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Abstract: The tropical variety defined by linear equations with constant coeffi-

cients is the Bergman fan of the corresponding matroid. Building on a self-contained

introduction to matroid polytopes, we present a geometric construction of the Bergman

fan, and we discuss its relationship with the simplicial complex of nested sets in the

lattice of flats. The Bergman complex is triangulated by the nested set complex, and the

two complexes coincide if and only if every connected flat remains connected after con-

tracting along any subflat. This sharpens a result of Ardila–Klivans who showed that the

Bergman complex is triangulated by the order complex of the lattice of flats. The nested

sets specify the De Concini–Procesi compactification of the complement of a hyperplane

arrangement, while the Bergman fan specifies the tropical compactification. These two

compactifications are almost equal, and we highlight the subtle differences.

1 – Introduction

Let V be an r-dimensional linear subspace of the n-dimensional vector space

C
n over the field C of complex numbers. The amoeba of V is the set of all vectors

of the form (
log|v1|, log|v2|, ..., log|vn|

)
∈ R

n ,

where (v1, ..., vn) runs over all vectors in V whose coordinates are non-zero.

The asymptotic behavior of the amoeba is given by an r-dimensional polyhe-

dral fan in R
n. This fan was introduced for arbitrary algebraic varieties V in C

n

in George Bergman’s seminal paper [3]. He called it the logarithmic limit set of V ;
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we shall use the term Bergman fan of V . The study of such polyhedral spaces is

now an active area of research, known as tropical geometry [14, 18, 19, 21]. This

paper is concerned with the tropical variety defined by a system of linear equa-

tions with constant coefficients. The case of linear equations with coefficients in

a power series field is treated in [18]. Bergman fans are the local building blocks

of Speyer’s tropical linear spaces.

Our starting point is the observation of [20, §9.3] that the Bergman fan of a

linear space V depends only on the associated matroid. One way to specify this

matroid is by its collection of circuits C. These are the minimal sets arising as

supports of linear forms
∑

i∈C aixi which vanish on V . Introductory references

on matroids include [5, 16, 24].

Let M be any matroid of rank r on the ground set [n] = {1, 2, ..., n}. The

Bergman fan B̃(M) is the set of all vectors w = (w1, ..., wn) ∈ R
n such that, for

every circuit C of M , the minimum of the set
{
wi | i ∈ C } is attained at least

twice. Note that B̃(M) is invariant under translation along the line R(1, ..., 1) in

R
n and under positive scaling. Hence we lose no information restricting our at-

tention to the intersection of the fan B̃(M) with the unit sphere in the hyperplane

orthogonal to the line R(1, ..., 1) in R
n:

(1.1) B(M) := B̃(M) ∩ S with S =

{
w ∈ R

n |
n∑

i=1

wi = 0 and
n∑

i=1

w2
i = 1

}
.

The spherical set B(M) is called the Bergman complex of the matroid M . The

terms “fan” and “complex” are justified by our discussion of matroid polytopes in

Section 2. In fact, B̃(M) has a canonical decomposition as a subfan of the normal

fan of the matroid polytope, and, accordingly, B(M) is a complex of spherical

polytopes. Example 2.8 reveals that the faces of the Bergman complex are not

always simplices.

In Section 3 we introduce the nested set complexes of an arbitrary lattice.

If the lattice is the Boolean lattice 2[r] of all subsets of [r] = {1, 2, ..., r} then

each nested set complex arises as the boundary of a simplicial (r − 1)-polytope.

The simple polytope dual to that simplicial polytope is constructed as the

Minkowski sum of faces of the (r − 1)-simplex; we use this to develop a poly-

hedral theory of local Bergman complexes.

In Section 4 we apply the local theory of Section 3 to the lattice of flats LM of

a rank r matroid M , and we derive the theorem that every nested set complex of

LM is a unimodular triangulation of the Bergman complex B(M). We examine

the local structure of this triangulation in matroid-theoretic terms, thus refining

the results in [1].
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Among all nested set complexes of a matroidM , there is always a minimal one,

whose vertices are indexed by the connected flats of M . Section 5 is concerned

with this minimal nested set complex. It is generally quite close to the Bergman

complex B(M), and we show that they are equal if and only if every contraction

of a connected flat remains connected. We also discuss algorithmic tools for

computing the Bergman complex along with its triangulation by minimal nested

sets, and we discuss some non-trivial examples.

In Section 6 we relate our combinatorial results to algebraic geometry. The

space X =V ∩(C∗)n is the complement of an arrangement of n hyperplanes in

complex affine r-space. The nested set complex specifies the wonderful compact-

ification of X, due to De Concini and Procesi [7], while the Bergman complex

specifies the tropical compactification of X, due to Tevelev [21]. The subdivi-

sion of Section 4 induces a canonical morphism from the former onto the latter.

We describe this morphism geometrically.

We close the introduction with two examples where our complexes are one-

dimensional.

Example 1.1 (n = 6, r = 3). Let M be the graphical matroid of the com-

plete graph K4 on four vertices. Here the nested set complex coincides with

the Bergman complex, and it equals the Petersen graph, as depicted in Figure 2

below. When passing to the order complex of LM , three of the edges are subdi-

vided into two, so the order complex is a graph with 13 vertices and 18 edges.

For connections to phylogenetics see [1, §3].

Example 1.2 (n = 5, r = 3). Consider the graph gotten fromK4 by remov-

ing one edge, and let M ′ be the corresponding graphic matroid. The Bergman

complex B(M ′) is the complete bipartite graph K3,3. Its six vertices are the two

3-cycles and the four edges adjacent to the missing edge. One of the nine edges

connects the two vertices indexed by the two 3-cycles. In the nested set complex

of M ′ that edge is further subdivided by one vertex, corresponding to the edge

of K4 which is disjoint from the missing edge. This example appeared in [20,

Example 9.14] and we shall return to it in Example 3.3.

2 – The matroid polytope and the Bergman complex

We start with a brief introduction to matroid theory with an emphasis on

polyhedral aspects. Let M be a family of r-element subsets of the ground set
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[n] = {1, 2, ..., n}. We represent each subset σ = {σ1, ..., σr} by the corresponding

sum of r unit vectors

eσ =
r∑

i=1

eσi
∈ R

n .

The set family M is represented by the convex hull of these points

PM := conv
{
eσ : σ ∈M

}
⊂ R

n .

This is a convex polytope of dimension ≤ n−1. It is a subset of the (n−1)-simplex

∆ =
{

(x1, x2, ..., xn) ∈ R
n : x1 ≥ 0, ..., xn ≥ 0, x1 + x2 + · · · + xn = r

}
.

Definition 2.1. A matroid of rank r is a familyM of r-element subsets of [n]

such that every edge of the polytope PM is parallel to an edge of the simplex ∆.

Experts in matroid theory may be surprised to see this unusual definition,

but it is in fact equivalent to the many other definitions familiar to combina-

torialists. This equivalence was first proved by Gel’fand, Goresky, MacPherson

and Serganova [13]. It forms the point of departure for the theory of Coxeter

matroids in [5]. This suggests that it would be worthwhile to extend the results

in this paper to root systems other than An.

The basic idea behind Definition 2.1 is as follows. Every edge of the simplex

∆ has the form conv(rei, rej), so it is parallel to a difference ei − ej of two unit

vectors. The elements σ ∈ M are the bases of the matroid, and two bases σ, τ

are connected by an edge conv(eσ, eτ ) if and only if eσ − eτ = ei − ej . The latter

condition is equivalent to σ\τ = {i} and τ\σ = {j}, so the edges of PM represent

the basis exchange axiom.

Here is a brief summary of matroid terminology. Fix a matroid M on [n].

A subset I ⊆ [n] is independent in M if I ⊂ σ for some basis σ. Otherwise

I is dependent. The rank of a subset F ⊆ [n] is the cardinality of the largest

independent subset of F . A circuit is a dependent set which is minimal with

respect to inclusion. A subset F ⊆ [n] is a flat of M if there is no circuit C such

that C\F consists of exactly one element. The intersection of two flats is again

a flat. The span of G ⊆ [n] is the smallest flat F with G ⊆ F . The collection of

all flats is partially ordered by inclusion. The resulting poset LM is a geometric

lattice, where G1 ∧G2 = G1 ∩G2 and G1 ∨G2 = the span of G1 ∪G2.

