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Näıma Äıssa

Abstract: We are dealing with the model of ferroelectric materials that has been

introduced by J.M. Greenberg and Al in Physica D 134, 362–383 (1999). We suppose that

the ferroelectric material occupies a thin cylinder with regular cross section and small

thickness ν > 0 and give the limit model as ν goes to 0. Linear and nonlinear potentials

are considered. In both cases, one notices that the limit problem is sensitive to the choice

of the boundary conditions. We observe that Silver–Müller boundary conditions induce

new terms in the limit problems.

1 – Introduction

We shall discuss the model equations of ferroelectric materials introduced

by Greenberg and Al. in [9] and discussed in [8]. The characteristic feature

of ferroelectric crystal is the appearance of a spontaneous electric dipole.

It can be reversed, with no net change in magnitude, by an applied electric field.

The current density j of the ferroelectric domain Ω is driven by the difference

between the electric equilibrium field Ê(P) and the electric field E where P is

the spontaneous electric polarization. If one denotes by m the internal magnetic

field then the model equations introduced in [9] takes the form in R
+×Ω

(1)





ǫ(∂tP + θj) = curlm

µ(∂tm+ θ αm) = − curlP

∂tj + θ α j = γ θ
(
Ê(P ) − E

)
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the set of equations is completed by initial conditions P (0) = P 0, m(0) = m0,

j(0) = j0. The boundary conditions will be discussed later. Eliminating the

variables j and m in the previous system, we get the following Maxwell equation

satisfied by P

(2) ∂2
t P + (ǫµ)−1 curl2 P + a ∂tP = −γ θ

(
Ê(P) − E

)

where curl2 P = curl(curlP), a = θα. The parameters ǫ > 0 and µ > 0 are the

permittivity and the magnetic permeability of the vacuum and the other ones

are some physical constants. The equilibrium field is given by Ê(P) = Pφ′(|P|2)
where φ is a two wells potential satisfying some hypotheses given later. The

electric displacement D is linked to the electric and polarization field E and P by

the law D = ǫ(E + P). Hence the electromagnetic field (H,E) satisfies in R
+×Ω

the Maxwell’s equations

(3) µ∂tH − curlE = 0 , ǫ ∂t(E + P) + curlH + σE = 0

where σ > 0 is the conductivity constant. The initial conditions are E(0) = E0,

H(0) = H0. The boundary conditions satisfied by E and P take an important

place in the characterization of the limit of the problem as the thickness goes

to zero. If m satisfies the boundary condition m×n = 0 on ∂Ω, n being the

outward unit normal to ∂Ω, one deduces by using (1) that P satisfies the boundary

condition

(4) curlP×n = 0 .

This condition was proposed in [9] and studied in [2]. If more generally m and P

satisfy a Silver–Müller type boundary condition like n×m + ρ n×(P×n) = 0

where ρ ≥ 0 is a function defined on ∂Ω then we obtain directly from (1) the

following boundary condition for P

(5) curlP×n + ρµ n×
(
(∂tP + aP)×n

)
= 0 .

This boundary condition will be used in our work only in the linear case when

φ′(s) ≡ k, k being a real constant. For the nonlinear case, we will use the bound-

ary condition

(6) P×n = 0 .

The reason we use (6) is that we can prove the H
1 regularity of the polarization

field P which allows to pass to the limit in the nonlinear equilibrium electric field
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Ê(P). We proved in [1] that the boundary condition (5) ensures an H
1

2 regularity

of the polarization field P. As H
1

2 is compactly imbedded in L
2 then we can also

pass to the limit in the nonlinear potential.

For the linear as well as the nonlinear case, we use for the electric field the

following Silver–Müller boundary condition

(7) H×n + β n×(E×n) = 0

where β ≥ 0 is some function defined on ∂Ω.

The equilibrium electric field Ê(P) is given by Ê(P) = Pφ′(|P|2) where φ is

the two wells potential function defined in [9]. Recall that φ : R→R is of class C2

such that φ(0) = 0, r20 > 0 is the location of the unique minimum of φ(r2) with

φ(r20) < 0 and φ(r2) > 0 for r2 ≥ r21. Moreover, φ satisfies the following hypothe-

ses

(8) φ(s) ∼ C0 s for s→ +∞ , |φ′(s)| ≤ C1, sφ(2)(s) ≤ C2 for s ≥ 0

where C0, C1 > 0 and C2 > 0 are some constants depending only of φ. It follows

that there exists C⋆ depending only of φ such that

(9)
∣∣(s φ′(s2)

)′∣∣ ≤ C⋆ for s ≥ 0

consequently we get the following useful inequality

(10)
∣∣Aφ′(|A|2) −B φ′(|B|2)

∣∣ ≤ C⋆|A−B| , ∀ (A,B) ∈ R
3×R

3 .

Let us precise the models we shall discuss. To simplify the presentation we

equate to 1 all the constants appearing in the model except a > 0 and σ > 0 to

measure the dissipation process. Let ν > 0 representing the thickness of the cylin-

der Ων = Ω̂×(0, ν) with cross section Ω̂ ⊂ R
2 assumed to be an open bounded,

convex and regular domain. We denote by n the outward unit normal to ∂Ων .

