above discussion, only the evolution equations were considered and

the contraint equations did not play a role. By taking the contraint equations

and suitable boundary conditions at x = ±∞ into account, it might be possible

to exclude the blow-up of b and to obtain globally defined even if b is “large”

initially. To this end the following reformulation of the equation, based on the

characteristic coordinates x ± t, is useful to derive uniform estimates on the

solutions.

Define u := x+ t and v := x− t, so that

auv = bu bv − cu cv,

buv = −2bu bv,

cuv = −bu cv − bv cu,

while the constraints can be reduced to

buu = 2 au bu − b2u − c2
u,

bvv = 2 av bv − b2v − c2
v.

Defining d = b+ 2 a we have

duv = −2 cu cv,

while the constraints become

buu = −2 b2u + du bu − c2
u,

bvv = −2 b2v + dv bv − c2
v.
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Defining β := e2b we obtain βuv = 0 and also

β(u, v) = f(u) + g(v),

and therefore b, c, d satisfy

fuu = βuu = du fu − 2(f + g) c2
u,

gvv = βvv = dv gv − 2(f + g) c2
v,

cuv = −bu cv − bv cu = −
(fu cv + gv cu)

2 (f + g)
,

duv = −2cu cv.

(5.3)

To illustrate how uniform bounds can be derived from (5.3) let us observe for

instance that

(e−d fu)u = −2 e
2b−d c2

u < 0,

(e−d gv)v = −2 e
2b−d c2

v < 0.

Therefore, by integrating from the initial data line t = 0, that is u = v, we arrive

at the upper bounds

(e−d fu)(u, v) ≤ C , (e−d gv)(u, v) ≤ C,(5.4)

where the constant C > 0 depends upon initial data at t = 0 only.

5.2. Sup norm and total variation bounds

One open problem is to show that no blow-up can occur in µ — unless the

variables a, b themselves blow up. We will derive here some estimates that should

be useful to tackle this issue. Let us begin by discussing the b-equation in (2.6).

We introduce the change of unknown β := e2b and set w = κ e2a (τ −Σ), so that

βtt − βxx = w β.(5.5)

Note that w is proportional to the density µ. We introduce

β′ = βt + βx , β′′ = βt − βx,

and rewrite (5.5) as a system of two equations

β′t − β′x = w β > 0,

β′′t + β′′x = w β > 0,
(5.6)
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in which β can be recovered from β ′, β′′ by

β(t, x) = 1 +
1

2

∫ x

−∞

(
β′(t, y)− β′′(t, y)

)
dy,(5.7)

provided limx→−∞ β(t, x) = 1.

Given Cauchy data β′0 and β′′0 (or equivalently β0, β0
t ) we obtain

β′(t, x) = β′0(x+ t) +

∫ t

0
(w β)(s, x+ t− s) ds,

β′′(t, x) = β′′0 (x− t) +

∫ t

0
(w β)(s, x− t+ s) ds,

(5.8)

thus

2βt(t, x) = β′0(x+ t) + β′′0 (x− t)

+

∫ t

0

(
(w β)(s, x− t+ s) + (w β)(s, x+ t− s)

)
ds.

(5.9)

On the other hand, we can write

β(t, x) = β0(0, x) +

∫ t

0
βt(s, x) ds,

and, therefore,

|β(t, x)|+ 2 |βt(t, x)| ≤ |β0(0, x)|+ |β
′
0(x+ t)|+ |β′′0 (x− t)|+

∫ t

0
|βt(s, x)| ds

+ supw

∫ t

0

(
|β|(s, x− t+ s) + |β|(s, x+ t− s)

)
ds

thus

sup |β(t, ·)|+ 2 sup |βt(t, ·)| ≤ 3 sup |β0, β0
t , β

0
x|+

∫ t

0
sup |βt(s, ·)| ds

+ 2 (supw)

∫ t

0
sup |β| ds.

By applying Gronwall’s inequality we deduce the sup norm estimate

sup |β(t, ·)|+ 2 sup |βt(t, ·)| ≤ 3 e
2(1+supw) t sup |β0, β0

t , β
0
x|.(5.10)
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To control the sup norm of βx we return to (5.6) and observe that

|βx(t, x)| ≤ |βt(t, x)|+ |β
′′
0 (x− t)|+

∫ t

0
w |β|(s, x− t+ s) ds,

thus using (5.10)

sup |βx(t, ·)| ≤ 3 e2(1+supw) t sup |β0, β0
t , β

0
x|

+ sup |β0
t |+ sup |β

0
x|+ (supw)

∫ t

0
3 e2(1+supw)s sup |β0, β0

t , β
0
x| ds,

which yields the sup norm estimate

sup |βx(t, ·)| ≤ 6 e
2(1+supw) t sup |β0, β0

t , β
0
x|.(5.11)

We can also control the total variation of βt and βx, as follows. By differen-

tiating in x the identity (5.5) derived earlier for βt we get

TV (βt(t)) ≤ TV (β0
t )+TV (β0

x)+

∫ t

0

(
(supw)TV (β(s))+(sup |β(s)|)TV (w(s))

)
ds.

The function βx satisfies the same estimate. On the other hand we can write

TV (β(t)) ≤ TV (β0) +

∫ t

0
TV (βt(s)) ds,

therefore

TV (β, βt, βx)(t) ≤ TV (β0) + 2TV (β0
t ) + 2TV (β0

x)

+ (1+ supw)

∫ t

0

(
TV (β, βt, βx)(s) + (sup |β(s)|)TV (w(s))

)
ds.