The polytope PM is called the matroid polytope of M . What we are inter-

ested in here is the following natural question concerning the inclusion PM ⊂ ∆:
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How does the boundary ∂PM of the matroid polytope intersect the boundary

∂∆ of the ambient simplex? The objects of study in this paper are polyhedral

complexes which represent the topological space ∂PM\∂∆. As we shall see, their

combinatorial structure is truly “wonderful” [7].

Example 2.2. Let r = 2 and n = 4 and consider the uniform matroid

M =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}
. Its matroid polytope is the regu-

lar octahedron

PM = conv
{

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)
}

⊂ R
4 .

Here ∂PM\∂∆ consists of the relative interiors of four of the eight triangles in

∂PM . Here the Bergman complex consists of four points, which is the homotopy

type of ∂PM\∂∆.

In order to understand the combinatorics of ∂PM\∂∆ for general matroidsM ,

we need to represent the matroid polytope PM by a system of linear inequalities.

Proposition 2.3. The matroid polytope equals the following subset of the

simplex ∆:

PM =

{
(x1, ..., xn) ∈ ∆ :

∑

i∈F

xi ≤ rank(F ) for all flats F ⊆ [n]

}
.

Proof: Consider any facet of the polytope PM and let
∑n

i=1 aixi ≤ b be an

inequality defining this facet. The normal vector (a1, a2, ..., an) is perpendicular to

the edges of that facet. But each edge of that facet is parallel to some difference of

unit vectors ei − ej . Hence the only constraints on the coordinates of the normal

vector are of the form ai = aj . Using the equation
∑n

i=1 xi = r and scaling

the right hand side b, we can therefore assume that (a1, a2, ..., an) is a vector in

{0, 1}n. Hence the polytope PM is characterized by the inequalities of the form∑
i∈G xi ≤ bG for some G ⊆ [n]. The right hand side bG equals

bG = max
{
|σ ∩G| : σ basis of M

}
= rank(G) .

The second equality holds because every independent subset of G can be com-

pleted to a basis σ. Let F be the flat spanned by G. Then G ⊆ F and

rank(G) = rank(F ), and hence the inequality
∑

i∈F xi ≤ rank(F ) implies the

inequality
∑

i∈G xi ≤ rank(G).
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The circuit exchange axiom gives rise to the following equivalence relation

on the ground set [n] of the matroid M : i and j are equivalent if there exists a

circuit C with {i, j} ⊆ C. The equivalence classes are the connected components

of M . Let c(M) denote the number of connected components of M . We say that

M is connected if c(M) = 1.

Proposition 2.4. The dimension of the matroid polytope PM equals

n− c(M).

Proof: Two elements i and j are equivalent if and only if there exist bases σ

and τ with i∈σ and τ = (σ\{i})∪{j}. The linear space parallel to the affine span

of PM is spanned by the vectors ei − ej arising in this manner. The dimension of

this space equals n− c(M).

Definition 2.1 implies that every face of a matroid polytope is a matroid

polytope. Consider the face PMw
of PM at which the linear form

∑n
i=1wixi

attains its maximum. The bases of the matroid Mw are precisely the bases σ of

M of maximal w-cost
∑

i∈σ wi.

Two vectors w,w′ ∈ R
n are considered equivalent for the matroid M if Mw =

Mw′ . The equivalence classes are relatively open convex polyhedral cones. These

cones form a complete fan in R
n. This fan is the normal fan of PM . If Γ is a

cone in the normal fan of PM and w ∈ Γ then we write MΓ = Mw. The following

proposition shows that the Bergman fan B̃(M) is a subfan of the normal fan of

the matroid polytope PM .

Proposition 2.5. The following are equivalent for a vector w ∈ R
n:

(1) The vector w lies in the Bergman fan B̃(M).

(2) The matroid Mw has no loops.

(3) Every element i ∈ [n] lies in some basis of Mw.

(4) The face PMw
has non-empty intersection with the interior of the simplex∆.

(5) The linear functional
∑n

i=1wixi attains its maximum over PM in ∂PM\∂∆.

Proof: The equivalence of (2) and (3) is the definition of loops in matroids,

namely, i ∈ [n] is a loop of Mw if it lies in no basis of Mw. To see that (3) and (4)

are equivalent, we note that the polytope PMw
is the convex hull of the vectors

eσ where σ runs over all bases of Mw. This convex hull contains a point with

full support (i.e. intersects the interior of ∆) if and only if condition (3) holds.
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Conditions (4) and (5) are equivalent because
∑n

i=1wixi attains its maximum

over PM in PMw
. Finally, condition (1) fails if and only if there exists a circuit

C of M and an element i ∈ C such that wi < min{wj : j ∈ C\{i}
}
. This shows

that if i appears in any basis σ of M then we can replace σ by another basis

(σ\{i}) ∪ {j} of higher w-weight, i.e., i is a loop in Mw. Conversely, if (2) fails

for i then M has a circuit C with i ∈ C and wi < min{wj : j ∈ C\{i}
}
, i.e., (1)

fails.

A question left open in Proposition 2.3 is to identify the facet-defining in-

equalities for the matroid polytope PM other than the facets given by the ambient

simplex ∆. Let us assume that M is connected, so that PM is (n−1)-dimensional.

We identify a flat F with its 0/1-incidence vector. Then PMF
is the face of PM

at which the inequality
∑

i∈F xi ≤ rank(F ) is attained with equality. A flat F

of M is called a flacet if dim(PMF
) = n− 2. Thus we can replace the word “flat”

by the word “flacet” in Proposition 2.3.

In order to characterize the flacets of a matroid M combinatorially, we note

that every flat F of rank s defines two new matroids. The restriction to F is the

rank s matroid

M [∅, F ] =
{
σ ∩ F : σ ∈M and |σ ∩ F | = s

}
.

The contraction of M at F is the rank r − s matroid

M
[
F, [n]

]
=

{
σ\F : σ ∈M and |σ ∩ F | = s

}
.

Proposition 2.6. A flat F of a connected matroid M is a flacet (i.e. it

defines a facet of the polytope PM ) if and only if both of the matroids M [∅, F ]

and M [F, [n]] are connected.

Proof: Let s = rank(F ). The matroid indexed by the incidence vector of

the flat F equals

(2.1) MF = M [∅, F ] ⊕M [F, [n]] =
{
σ ∈M : |σ ∩ F | = s

}
.

The corresponding face of PM is the direct product of matroid polytopes

PMF
= PM [∅,F ] × PM [F,[n]] .
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By Proposition 2.4, the dimension of this polytope equals

n− c(MF ) = |F | − c(M [∅, F ]) + n− |F | − c(M [F, [n]]) .

This number is at most n − 2. It equals n − 2 if and only if F is a flacet. This

happens if and only if both positive integers c(M [∅, F ]) and c(M [F, [n]]) are

equal to one.

Assuming that M is connected, the normal fan of PM defines a subdivision of

the (n−2)-sphere S specified in (1.1). This subdivision is isomorphic to the polar

dual P ∗
M of the matroid polytope. (If M is not connected then we replace S by an

appropriate sphere of dimension n− c(M)−1.) Each cone Γ in the normal fan of

PM is identified with a face of the dual matroid polytope P ∗
M . Hence every face

Γ of P ∗
M has an associated rank r matroid MΓ. We can now recast the definition

of the Bergman complex as follows:

Theorem 2.7. The Bergman complex B(M) of a matroid M is the subcom-

plex in the boundary ∂P ∗
M of the dual matroid polytope P ∗

M which consists of

all faces Γ such that MΓ has no loop. The vertices of B(M) are indexed by the

flacets of M , provided M is connected. The Bergman complex B(M) is homotopy

equivalent to the space ∂PM\∂∆.

Proof: Proposition (2.5) implies that a vector w ∈ ∂P ∗
M lies in a face of the

Bergman complex B(M) if and only if MΓ has no loop. This proves the first

assertion. The second assertion follows from (the discussion prior to) Proposition

2.6. The third assertion follows from the general fact that a subcomplex in the

boundary of a polytope is homotopy equivalent to the corresponding co-complex

in the boundary of the dual polytope. This version of Alexander duality is proved

using barycentric subdivisions.

For instance, in Example 2.2, the dual matroid polytope P ∗
M is a regular 3-

cube, and the Bergman complex B(M) consists of four of the eight vertices of the

cube P ∗
M . Here is an example which shows that the Bergman complex B(M) is

generally not simplicial.