The generic point x ∈ Ων is denoted by x = (x̂, x3) where x̂ = (x1, x2) ∈ Ω̂ and

0 < x3 < ν. The electromagnetic field (Hν ,Eν) satisfies in R
+×Ων the problem

(11)





∂tH
ν − curlEν = 0, ∂t(E

ν + Pν) + σEν + curlHν = 0 in R
+×Ων ,

Hν×n + βν n×(Eν×n) = 0 on R
+×∂Ων ,

H|t=0 = H0 and E|t=0 = E0 in Ων .

coupled to the polarization equation which writes in the nonlinear case

(12)





∂2
t P

ν + a ∂tP
ν + curl2 Pν + Pνφ′(|Pν |2) = Eν in R

+×Ων ,

Pν×n = 0 , R
+×∂Ων ,

Pν(0) = P0 and ∂tP
ν(0) = P1 in Ων .
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For the linear case, the system (11) is coupled to

(13)





∂2
t P

ν + a ∂tP
ν + curl2 Pν + kPν = Eν in R

+×Ων ,

curlPν×n + ρν n×
(
(∂tP

ν + aPν)×n
)

= 0 , R
+×∂Ων ,

Pν(0) = P0 and ∂tP
ν(0) = P1 in Ων ,

where k is a real constant and βν and ρν are two functions defined on the boundary

∂Ων and depending only of the variable x3 and the thickness parameter ν.

Before stating the existence, uniqueness and regularity results leading re-

spectively with the systems (11)–(12) and (11)–(13), we first define the following

spaces and the corresponding norms that will be used throughout this manuscript.

Let O be an open bounded domain of R
2 or R

3. We denote by L
2(O)

the Lebesgue space (L2(O))2 or (L2(O))3 constituted by integrable functions,

equipped with the usual norm denoted by |.| and the scalar product (., .).

Let H(curl,O) be the usual Hilbert space used in the theory of Maxwell equations

equipped with the norm |.|H. We also use the Banach space Lp(R+; L2(O)) for

p ≥ 1, p 6= 2 and the Hilbert space L2(R+; L2(O)) provided respectively with the

norms ‖.‖p and ‖.‖. Finally, the norm of the Sobolev space H
1(O) is denoted by

|.|H1 .

The existence, uniqueness and regularity of solutions (Hν ,Eν ,Pν) to the

problem (11)–(12) has been proved in [3] and [10] with the boundary condi-

tions Eν×n = 0 and either Pν×n = 0 or curlPν×n = 0. Following the lines

of the proof given in [3], we may prove with minor changes the following results

dealing with the Silver–Müller boundary conditions which are usual in the theory

of Maxwell’s equations.

Theorem 1.1 (The linear case). Let ρν , βν ∈ L∞(0, ν) such that ρν(x3) ≥ 0

and βν(x3) ≥ 0 a.e.. We assume that

(14) H0,E0,P1 ∈ L
2(Ων) , P0 ∈ H(curl,Ων) , P0×n ∈ L

2(∂Ων) .

Then, there exists a unique weak solution (Hν ,Eν ,Pν) to problem (11)–(13)

such that Hν ,Eν ∈ L∞(R+; L2(Ων)) and Pν ∈ L∞(R+;H(curl,Ων)). The tan-

gential traces Hν×n, Eν×n, ∂tP
ν×n belong to L2(R+; L2(∂Ων)) and Pν×n ∈

L∞(R+; L2(∂Ων)). Moreover, for all t ≥ 0, we have the energy inequality

(15)

Eν(t) + 2

∫ t

0
a |∂tP

ν(s)|2 + σ |Eν(s)|2 + |
√
βν Eν×n|2 + |

√
ρν ∂tP

ν×n|2 ds ≤ Eν
0
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where the energy at time t is defined by

(16)

Eν(t) = |∂tP
ν(t)|2 +k |Pν(t)|2 + |curlPν(t)|2 +a |

√
ρν Pν×n|2 + |Eν(t)|2 + |Hν(t)|2

and the initial energy Eν
0 is given by

(17) Eν
0 = |P1|2 + k |P0|2 + |curlP0|2 + a |

√
ρν P0×n|2 + |E0|2 + |H0|2 .

Concerning the nonlinear problem (11)–(12), we have

Theorem 1.2 (The nonlinear case). Assume that φ satisfies hypotheses (8)

and that βν is a positive function belonging to L∞(0, ν). If the initial data satisfy

(18) H0,E0,P1 ∈ L
2(Ων) , P0 ∈ H(curl,Ων) , P0×n ∈ L

2(∂Ων) .

