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Abstract: In this paper the theory S1
2

(of Buss) is interpreted in the theory

Σb
1
−NIA (of Ferreira).

1 – Introduction

Our goal is to interpret Buss’s theory S1
2, [1], in Ferreira’s theory Σb

1−NIA,

originally denoted by Σb
1−PIND — see [7]. This correspondence has been men-

tioned in work of several authors. For instance Cantini [2], Fernandes [4], [5],

Ferreira [6], [7], [8], Oliva [9], Strahm [10] and Yamazaki [12]. In spite of the

widely acceptance of the result, this is the first time that its proof is formally

carried out. Therefore, this is a technical paper which aims to serve as a reference.

In Section 2 we briefly describe the theories and we introduce some elementary

properties. The interpretation of the theory S1
2 in Σb

1−NIA is worked out in

Section 3. There we start with some general considerations concerning the notion

of interpretation, to then enter the proof of the result of this paper. The main

statement is established in Theorem 3.1.

2 – The theories S1
2 and Σb

1−NIA

Let LN be the first order language, with equality, which has a single constant 0,

the function symbols S, +, ·, | . |, ⌊1
2 .⌋ and #, and the relation symbol ≤.

# is usually called the smash function and interpreted as x# y=2|x|·|y|. By LW
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we denote the first order language, with equality, which has the constants ǫ, 0

and 1, the function symbols a and ×, and the relation symbol ⊆. In the standard

model, ǫ denotes the empty word, a stands for the concatenation of 0-1 words,

× for the binary product (i.e. x × y = x a ... a x, |y|-times) and ⊆ for the

initial subword relation. The symbol a is usually omitted. Thus for terms t, r

one writes tr instead of t a r. Moreover, we follow the convention that a has

precedence over ×.

Depending on the language that we consider, the designation “bounded quan-

tification” has different meanings. In LN, a bounded quantification is a quan-

tification of the form ∀x ≤ t... or ∃x ≤ t..., which abbreviates respectively

∀x (x ≤ t→ ...) or ∃x (x ≤ t ∧ ...), and a sharply bounded quantification is a

quantification of the form ∀x ≤ |t|... or ∃x ≤ |t|..., which abbreviates respec-

tively ∀x (x ≤ |t| → ...) or ∃x (x ≤ |t| ∧ ...), where t is any term not involving x.

In LW, a bounded quantification is a quantification of the form ∀x � t... or

∃x � t..., which abbreviates ∀x (1×x ⊆ 1×t→ ...) or ∃x (1×x ⊆ 1×t ∧ ...)

respectively (notice that x � t means that “the length of x is less or equal than

the length of t”, and a subword quantification is a quantification of the form

∀x ⊆∗ t... or ∃x ⊆∗ t..., which abbreviates respectively ∀x (∃w ⊆ t(wx ⊆ t) → ...)

or ∃x (∃w ⊆ t(wx ⊆ t) ∧ ...), for any term t where x does not occur.

Definition 2.1. S1
2 is the first order theory in the language LN with the

following axioms:

• Basic Axioms

(1) y ≤ x → y ≤ Sx

(2) x 6= Sx

(3) 0 ≤ x

(4) x ≤ y ∧ x 6= y ↔ Sx ≤ y

(5) x 6= 0 → 2 · x 6= 0

(6) y ≤ x ∨ x ≤ y

(7) x ≤ y ∧ y ≤ x → x = y

(8) x ≤ y ∧ y ≤ z → x ≤ z

(9) |0| = 0

(10) x 6= 0 → |2 · x| = S(|x|) ∧ |S(2 · x)| = S(|x|)

(11) |S0| = S0

(12) x ≤ y → |x| ≤ |y|

(13) |x# y| = S(|x| · |y|)
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(14) 0 # y = S0

(15) x 6= 0 → 1 # (2 · x) = 2(1 #x) ∧ 1 # (S(2 · x)) = 2(1 #x)

(16) x# y = y#x

(17) |x| = |y| → x# z = y# z

(18) |x| = |u| + |v| → x# y = (u# y) · (v# y)

(19) x ≤ x+ y

(20) x ≤ y ∧ x 6= y → S(2 · x) ≤ 2 · y ∧ S(2 · x) 6= 2 · y

(21) x+ y = y + x

(22) x+ 0 = x

(23) x+ Sy = S(x+ y)

(24) (x+ y) + z = x+ (y + z)

