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Abstract: Several classes of real Gelfand–Mazur algebras are described. Conditions,

when the trace M∩B of a closed maximal left (right) ideal M of a real topological algebra

A would be a maximal ideal in a subalgebra B of the center of A are given.

1 – Introduction

1. Let K be one of the fields R of real numbers or C of complex numbers,

A a topological algebra over K with associative separately continuous multipli-

cation (in short, topological algebra) and m(A) the set of all closed regular

(or modular) two-sided ideals of A, which are maximal as left or right ideals.

If the quotient algebra A/M (in the quotient topology) is topologically isomor-

phic to K for each M ∈ m(A), then A is called a Gelfand–Mazur algebra (see [1],

[2], [3] or [4]). Herewith, A is a real Gelfand–Mazur algebra if K = R and is a

complex Gelfand–Mazur algebra if K = C.

Moreover, a unital topological algebra A is a Q-algebra if the set InvA of all

invertible elements of A is open in A; is a Waelbroeck algebra or a topological alge-

bra with continuous inverse if A is a Q-algebra in which the inversion a → a−1 is

continuous in InvA; is a Fréchet algebra if the underlying linear topological space
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of A is complete and metrizable; is a topological algebra with bounded elements if

every a ∈ A is bounded in A that is, there is a nonzero complex number λa such

that the set {( a

λa

)n
: n ∈ N

}

is bounded in A; is an exponentially galbed algebra if its underlying topological

vector space is an exponentially galbed space that is, for each neighbourhood O

of zero in A there exists another neighbourhood U of zero in A such that

{
n∑

k=0

ak

2k
: a0, ..., an ∈ U

}
⊂ O

for each n∈N and is a locally pseudoconvex algebra if A has a base B={Uα : α∈A}

of neighbourhoods of zero consisting of balanced (i.e. λUα ∈ Uα, whenever |λ| 6 1)

and pseudoconvex (i.e. Uα + Uα ⊂ µUα for some µ > 2) sets. Moreover, a

locally pseudoconvex algebra A is locally A-pseudoconvex if for each Uα ∈ B and

a ∈ A there is a number µa > 0 such that aUα, Uαa ⊂ µaUα and is locally

m-pseudoconvex if U2
α ⊂ Uα for each Uα ∈ B.

2. Let now A be a real topological algebra,

Z(A) =
{

z ∈ A : za = az for each a ∈ A
}

the center of A and B a closed subalgebra of Z(A) in the subset topology.

An ideal M ∈ m(B) is called extendible to A if

I(M) = clA

{
n∑

k=1

ak mk : n ∈ N, a1, ..., an ∈ A; m1, ..., mn ∈ M

}
6= A,

where clA(M) denotes the closure of M in the topology of A. We denote by

me(B) the set of all ideals M ∈ m(B), which are extendible to A.

3. Let A be a (real or complex) topological algebra, M a maximal regular

left (right) ideal of A and PM = {a ∈ A : aA ⊂ M} (PM = {a ∈ A : Aa ⊂ M},

respectively) the primitive ideal of A defined by M . If {θA} is a primitive ideal

of A, then A is called a primitive algebra and if there is a closed maximal regular

left (right) ideal M of A such that PM = {θA}, then A is called a topologically

primitive algebra (see [2], p. 21).
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4. Properties of real Banach algebras have been studied in several books

and articles (see, for example, [7], [8], [9] and [10]); of real k-normed and real

k-Banach algebras in [6]; of real Waelbroeck algebras in [6] and in [12]; of real lo-

cally m-convex algebras in [11] and of real locally pseudoconvex division algebras

in [5]. Properties of several classes of real Gelfand–Mazur algebras are studied

and conditions for a real topological algebra A that the trace M ∩ B of a closed

maximal left (right) ideal M of A in a subalgebra B of the center Z(A) to be a

closed maximal ideal in B are given in the present paper.

2 – Properties of the center and of the quotient algebra

Let (A, τ) be a real topological algebra, I a closed two-sided ideal of A and

πI the canonical homomorphism of A onto A/I. By τA/I we denote the quotient

topology on A/I, defined by τ and πI , and by τI the subset topology on Z(A/I)

defined by τA/I . Similarily as in the complex case (see [2], pp. 26–28) we have

the following result.