Example 2.8. Let M be the rank 4 matroid on [6] = {1, 2, ..., 6} whose non-

bases are A = 1234, B = 1356 and C = 2456. This matroid is realized by the

six vertices of a triangular prism, or by the six vertices of an octahedron, or by

the six facet planes of a regular 3-cube. Figure 1 shows a picture of this affine
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hyperplane arrangement. The three non-bases correspond to the three special

points A,B,C on the “plane at infinity”.

1 3

6

5

2

4

A = 1234

C = 2456

B = 1356

Figure 1 – The cube realization of M

The matroid M has six flacets of rank one, namely 1, 2, 3, 4, 5, 6, and three

flacets of rank three, namely A,B,C. The Bergman complex B(M) is two-

dimensional. It has 9 vertices (the flacets), 24 edges, and 23 two-dimensional

faces. Twenty faces are triangles:

125 126 145 146 235 236 345 346

12A 14A 23A 34A 15B 16B 35B 36B 25C 26C 45C 46C

The remaining three two-dimensional faces are squares:

1A3B 2A4C 5B6C

The nested set complex, to be introduced in the next section, will subdivide

these squares by adding the diagonals 13, 24 and 56. We invite the reader to

compute the five-dimensional matroid polytope PM and to visualize the cocom-

plex ∂PM\∂∆. Here B(M) and ∂PM\∂∆ have the homotopy type of a bouquet

of seven two-dimensional spheres.

3 – Complexes of nested sets

Let L be a finite lattice. We review the construction of a family of simplicial

complexes associated with L due to Feichtner and Kozlov [10], who generalized

earlier work by De Concini and Procesi [7] on the special case (of interest here)
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when L=LM is the geometric lattice of a (realizable) matroid M . Intervals in

L are denoted [X,Y ] = {Z ∈ L : X ≤Z ≤Y }. If S ⊆L and X ∈L , then we

write S≤X := {Y ∈S : Y ≤X}, and similarly for S<X , S≥X , and S>X The set

of maximal elements in S is denoted maxS.

Definition 3.1. Let L be a finite lattice. A subset G in L>0̂ is a building

set if for any X ∈L>0̂ and maxG≤X = {G1, ..., Gk} there is an isomorphism of

partially ordered sets

(3.1) ϕX :
k∏

j=1

[0̂, Gj ]
∼=

−→ [0̂, X] ,

where the j-th component of the map ϕX is the inclusion of intervals [0̂, Gj ] ⊂

[0̂, X] in L.

The full lattice L>0̂ is the simplest example of a building set for L. Besides

this maximal building set (which we denote by L for simplicity), there is always a

minimal building set Gmin consisting of all elements X in L>0̂ which do not allow

for a product decomposition of the lower interval [0̂, X]. We call these elements

the connected elements of L. They have been termed irreducible elements at

other places; we here borrow the term connected from matroid terminology (see

the beginning of Section 5).

Definition 3.2. Let L be a finite lattice and G a building set in L containing

the maximal element 1̂ of L. A subset S in G is called nested if for any set

of incomparable elements X1, ..., Xt in S of cardinality at least two, the join

X1 ∨ ... ∨Xt does not belong to G. The nested sets form an abstract simplicial

complex Ñ (L,G). Topologically, Ñ (L,G) is a cone with apex 1̂, its link N (L,G)

is the nested set complex of L with respect to G.

If a building set G does not contain the maximal element 1̂, it can always be

extended to a building set Ĝ =G ∪{1̂}. We can define nested sets with respect

to G as above, and we then find the resulting abstract simplicial complex being

equal to the base of Ñ (L, Ĝ).

For the maximal building set L, the nested set complex N (L,L) coincides

with the order complex ∆(L) of L, i.e., the abstract simplicial complex of totally

ordered subsets in the proper part of the lattice, L \ {0̂, 1̂}. As we pointed

out above, there is always the unique minimal building set Gmin of connected

elements in L, hence a simplicial complex N (L,Gmin) with the least number of

vertices among the nested set complexes of L.
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Example 3.3. Let M be the matroid of the complete graph K4 as in Ex-

ample 1.1 and consider its lattice of flats LM . We depict its nested set complex

with respect to the minimal building set Gmin in Figure 2. The minimal building

set is given by the atoms, the 3-point lines and the top element 1̂ in LM . Larger

building sets are obtained by adding some of the three 2-point lines. This results

in a subdivision of edges in N (LM ,Gmin).

1 2 3 4 5 6

1

3

236

56

146
125

345

2

5

1

4

3

6

24

N (LM ,Gmin)LMK4

Figure 2 – The lattice of flats LM and its minimal nested set
complex N (LM ,Gmin).

Example 3.4. Remove one edge from the graph K4 to get the graphic ma-

troid M ′ of Example 1.2. We depict its lattice of flats LM ′ in Figure 3. Again,

the minimal building set Gmin is given by the atoms, the two 3-point lines and

the top element. Any other building set is obtained by adding some of the four

2-point lines. We depict the nested set complex with respect to Gmin: it is a K3,3

which is subdivided in one edge. Nested set complexes for larger building sets

are obtained by subdividing up to four further edges.

2

5

1

4

3

1 2 435

125 3 4

21345

5

N (LM ′ ,Gmin)L′
MK4 \ {6}

Figure 3 – The lattice of flats LM ′ and its nested set complex
N (LM ′ ,Gmin).
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A lattice L is atomic if every element is a join of atoms. The lattice of flats

LM of a matroid is an atomic lattice. For arbitrary atomic lattices L, Feichtner

and Yuzvinsky [12] proposed the following polyhedral realization of the nested

set complexes N (L,G).

Definition 3.5. Let L be an atomic lattice and A= {A1, ..., An} its set of

atoms; G a building set in L containing 1̂. For any G∈G, let ⌊G⌋ := {A ∈ A |A ≤

G}, the subset of atoms below G. We define the characteristic vector vG in R
n

by

(vG)i :=

{
1 if Ai ∈ ⌊G⌋

0 otherwise
for i = 1, ..., n .

For any nested set S ∈ Ñ (L,G), the set of vectors {vG |G ∈ S} is linearly

independent, and it hence spans a simplicial cone VS = R≥0{vG |G ∈ S}. These

cones intersect along faces, namely VS ∩ VS′ = VS∩S′ , and hence they form a

simplicial fan Σ̃(L,G) in R
n.

As we did before with the facet normals to the matroid polytope PM , we can

replace the vectors vG by equivalent vectors which lie on the (n−2)-dimensional

sphere S = {w∈R
n |

∑n
i=1wi = 0,

∑n
i=1w

2
i = 1}. This is accomplished by trans-

lating vG along the line R(1, ..., 1) and then scaling it to have unit length. We

lose no information by replacing Σ̃(L,G) with its restriction to the (n−2)-sphere

S. The resulting complex Σ(L,G) is a geometric realization of the abstract sim-

plicial complex N (L,G).

We recall some results concerning the geometry and topology of nested set

complexes:

Proposition 3.6 ([12, Prop. 2], [11, Thm. 4.2, Cor. 4.3]).

(1) For any atomic lattice L and any building set G in L, the fan Σ̃(L,G) is

unimodular.

(2) For building sets H⊆G in L, the simplicial fan Σ̃(L,G) can be obtained

from Σ̃(L,H) by a sequence of stellar subdivisions. In particular, the

support sets of the fans Σ̃(L,G) coincide for all building sets G in L.

(3) For an atomic lattice L and any building set G in L, the nested set

complex N (L,G) is homeomorphic to the order complex ∆(L).
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We shall see in Theorem 4.1 that, for any matroid M and any building set

G in LM , the fan Σ̃(LM ,G) is a refinement of the Bergman fan B̃(M) . In

particular, the fans have the same support sets in R
n. Also, the nested set

complex N (LM ,G) is a triangulation of the Bergman complex B(M) for any

building set G in LM . The special case of this result when G =LM and the

nested set complex equals the order complex of LM is due to Ardila and Klivans

[1, Sect. 2, Thm. 1]. It is possible to derive Theorem 4.1 from their result using

the techniques of combinatorial blow-ups developed in [10]. However, we have

chosen a different route which will keep this paper self-contained.