(25) x+ y ≤ x+ z ↔ y ≤ z

(26) x · 0 = 0

(27) x · (Sy) = (x · y) + x

(28) x · y = y · x

(29) x · (y + z) = (x · y) + (x · z)

(30) S0 ≤ x → (x · y ≤ x · z ↔ y ≤ z)

(31) x 6= 0 → |x| = S(|⌊1
2x⌋|)

(32) x = ⌊1
2y⌋ ↔ (2 · x = y ∨ S(2 · x) = y)

• Axiom Scheme for Induction

A(0) ∧ ∀x
(

A(⌊1
2x⌋) → A(x)

)

→ ∀xA(x), where A is a Σb
1-formula in LN.

By a Σb
1-formula in LN we mean a formula belonging to the smallest class

of formulas of LN containing the set of formulas where all quantifications

are sharply bounded and that is closed under ∧, ∨, bounded existential

quantifications and sharply bounded quantifications.

Definition 2.2. Σb
1−NIA is the first order theory, in the language LW, with

the following axioms:

• Basic Axioms

(1) xǫ = x

(2) x(y0) = (xy)0

(3) x(y1) = (xy)1

(4) x× ǫ = ǫ
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(5) x× y0 = (x× y)x

(6) x× y1 = (x× y)x

(7) x ⊆ ǫ ↔ x = ǫ

(8) x ⊆ y0 ↔ x ⊆ y ∨ x = y0

(9) x ⊆ y1 ↔ x ⊆ y ∨ x = y1

(10) x0 = y0 → x = y

(11) x1 = y1 → x = y

(12) x0 6= y1

(13) x0 6= ǫ

(14) x1 6= ǫ

• Axiom Scheme for Induction on Notation

B(ǫ) ∧ ∀x
(

B(x) → B(x0) ∧B(x1)
)

→ ∀xB(x) ,

where B is a Σb
1-formula in LW, possible with other free variables besides x.

By a Σb
1-formula in LW we mean a formula of the form ∃x (x� t(z)∧A(z, x)),

where A is a sw.q. formula, i.e. A belongs to the smallest class of formulas

of LW containing the atomic formulas and which is closed under Boolean

operations and subword quantifications.

We present a list of statements, provable in Σb
1−NIA, which are used in this

paper.

Lemma 2.1. The following is provable in Σb
1−NIA:

(1) ǫx = x

(2) (xy)z = x(yz)

(3) xz = yz → x = y

(4) ǫ× x = ǫ

(5) x× y = ǫ → x = ǫ ∨ y = ǫ

(6) x× 0 = x ∧ x× 1 = x

(7) 0 × (x× y) = 0 × (y × x)

(8) 1 × (x× y) = 1 × (y × x)

(9) (x× y) × z = x× (y × z)

(10) (x× y)(x× z) = x× yz

(11) 1 × xy = 1 × yx
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(12) 1 × x = 1 × y → 0 × x = 0 × y

(13) 1 × x = 1 × y → 1 × 1x = 1 × 1y

(14) 0 6= 1

(15) ǫ 6= 0 ∧ ǫ 6= 1

(16) x 6= ǫ → ∃z (z0 = x ∨ z1 = x)

(17) x ⊆ y ∧ y ⊆ x → x = y

(18) x ⊆ y ∧ y ⊆ z → x ⊆ z

(19) x ⊆ xy

(20) x ⊆ y ↔ wx ⊆ wy

(21) x ⊆ z ∧ y ⊆ z → x ⊆ y ∨ y ⊆ x

(22) x ⊆ y → ∃z xz = y

(23) x 6= 0 × x → ∃y ⊆ x ∃z ⊆ 0 × x(x = y1z)

(24) x 6= 1 × x → ∃y ⊆ x ∃z ⊆ 1 × x(x = y0z).

Proof: All assertions are proved in [6] except (12), (13) and (19). Note that,

in [6], results are proved in a theory called PTCA, but similar demonstrations

work in Σb
1−NIA. (12) is a consequence of (6) and (7). (13) is a consequence of

(11) and Definition 2.2 (6). (19) can be obtained by induction on notation on y,

using (16) and Definition 2.2 (1), (7), (8) and (9).