Proposition 1. Let A be a real topological algebra and I a closed two-sided

ideal of A. If there exists a topology τ on A such that

a) (A, τ) is locally pseudoconvex, then (A/I, τA/I) and (Z(A/I), τI) are real

locally pseudoconvex algebras;

b) (A, τ) is locally A-pseudoconvex (in particular, locally m-pseudoconvex),

then (A/I, τA/I) and (Z(A/I), τI) are real locally A-pseudoconvex

(respectively, locally m-pseudoconvex) algebras;

c) (A, τ) is an exponentially galbed algebra with bounded elements, then

(A/I, τA/I) and (Z(A/I), τI) are real exponentially galbed algebras with

bounded elements;

d) (A, τ) is a locally pseudoconvex Fréchet algebra, then (A/I, τA/I) and

(Z(A/I), τI) are real locally pseudoconvex Fréchet algebras;

e) (A, τ) is a real topological algebra with jointly continuous multiplication,

then (A/I, τA/I) and (Z(A/I), τI) are real topological algebras with jointly

continuous multiplication.

Moreover, if I is a regular ideal, u a right modular unit for I and for each

a ∈ A there is a λ ∈ R such that a− λu ∈ I, then spA/I(x) is not empty for each

x ∈ A/I and spZ(A/I)(y) = spA/I(y) for each y ∈ Z(A/I).



94 OLGA PANOVA

3 – Complexification of real algebras

1. Let A be a (not necessarily topological) real algebra and let Ã = A + iA

be the comlexification of A. Then every element ã of Ã is representable in the

form ã = a + ib, where a, b ∈ A and i2 = −1. If we define the addition in Ã, the

multiplication over C and the multiplication in Ã by

(a + ib) + (c + id) = (a + c) + i(b + d),

(α + iβ)(a + ib) = (αa − βb) + i(αb + βa),

and

(a + ib)(c + id) = (ac − bd) + i(ad + bc)

for all a, b, c, d ∈ A and α, β ∈ R, then Ã is a complex algebra with zero ele-

ment θÃ = θA + iθA (here and later on θA denotes the zero element of A). If

A is an algebra with unit element eA, then eÃ = eA+iθA is the unit element of Ã.

Herewith, Ã is an associative (commutative) algebra if A is an associative

(respectively, commutative) algebra. We can consider A as a real subalgebra of Ã

under the imbedding ν from A into Ã defined by ν(a) = a + iθA for each a ∈ A.

2. Let A be an algebra over K with unit eA and

spA(a) = {λ ∈ K : a − λeA 6∈ InvA}

for each a ∈ A. Then spA(a) is the spectrum of a. Herewith, elements of spA(a)

are complex numbers if A is a complex algebra and real numbers if A is a real

algebra.

A real (not necessarily topological) algebra A is formally real if from a, b ∈ A

and a2 + b2 = θA follows that a = b = θA and is strictly real if spÃ(a + iθA) ⊂ R.

It is known (see, for example, [6], Proposition 1.9.14) that every formally real

division algebra is strictly real and every commutative strictly real division

algebra is formally real. Moreover, the complexification Ã of a commutative

real division algebra A is division algebra if and only if A is formally normal

(see [6], Proposition 1.6.20).

Lemma 1. Let A be a real algebra and I a two-sided ideal of A. Then the

quotient algebra A/I is formally real if and only if I satisfies the condition

(α) from a, b ∈ A and a2 + b2 ∈ I follows that a, b ∈ I.
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Proof: Let A be a real algebra, I a two-sided ideal in A, πI the quotient

map of A onto A/I and let a, b ∈ A be such that a2 + b2 ∈ I. Then

πI(a)2 + πI(b)
2 = πI(a

2 + b2) = θA/I .

If A/I is formally real, then πI(a) = πI(b) = θA/I or a ∈ I and b ∈ I.

Let now a two-sided ideal I satisfy the condition (α) and x, y ∈ A/I be such

that x2 + y2 = θA/I . Then there are a, b ∈ A such that x = π(a), y = π(b) and

πI(a
2 + b2) = x2 + y2 = θA/I .

Hence, from a2 + b2 ∈ I follows that x = y = θA/I by the condition (α).

3. Let now (A, τ) be a real topological algebra and {Uα : α ∈ A} a base of

neigbourhoods of zero of (A, τ). As usual (see [6] or [12] ), we endow Ã with the

topology τ̃ in which {Uα + i Uα : α ∈ A} is a base of neighbourhoods of zero.

It is known that (Ã, τ̃) is a complex topological algebra and the multiplication

in (Ã, τ̃) is jointly continuous if the multiplication in (A, τ) is jointly continuous

(see [6], Proposition 2.2.10). Moreover, the underlying topological space of (Ã, τ̃)

is a Hausdorff space if (A, τ) is a Hausdorff algebra.

Let M be a maximal regular left (right or two-sided) ideal of A. Then (see

[6], Proposition 1.6.12, p. 46) M̃ = M + iM is a maximal regular left (right or

two-sided) ideal in Ã.

Proposition 2. Let A be a real topological algebra, M a closed maximal

regular left (right) ideal of A and PM the primitive ideal of A defined by M .

