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OSCILLATION OF DIFFERENCE EQUATIONS WITH
VARIABLE COEFFICIENTS

OzKAN OCALAN

Abstract: In this study, under some appropriate conditions over the real sequences
{pn} and {g,} we give some sufficient conditions for the oscillation of all solutions of the
difference equation

r
Tn4+1 — Tn + szn Tn—k; + dn Tn—m = 0 5 m € {“'7_2) _170}
=1

where k; € N and k; € {...,—3,-2} (1 =1,2,...,r), respectively.

1 — Introduction

For the oscillation of every solution of the difference equation
(1.1) Tpt1l — Tn +PTp—k + qTn—m = 0, m=-1,0,

necessary and sufficient conditions were given in [9]. The case ¢ = 0 was examined
in [4] and [7]. In the present paper, under some appropriate conditions, taking the
real sequences {p,} and {g,} instead of p and ¢ in equation (1.1) we investigate
the oscillatory behaviour of the following difference equation

r
(12) Tptl — T + me Tn—k; + qnTp—m = 0 ) me {7 _27 _170}
=1

in cases of k € N and k € {..., -3, —2}, respectively.
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Note that the case r = 1, ¢, = 0 (for all n € N) of equation (1.2) has been in-
vestigated in [3], [5] and [10]. Furthermore, recently for the oscillatory properties
of constant coefficients form of (1.2) has been obtained in [11].

Let p = max{k;,m} for i =1,2,..,r. Then we recall that a sequence {z,}
which is defined for n > —p and satisfies (1.2) for n > 0. A solution {z,} of
equation (1.2) is called oscillatory if the terms x,, of the sequence {z,,} are neither
eventually positive nor eventually negative. Otherwise, the solution is called
nonoscillatory (see, for details, [1], and also [2], [6]).

2 — Oscillation properties of equation (1.2)

In this section we obtain sufficient conditions for the oscillation of all so-
lutions of the difference equation (1.2) when m € {...,—2,—1,0}, pin,qn € R,
ki € Z—{-1,0} for i =1,2,...,7.

We first have the following result.

Theorem 2.1. Let k; €N, p;, >0 and m=—1 for it =1,2,...,r in equation
(1.2), and let liminf g, = ¢>0. Assume further liminf p;, = p; for i=1,2,...;r.
n—oo n—oo
If

r k; ki+1
1 i (k;+1)%
Y g LR kT

(2.1) i

=1

then every solution of (1.2) oscillates.

Proof: Assume that {z,} be an eventually positive solution of equation (1.2).
Since pi, >0 for all i =1,2,...,r and ¢ > 0, we get from (1.2) that

r
Tn+l — Tpn = — § Din Tn—k; — qn Tpt+1 < 0.
=1

This yields that {z,,} eventually decreasing. Now dividing (1.2) by {x,} we
obtain

.
Tn+41 Tn—k; Tn+41

(2.2) =1-) pin L g .
Tn i1 Tn In
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Let z, = I So, we have from (2.2) that
Tn+1
(2.3) ! ! 1 zT: (2 z Zn—1)
. - = - Di —k; —ki+1--- -1 .
Zn 1+qn g m\~n n + n

Let liminf z, = z > 1. Therefore, taking limit superior as n — oo on the both
n—oo

sides (2.3) and using the fact that

. 1 1 1

limsup— = ——— = —

n—oo 2n liminf z, z
n—oo

we have

1 1 !
< — (1= i
Lo ()

which implies that z # ¢ 4+ 1 and that

(2.4) > pi
i=1

+

ki1
: <1.
z—q—1

Define the function f by f(z) = szztll. So, by (2.4) it is clear that
d 1+q)ki (k;+1)kt!

(2.5) S G o
=1 7

which contradicts (2.1) and completes the proof. u

Since ing pp < liminf p,, the following result follows from Theorem 2.1
ne n—oo

immediately.

Corollary 2.2. Let k; €N, m=-1, ¢, >0 and p;; >0 for neN
(t=1,2,..,r). If

" (14 inf )" (k;+1)ki+L
D (inf pin) —"=— 7 > 1,
ne v

=1 %

then every solution of equation (1.2) oscillates.

Theorem 2.3. Let k; €{...,—3, -2}, pin <0 and m = —1 in equation (1.2),
and let limsup ¢, = g€ (—1,0). Assume further limsup p;,= p; fori=1,2,...,r.

n—o0o n—oo

If condition (2.1) holds, then every solution of (1.2) oscillates.
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Proof: Assume that {z,} be an eventually positive solution of equation (1.2).
Since pi, <0 and ¢ € (—1,0), by (1.2) we have

r
Tn+l — Tp = —me Tn—k; — Gn Tn+l > 0.
=1

This yields that {x,} eventually increasing. Now dividing (1.2) by {x,} we get

.
Tn+1 Tn+1 Ln—k;
( ) T dn T ; Pin n
Tn+1
Let z, = . Then, we have from (2.6) that
T,
r
(27) Zn = 1 —qnzn — Z Pin Zn—k;—1 #n—k;—2 --- Zn -

=1

Now let liminfz, = z > 1. Taking limit inferior as n — oo on the both sides
n—oo

(2.7), we get

T
2> l—qz=) pizh,
i=1
Lo . 1
which implies that z 2 —— and that
q+1

r Z_ki
 ——— <1
;pz 1—(¢g+1)z —

Then, it is obvious that

T ki ki+1
1+ i k+1 7
=1 kl

which contradicts condition (2.1). m

Since limsup p, < sup pn, the following result follows from Theorem 2.3
n—00 neN
immediately.