Let us consider, in LW, the class of extended Σb
1-formulas (extended

Πb
1-formulas). By an extended Σb

1-formula (respectively extended Πb
1-formula)

we mean a formula that is logically equivalent to a formula that can be con-

structed in a finite number of steps, starting with sw.q. formulas and permit-

ting conjunctions, disjunctions, subword quantifications and bounded existential

quantifications (respectively bounded universal quantifications).

Lemma 2.2. Σb
1−NIA ⊢ A(ǫ) ∧ ∀x

(

A(x) → A(x0) ∧A(x1)
)

→ ∀xA(x),

for any extended Σb
1-formula A.

Proof: In [7] is proved that, in Σb
1−NIA, any extended Σb

1-formula is equiv-

alent to a Σb
1-formula. This implies our lemma.

Of particular importance is the LW formula x = ǫ∨1 ⊆ x, that we abbreviate

by x ∈ W1. x ∈ W1 is a Σb
1-formula that, in the standard model of Σb

1−NIA,

corresponds to consider only the empty word or words starting with 1.
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Lemma 2.3. The following is provable in Σb
1−NIA:

(1) x ∈ W1 ∧ y ⊆ x → y ∈ W1

(2) x ∈ W1 ∧ x 6= ǫ → xy ∈ W1.

Proof: (1) Suppose x ∈ W1 and y ⊆ x. From x ∈ W1, we have that x = ǫ

or 1 ⊆ x. In the first case y ⊆ ǫ and so, by Definition 2.2 (7), y = ǫ. Hence

y ∈ W1. In the second case, by Lemma 2.1 (21), we have 1 ⊆ y or y ⊆ 1. If 1 ⊆ y

then y ∈ W1. If y ⊆ 1, then by Lemma 2.1 (1) y ⊆ ǫ1 and by Definition 2.2 (9),

we have y ⊆ ǫ or y = ǫ1. If y ⊆ ǫ, by Definition 2.2 (7), y = ǫ, and so y ∈ W1.

If y = ǫ1, by Lemma 2.1 (1), y = 1. Thus, by Lemma 2.1 (19) and Definition

2.2 (1), 1 ⊆ y and so y ∈ W1.

(2) Suppose x ∈ W1 and x 6= ǫ, we have 1 ⊆ x. Lemma 2.1 (19) ensures

x ⊆ xy. From x ⊆ xy and 1 ⊆ x, using Lemma 2.1 (18), we have 1 ⊆ xy. Thus,

xy ∈ W1.

The next lemma states that, in Σb
1−NIA, the scheme of induction on notation

on x ∈ W1, for extended Σb
1-formulas, is provable.

Lemma 2.4. Σb
1−NIA ⊢ A(ǫ) ∧ ∀x∈W1

(

A(x) → (x0∈W1→A(x0))∧A(x1)
)

→ ∀x ∈ W1A(x), where A is an extended Σb
1-formula in LW.

Proof: It results from applying Lemma 2.2 to the extended Σb
1-formula:

x ∈ W1 → A(x).

3 – Interpreting S1
2 in Σb

1−NIA

3.1. Preliminaries

The notion of interpretability between theories was introduced by Tarski,

Mostowski and Robinson [11] in 1953 and it has been widely used to prove results

on (un)decidability and (relative) consistency. Roughly speaking interpretations

are used to show whether a theory is powerful enough to express another.

The notion of interpretability can be formulated in different ways. Here we

adopt a formulation similar to the one presented in [3].
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Definition 3.1. Let LA and LB be languages and TB be a theory in the

language LB. An interpretation of the language LA into TB consists of a formula

σ in LB and a function ν from the nonlogical symbols of LA to expressions (terms,

formulas) in LB such that:

1. TB ⊢ ∃xσ(x)

2. If c is a constant of LA, then ν(c) is a closed term of LB and TB ⊢

∃x (σ(x) ∧ ν(c) = x)

3. If f is an n-ary function symbol of LA, then ν(f) is a formula of LB

in which at most n+1-variables occur free and verify TB ⊢ ∀x1...∀xn
(

σ(x1) ∧ ... ∧ σ(xn) → ∃y
(

σ(y) ∧ ∀z (ν(f)(x1, ..., xn, z) ↔ z = y)
)

)

4. If R is an n-ary relation symbol of LA, then ν(R) is a formula of LB in

which at most n variables occur free.

The idea is that in any model of TB, the formula σ(x) should define a

nonempty set to be used as the universe of an LA-structure.