In what follows we take L to be the Boolean lattice 2[r] whose elements are

the subsets of [r] = {1, 2, ..., r}. Clearly, 2[r] is an atomic lattice, in fact, it

is the lattice of flats of the free rank r matroid M =
{
{1, 2, ..., r}

}
. We will

show (in Theorem 3.14) that, for any building set G in 2[r], the fan Σ̃(2[r],G),

when regarded modulo the line R(1, ..., 1) as always, is the normal fan to a simple

(r − 1)-polytope ∆G . Equivalently, N (2[r],G) is the boundary of a simplicial

(r−1)-polytope ∆∗
G . This dual pair of polytopes should be of independent interest

for further study of the toric manifolds introduced in [12].

Remark 3.7. The minimal building set in the Boolean lattice 2[r] is the set of

atoms, and, following our convention when defining nested set complexes, we in-

clude the maximal lattice element [r]; hence Gmin =
{
{1}, {2}, ..., {r}, [r]

}
. The

fan Σ̃(2[r],Gmin) is the normal fan to the (r−1)-simplex ∆Gmin
, and N (2[r],Gmin)

is the boundary complex of the dual simplex ∆∗
Gmin

. On the other extreme, the

maximal nested set complex N (2[r],Gmax), Gmax = 2[r] , is the barycentric subdivi-

sion of the boundary of the (r− 1)-simplex. The corresponding fan Σ̃(2[r],Gmax)

is the braid arrangement {xi = xj}, and the simple polytope ∆Gmax
is the permu-

tohedron. Hence the polytopes ∆G for G building sets in 2[r] interpolate between

the (r−1)-simplex ∆Gmin
and the (r−1)-dimensional permutohedron ∆Gmax

. This

class of polytopes includes many interesting polytopes, such as the associahedron,

where G is the set of all segments {i, i+ 1, ..., j − 1, j} for 1 ≤ i < j ≤ r, and the

cyclohedron, where G is the set of all cyclic segments. Both of these polytopes

are special cases of the graph-associahedra of Carr and Devadoss [6].

Remark 3.8. After completion of this paper, we learned that most of the

results in the remainder of Section 3 had been obtained independently by A. Post-

nikov [17]. The main focus of Postnikov’s work is the study of the Ehrhart poly-

nomials of the polytopes ∆G .
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The following lemma characterizes arbitrary building sets in a Boolean lattice.

Lemma 3.9. A family F of subsets of [r] is a building set in the Boolean

lattice 2[r] if and only if F contains all singletons {i}, i ∈ [r], and the following

condition holds: if F, F ′ ∈ F and F ∩ F ′ 6= ∅ then F ∪ F ′ ∈ F .

Proof: If F is a subset of 2[r] and X ∈ 2[r] then F≤X consists of all subsets

of X that are in the family F . The poset map in (3.1) is an isomorphism if the

factors G1, ..., Gk are pairwise disjoint and their union is X. We conclude that

F is a building set for 2[r] if and only if all singletons are in F and, for every

X ∈ 2[r], the maximal elements in F≤X are pairwise disjoint. This condition is

equivalent to the one stated in the lemma.

Lemma 3.10. Any family F of subsets of [r] can be enlarged to a unique

minimal family F̂ such that F̂ is a building set in 2[r]. We call F̂ the building

closure of F .

Proof: Fix a subset X of [r]. We regard the set family maxF≤X as (the

set of facets of) a simplicial complex of [r]. Let F̂ be the set of all subsets X of

[r] such that X is a singleton or the simplicial complex maxF≤X is connected.

It follows from Lemma 3.9 that F̂ is a building set, and every other building set

containing F also contains F̂ .

We consider the standard simplex of dimension r − 1. It is here denoted

∆[r] =
{

(x1, ..., xr) ∈ R
r : all xi ≥ 0 and x1 + x2 + · · · + xr = 1

}
.

Every subset F of [r] defines a face of ∆[r] which is a simplex of dimension |F |−1:

∆F =
{

(x1, ..., xr) ∈ ∆[r] : xi = 0 for i 6∈ F
}
.

With a family F of subsets of [r] we associate the following Minkowski sum of

simplices

∆F =
∑

F∈F

∆F .

The dimension of the convex polytope ∆F is given by the following formula:

Remark 3.11. Suppose F contains all singletons {i}, i∈ [r]. The dimension

of the polytope ∆F equals r− c, where c is the number of connected components

of the simplicial complex with facets maxF .
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Each edge of the polytope ∆F is parallel to the difference of unit vectors ei−ej
in R

r. This means that ∆F is a Minkowski summand of the (r − 1)-dimensional

permutohedron. In fact, ∆F is a permutohedron whenever F contains all the two-

element subset of [r]. This observation implies the following facet description of

∆F .

Proposition 3.12. The polytope ∆F consists of all non-negative vectors

(x1, ..., xr) such that x1 + · · · + xr = |F| , and the following inequality holds for

all subsets G of [r]:

(3.2)
∑

i∈G

xi ≥
∣∣∣
{
F ∈ F : F ⊆ G

}∣∣∣ .

Here it suffices to take those subsets G which lie in the building closure F̂ of F .

Proof: Since ∆F is a Minkowski summand of the permutohedron, it is de-

fined by inequalities of the form
∑

i∈G xi ≥ δG for some parameters δG. The

minimum value of the linear form
∑

i∈G xi on the simplex equals one if F ⊆ G,

and it equals zero otherwise. This shows that δG = |{F ∈ F : F ⊆ G
}
| as

desired. The face of ∆F at which the linear form
∑

i∈G xi attains its minimum

can be expressed as follows:

(3.3) ∆{F∈F : F⊆G } + ∆{F\G : F∈F , F\G6=∅} .

In order for this face to have codimension one in ∆F , it is necessary, by Remark

3.11, that the set family {F ∈ F : F ⊆ G} represents a connected simplicial

complex. This condition is equivalent to the set G being in the building closure

F̂ .

Corollary 3.13. If [r] ∈ F then ∆F is (r−1)-dimensional and its facets are

indexed by the building closure F̂ , i.e., the inequality presentation in Proposition

3.12 is irredundant.

Proof: We have dim(∆F ) = r − 1 by Remark 3.11. Let G ∈ F̂ . The left

polytope in (3.3) has dimension |G| − 1 as argued above. The right polytope in

(3.3) contains ∆[r]\G as a Minkowski summand, so it has dimension r − |G| − 1.

Hence the dimension of the face (3.3) is (|G| − 1) + (r− |G| − 1) = r− 2, which

means it is a facet.
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We are interested in conditions under which the polytope ∆F is simple, or

equivalently, the normal fan of ∆F is simplicial. The next theorem says that this

happens if F = F̂ .

Theorem 3.14. Let F be a building set in the Boolean lattice 2[r] such that

[r] ∈ F . Then ∆F is an (r − 1)-dimensional simple polytope, and its normal fan

is a unimodular simplicial fan which is combinatorially isomorphic to the nested

set complex N (2[r],F).

Proof: Our assumptions say that F̂ = F and [r] ∈ F . By Corollary 3.13, the

polytope ∆F has dimension r− 1. The facets of ∆F are indexed by the elements

G of F\{[r]}. The facet-defining inequality indexed by G is given in (3.2). We

need to show that precisely r − 1 of these inequalities are attained with equality

at any vertex of ∆F .

Pick a generic vector w = (w1, ..., wr) and let v = (v1, ..., vr) be the vertex

of ∆F at which
∑r

i=1wixi attains its minimum. After relabeling, we may assume

that w1 < w2 < ... < wr. Then the i-th coordinate of the vertex v equals

vi =
∣∣∣
{
F ∈ F : min(F ) = i

}∣∣∣ .

The inequality (3.2) indexed by G ∈ F holds with equality at v if and only if

∣∣∣
{
F ∈ F : min(F ) ∈ G

}∣∣∣ =
∣∣∣
{
F ∈ F : F ⊆ G

}∣∣∣ .

Given that F is a building set, a necessary and sufficient condition for this equality

to hold is that the set G has the following specific form for some index i ∈ [r]:

Gi :=
⋃{

F ∈ F : min(F ) = i
}
.

Here we are using the fact that F is a building set, which ensures that Gi is in F .

Since [r] ∈ F , we have G1 = [r], which is excluded from the sets in (3.2).

Hence the facets incident to v are precisely the facets defined by G2, G3, ..., Gr.

In particular, v is a simple vertex, and, by the relabeling argument we conclude

that ∆F is a simple polytope.