Corollary 2.4. Let k;€{...,—3,-2}, m=—-1, —1<q, <0 and p;,, <0 for
neN (i=1,2,...,r). If

r (14 sup gn)"™ (ki+1)k+1

>~ (sup pin) ——=

i—1 neN kfl

> 1,

then every solution of equation (1.2) oscillates. n
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Now, taking into consideration the methods of the proofs of preceding the-
orems one can easily obtain the following results. Hence, we merely state these
results without their proofs.

Theorem 2.5. Let k; € N, py, >0 and m =0 in equation (1.2), and let
liminf ¢, = ¢ € (0,1). Assume that liminfp;, =p; for i =1,2,...,r. If the
n—00 n—0o0

condition

- k;+1 kit+1
(2.8) Z i L > 1

) k;
i=1 (1_Q)kl+1 kz‘

holds, then every solution of (1.2) oscillates. m

Corollary 2.6. Let k;, €N, m=0, 0<g,<1 and p;, >0 for neN
(i=1,2,..r). If

. (ki+1)ktt
inf p; - > 1,
; (nEN zn) (1_71161g qn)kq,-i-lkfi

then every solution of equation (1.2) oscillates. n

Theorem 2.7. Let k; € {...,—3,—2}, pin, < 0 and m = 0 in equation (1.2),
and let limsup ¢, = ¢ < 0. Assume that limsup p;, = p; for i =1,2,...,r.

n—oo n—oo

If condition (2.8) holds, then every solution of (1.2) oscillates.

Corollary 2.8. Let k; € {...,—3,—-2}, m =0, ¢, <0 and p;, <0 for n € N
(i =1,2,...,r). If the condition

T

Sup pi
lz:; (neN Zn) (1—supqn)
neN

(kz‘ + 1)ki+1

ki

holds, then every solution of equation (1.2) oscillates. m

Theorem 2.9. Letk;eN, me{...,—3,—2}, ¢, >0. Assume that liminf p;, =
n—oo
p; for i =1,2,...,r. If the condition

- ki+1)kit!
(2.9) Zpi(k,i > 1
=1 7

holds, then every solution of (1.2) oscillates. n
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Theorem 2.10. Let k; € {...,—3,-2}, pin <0, me{...,—3,-2}, ¢, <O.
Assume that limsup py, = p; for i = 1,2,...,r. If the condition (2.9) holds,

n—oo
then every solution of (1.2) oscillates. u

Corollary 2.11. Let k;, m, {pin}, pi, {qn} and q be the same as in
Theorem 2.1. If the condition

T % k’k
(2.10) T(gm) > (1+q)F (k+ 1)k’

holds, where k =

S| =

,
> ki, then every solution of (1.2) oscillates.
i=1

Proof: Assume that m = —1 and that {z,} is eventually positive solution
of equation (1.2). Let z, = I and liminf zp, = z. Then by using (2.4) and

Tn+1 n—00
applying the arithmetic-geometric mean inequality, we conclude that

Zki""l

T
1> Zpi g1

i=1

1

r Shitl N7
- T<Hpi Z—q—l) '

i=1

This inequality gives that

TN Gk
1> Di
v} z—q—1

>r

which contradicts (2.10). m

Using the similar methods in the proof of Corollary 2.11 we have the next
results.

Corollary 2.12. Let ki, m, {pin}, pi, {qn} and q be the same as in
Theorem 2.3. If the condition

@ ‘“’)7{ > T

holds, then every solution of (1.2) oscillates. u

kk
(k+1)k+1
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Corollary 2.13. Let k;, m, {pin}, pi, {qn} and q be the same as in

Theorem 2.5. If
k+1 k,k

() - Gt

then every solution of (1.2) oscillates. u

Corollary 2.14. Let k;, m, {pin}, pi, {qu} and q be the same as in

Theorem 2.7. If )
o(TD) > a-at
i=1

then every solution of (1.2) oscillates. m

kk
(k+1)k+1

)

Corollary 2.15. Let k;, m, {pin}, pi, {qu} and q be the same as in

Theorem 2.9. If )
r = kk
r H pi| > (k)R
i=1

then every solution of (1.2) oscillates. u

Corollary 2.16. Let k;, m, {pin}, pi, {qn} and q be the same as in

Theorem 2.10. If )
r 4 Lk
(ITw1) > [
=1

then every solution of (1.2) oscillates. u

)

We should finally remark that every solution of equation (1.2) oscillates pro-

T
vided that 1— > p;, is eventually nonpositive and that ¢, >0, k; = 0, m = —1
i=1
(1=1,2,...,r) in (1.2). If 1+g¢, is eventually nonpositive and that p;, <0, k; =0,

m=—1(i=1,...,r) in (1.3), then every solution of equation (1.2) oscillates.
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