Remark 3.1. Having an interpretation (σ, ν) of LA into TB, we can consider

a translation I from all formulas of LA to expressions of LB in the following way:

1) If α is an atomic formula use recursion on the number of places at which

function symbols occur in α. If that number is zero α = R(x1, ..., xn,

a1, ..., an) with R a relation symbol, xi variables and ai constants. Then

I(α) = ν(R) (x1, ..., xn, ν(a1), ..., ν(an)). Otherwise, take the rightmost

place at which a function symbol f occurs. If f is an n-ary symbol,

then that place initiates a segment fx1...xn. Replace this segment by

some new variable y, obtaining a formula we call αfx1...xn

y . Then I(α) is

∀y
(

ν(f)(x1, ..., xn, y) → I(αfx1...xn

y )
)

;

2) I(¬α) := ¬I(α), I(ϕ�ψ) := I(ϕ)� I(ψ) with � ∈ {∧,∨ →,↔},

I(∀xϕ) := ∀x (σ(x) → I(ϕ)) and I(∃xϕ) := ∃x (σ(x) ∧ I(ϕ)).

Definition 3.2. Let TA be a theory in the language LA and TB be a theory

in LB. TA is interpretable in TB (or TB interprets TA) if there exists an inter-

pretation (σ, ν) of LA into TB whose translation I (defined as before) verifies:

TB ⊢ I(ϕ) for all axioms ϕ in TA.

We also use the following result proved in [7].
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Proposition 3.1. To each function f of PTIME, we can assign an extended

Σb
1-formula Gf and a term bf of LW such that

Σb
1−NIA ⊢ ∀x̄ ∃z � bf (x̄)Gf (x̄, z)

Σb
1−NIA ⊢ Gf (x̄, z) ∧Gf (x̄, y) → z = y

and

a. in Σb
1−NIA the following is valid,

(1) GC0
(x, x0)

(2) GC1
(x, x1)

(3) GP n

i
(x1, ..., xn, xi), 1 ≤ i ≤ n

(4) GQ(x, y, 1) ↔ x ⊆ y and GQ(x, y, 0) ∨GQ(x, y, 1)

b.
(1) if f is defined from g, h1, ..., hk by composition then, Σb

1−NIA ⊢

Gh1
(x̄, y1) ∧ ... ∧Ghk

(x̄, yk) ∧Gg(y1, ..., yk, z) → Gf (x̄, z)

(2) if f is defined from g, h0, h1 by bounded recursion on notation with

bound t then, Σb
1−NIA ⊢ Gg(x̄, z) → Gf (x̄, ǫ, z) and Σb

1−NIA ⊢

Gf (x̄, y, r)∧Ghi
(x̄, y, r, u)∧ z = u|t(x̄,y) → Gf (x̄, yi, z) with i = 0, 1.

Remark 3.2. If in the previous proposition we replace “extended Σb
1-formula

Gf” by “extended Πb
1-formula Gπ

f ” the result remains true. [Just take Gπ
f (x̄, z)

as being ∀w � bf (x̄) (Gf (x̄, w) → w=z).] Also note that Σb
1−NIA ⊢ Gf ↔ Gπ

f .

3.2. Interpreting LN in Σb
1−NIA

To avoid ambiguity, we often use N and W as subscripts. For instance 0N ∈ LN

and 0W ∈ LW. The interpretation of LN into Σb
1−NIA is done according to Defi-

nition 3.1. The formula σ(x), of LW, is x ∈ W1 (i.e. x = ǫ ∨ 1 ⊆ x). We interpret

0N as being ǫ. To define the interpretation of the function symbols of LN we first

introduce some functions, constructed according to the inductive characterization

of PTIME given in [7]. There, PTIME is described as the smallest class of func-

tions which includes projections (Pn
i ), concatenation with 0 (C0), concatenation

with 1 (C1) and the characteristic function of “⊆” (Q) and which is closed under

composition and bounded recursion on notation with bound t (a term of LW).

Consider the functions Sw, ⌊1
2x⌋w, +w (also T and U), ·w and | . |w defined as

follows:

• Sw(ǫ) = 1, Sw(x0) = x1 and Sw(x1) = Sw(x)0
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• ⌊1
2 .⌋w defined by ⌊1

2x⌋w = T (x), where T (ǫ) = ǫ, T (x0) = x and T (x1) = x

• ǫ +w y = y and for x 6= ǫ: x +w ǫ = x, x +w y0 = (T (x) +w y) a U(x) and

x +w y1 =

{

(

T (x) +w y
)

1 if U(x) = 0

S
(

T (x) +w y
)

0 otherwise
where U(ǫ) = ǫ, U(x0) = 0 and

U(x1) = 1

• ǫ·wy = ǫ, and for x 6= ǫ: x·wǫ = ǫ, x·wy0 = (x·wy)0 and x·wy1 = (x·wy)0+wx

• |ǫ|w = ǫ, |y0|w = Sw(|y|w) and |y1|w = Sw(|y|w).