The family {G2, ..., Gr} is a simplex in the nested set complex N (2[r],F).

It remains to be seen that this simplex is maximal and that all maximal simplices

arise in this manner, after some permutation of [r]. Indeed, suppose that S ⊂ F is

a facet of N (2[r],F). The maximal elements of S are pairwise disjoint, and since

[r] ∈ F , their union has cardinality less than r. After relabeling we may assume
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that the element 1 is not in the union. Since S was assumed to be maximal, its

union equals {2, ..., r}. After relabeling again, we can write the maximal sets as

G2, G3, ..., Gk with min(Gi) = i. Since the Gi are pairwise disjoint, we can now

apply this construction recursively by restricting S and F to each of the subsets

Gi. This construction shows that S has cardinality r − 1, and it arises precisely

in the manner indicated above. (See also Proposition 3.17 below).

It remains to note that the simple polytope ∆F is “smooth” in the sense of

toric geometry. The r − 1 edges emanating from the vertex v have directions

ei − ej , and since the configuration of all vectors ei − ej is unimodular, it follows

that these r − 1 edges form a basis for the ambient lattice. It follows that the

normal fan of ∆F is unimodular.

Consider now an arbitrary family F of subsets of [r] and let F̂ be its building

closure as before. Since F ⊆ F̂ , the polytope ∆F is a Minkowski summand of

the simple polytope ∆ bF . The Minkowski summand relation of convex polytopes

corresponds to refinement at the level of normal fans. Hence Theorem 3.14 implies

Corollary 3.15. The normal fan of ∆ bF is a triangulation of the normal fan

of ∆F .

Example 3.16. Let r = 4 and F =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}

}
. Then

F̂ = F ∪
{
{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
,

We consider orbits with respect to the action of the dihedral group D4 on F and

on F̂ . The polytope ∆F is a three-dimensional zonotope with four zones, known

as the rhombic dodecahedron. It has 14 vertices, namely eight simple vertices like

(0, 1, 1, 2), four four-valent vertices like (0, 1, 2, 1), and two four-valent vertices like

(0, 2, 0, 2). The normal fan of ∆F is the subdivision of three-space by four general

planes through the origin. Corollary 3.15 describes a triangulation where each of

the square-based cones are subdivided into two triangular cones. For instance,

the normal cone of ∆F at the vertex (0, 1, 2, 1) is subdivided into the normal cones

of ∆ bF at the vertices (1, 2, 7, 3) and (1, 3, 7, 2). Likewise, the normal cone of ∆F

at (0, 2, 0, 2) is subdivided into normal cones of ∆ bF at the vertices (1, 4, 1, 7) and

(1, 7, 1, 4). The normal cone of ∆F at (0, 1, 1, 2) remains unsubdivided. It equals

the normal cone of ∆ bF at (1, 2, 3, 7).

We close this section by describing a convenient representation of nested sets

in terms of labeled trees. This representation appeared implicitly in the proof
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of Theorem 3.14, and in a modified version for partition lattices it was used

previously in [9]. Let T be a rooted tree whose nodes ν are labeled by non-empty

pairwise disjoint subsets Tν of [r]. For each node ν we write T≤ν (resp. T<ν) for

the union of all sets Tµ where µ is any node in the subtree of T below the node ν

and including ν (resp. excluding ν). We write sets(T ) for the set family {T≤ν}ν

where ν is a non-root node of T . Since T has at most r nodes, including the root,

the cardinality of sets(T ) is at most r − 1,

We now fix a building set F in 2[r] with [r] ∈ F . A tree T whose nodes are

labeled by non-empty pairwise disjoint subsets as above is called an F-tree if

sets(T ) ⊆ F .

Proposition 3.17. For any nested set S of F there exists a unique F-tree

T such that sets(T ) = S. The nested set complex equals N (2[r],F) =
{
sets(T ) :

T is an F-tree
}
.

Proof: If T is an F-tree then sets(T ) is nested because Tν = T≤ν\T<ν is

non-empty. Conversely, suppose that S is nested with k elements and contains

G1 = [r]. We build the tree T inductively, starting with the root. Let G2, ..., Gk

be the maximal elements of S\{[r]}. We label the root by the non-empty set

ρ = [r]\(G2 ∪ · · · ∪Gk). If S = {[r]}, then ρ = [r] and we are done. Otherwise

note that the restriction of F to Gi is a building set in 2Gi , and the restriction

of the nested set S to Gi is a nested set. By induction, it is represented by a

labeled tree Ti whose root is labeled by Gi. Attaching the labeled trees T2, ..., Tk

to the root ρ, we obtain the unique F-tree T with sets(T ) = S.

4 – Triangulations of the Bergman complex

In this section we prove the following theorem relating nested sets and Bergman

fans.

Theorem 4.1. For any matroid M and any building set G in its lattice

of flats LM , the fan Σ̃(LM ,G) refines the Bergman fan B̃(M). The geometric

realization Σ(LM ,G) of the nested set complex N (LM ,G) is a triangulation of

the Bergman complex B(M).

We will first prove a local version of Theorem 4.1. The Bergman complex

B(M) of a matroid M of rank r is an (r − 2)-dimensional subcomplex in the
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boundary of the dual matroid polytope P ∗
M . We fix a basis σ of M . The local

Bergman complex Bσ(M) is defined as the intersection of B(M) with the facet

of P ∗
M dual to the vertex eσ of the matroid polytope PM . Equivalently, we can

consider the local Bergman fan B̃σ(M), which is the restriction of the Bergman

fan B̃(M) to the maximal cone of the normal fan of PM indexed by σ. Consider

the sublattice LM (σ) of the geometric lattice consisting of all flats of M that are

spanned by subsets of the basis σ. Clearly, LM (σ) is a Boolean lattice of rank r,

i.e., it is isomorphic to the lattice of subsets of {1, 2, ..., r}.

Let G be any building set in LM . We write Gσ for the set of all flats in G which

are spanned by subsets of the basis σ. Then Gσ is a building set in the Boolean

lattice LM (σ). The nested set complex N
(
LM (σ),Gσ

)
is called the localization

of the big nested set complex N (L,G) at the basis σ. We assume here that the

matroid M is connected.

Theorem 4.2. The localization N
(
LM (σ),Gσ

)
is a triangulation of the

local Bergman complex Bσ(M). Both complexes are homeomorphic to the

(r − 2)-sphere. Each of them is naturally realized as the boundary complex

of an (r − 1)-dimensional polytope.

Proof: After relabeling we may assume that the basis σ of the matroid M

equals σ = {1, 2, ..., r}. Every element i ∈ {r + 1, r + 2, ..., n} lies in the span of

a unique subset Fi of the basis σ. This specifies the following family of subsets

of [r]:

F =
{
Fr+1, Fr+2, ..., Fn

}
.

Let w = (w1, ..., wr, wr+1, ..., wn) be a vector in the local Bergman fan B̃σ(M).

Using the fact that σ = {1, ..., r} is a basis of the matroid Mw, and applying the

“minimum attained twice condition” to the basic circuit C = Fi ∪ {i} of M , we

find that

wi = min{wj : j ∈ Fi} for i = r + 1, r + 2, ..., n .

This defines a piecewise-linear map from R
r onto the support of the local Bergman

fan:

(4.1) ψ : R
r 7→ |B̃σ(M)| , (w1, ..., wr) 7→ (w1, ..., wr, wr+1, ..., wn) .

This map is obviously a bijection. The domains of linearity of the i-th coordinate

(for i > r) of the map ψ form the normal fan of the simplex ∆Fi
. The common

refinement of these normal fans is the normal fan of the polytope ∆F . Hence

the domains of linearity of the map ψ are the cones in the normal fan of ∆F .
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We conclude that ψ induces a combinatorial isomorphism between the normal

fan of ∆F and the local Bergman complex Bσ(M).

The map 2[n] → 2[r] = LM (σ), F 7→ [r] ∩ F defines a bijection between flats

spanned by subsets of σ = [r] and subsets of [r]. Under this bijection, the flats

in Gσ are identified with subsets of [r], and we have

F ⊆ F̂ ⊆ Gσ ⊂ 2[r] .

By Theorem 3.14, N (2[r],Gσ) is the normal fan of the simple polytope ∆Gσ
.