Then, there exists a unique weak solution (Hν ,Eν ,Pν) to problem (11)–(12) such

that Hν ,Eν ∈ L∞(R+; L2(Ων)) and Pν ∈ L∞(R+;H(curl,Ων)). The tangential

traces Hν×n, Eν×n belong to L2(R+; L2(∂Ων)). Moreover, for all t ≥ 0, we

have the energy inequality

(19) Eν(t) + 2

∫ t

0
a |∂tP

ν(s)|2 + σ|Eν(s)|2 + |
√
βν Eν×n|2 ds ≤ Eν

0

where the energy at time t is defined by

(20) Eν(t) = |∂tP
ν(t)|2 +

∫

Ων

φ(|Pν |2) dx + |curlPν(t)|2 + |Eν(t)|2 + |Hν(t)|2

and the initial energy Eν
0 is given by

(21) Eν
0 = |P1|2 +

∫

Ων

φ(|P0|2) dx + |curlP0|2 + |E0|2 + |H0|2 .

We assume that in both linear and nonlinear cases

(22)




βν(x3) = β if 0<x3<ν , βν(0) = ν β1 , βν(ν) = ν β2

ρν(x3) = ρ if 0<x3<ν , ρν(0) = ν ρ1 , ρν(ν) = ν ρ2

where β, β1, β2, ρ, ρ1, ρ2 are some strictly positive constants. Note that using

the hypothesis (8) satisfied by φ, we get for all t ≥ 0

(23) |Pν(t)|2 ≤ C

(∫

Ων

φ
(
|Pν(t)|2

)
dx + |Ων |

)
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for some constant C > 0 depending only of φ. Here |Ων | = ν |Ω̂| is the Lebesgue

measure of Ων . Finally, arguing like in [3], we have the following time regularity

result

Proposition 1.1 (Time regularity). Let (Hν ,Eν ,Pν) be a weak solution

of either (11)–(13) or (11)–(12) problem. We assume in both cases that

(H0,E0,P0,P1) satisfies

(24) H0, E0, P0, P1, curlP0 ∈ H(curl; Ων) ,

we assume moreover for the linear case that P0×n,P1×n ∈ L
2(∂Ων). Then

(25)
∂tH

ν , ∂tE
ν , ∂2

t P
ν ∈ L∞(R+; L2(Ων))

Hν , Eν , Pν , ∂tP
ν ∈ L∞(R+;H(curl; Ων)) .

2 – Scaling and main result

In the sequel, let (u1,u2,u3) be the canonical basis of R
3 and let Ω be the

cylinder Ω̂×(0, 1) where Ω̂ is a regular bounded convex domain of R
2. The

generic point x of Ω is denoted by x = (x̂, z) with x̂ = (x1, x2) and 0 < z < 1.

If f = (f1, f2, f3) is a vector function, we set

(26)





curlν f =
(
∂2f3 − 1

ν
∂zf2 ,

1
ν
∂zf1 − ∂1f3 , ∂1f2 − ∂2f1

)

f̂ = (f1, f2) , ĉurl f̂ = ∂1f2 − ∂2f1

d̂iv f = ∂1f1 + ∂2f2 , divν f = d̂iv f + 1
ν
∂zf3 .

If f is a scalar function, we set

(27) Curl f = (∂2f ,−∂1f) , ∆̂f = ∂2
1f + ∂2

2f .

Let (Hν ,Eν ,Pν) be the global solution of (11)–(12) or (11)–(13). We consider

the scaled solution defined in R
+×Ω associated with (Hν ,Eν ,Pν)

(28)

hν(t, x̂, z) = Hν(t, x̂, ν z) , eν(t, x̂, z) = Eν(t, x̂, ν z) , pν(t, x̂, z) = Pν(t, x̂, ν z) .

It follows that

(29) curlHν = curlν hν , curlEν = curlν eν , curlPν = curlν pν .

Our main results are the following
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Theorem 2.1 (The linear case). Assume that the initial data are indepen-

dent of the variable x3 and satisfy the hypotheses given proposition 1.1 and

consider βν , ρν defined by (22). Let (hν , eν ,pν) be the scaled solution associated

with the global solution to problem (11)–(13). Then, there exists a subsequence

still denoted (hν , eν ,pν) converging weakly-⋆ in L∞(R+; L2(Ω)) to (h, e,p) which

is independent of the variable z and such that ĥ = 0. The weak-⋆ limit (h3, ê, p̂)

satisfies in R
+×Ω̂ the problem

(30)





∂th3−ĉurl ê=0 , ∂t(ê+p̂)+Curlh3+(σ+β1+β2)ê=0 a.e. in R
+×Ω̂ ,

(∂2
t +a∂t+k) p̂ + Curl ĉurl p̂ + (ρ1+ρ2)(∂t+a) p̂ = ê a.e. in R

+×Ω̂ ,

ê(0) = Ê0, p̂(0) = P̂0, ∂tp̂(0) = P̂1, h3(0) = H0
3 a.e. in Ω̂ ,

h3 =β (e1n2− e2n1), ĉurl p̂ =ρ (∂t+a) (p1n2− p2n1) a.e. on R
+×∂Ω̂ .

The third components (e3,p3) satisfy the system of o.d.e

(31)




∂t(e3 + p3) + σ e3 = 0 , (∂2

t + a ∂t + k)p3 = e3 a.e. in R
+×Ω̂ ,

e3(0) = E0
3 , p3(0) = P0

3 , ∂tp3(0) = P1
3 a.e. in Ω̂ .