In each case it is easy to find a bounding term according to the previous

definition of PTIME. Consider, for instance, t(x) = x11, t(x, y) = xy11, t(x, y) =

(x × y1)x1, t(y) = y1 for Sw, +w , ·w and | . |w respectively. Thus the functions

above are functions in PTIME. We define the function ν of LN into Σb
1−NIA by

applying the function symbols of LN — SN, ⌊1
2 .⌋N, +N, ·N and | . |N — to the

extended Σb
1-formulas of LW assigned by Proposition 3.1 to the functions Sw,

⌊1
2 .⌋w, +w, ·w and | . |w respectively.

The function symbol #N and the relation symbol ≤N, of LN, are interpreted

by ν as being the formulas G#(x, y, z) := z = 1 a ((0 × x) × y) and ≤w (x, y) :=

(x � y ∧ ¬(x ≡ y)) ∨ (x ≡ y ∧ ∃z ⊆ x(z0 ⊆ x ∧ z1 ⊆ y)) ∨ x = y respectively,

where x ≡ y is an abbreviation of 1 × x = 1 × y. In the sequent we use infix

notation for ≤w, i.e. we write x ≤w y instead of ≤w (x, y).

Proposition 3.2. The pair (σ, ν) defined above is an interpretation of LN

into Σb
1−NIA.

Proof: In order to prove that (σ, ν) is, in fact, a valid interpretation of LN

into Σb
1−NIA, we need to ensure the four clauses of Definition 3.1. The only non

immediate assertion is 3. The study of #N follows immediately from Lemma

2.3 (2). Let us consider any other function symbol fN of LN. From the definition

of Gfw
, in Proposition 3.1, we know that if fN is an n-ary function symbol then

Σb
1−NIA ⊢ ∀x1...∀xn (σ(x1) ∧ ... ∧ σ(xn) → ∃y ∀z (Gfw

(x1, ..., xn, z) ↔ z = y).

Therefore one just need to prove that Σb
1−NIA ⊢ ∀x1...∀xn∀y

(

σ(x1)∧ ...∧σ(xn)∧

Gfw
(x1, ..., xn, y) → σ(y)

)

. The most involving case occurs for +N. We work it

out here, assuming the result proved for SN.

To ensure that Σb
1−NIA ⊢ ∀x∀y ∀z (x∈W1∧ y∈W1∧G+w

(x, y, z) → z∈W1),

we prove that Σb
1−NIA ⊢ ∀z ∀x ∈ W1 ∀y ∈ W1 ∀x

′ ⊆ x∀z′ ⊆ z (G+(x′, y, z′) →

z′∈ W1), where G+ is an abbreviation of G+w
. Fix z and x such that x ∈ W1.

The proof is by induction on notation on y ∈ W1 (see Lemma 2.4) considering

that, according to Remark 3.2, we can replace G+ by Gπ
+. For y = ǫ we have,
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by Proposition 3.1 for G+, that ∀x′⊆ x ∀z′⊆ z (G+(x′, y, z′) → z′ = x′), and

so, by Lemma 2.3 (1), z′ ∈ W1. Given y ∈ W1 we have, by induction hypothesis,

that ∀x′⊆ x ∀z′⊆ z (G+(x′, y, z′) → z′∈ W1). Let us prove that y0 ∈ W1 →

∀x′ ⊆ x ∀z′ ⊆ z (G+(x′, y0, z′) → z′ ∈ W1). Assuming y0 ∈ W1, by Lemma 2.1

(1), (14), (15) and Definition 2.2 (7) and (8) we have y 6= ǫ. If x′ = ǫ, then

G+(x′, y0, z′) → z′ = y0 and so z′ ∈ W1. If x′ 6= ǫ then G+(x′, y0, z′) implies that

there exists w, u and t such that z′ = w a u, GU (x′, u), GT (x′, t) and G+(t, y, w),

where GU and GT are the extended Σb
1-formulas of LW assigned to the functions

U and T that appear in the definition of +w. Provided x ∈ W1, by Lemma 2.3 (1),

x′ ∈ W1. Noticing that t ⊆ x′ (this is a consequence of Proposition 3.1 for T ,

Lemma 2.1 (16) and (19)) and that x′ ⊆ x we have, by Lemma 2.1 (18), that t ⊆ x.