We have shown that both the local Bergman complex Bσ(M) and the lo-

calization N
(
LM (σ),Gσ

)
arise as boundary complexes of (r − 1)-dimensional

polytopes, namely, the polytopes dual to ∆F and ∆Gσ
, respectively. Since the

polytope ∆F is a Minkowski summand of ∆Gσ
, it follows that N

(
LM (σ),Gσ

)
is

a triangulation of Bσ(M).

We are now prepared to prove the theorem stated at the beginning of this

section.

Proof of Theorem 4.1: Both the nested set complex N (LM ,G) and the

Bergman complex B(M) are regarded as polyhedral complexes in the sphere S,

so it suffices to prove the second assertion. Using the map ψ in (4.1), it is easy

to see that these spherical complexes have the same support. Indeed, if w ∈ S

and σ is any basis of Mw, then

w ∈ |N (LM ,G)| ⇐⇒ w ∈ |N (LM (σ),Gσ)| ⇐⇒ w ∈ |Bσ(M)|

⇐⇒ w ∈ |B(M)| .

Since N (LM (σ),Gσ) triangulates Bσ(G) by Theorem 4.2, taking the union over

all bases σ of M , it follows that N (LM ,G) triangulates B(M) .

Corollary 4.3 (Ardila–Klivans [1, Sect. 2, Thm. 1]). The Bergman complex

B(M) of a matroidM is homeomorphic to the order complex ∆(LM ) of the lattice

of flats LM . In particular, B(M) is homotopy equivalent to a wedge of spheres

of dimension r−2; the number of spheres is given by the absolute value of the

Möbius function on LM .

Proof: The first assertion is Theorem 4.1 applied to the largest building set

G =L. That the second assertion holds for the order complex ∆(LM ) is a well-

known result in topological combinatorics (see e.g. [4]). Hence the first assertion

implies the second.
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Theorem 4.1 raises the following combinatorial question: What is the matroid

MS corresponding to a particular nested set S of G ? Here MS = Mw, where w

is any point on the sphere S that lies in the relative interior of the simplex cor-

responding to S. To answer this question, we represent the nested set S by a

labeled tree TS as follows. Fix any basis σ such that S ∈ N (LM (σ),Gσ). By

Proposition 3.17, there exists a Gσ-tree T with S = sets(T ). Consider the flats

F≤ν = span(T≤ν) and F<ν = span(T<ν) of the matroid M . Then [F<ν , F≤ν ] is

an interval in the geometric lattice LM . We now replace the label Tν of the node

ν in the tree T by this interval. The resulting labeled tree TS is independent of

the choice of the basis σ. It only depends on the nested set S. In the following

description of the matroid MS we will denote the matroid defined by an inter-

val [F,G] in the geometric lattice LM by M [F,G], extending our notation for

restrictions and contractions of matroids introduced prior to Proposition 2.6.

Theorem 4.4. The matroid MS is the direct sum of the matroids which are

defined by the geometric lattices that appear as labels of the nodes in the tree TS .

In symbols,
(4.2) MS =

⊕

ν node of TS

M [F<ν , F≤ν ] .

Remark 4.5. The special case of the formula (4.2) where S = {F, [r]}

represents a vertex of N (LM ,G) appears in equation (2.1) in the proof of Propo-

sition 2.6.

Remark 4.6. The case of Theorem 4.4 where G = LM is the maximal build-

ing set was proved by Ardila and Klivans [1, Section 2]. In their work, the tree TS
is always a chain.

Proof of Theorem 4.4: A basis σ of M is a basis of MS if and only if

S ∈ N (LM (σ),Gσ). We can use that basis to construct the tree TS . The subset

Tν of σ is a basis of the matroid M [F<ν , F≤ν ] and hence σ is a basis of the

matroid on the right hand side of (4.2). Conversely, suppose that σ is a basis of

the matroid on the right hand side of (4.2). Then the set T̃ν = (σ ∩ F≤ν)\F<ν

is a basis of the matroid M [F<ν , F≤ν ]. If we take T̃ to be the same tree as T

but with each node labeled by T̃ν , then T̃ is a Gσ-tree, and we conclude that

S ∈ N (LM (σ),Gσ), i.e., σ is a basis of MS .

Of special interest is the case when S is a facet of the nested set complex

N (LM ,G). In that case, MS is a transversal matroid, which means that MS

is a direct sum of matroids of rank 1. Indeed, if |S| = r then TS is a binary
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tree, and the total number of nodes ν is r. For each node ν, the set Tν is a

singleton, and the matroid M [F<ν , F≤ν ] has rank 1. Since M [F<ν , F≤ν ] has no

loops, by construction, this rank one matroid is uniquely specified by the subset

F≤ν\F<ν of [n]. The collection of sets F≤ν\F<ν , as ν runs over the nodes of TS ,

is a partition of the set [n] in r parts. The transversal matroid MS is uniquely

specified by this set partition.

Corollary 4.7. The facets of the nested set complex N (LM ,G) are indexed

by partitions of the ground set [n] into r parts.

5 – Computing nested sets and the Bergman complex

In this section we consider a connected matroid M of rank r on n elements,

and we fix G = Gmin to be the minimal building set in its lattice of flats LM .

We denote the corresponding nested set complex by

N (M) = N (LM ,Gmin) ,

and, for the purpose of this section, we call N (M) simply the nested set complex

of M .

The minimal building set Gmin consists of all connected flats F of M . Observe

that this description coincides with the set of connected elements in LM that we

identified as the minimal building set for arbitrary lattices in the beginning of

Section 3.

By our results in Section 4, the various nested set complexes triangulate the

Bergman complex, and by Proposition 3.6, the minimal nested set complex N (M)

is the coarsest among these triangulations. The vertices of the Bergman complex

B(M) are the flacets of the matroid (by Theorem 2.7), and the vertices of the

nested set complex N (M) are the connected flats of M (by definition). These

notions do not coincide in general:

Remark 5.1. Every flacet is a connected flat but not conversely. The ma-

troid M ′ in Examples 1.2 and 3.4 has a connected flat of rank one (i.e., a single

element) which is not a flacet: the edge which is complementary to the edge that

was removed from K4.

This distinction between flacets and connected flats amounts to the fact that

in general new vertices are added when passing from the Bergman to the nested

set complex:
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Corollary 5.2. The Bergman complex B(M) is triangulated by the nested

set complex N (M) without additional vertices if and only if every connected flat

of M is a flacet.

We shall now generalize this corollary to give a criterion for when N (M)

equals B(M).

Theorem 5.3. The nested set complex N (M) equals the Bergman complex

B(M) if and only if the matroidM [F,G] is connected for every pair of flats F ⊂ G

with G connected.

Proof: Consider any simplex S of the nested set complex N (M) and let ΓS

be the smallest face of the Bergman complex B(M) which contains S. A necessary

and sufficient condition for N (M) = B(M) to hold is that dim(S) = dim(ΓS)

for all such pairs S ⊆ ΓS . Now, dim(S) is simply |S| − 1, and dim(ΓS) equals

c(MS) − 1. From this we conclude

N (M) = B(M) if and only if c(MS) = |S| for all S ∈ N (M).

The matroid MS was characterized in Theorem 4.4. We have c(MS) = |S|

if and only if all the matroids M [F<ν , F≤ν ] in the decomposition (4.2) are con-

nected. Note that here F≤ν is always a connected flat and F<ν is a subflat of

F≤ν . This establishes the if-direction of Theorem 5.3. For the only-if direction,

we consider any pair of flats F ⊂ G such that G is connected. Let S denote

the nested set which consists of G and the connected components of F . If ν is

the root of the tree TS then we have F<ν = F and F≤ν = G. This shows that

N (M) = B(M) implies the connectedness of M [F,G].

Remark 5.4. Consider the graphic matroid M = M(Kn) whose bases are

the spanning trees in the complete graph Kn. Here the criterion of Theorem

5.3 is satisfied, and the nested set complex coincides with the Bergman complex.

This was seen for n = 4 in Examples 1.1 and 3.3, and in [9, Rem. 3.4.(2)] for

general n. Ardila and Klivans [1, Sect. 3, Prop.] showed that Ñ (M) = B̃(M)

equals the space of phylogenetic trees. Theorem 4.4 states that every nested set

complex can be interpreted as a certain complex of trees.