Then

a) the primitive ideal P̃fM of Ã defined by M̃ is representable in the form

P̃fM = PM + iPM ;

b) Ã/P̃fM = A/PM + iA/PM ;

c) Z(Ã) = Z(A) + iZ(A).

Proof: a) Let A be a real topological algebra, a, b ∈ PM and v + iw ∈ Ã.

Since

(a + ib)(v + iw) = av − bw + i(aw + bv) ∈ M̃,

then PM + iPM ⊂ P̃fM . Let now a + ib ∈ P̃fM and v + iθA ∈ Ã. Then

(a + ib)(v + iθA) = av + ibv ∈ M̃

if and only if av, bv ∈ M or a, b ∈ PM . Thus P̃fM ⊂ PM + iPM .
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b) Let a, b ∈ A. Then

a + PM + i(b + PM ) = (a + ib) + (PM + iPM ) = (a + ib) + P̃fM ∈ Ã/P̃fM .

Hence, A/PM + iA/PM ⊂ Ã/P̃fM and similarily Ã/P̃fM ⊂ A/PM + iA/PM .

c) It is clear that Z(A) + iZ(A) ⊂ Z(Ã). Let now a0 + ib0 ∈ Z(Ã). Since

aa0 + iab0 = (a + iθA)(a0 + ib0) = (a0 + ib0)(a + iθA) = a0a + ib0a

for each a ∈ A, then a0, b0 ∈ Z(A).

Corollary 1. If A is a real topologically primitive topological algebra, then

the complexification of A is a complex topologically primitive topological algebra.

Proof: Let A be a real topologically primitive topological algebra. Then

there exists a closed maximal regular left (right) ideal M in A such that PM =

{θA}. Since

P̃fM = PM + iPM = {θA + iθA} = {θÃ}

and M̃ is a closed maximal regular left (right) ideal of Ã, then Ã is a complex

topologically primitive topological algebra.

4 – Commutative real Gelfand–Mazur algebras

To describe real Gelfand–Mazur algebras, we need the following result proved

in [5], Corollary 5.5:

Proposition 3. Let A be a commutative strictly real division algebra.

If A has a topology(1) τ such that (A, τ) is

a) a locally pseudoconvex Hausdorff algebra with continuous inversion;

b) a locally A-pseudoconvex (in particular, locally m-pseudoconvex) Haus-

dorff algebra;

c) a locally pseudoconvex Fréchet algebra;

d) an exponentially galbed Hausdorff algebra with jointly continuous multi-

plication and bounded elements;

(1) Which can be different from the preliminary topology of A.
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e) a topological Hausdorff algebra for which the spectrum spA(a) is not

empty for each a ∈ A,

then A is a commutative real Gelfand–Mazur division algebra.

Now we prove

Theorem 1. Let A be a commutative real topological algebra. If A has a

topology(2) τ such that (A, τ) satisfies the condition (α) for each I ∈ m((A, τ))

and belongs in one of the following classes of topological algebras:

a) locally pseudoconvex Waelbroeck algebras;

b) locally A-pseudoconvex (in particular, locally m-pseudoconvex) algebras;

c) locally pseudoconvex Fréchet algebras;

d) exponentially galbed algebras with jointly continuous multiplication and

bounded elements;

e) topological algebras in which for any element a ∈ A and M ∈ m((A, τ))

there is a λ ∈ R such that a − λu ∈ M (here u is a modular unit for M),

then A is a commutative real Gelfand–Mazur algebra.

Proof: Let (A, τ) be a commutative real topological algebra which satisfies

the condition (α) for each I ∈ m((A, τ)) and M a fixed element of m((A, τ)).

Then (A/M, τA/M ) is a commutative strictly real topological division Hausdorff

algebra by Lemma 1. If now (A, τ) satisfies

1) the condition a), then (A/M, τA/M ) is a commutative strictly real locally

pseudoconvex Waelbroeck division algebra by the statement a) of Proposition 1

and Corollary 3.6.27 from [6];

2) the condition b), then (A/M, τA/M ) is a commutative strictly real locally

A-pseudoconvex (in particular, m-pseudoconvex) Hausdorff division algebra by

the statement b) of Proposition 1;

3) the condition c), then (A/M, τA/M ) is a commutative strictly real locally

pseudoconvex Fréchet division algebra by the statement d) of Proposition 1;

4) the condition d), then (A/M, τA/M ) is a commutative strictly real expo-

nentially galbed Hausdorff division algebra with jointly continuous multiplication

and bounded elements by the statements c) and f) of Proposition 1;

(2) See the footnote 1.
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5) the condition e), then (A/M, τA/M ) is a commutative strictly real topo-

logical Hausdorff algebra for which the spectrum spA/M (x) is not empty for each

x ∈ A/M by Proposition 1.