By Lemma 2.1 (19), one has that w ⊆ z′ and so, by Lemma 2.1 (18), w ⊆ z. Thus,

by induction hypothesis, G+(t, y, w) → w ∈ W1. Moreover, recalling that y 6= ǫ

and G+(t, y, w), by Proposition 3.1 for +w and Definition 2.2 (13), (14), one has

w 6= ǫ. w ∈ W1∧ w 6= ǫ implies, by Lemma 2.3 (2), z′∈W1. Now, let us prove that

∀x′⊆x ∀z′⊆ z (G+(x′, y1, z′) → z′∈W1). If x′ = ǫ then ∀z′⊆ z (G+(x′, y1, z′) →

z′=y1), and so z′∈W1. If x′ 6= ǫ, we consider two cases: GU (x′, 0) and GU (x′, 1).

In the first case we have ∀z′ ⊆ z (G+(x′, y1, z′) → z′ = w1), where G+(t, y, w)

and GT (x′, t). Again, by induction hypothesis, w ∈ W1, so z′ ∈ W1. In the later

case we have ∀z′ ⊆ z (G+(x′, y1, z′) → z′ = s0), where G+(t, y, w), GT (x′, t) and

GS(w, s). Moreover, by induction hypothesis, w∈W1. Assuming the result for SN,

we have that s ∈ W1. Evoking Proposition 3.1 for Sw, Lemma 2.1 (15) and Def-

inition 2.2 (13), (14), one ensures that s 6= ǫ. Consequently, by Lemma 2.3 (2),

s0 ∈ W1, i.e. z′ ∈ W1. This finishes the proof.

3.3. Main result

Before establish our main result, we present some properties in Σb
1−NIA con-

cerning the formulas involved in the interpretation (σ, ν).

Lemma 3.1. The following assertions are provable in Σb
1−NIA:

(1) GU (x, y) → y = ǫ ∨ y = 0 ∨ y = 1, GU (x, 0) ∧GT (x, y) ↔ x = y0,

GU (x, 1)∧GT (x, y) ↔ x=y1, GU (x, ǫ) ↔ x=ǫ, x 6=ǫ ∧ y 6=ǫ ∧GU (x, a)∧

GU (y, b) ∧G+(x, y, z) →
[

(a = b→ GU (z, 0)) ∧ (a 6= b→ GU (z, 1))
]

;

(2) G+(x, y, s) ∧GT (s, s′) ∧G+(x′, y′, r) ∧GT (x, x′) ∧GT (y, y′) →
(

(GU (x, 1)∧GU (y, 1) → G+(r, 1, s′)) ∧ ¬(GU (x, 1)∧GU (y, 1) → s′ = r)
)

;

(3) ∀x ∈ W1

(

GT (x, y) ∧GU (x, z) → yz = x
)

.
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Proof: (1) The first 4 assertions are immediate by Proposition 3.1 for U and T,

and Lemma 2.1 (16). Let us prove the last assertion. There are four relevant

cases: a = b = 0, a = b = 1, a = 0 ∧ b = 1 and a = 1 ∧ b = 0. If a = b = 0

then from G+(x, y, z), using the assertions before, we have G+(x′0, y′0, z) where

GT (x, x′) and GT (y, y′). By Proposition 3.1 for +w and T we have z = z′0, where

G+(x′, y′, z′). So, we have GU (z, 0). The other cases are analogous.

(2) The proof is easy considering all the possible situationsGU (x, 1)∧GU (y, 1),

GU (x, 0), GU (y, 0), GU (x, ǫ) and GU (y, ǫ) and using Lemma 3.1 (1).

(3) This assertion is immediate, using Proposition 3.1 for T , U and considering

the cases x = ǫ, x = z0 and x = z1 — see Lemma 2.1 (16).

Using the abbreviation x <w y := x ≤w y ∧ x 6= y, we have the following

lemma.