Moreover, we have

h3 ∈ L∞(R+;H1(Ω̂)) , ê ∈ L∞(R+;H(ĉurl, Ω̂)) ,

p̂ ∈ L∞(R+;H(ĉurl, Ω̂)) , ∂tp̂ ∈ L∞(R+;H(ĉurl, Ω̂)) ,

ĉurl p̂ ∈ L∞(R+;H1(Ω̂)) .

For the nonlinear case, we assume that initial data are independent of the

variable x3 and are such that

(32)





H0 = (0, 0,H0
3) , E0 = (Ê0,E0

3) , P0 = (0, 0,P0
3) , P1 = (0, 0,P1

3)

H0
3,P

0
3,P

1
3 ∈ H1(Ω̂) , d̂iv E0 ∈ L2(Ω̂) .

The limit problem in the nonlinear case is given by

Theorem 2.2 (The nonlinear case). Assume that the initial data are in-

dependent of the variable x3 and satisfy (32). We assume moreover that βν is

given by (22). Let (hν , eν ,pν) be the scaled solution associated with the global

solution to problem (11)–(12). Then, there exists a subsequence still denoted

(hν , eν ,pν) such that hν ⇀ (0, 0,h3), eν ⇀ e weakly in L∞(R+; L2(Ω)) weak-⋆,
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pν → (0, 0,p3) strongly in L∞(R+; L2(Ω)). The weak-⋆ limit (h3, e,p3) is inde-

pendent of the variable z and is such that (h3, ê) is the solution in R
+×Ω̂ of the

problem

(33)





∂th3 − ĉurl ê = 0 , ∂tê + Curlh3 + (σ+β1+β2)ê = 0 a.e. in R
+×Ω̂ ,

ê(0) = Ê0, h3(0) = H0
3 a.e. in Ω̂ ,

h3 = β (e1n2 − e2n1) a.e. on R
+×∂Ω̂ .

The third components (e3,p3) satisfy in R
+×Ω̂ the system

(34)





∂t(e3 + p3) + σ e3 = 0 a.e. in R
+×Ω̂ ,

∂2
t p3 + a ∂tp3 − ∆̂p3 + p3 φ

′(|p3|2) = e3 a.e. in R
+×Ω̂ ,

e3(0) = E0
3 , p3(0) = P0

3 , ∂tp3(0) = P1
3 a.e. in Ω̂ ,

p3 = 0 a.e. on R
+×∂Ω̂ .

with h3,p3 ∈ L∞(R+;H1(Ω̂)) and ê ∈ L∞(R+;H(ĉurl, Ω̂)).

Let us comment the limit problems obtained. We notice that in both linear

and nonlinear cases, the limit magnetic field is orthogonal to the cross section and

the limit system is decoupled into two independent systems settled in the cross

section Ω̂. On the one hand, the first system consists of the Maxwell’s equations

satisfied by (ê,h3) (respectively (ê,h3, p̂)) for the nonlinear (respectively linear)

case. In this system, in comparison with the systems (11)–(12) and (11)–(13),

there are additional terms in the Maxwell’s equations representing the contribu-

tion of the boundary conditions. On the other hand, the second system describes

the dynamic of the third components of the electric and polarization limit field.

However, the effect of the boundary condition is not observed in this system.

3 – Uniform estimates and weak convergences

As we assumed that the initial data are independent of the variable x3 and

βν , ρν are given by (22) then the initial energy defined in Theorem 1.1 and

Theorem 1.2 satisfies Eν
0 ≤ ν C hence Eν(t) ≤ ν C for some constant C > 0

independent of ν. Consequently, setting θν =
(
∂2p

ν
3 − 1

ν
∂zp

ν
2 ,

1
ν
∂zp

ν
1 − ∂1p

ν
3

)
,

the scaled solution associated to the solution to problem (11)–(13) or (11)–(12)

satisfies the following uniform estimates
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3.1. Uniform estimates

Lemma 3.1. There exists a constant C > 0 independent of ν such that,

if (hν, eν,pν) is the scaled solution associated with the global solution of (11)–(13)

or (11)–(12), we have

(35)





‖eν‖2
∞ + ‖hν‖2

∞ + ‖pν‖2
∞ + ‖eν‖2 + ‖∂tp

ν‖2 ≤ C

‖∂tp
ν‖2

∞ + ‖∂1p
ν
2 − ∂2p

ν
1‖∞ + ‖θν‖2

∞ ≤ C .

Moreover we have

(36)





∥∥(eν×n)|z=0,1

∥∥2

L2(R+;L2(bΩ))
+ ‖eν×n‖

L2(R+;L2(∂bΩ×(0,1)))
≤ C

∥∥(hν×n)|z=0,1

∥∥2

L2(R+;L2(bΩ))
≤ ν C .

and, for the linear case, we have

(37)





∥∥(pν×n)|z=0,1

∥∥2

L∞(R+;L2(bΩ))
+ ‖pν×n‖

L∞(R+;L2(∂bΩ×(0,1)))
≤ C

∥∥(∂tp
ν×n)|z=0,1

∥∥2

L2(R+;L2(bΩ))
+ ‖∂tp

ν×n‖
L2(R+;L2(∂bΩ×(0,1)))

≤ C .