The hyperplane arrangement corresponding to M is the braid arrangement

{xi = xj}. What we are discussing here is its wonderful model (in the sense of

De Concini and Procesi [7], see Section 6). Ardila, Reiner and Williams [2] re-

cently showed that nested set complexes and Bergman complexes coincide for any
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finite reflection arrangement. It might be interesting to classify all subarrange-

ments of reflection arrangements (e.g., graphic matroids) for which the Bergman

complex equals the nested set complex.

We next present an algorithm for computing both the Bergman complex B(M)

and its triangulation by the nested set complex N (M). We prepared a test

implementation of this algorithm in maple. This code is available from Bernd

Sturmfels upon request.

Algorithm 5.5 (Computing the Bergman complex and the nested set complex).

Input: A rank r matroid M on [n], given by its bases.

Output: All maximal faces of the Bergman complex B(M), represented by

unordered partitions {B1, ..., Br} of [n] into r non-empty blocks, as described in

Corollary 4.7.

1. Initialize Ω = ∅. (This will later be the set of all unordered partitions).

2. Precompute all connected flats of M .

3. For every basis σ of M do the following:

(a) For each i ∈ [n]\σ find the unique set Fi ⊆ σ such that Fi ∪ {i} is

a circuit. (The local building set equals Gσ =
{
Fi : i ∈ [n]\σ

}
).

(b) For each permutation π of [r] do

• for each j ∈ [r] set ωj := {j} ∪ { i ∈ [n]\σ : min(Fi) = πj }.

• Set Ω := Ω ∪
{
{ω1, ω2, ..., ωr}

}
.

4. For each ω ∈ Ω do:

(a) Output: “The partition ω represents a facet of B(M)”.

(b) Set Π := ∅. (This will be the nested set triangulation of the facet ω).

(c) For each connected flat F of M do

• Set s = rank(F ).

• If F is the union of s blocks ωi1 , ..., ωis then Π := Π ∪ {F}.

(d) If the cardinality of Π is r then output

“The simplex ω is not subdivided; it equals the simplex Π in N (M).”

(e) Otherwise compute and output the set of all maximal nested sets on

Π.

Discussion and Correctness. The loop in Step 3 computes the local

Bergman complex Bσ(M) for every basis σ of M , and it saves all set partitions

representing facets of B(M) (as in Corollary 4.7) in one big set Ω. Step (b) takes
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advantage of the many-to-one correspondence between permutations π of [r] and

vertices of ∆Gσ
, coming from the fact that ∆Gσ

is a Minkowski summand of the

permutohedron. In Step 4 we output each facet ω of B(M) along with the list of

maximal simplices in its nested set triangulation. The crucial step is the second

bullet • in Step 4 (c), which tests, for each connected flat F of M , whether or

not the corresponding vertex of N (M) lies on the facet ω of B(M).

Remark 5.6. We believe that an improved version of Algorithm 5.5 should

be able to list the facets of both B(M) and N (M) in a shelling order, so as to re-

veal the topology of these spaces and to offer a practical tool for the computation

of residues using the methods of [8]. The constructing of such shellings remains

an open problem.

We ran Algorithm 5.5 on a range of matroids of various ranks, including the

following two examples which can serve as test cases for future tropical algebraic

geometry software.

Example 5.7. We consider the famous self-dual unimodular matroid R10 of

rank r= 5 on n=10 elements. This matroid plays a special role in Seymour’s

decomposition theory for regular matroids (see [22]). The ground set for R10

is the set of the edges of the complete graph K5, and its circuits are the four-

cycles and their complements. Its geometric lattice has 45 lines, 75 planes and

30 three-dimensional subspaces. There are 40 connected flats:

◦ the ten points in the ground set,

◦ the 15 four-cycles (these are planes),

◦ the 5 copies of the complete graph K4 (these are three-spaces),

◦ the 10 copies of the complete bipartite K2,3 (also three-spaces).

Topologically, the Bergman complex of R10 is a bouquet of nine 3-dimensional

spheres. It is constructed as follows. We first note that the nested set complex

of R10 consists of 405 tetrahedra, which come in eight families:

Each of the five copies of K4 contributes 27=1+18+4+4 tetrahedra:

(a) the four edges not in K4,

(b) the K4, a four-cycle in K4 and any two of its edges,

(c) the K4, and three of its edges that form a K3,

(d) the K4, and three of its edges that form a K1,3.
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Each of the ten copies of K2,3 contributes 27=1+18+2+6 tetrahedra:

(e) the four edges not in K2,3

(f) the K2,3, a four-cycle in K4 and any two of its edges

(g) the K2,3, and three of its edges that form a K1,3

(h) the K2,3, and three edges that touch all six vertices.

The Bergman complex of R10 has 360 facets, namely 315 tetrahedra and 45

bipyramids. There are 15 bipyramids formed by pairs of tetrahedra of type (b),

namely, two disjoint edges in a K4 and the two four-cycles of K4 containing them.

The other 30 bipyramids are formed by pairs of tetrahedra of type (f), namely,

two edges in K2,3 complementary to a four-cycle and the two other four-cycles of

in K2,3 which contain them.

Example 5.8. Let M be the cographic matroid M(K5)
∗. Here r = 6 and

n = 10. The bases of M are the six-tuples of edges in the complete graph K5

which are complementary to the spanning trees. The nested set complex N (M)

is a four-dimensional simplicial complex with f -vector (25, 185, 615, 955, 552).

The Bergman complex B(M) has 447 facets, of which 105 are subdivided into

pairs of 4-simplices when passing to N (M).

Example 5.9. The equality B(M) = N (M) holds when M is the rank r = 4

matroid specified by the n = 8 vertices of the three-dimensional unit cube.

The simplicial complex B(M)=N (M) has 20 vertices, 76 edges and 80 trian-

gles. On the other hand, for the four-dimensional unit cube (r = 5, n = 16),

the Bergman complex B(M) is not simplicial (it has 2600 facets). It is properly

subdivided by the nested set complex N (M) which consists of 176 vertices, 1280

edges, 3360 triangles and 2720 tetrahedra.

6 – Tropical compactification of arrangement complements

In this section we interpret our combinatorial results in terms of algebraic

geometry. We consider a connected rank r matroid M on [n], so its matroid

polytope PM ⊂R
n has dimension n−1, and we assume that M is realized by an

r-dimensional linear subspace V of the vector space C
n, or equivalently, by a

(r−1)-dimensional projective linear subspace X in the complex projective space

P
n−1. A subset D of [n] is dependent in the matroid M if and only if there exists

a non-zero linear form
∑

i∈D cixi that vanishes on X.
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We identify the algebraic torus (C∗)n−1 with the projective space P
n−1 mi-

nus its n coordinate hyperplanes {xi = 0}. We are interested in the non-compact

variety X = X ∩ (C∗)n−1. This is the complement of an arrangement of

n hyperplanes in X ≃ P
r−1.

A standard problem in algebraic geometry is to construct a smooth compact-

ification of the arrangement complement X which has better properties than the

ambient projective space X. Ideally, one wants the complement of X in that

compactification to be a normal crossing divisor. A solution to this problem was

given by De Concini and Procesi [7].

We briefly describe the construction of their wonderful compactificationXwond.

The geometric lattice LM of the matroidM is the intersection lattice of the hyper-

plane arrangement. Each flat F ⊂ [n] of rank s in M corresponds to a subspace

{xi = 0 : i ∈ F} of codimension s in the arrangement. Let P
F = P(CF ) denote

the coordinate subspace of P
n−1 with coordinates xi, i ∈ F , and consider the

projection ψF : P
n−1 → P

F . The restriction of ψF to X is a regular map. Let

G = Gmin be the minimal building set which consists of the connected flats, and

consider the product of all of these regular maps

(6.1) ψG : X →
∏

G∈G

P
G , u 7→

(
ψG(u) : G ∈ G

)
.

The wonderful model Xwond is the closure of ψG(X) in the compact variety∏
G∈G P

G.

More recently, Tevelev [21] introduced an alternative compactification, called

the tropical compactification Xtrop. The advantage of this new construction

is that X can now be an arbitrary subvariety of the algebraic torus (C∗)n−1.

Let X be the closure of X in P
n−1 and let HilbX(Pn−1) be the Hilbert scheme

of all subschemes of P
n which have the same Hilbert polynomial as X. Without

loss of generality, we may assume that X is not fixed by any non-unit element

t ∈ (C∗)n−1. Then the following map is an embedding:

(6.2) φ : X → HilbX(Pn−1) , t 7→ t−1 ·X .