Lemma 3.2. The following is provable in Σb
1−NIA:

(1) ¬x <w x

(2) x <w y ∨ y <w x ∨ x = y

(3) x <w y ∧ y <w z → x <w z

(4) GSw

(

1×x, 1(0×x)
)

(5) GSw

(

x0(1×y), x1(0×y)
)

(6) x 6= 1×x ∧ GSw
(x, y) → x ≡ y

(7) GSw
(x, y) → x <w y

(8) ∀x ∈ W1 ∀y ∈ W1 (x <w y ∧ GSw
(x, z) → z ≤w y)

(9) x � y ∧ ¬(x ≡ y) ∧ G|.|w(x, z) ∧ G|.|w(y, w) → z <w w

(10) G|.|w(x, z) ∧ G|.|w(y, w) → (z = w ↔ x ≡ y)

(11) x ≤w y → xz ≤w yz

(12) G|.|w(w, y) ∧ x ≤w y → ∃u ⊆ w G|.|w(u, x)

(13) ∀x ∈ W1

(

G+w
(x, 1, y) → GSw

(x, y)
)

(14) ∀x ∈ W1

(

G·w(1, x, x) ∧G·w(x, 1, x)
)

(15) ∀x∈W1 ∀y∈W1

(

G+w
(x, y, z)∧G+w

(y, 1, w)∧G+w
(z, 1, k) → G+w

(x,w, k)
)

(16) ∀x∈W1 ∀y∈W1

(

G|.|w(x, z) ∧G|.|w(y, w) ∧G+w
(z, w, u) → G|.|w(xay, u)

)

(17) a <w b↔ a1 <w b0, a <w b→ a0 <w b1, a ≤w b↔ a0 ≤w b1, a ≤w b↔

a0 ≤w b0, a ≤w b↔ a1 ≤w b1, being the two last equivalences also valid

if we replace ≤w by <w.
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Proof: The proof of the first three assertions is done in [6], pp. 49–50.

(4) Proceed by induction on notation on x. The case x = ǫ is clear. Suppose

GSw
(1×x, 1(0×x)). By Definition 2.2 (6), 1×x1 = (1×x)1 and by Proposition 3.1

for Sw, if GSw
((1×x)1, z) then z = w0 where GSw

(1×x,w). By induction

hypothesis w = 1(0×x), and using Definition 2.2 (2) and (6), z = (1(0×x))0 =

1((0×x)0) = 1(0×x1). Thus, GSw
(1×x1, 1(0×x1)). The proof of GSw

(1×x0,

1(0×x0)) is similar because 1×x0 = (1×x)1 and 1(0×x1) = 1(0×x0).

(5) Proceed again by induction on notation on y. Once more the case

y = ǫ is clear. If GSw
(x0(1×y1), z) then, noticing that x0(1×y1) = x0((1×y)1)

= (x0(1×y))1, z = w0 where GSw
(x0(1×y), w). By induction hypothesis

w = x1(0×y). Thus, z = (x1(0×y))0 = x1((0×y)0) = x1(0×y1). The case

GSw
(x0(1×y0), x1(0×y0)) is similar.

(6) By Lemma 2.1 (24) and the previous item, it is enough to prove that

1×(x0(1×y)) = 1×(x1(0×y)). This uses Lemma 2.1 (10), (7) and (8) among

others.

(7) Consider x, y verifying GSw
(x, y). If x = 1×x let us prove that x � y ∧

¬(x ≡ y) ∧ x 6= y. Notice that 1×y
(4)
= 1×1(0×x)

L2.1(11)
= 1×(0×x)1

D2.2(6)
=

(1×(0×x))1
L2.1(9)

= ((1×0)×x)1
L2.1(6)

= (1×x)1. Clearly 1×x ⊆ (1×x)1 and 1×x 6=

(1×x)1. Thus, 1×x ⊆ 1×y ∧ 1×x 6= 1×y (which, in particular, implies x 6= y).

Hence x � y ∧ ¬(x ≡ y) ∧ x 6= y. This entails x <w y. Finally, if x 6= 1×x

use Lemma 2.1 (24) to prove that x = z0(1×w), for some z and w. By (5),

y = z1(0×w). Now, it is easy to check that x <w y.