Notice that from the boundary condition satisfied by pν and the previous esti-

mates, we deduce in the linear case, that we have

(38)
∥∥(curlν pν×n)|z=0,1

∥∥
L2

loc
(R+;L2(bΩ))

≤ ν C .

In a similar way, we get the following estimates for the time partial derivatives

of the solution

Lemma 3.2. There exists a constant C > 0 independent of ν such that,

if (hν, eν,pν) is the scaled solution associated with the global solution of (11)–(13)

or (11)–(12), we have

(39)





‖∂te
ν‖2

∞ + ‖∂th
ν‖2

∞ + ‖∂2
t p

ν‖2
∞ + ‖ curlν hν‖2

∞ + ‖ curlν ∂tp
ν‖2

∞ ≤ C

‖ curlν pν‖2
∞ + ‖ curlν eν‖2

∞ + ‖ curl2ν pν‖2
∞ + ‖ curl2ν ∂tp

ν‖2
∞ ≤ C .
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3.2. Weak convergences

For a subsequence still denoted by (hν, eν,pν), where (hν, eν,pν) is either the

solution to the linear problem (11)–(13) or to the nonlinear problem (11)–(12),

the following convergences hold

(40)





(hν, eν, pν) ⇀ (h, e, p) in L∞(R+; L2(Ω)) weakly-⋆

(eν , ∂tp
ν) ⇀ (e, ∂tp) in L2(R+; L2(Ω)) weakly

∂tp
ν⇀ ∂tp , (θν, ĉurlp̂ν) ⇀ (θ, ĉurlp̂)) in L∞(R+; L2(Ω)) weakly-⋆

(∂th
ν, ∂te

ν, ∂2
t p

ν) ⇀ (∂th, ∂te, ∂
2
t p) in L∞(R+; L2(Ω)) weakly-⋆

ĉurl ∂tp̂
ν ⇀ ĉurl ∂tp̂ in L∞(R+; L2(Ω)) weakly-⋆

where θ ∈ L∞(R+; L2(Ω)) is some function which will be identified later.

3.3. Convergence of the boundary terms

We denote by H(curlν ,Ω) = {u ∈ L
2(Ω), curlν u ∈ L

2(Ω)} and H(ĉurl,Ω) =

{u ∈ L
2(Ω), ∂1u2−∂2u1 ∈ L

2(Ω)}. For T > 0 fixed, set ΩT = (0, T )×Ω and

Ω̂T = (0, T )×Ω̂. In order to pass to the limit in the boundary terms and to

characterise their limit, we first establish the following result which will applied

to eν , hν , pν and curlν pν .

Proposition 3.1. Let Ω = Ω̂×(0, 1) be a bounded cylinder of R
3 and let vν

be a uniformly bounded sequence in L∞(R+;H(curlν ; Ω)) such that the tangential

trace vν×n is uniformly bounded in L2
loc(R

+; L2(∂Ω)) (or in L∞(R+; L2(∂Ω)).

Then vν⇀ v in L∞(R+; L2(Ω)) weak-⋆ such that

(41)





v̂ is independent of z, v̂ ∈ L∞(R+;H(ĉurl, Ω̂))

(vν×n)|z=1 ⇀ (v2,−v1, 0) in L2
loc(R

+; L2(Ω̂)) weakly(
or (vν×n)|z=1 ⇀ (v2,−v1, 0) in L∞(R+; L2(Ω̂)) weakly-⋆

)

(vν×n)|z=0 ⇀ (−v2, v1, 0) in L2
loc(R

+; L2(Ω̂)) weakly(
or (vν×n)|z=0 ⇀ (−v2, v1, 0) in L∞(R+; L2(Ω̂)) weakly-⋆)

∫ 1

0
(vν×n).u3 dz ⇀ v1n2 − v2n1 in L2

loc(R
+; L2(∂Ω̂)) weakly

(
or

∫ 1

0
(vν×n).u3 dz ⇀ v1n2 − v2n1 in L∞(R+; L2(∂Ω̂)) weakly-⋆) .
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Proof: We first prove that v̂ is independent of the variable z. Indeed,

as curlν v
ν is bounded in L∞(R+; L2(Ω)) then 1

ν
∂zv

ν
i − ∂iv

ν
3 converges weakly-⋆

for i = 1, 2 and hence ∂zv
ν
i − ν ∂iv

ν
3 ⇀ 0 in the sense of distributions. Since

ν ∂iv
ν
3 ⇀ 0 in the sense of distributions then ∂zv

ν
i ⇀ 0 the sense of distributions

and hence ∂zvi = 0 in the sense of distributions for i = 1, 2. Next, it derives

from the fact that vν ⇀ v and ĉurl vν ⇀ ĉurl v in L∞(R+; L2(Ω)) weak-⋆ that

v̂ ∈ L∞(R+;H(ĉurl, Ω̂)) which means that the tangential trace v1n2 − v2n1 is

well defined in L∞(R+;H− 1

2 (∂Ω̂)). Finally, the convergence of the traces can be

deduced from the following Green’s formula

(42)