The tropical compactification Xtrop is the closure of φ(X) in the compact scheme

HilbX(Pn−1). The combinatorial structure of Xtrop is governed by the tropical

variety of X. This is a subfan of the Gröbner fan of the ideal IX of X. This

subfan consists of all cones such that the corresponding initial ideal contains no

monomials. These cones correspond to the strata in the boundary Xtrop\X.

For nice varieties X, the divisor Xtrop\X is much better behaved than X\X,
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and it is expected that Xtrop is smooth and its boundary Xtrop\X can be made

normal crossing using only toric blow-ups [14, 21].

Here we consider the nicest case, when X ⊂ P
n−1 is a linear space (with

matroid M) and X is the complement of the arrangement of the n hyperplanes

{xi = 0} in X. The subspaces of P
n−1 that can be gotten by intersecting a subset

of the n hyperplanes correspond to the proper flats F of the matroid M . Note

that a flat F of M is connected if and only if it corresponds to a divisor in the

wonderful compactification Xwond.

Theorem 6.1. For any hyperplane arrangement complement X, there is a

canonical morphism from the wonderful compactification Xwond onto the tropical

compactification Xtrop. This morphism is an isomorphism whenever the following

combinatorial condition holds: If G ∈ LM corresponds to a divisor in Xwond then

G also corresponds to a divisor in (X ∩ F )wond where F is any intersection of

hyperplanes which contains G.

The combinatorial condition above is a translation of the condition in

Theorem 5.3. However, as Remark 6.3 shows, we must apply the condition in

Theorem 6.1 to the cone over the arrangement, because G might be the full set

[n] in Theorem 5.3

Example 6.2. Consider an arrangement of five planes in P
3 which intersect

in one point G and which represent the matroid M ′ in Examples 1.2 and 3.4. Let

F be the plane indexed by the edge 5 in Figure 3. Then G does not correspond to

a divisor in (X∩F )wond because the restriction of the arrangement to F consists

of two lines through G. Hence Xwond → Xtrop is not an isomorphism. On the

other hand, the recent work of Ardila, Reiner and Williams [2] implies that, for

any finite reflection arrangement, the tropical compactification coincides with the

wonderful compactification.

Remark 6.3. The case when X is a two-dimensional plane in P
n−1 is com-

pletely described in the work of Keel and Tevelev [15, Lemma 8.11, p. 43]. Here

we are considering an arrangement of n lines in P
2. The wonderful compactifi-

cation is equal to the tropical compactification except when there is a line L in

the arrangement and two points a, b ∈ L such that each remaining line passes

through a or b. In that case, Xtrop is obtained by blowing up the points a, b ∈ P
2,

then contracting the strict transform of the line L. The tropical compactification

is therefore isomorphic to P
1 × P

1, and the strict transforms of the lines through

a and b become fibers of the first and second projections, respectively.
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In what follows we shall give a more concrete description of the tropical com-

pactification Xtrop and we shall explain how the morphism Xwond → Xtrop

works. Since V is a linear space, the Hilbert scheme HilbX(Pn−1) is simply

the Grassmannian Grr,n of r-dimensional linear subspaces in C
n. Let IX denote

the ideal in C[x0, x1, ..., xn] generated by all linear forms that vanish on X. For

t = (t1 : · · · : tn) ∈ (C∗)n−1, we write t · IX for the image of IX under replacing

xi by tixi for all i. Clearly, It−1·X = t · IX for any t ∈ (C∗)n−1, i.e., the variety

of the ideal t · IX is the translated subspace t−1 ·X.

The map t 7→ t · IX defines an embedding of the torus (C∗)n−1 into the

Grassmannian Grr,n. The closure of its image is a projective toric variety TM .

As an abstract toric variety TM depends only on the matroid M , namely, it is

the toric variety associated with the matroid polytope PM . However, the specific

embedding of TM into Grr,n depends on the specific realization X of M . The

coordinate ring of TM is the basis monomial ring [23] of the matroid M , which is

the subalgebra of C[t1, ..., tn] generated by the monomials
∏

i∈σ ti where σ runs

over all bases of M . A result of Neil White [23] states that the basis monomial

ring is a normal domain, hence the toric variety TM is arithmetically normal.

The (C∗)n−1-action on the Grassmannian Grr,n restricts to the action of the

dense torus on the toric variety TM . (Note that dim(TM ) = n− 1 because M is

connected). The (C∗)n−1-orbits on TM correspond to the distinct initial ideals of

the ideal IX , i.e.,

(6.3) inw(IX) =
〈
inw(f) : f ∈ IX

〉
.

Two vectors w,w′ ∈ R
n lie in the same cone of the fan of the toric variety TM

if and only if inw(IX) = inw′(IX). This fan is the normal fan of the matroid

polytope PM .

We now restrict the map t 7→ t · IX from (C∗)n−1 to its subvariety X.

The result is precisely the map φ defined in (6.2) above. We can now rewrite

this map as follows:

(6.4) φ : X → TM , t 7→ t · IX .

Remark 6.4. The map φ defines an embedding of the hyperplane arrange-

ment complement X into the projective toric variety TM associated with the

matroid polytope PM . The tropical compactification Xtrop is the closure of the

image of this embedding.

The following lemma characterizes the location of Xtrop inside TM combina-

torially.
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Lemma 6.5. Let C be a cone in the normal fan of the matroid polytope

PM , and let w be any vector in the relative interior of C. Then the following are

equivalent:

(1) C is a cone in the Bergman fan B̃(M).

(2) The initial ideal inw(IX) in (6.3) contains no monomial.

(3) The initial ideal inw(IX) in (6.3) contains no variable xi.

(4) Xtrop does intersect the (C∗)n−1-orbit of TM corresponding to C.

Proof: Statements (2) and (3) are equivalent because IX is generated by

linear forms. The matroid associated with the linear ideal inw(IX) is the matroid

Mw, and (3) means that the element i is not a loop of Mw. Thus (3) is equivalent

to (1). The equivalence of (2) and (4) holds in general for tropical compactifi-

cations of arbitrary varieties X ⊂ (C∗)n. It is seen by considering the universal

family over the Hilbert scheme in (6.2).

Proof of Theorem 6.1: Every projective space P
G in (6.1) corresponds to

a face ∆G of the (n − 1)-dimensional simplex ∆. Let G be the collection of all

connected flats and let ∆G denote the Minkowski sum of the simplices ∆G, where

G ∈ G. Let TG denote the projective toric variety associated with the polytope

∆G . The toric variety TG is gotten from projective space P
n−1 by the sequence

of blow-ups along the linear coordinate subspaces indexed by G. The map ψG

in (6.1) can therefore be replaced by the inclusion X ⊂ (C∗)n−1 ⊂ TG , i.e., the

wonderful compactification Xwond coincides with the closure of the arrangement

complement X in the projective toric variety TG . Note that TG is generally

not smooth, but Xwond only meets smooth strata of TG , which explains all the

wonderful properties of this compactification.

Our key observation in this proof is that the matroid polytope PM is a

Minkowski summand of the polytope ∆G constructed in the previous paragraph.

Indeed, PM is given by the inequalities in Proposition 2.3, where F runs over

G, and ∆G is defined the inequalities in Proposition 3.12 where G runs over G.

A careful examination of these inequality representations reveals that PM is a

Minkowski summand of ∆G .

The relation “is Minkowski summand of” among lattice polytopes correspond

to projective morphisms in toric geometry. Since PM is a Minkowski summand

of ∆G , we get a projective morphism from the toric variety TG onto the toric

variety TM . The inclusion of X in TM given in (6.4) coincides with the composed

map X ⊂ (C∗)n−1 ⊂ TG → TM . Hence the closure of the image of X in TG is
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mapped by a projective morphism onto the closure of the image of X in TM .

This is the desired morphism Xwond → Xtrop.

Consider the collection of cones C in the normal fan of ∆G such that Xwond

intersects the orbit indexed by C. This subfan of the normal fan is precisely the

geometric realization of the nested set complex N (M). Likewise, the collection

of cones C in the normal fan of PM such that Xtrop intersects the orbit indexed by

C is precisely the Bergman fan B(M). If these fans are equal then the projective

morphism Xwond → Xtrop is an isomorphism. Hence the second assertion of

Theorem 6.1 follows from Theorem 5.3.
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