Hence, in all these cases A/M (in the quotient topology defined by the prelimi-

nary topology of A) is topologically isomorphic to R for each M ∈ m(A) by

Proposition 3. Therefore A is a commutative real Gelfand–Mazur algebra.

5 – Maximality of traces of ideals

Let A be a unital real topological algebra, B a subalgebra of Z(A) and M a

closed maximal left (right) ideal of A. It is easy to see that the trace M ∩ B of

M is a closed ideal in B. To find the conditions for A that the trace M ∩ B of

M to be maximal in B, we need

Proposition 4. Let A be a real locally A-pseudoconvex algebra (or a real

locally pseudoconvex Fréchet algebra) with a unit element eA, M a closed max-

imal left (right) ideal of A and PM a primitive ideal of A defined by M . If PM

satisfies the condition

(β) from a, b ∈ A and a2 + b2 ∈ PM follows that a, b ∈ PM ,

then Z(A/PM ) is topologically isomorphic to R.

Proof: Let (A, τ) be a unital real locally A-pseudoconvex (locally pseudo-

convex Fréchet) algebra, M a closed maximal regular left (right) ideal of A, PM

a primitive ideal in A defined by M , πM the canonical homomorphism of A onto

A/PM and τM the quotient topology on A/PM defined by τ and πM . Then

(A/PM , τM ) is a unital real locally A-pseudoconvex Hausdorff (respectively, lo-

cally pseudoconvex Fréchet) algebra by Proposition 1. Since the complexification

of A/PM is Ã/P̃fM , where P̃fM is a closed primitive ideal in Ã by Proposition 2,

then (Ã/P̃fM , τ̃M ) is a unital complex locally A-pseudoconvex Hausdorff (respec-

tively, locally pseudoconvex Fréchet) algebra by Theorem 3.3 and Corollary 3.2

from [5]. Hence, Z(Ã/P̃fM ) is topologically isomorphic to C by Theorem 1 from

[1] or by Theorem 2.17 from [2]. Therefore, Z(Ã/P̃fM ) is a complex division al-

gebra. As Z(Ã/P̃fM ) = Z(A/PM ) + iZ(A/PM ) by Proposition 2, then Z(A/PM )

is formally real by Proposition 1.6.20 from [6] (by condition (β) the quotient al-

gebra A/PM is formally real by Lemma 1, hence Z(A/PM ) is formally real too).
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Now, every element x ∈ Z(A/PM ) is representable in the form x = λxeA for

some λx ∈ R. Therefore, Z(A/PM ) is isomorphic to R. In the same way as in

the complex case (see, e.g. [2], p. 47) it is easy to show that this isomorphism is

a topological isomorphism because Z(A/PM ) is a Hausdorff space in the subset

topology.

Corollary 2. Let A be a real locally m-pseudoconvex topological algebra

with unit, PM a primitive ideal of A defined by a closed maximal regular left

(right) ideal M of A. If PM satisfies the condition (β), then Z(A/PM ) is topo-

logically isomorphic to R.

Proof: Since every locally m-pseudoconvex algebra is locally A-pseudo-

convex, then Z(A/PM ) is topologically isomorphic to R by Proposition 4.

Corollary 3. Let A be a unital strictly real topologically primitive locally

A-pseudoconvex Hausdorff algebra or a unital real topologically primitive locally

pseudoconvex Fréchet algebra. Then Z(A) is topologically isomorphic to R.

Theorem 2. Let(3) A be a real locally A-pseudoconvex (in particular, a

locally m-pseudoconvex) algebra with unit eA or a real locally pseudoconvex

Fréchet algebra with unit eA, M a closed maximal left (right or two-sided) ideal

of A, PM the primitive ideal in A defined by M and B a closed subalgebra of

Z(A), containing eA. If PM satisfies the condition (β), then

1) every b ∈ B defines a number λ ∈ R such that b − λeA ∈ M ;

2) M ∩ B ∈ me(B).

Proof: Similarily as in [1], the proof of Corollary 1, or in [2], the proof of

Proposition 3.1, it is easy to show that Theorem 2 holds by Proposition 4 and

Corollary 2.

Corollary 4. Let A be a real locally A-pseudoconvex (in particular, a locally

m-pseudoconvex) algebra with unit eA or a real locally pseudoconvex Fréchet

algebra with unit eA, M a closed maximal left (right or two-sided) ideal of A and

PM the primitive ideal in A defined by M . If PM satisfies the condition (β), then

1) every z ∈ Z(A) defines a number λ ∈ R such that z − λeA ∈ M ;

2) M ∩ Z(A) ∈ me(Z(A)).

(3) For complex locally A-pseudoconvex (in particular, locally m-pseudoconvex) algebras
with unit and for complex locally pseudoconvex Fréchet algebras with unit similar result has
been published in [1], Corollary 1, and in [2], Proposition 3.1.
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