∫

ΩT

(curlν v
ν) ·ϕ dx dt =

∫

ΩT

(curlν ϕ) · vν dx dt

− 1

ν

∫bΩT

(vν×n)|z=0,1 ·ϕ dt dx̂

−
∫

(0,T )×∂bΩ×(0,1)
(vν×n) ·ϕ dt dα dz

by using successively in (42) the test functions ϕ(t,x̂,z)=
(
νzϕ1(t,x̂), νzϕ2(t,x̂), 0

)
,

ϕ(t, x̂, z) =
(
ν(1−z)ϕ1(t, x̂), ν(1−z)ϕ2(t, x̂), 0

)
and ϕ(t, x̂, z) = (0, 0, ϕ3(t, x̂))

with ϕi ∈ D((0, T )×Ω̂) and by letting ν → 0.

Corollary 3.1. In both cases, the limit functions ê, ĥ, p̂, θ are indepen-

dent of the variable z and we have

(43)





(eν×n)|z=0⇀(−e2, e1, 0) , (eν×n)|z=1⇀(e2,−e1, 0) in L2(R+,L2(Ω̂))

ĥ ≡ 0 in R
+×Ω .

Moreover, for the linear case, we have

(44)





(pν×n)|z=0 ⇀ (−p2,p1, 0) in L∞(R+,L2(Ω̂)) weak-⋆

(pν×n)|z=1 ⇀ (p2,−p1, 0) in L∞(R+,L2(Ω̂)) weak-⋆

(∂tp
ν×n)|z=0 ⇀ (−∂tp2, ∂tp1, 0) in L2(R+,L2(Ω̂)) weakly

(∂tp
ν×n)|z=1 ⇀ (∂tp2,−∂tp1, 0) in L2(R+,L2(Ω̂)) weakly

θ ≡ 0 in R
+×Ω .



386 NAÏMA AÏSSA

Furthermore, for the nonlinear case, we have

(45)





p̂ ≡ 0 , θ = Curl

(∫ 1

0
p3 dz

)
in R

+×Ω ,

∫ 1

0
p3 dz = 0 on R

+×∂Ω̂ .

Proof: It is clear that the weak convergences and the independency with

respect to the variable z can be deduced directly from the previous proposition.

Next, in both cases, we have ĥ ≡ 0. Indeed, on the one hand, by virtue of the

previous proposition (hν×n)|z=0 ⇀ (−h2,h1, 0) weakly in L2(R+; L2(Ω̂)). On the

other hand, thanks to (36) we have (hν×n)|z=0 → 0 strongly in L2(R+; L2(Ω̂)).

Hence, we have ĥ ≡ 0. Moreover, using (38), we may proceed similarly to prove

θ ≡ 0 in the linear case. Furthermore, we get in a similar way p̂ ≡ 0 in the

nonlinear case thanks to the boundary condition pν×n = 0. Finally, since we

have pν×n = 0 in the nonlinear case, then using the Green’s formula

(46)

∫

R+×Ω
(curlν pν) ·ϕ dx dt =

∫

R+×Ω
(curlν ϕ) ·pν dx dt

with the test function ϕ(t, x̂, z) =
(
ϕ1(t, x̂), ϕ2(t, x̂), 0

)
, ϕi(t, x̂) ∈ D(R+×Ω̂)

and letting ν → 0 we get θ = Curl
(∫ 1

0
p3 dz

)
and hence

∫ 1

0
p3 dz belongs to

L∞(R+;H1(Ω̂)). Moreover using the Green’s formula in H1(Ω̂) we get

∫ 1

0
p3 dz=0

on R
+×∂Ω̂.

Lemma 3.3 (Initial Data). The traces at t = 0 of h, e, p, ∂tp make sense

in L
2(Ω) and we have

(47) h(0) = H0, e(0) = E0, p(0) = P0, ∂tp(0) = P1 a.e. in Ω .

Proof: We will prove the lemma for e, the proof is similar for the other

functions. Thanks to Lemma 3.1 and Lemma 3.2, we have eν , ∂te
ν , e, ∂te ∈

L∞(R+,L2(Ω)) and hence eν , e ∈ W 1,∞(R+,L2(Ω)). It follows that eν , e ∈
C0(R+,L2(Ω)) so e(0) makes sense in L

2(Ω). Next, as eν ∈ W 1,∞(R+,L2(Ω)),

we have

(48)

∫

ΩT

∂t(e
ν ·ϕ) dx dt =

∫

ΩT

(∂te
ν) · ϕ dx dt +

∫

ΩT

eν · ∂tϕ dx dt
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then

(49)

∫

Ω
eν(T ) ·ϕ(T ) − E0 ·ϕ(0) dx =

∫

ΩT

(∂te
ν) ·ϕ dx dt +

∫

ΩT

eν · ∂tϕ dx dt .

Let φ ∈ (D(Ω))3, taking ϕ(t, x)= t−T
T
φ(x) in the last equality and letting ν→ 0

we get

(50)

∫

Ω
E0·φ dx =

∫

ΩT

∂t(e · ϕ) dx dt =

∫

Ω
e(0) ·φ dx , ∀φ ∈ (D(Ω))3

hence e(0) = E0 a.e. in Ω.