Using the Gronwall inequality and the sup norm estimate (5.9) for β we arrive

at the total variation estimate

TV (β, βt, βx)(t) ≤ 2 e(1+supw) TV (β0, β0
t , β

0
x)

+ sup
s

TV (w(s)) sup |β0, β0
t , β

0
x|

e2(1+supw)t − e−2(1+supw)t

2(1 + supw)
.

(5.12)

We observe that the upper-bounds in (5.10)–(5.12) depend upon the sup norm

and the total variation of w. Since w = κ e2a (τ−Σ) and since τ−Σ is proportional

to the density µ, it follows that the sup norm of w is controled by the sup norms

of ea and µ, and that the total variation of w is controlled if in addition we control

the total variation of a and µ.
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Let us now turn attention to the a-equation in (2.6). Setting

z :=
κ

2
e2a (τ − Σ+ 2 p) ≥ 0,

which is proportional to the density µ, we find

att − axx = b2t − b2x − c2
t + c2

x − z.(5.13)

Setting α′ := at + ax and α′′ := at − ax and Cauchy data α′0 and α′′0 being given

we obtain

α′(t, x) = α′0(x+ t) +

∫ t

0
(b2t − b2x − c2

t + c2
x − z) (s, x+ t− s) ds,

α′′(t, x) = α′′0(x− t) +

∫ t

0
(b2t − b2x − c2

t + c2
x − z) (s, x− t+ s) ds,

(5.14)

which allows us to determine the time derivative

2 at(t, x) = α′′0(x− t) + α′0(x+ t) +

∫ t

0
(b2t − b2x − c2

t + c2
x − z) (s, x+ t− s) ds

+

∫ t

0
(b2t − b2x − c2

t + c2
x − z) (s, x− t+ s) ds,

(5.15)

and therefore

2 a(t, x) = 2 a0(x) +

∫ t

0

(
α′′0(x− s) + α′0(x+ s)

)
ds

+

∫ t

0

∫ t

0
(b2t − b2x − c2

t + c2
x − z) (s, x+ t′ − s) ds dt′

+

∫ t

0

∫ t

0
(b2t − b2x − c2

t + c2
x − z) (s, x− t′ + s) ds dt′.

(5.16)

Taking advantage of the fact that z is non-negative we obtain the upper-bound

sup
x

a(t, x) ≤ ‖a0‖L∞(R) + (1/2) ‖α
′
0‖L∞(R)

+ (1/2) ‖α′′0‖L∞(R) + (1/2) I(t),
(5.17)

where

I(t) = sup
x

∑

±

∫ t

0

∫ t

0

(
|b2t − b2x|+ |c

2
t − c2

x|
)
(s, x± (t′−s)) ds dt′.

are integrals over a characteristic square of length t.
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This inequality shows that the function ea (arising in the right-hand side of

the evolution equations) remains globally bounded provided we can control I(t).

Using (5.16)–(5.17) we can also derive sup norm estimates for a, at, ax

sup |a(t, ·)| ≤ sup |a0|+ t sup |a0
t , a

0
x|+ t2 sup |bt, bx, ct, cx|

2 + t2 sup |z|(5.18)

and
sup |(at, ax)(t, ·)| ≤ sup |a

0
t , a

0
x|+ t sup |bt, bx, ct, cx|

2 + t sup |z|.(5.19)

We can also write for instance

TV (at(t)) ≤ TV (a0
t ) + TV (a0

x)

+

∫ t

0

(
(sup |bt|)TV (bt) + (sup |bx|)TV (bx)

+ (sup |ct|)TV (ct) + (sup |cx|)TV (cx) + TV (z)
)

ds,

so that using again Gronwall’s inequality, the total variation of a, at, ax can be

estimated in the form

TV (a, at, ax)(t) ≤ C
(
t, sup

s
TV (w(s)), supw

)
.(5.20)

The bounds for the function c are analogous.

In summary, we are able to bound the sup norm and total variation of a, b, c

and their first order derivatives, provided similar bounds are available on the

density and the integral term I(t) can be controlled.

In view of formula (5.8), the integral term (arising in I(t))

Iβ :=
∑

±

∫ t

0

∫ t

0
|β2

t − β2
x| (s, x± (t

′−s)) ds dt′

=
∑

±

∫ t

0

∫ t

0
|β′β′′| (s, x± (t′−s)) ds dt′.

can be estimated as follows:
∫ t

0

∫ t

0
|β′β′′| (s, x± (t′−s)) ds dt′

≤
∑

±

∫ t

0

∫ t

0

∣∣∣∣β
′
0(x± (t

′−s)−s) +

∫ s

0
(w β) (s′, x± (t′−s)−s+s′) ds′

∣∣∣∣
∣∣∣∣β
′′
0 (x± (t

′−s)+s) +

∫ s

0
(w β) (s′, x± (t′−s)+s−s′) ds′

∣∣∣∣ ds dt
′

≤ C1(t) + C2(t)

∫ t

0
sup |w β|(s) ds,

where the expressions C1(t), C2(t) depend only on the initial data.
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Finally we note that it is an open problem to derive a uniform control for

supx a(t), that is a uniform control of ea. The main difficulty comes from the

terms w β above, since w contains ea, which may lead to blow-up of a in finite

time.
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