4 – Proof of Theorem 2.1

The scaled solution (hν , eν , pν), associated with the solution (Hν , Eν , Pν)

to problem (11)–(13), satisfies in R
+×Ω the problem

(51)





∂th
ν − curlν eν = 0 , ∂t(e

ν + hν) + curlν hν + σ eν = 0

hν(0) = H0(x̂) , eν(0) = E0(x̂)

hν×n + βν n×(eν×n) = 0

coupled to the polarization equation

(52)





∂2
t p

ν + a ∂tp
ν + curl2ν pν + k pν = eν

pν(0) = P0(x̂) , ∂tp
ν(0) = P1(x̂)

curlν pν×n + ρν n×
(
(∂t+a)p

ν×n
)

= 0 .

Setting Q = R
+×Ω, the weak formulation of this problem writes as

(53) −
∫

Q

hν · ∂tϕ dx dt −
∫

Q

eν · curlν ϕ dx dt = 0

with

(54)





∫

Q

−(eν+pν) · ∂tη dx dt +

∫

Q

hν · curlν η dx dt + σ

∫

Q

eν · η dx dt +

+ β

∫

R+×∂bΩ×(0,1)
(eν×n) · (η×n) dt dα dz

+ β2

∫

R+×bΩ(eν×n)|z=1 · (η×n)|z=1 dt dx̂

+ β1

∫

R+×bΩ(eν×n)|z=0 · (η×n)|z=0 dt dx̂ = 0
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for all regular test functions ϕ ∈ D
(
]0,∞[×Ω

)
, η ∈ D

(
]0,∞[×Ω

)
. Here we used

the boundary condition hν×n + βν n×(eν×n) = 0. The polarization field pν

satisfies

(55)





∫

Q

(∂2
t +a∂t+k)p

ν ·ψ dx dt +

∫

Q

(θν, ĉurl p̂ν)· curlν ψ dx dt −

−
∫

Q

eν ·ψ dx dt + ρ

∫

R+×∂bΩ×(0,1)

(
(∂tp

ν + apν)×n
)
· (ψ×n) dt dα dz

+ ρ2

∫

R+×bΩ(
(∂tp

ν + apν)×n
)
|z=1

· (ψ×n)|z=1 dt dx̂

+ ρ1

∫

R+×bΩ(
(∂tp

ν + apν)×n
)
|z=0

· (ψ×n)|z=0 dtd x̂ = 0

for all test function ψ defined in Q. Here, we used the boundary condition

curlν pν×n + ρνn×((∂tp
ν + apν)×n) = 0. Before passing to the limit in the

weak formulation, we first prove

Lemma 4.1. For both cases, the functions e3, h3, p3 are independent of

the variable z.

Proof: We prove the lemma for the linear case. The proof in the nonlinear

case is similar. The compatibility conditions for problem (51)–(52) (obtained by

using divν(curlν) = 0) can be written in the sense of distributions as

(56)





∂t

(
d̂iv ĥν + 1

ν
∂zh

ν
3

)
= 0 ,

∂t

(
d̂iv (êν+p̂ν) + 1

ν
∂z(e

ν
3+pν

3)
)

+ σ
(
d̂iv êν + 1

ν
∂ze

ν
3

)
= 0 ,

(∂2
t + a∂t + k)

(
d̂iv p̂ν + 1

ν
∂zp

ν
3

)
−

(
d̂iv êν + 1

ν
∂ze

ν
3

)
= 0 .

Using the test function νφ and letting ν → 0, we get

(57)





∂t(∂zh3) = 0 ,

∂t(∂ze3 + ∂zp3) + σ ∂ze3 = 0 ,

(∂2
t + a∂t + k) ∂zp3 − ∂ze3 = 0

in the sense of distributions. By virtue of Lemma 3.3 and the independency of

the initial data with respect to the third variable, we have ∂zh3(0) = ∂ze3(0) =

∂zp3(0) = 0 and ∂z∂tp3(0) = 0. Consequently, we have ∂zh3 = ∂ze3 = ∂zp3 = 0

in the sense of distributions and the lemma is proved.

End of proof: To end the proof of Theorem 2.1, we can pass easily to the

limit in the weak formulation (53)–(54)–(55) by using (40) and Corollary 3.1.
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5 – Proof of Theorem 2.2

Let (hν , eν ,pν) be the scaled solution associated with the solution to problem

(11)–(12). Then (hν , eν ,pν) satisfies (51) coupled to the polarisation equation

(58)





∂2
t p

ν + a ∂tp
ν + curl2ν pν + φ′(|pν |2)pν = eν , R

+×Ω

pν(0) = P0(x̂) , ∂tp
ν(0) = P1(x̂) , Ω

pν×n = 0 , R
+×∂Ω .

The weak formulation is given by (53)–(54) and is coupled to

(59)





∫

Q

(∂2
t p

ν+ a ∂tp
ν)·ψ dx dt +

∫

Q

(θν, ĉurl p̂ν)·curlν ψ dx dt −
∫

Q

eν· ψ dx dt =

= −
∫

Q

φ′(|pν |2)pν· ψ dx dt

for all test functions ψ satisfying the boundary condition ψ×n = 0. As stated

in the introduction, the boundary condition Pν×n = 0 ensures the H
1 regularity

of the polarization field and hence allows us to pass to the limit in the nonlinear

equilibrium electric field. This is the aim of the following proposition

Proposition 5.1 (Space regularity). Assume that the open and bounded

domain Ω̂ is convex. We assume moreover that the data (H0,E0,P0) satisfy (32)

and are independent of the variable x3. Then, for all T > 0, there exists CT > 0

(which is independent of ν) such that for all ν > 0, the solution (Hν ,Eν ,Pν) to

problem (11)–(12) satisfies for all T >0 the uniform bound

(60) ‖Pν‖2
L∞(0,T ;H1(Ων)) + ‖div Hν‖2

∞ + ‖div Eν‖2
∞ ≤ ν CT .

Proof: Let (Hν ,Eν ,Pν) be the solution to problem (11)–(12). With the

same notations used in Theorem 1.2, taking into account the assumptions on the

initial data, we have Eν
0 ≤ ν C where C is some constant independent of ν then

Eν(t) ≤ ν C for all t ≥ 0 and consequently by virtue of (23)

(61) ‖Pν‖2
∞ + ‖curlPν‖2

∞ + ‖Hν‖2
∞ + ‖Eν‖2

∞ + ‖∂tP
ν‖2

∞ ≤ ν C , ∀t ≥ 0

for some constant C independent of ν.

First, we will suppose that Pν is smooth and we set W ν = (div Eν ,div Pν ,

∂t(div Pν)). The compatibility system satisfied by (Eν ,Pν) writes

(62)





dW ν

dt
+ CW ν = S(Pν)

W ν(0) = W0
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with

(63) C =




σ 0 1

0 0 −1

−1 0 a


 , S(Pν) =




0

0

−div
(
Pνφ(|Pν |2)

)


 .

Notice that, as the data are independent of the variable x3, we have

(64) |W0|2 = ν |W0|2
L2(bΩ)

.

Moreover, assuming that Pν is smooth, we get

(65) div
(
Pν φ′(|Pν |2)

)
= φ′(|Pν |2) div Pν + 2φ(2)(|Pν |2)

∑

k,l

Pν
k Pν

j ∂kP
ν
j

then using hypothesis (8), there exists C > 0 which independent of ν, depending

only of φ such that

(66) |S(Pν)| ≤ C
(
|∇Pν | + |div Pν |

)

hence there exists C > 0 and δ > 0 independent of ν, depending only of σ,

a and φ such that for all t ≥ 0

(67) |W ν |2(t) ≤ eδ t

(
|W0|2 + C

∫ t

0
|∇Pν(s)|2 + |div Pν |2 ds

)
.

Next, as Pν×n = 0 and Ων is a convex cylinder (because we assumed that Ω̂

is convex) then thanks to [5] or [4, lemma 2.17]

(68) |∇Pν(s)|2 ≤ |curlPν(s)|2 + |div Pν(s)|2 , ∀s ≥ 0

consequently, by virtue of (67), (68), (61), (64), for fixed T > 0 there exists

CT >0 independent of ν such that for all t ∈ [0, T ]

(69) |W ν |2(t) ≤ ν CT + CT

∫ t

0
|div Pν(s)|2 ds ≤ ν CT + CT

∫ t

0
|W ν(s)|2 ds

then thanks to the Gronwall’s lemma, we deduce that for all T > 0, there exists

CT > 0 independent of ν such that for all t ∈ [0, T ]

(70) |div Pν(t)|2 + |div ∂tP
ν(t)|2 + |div Eν(t)|2 ≤ ν CT .
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This implies, by using (68), (61) that ‖Pν‖L∞(0,T ;H1(Ων)) ≤ ν CT with some con-

stant CT independent of ν. To end the proof of the proposition, we may justify

the previous formal calculus by regularizing the system (11)–(12) as in [3] or [10]

by replacing the potential Pνφ′(|Pν |2) by (Pν ⋆ ρε)φ′(|Pν ⋆ ρε|2) and by passing

to the limit as ε→ 0 where ρε is a regularizing sequence with unit mass.

It follows that

Corollary 5.1. For every T > 0, there exists CT > 0 independent of ν

such that

(71) ‖pν‖L∞(0,T ;H1(Ω)) ≤ CT .

End of proof: Thanks to Lemma 3.1, the previous corollary and Aubin’s

compacity theorem, then for a subsequence we have, pν → p in L∞(0, T ; L2(Ω)).

Hence by using (10) we have pνφ′(|pν |2) → pφ′(|p|2) in L∞(0, T ; L2(Ω)). Since

p̂ = 0 and p3 is independent of the variable z then we use test functions of the

form ψ = (0, 0, ψ3(t, x̂)) where ψ3 ∈ D((0, T )×Ω̂). Then previous strong conver-

gence and (40) allow us to pass to the limit in (59) and we get the result stated

in Theorem 2.1 by using (45) and the independence of p3 with respect to the

variable z.
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