(8) Consider x, y, z such that x ∈ W1 ∧ y ∈ W1 ∧ x <w y ∧GSw
(x, z). Let us

study two cases: x = 1×x and x 6= 1×x. In the first case it can be proved,

using induction on notation on x and Definition 2.2 (7), (13), (5), (9), (12) and (6),

that it does not exist w such that w0 ⊆ 1×x = x (*), and so, by hypothesis,

we have x � y ∧ ¬(x ≡ y) ∧ x 6= y. From x = 1×x, using (4), Lemma 2.1 (11),

Definition 2.2 (6) and Lemma 2.1 (9), (6), one has 1×z = (1×x)1. Now, noticing

that 1×x ⊆ 1×y, one has, by Lemma 2.1 (22), that 1×y = (1×x)k for a certain k.

By induction on notation, Lemma 2.1 (1), (19) and Definition 2.2 (1), (8), (9),

it can be proved that k= ǫ ∨ 0⊆k ∨ 1⊆k. Notice that k 6= ǫ because ¬(x ≡ y).

Moreover, if 0 ⊆ k one would have that 1×y = (1×x)0t for a certain t and

consequently, by Lemma 2.1 (19), (1×x)0 ⊆ 1×y — this is not possible, see (*).

Thus 1 ⊆ k, and so, by Lemma 2.1 (20), (1×x)1 ⊆ (1×x)k, i.e. z � y.

If z � y ∧ ¬(z ≡ y) then z ≤w y. Suppose z ≡ y. By (4), z = 1(0×x).
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Noticing that y ∈ W1 and y 6= ǫ, one has 1 ⊆ y, and so there exists r such

that y = 1r. If r = 0×x, then y = z, which implies z ≤w y. Otherwise, the

existence of t and s such that r = (0×t)1s and 0×t ⊆ 0×x ∧ 0×t 6= 0×x can

be ensured. By Lemma 2.1 (20), 1(0×t) ⊆ z. Notice that 1(0×t)0 ⊆ z and

1(0×t)1 ⊆ y, and so z ≤w y. In the second case, x 6= 1×x, use Lemma 2.1 (24),

in order to prove that x = u0(1×v). Then, by (5), z = u1(0×v). By hypothesis,

x � y ∧¬(x ≡ y) or x 6= y ∧ x ≡ y ∧∃w ⊆ x(w0 ⊆ x∧w1 ⊆ y). In the first situa-

tion, provided that by (6) x ≡ z, one has z � y ∧ ¬(z ≡ y). This implies z ≤w y.

In the second situation, let us take w ⊆ x such that w0 ⊆ x ∧ w1 ⊆ y. There

exist k, k′ such that x = w0k = u0(1×v) and y = w1k′. By Lemma 2.1 (19),

w0 ⊆ u0(1×v) and consequently, by induction on notation, w0 ⊆ u0. Then, by

Definition 2.2 (8), (10), one has w = u or w0 ⊆ u. If w = u, then z = w1(0×v).

Noticing that y ≡ x ≡ z and y = w1k′, one can prove that z ≤w y. If w0 ⊆ u

then w0 ⊆ u ⊆ z. Noticing that w1 ⊆ y, one has z ≤w y.

(9) and (10) are immediate by [6], p. 67 (in [6] the function | . |w is denoted

by lh).

(11) Consider that x ≤w y. By definition of ≤w, we have three possible

cases: x � y ∧ ¬(x ≡ y), x ≡ y ∧ ∃w ⊆ x(w0 ⊆ x ∧ w1 ⊆ y) and x = y.

In the first case we have 1×x ⊆ 1×y and ¬(x ≡ y). Moreover, 1×xz
L2.1(11)

=

1×zx
L2.1(10)

= (1×z) (1×x) and, analogously, 1×yz = (1×z) (1×y). Notice that

1×x ⊆ 1×y
L2.1(20)
→ (1×z)(1×x) ⊆ (1×z)(1×y). Thus 1×xz ⊆ 1×yz, i.e. xz � yz.

If 1×xz = 1×yz then (1×x) (1×z) = (1×y) (1×z) and by Lemma 2.1 (3),

1×x = 1×y, which is false because ¬(x ≡ y). And so xz � yz ∧ ¬(xz ≡ yz),

which implies xz ≤w yz. In the second case, 1×x = 1×y
L2.1(19),D2.2(1)

→ 1×x ⊆

1×y∧1×y ⊆ 1×x
L2.1(20)
→ (1×z)(1×x) ⊆ (1×z)(1×y)∧(1×z)(1×y) ⊆ (1×z)(1×x)

L2.1(11),(10)
→ 1×xz ⊆ 1×yz ∧ 1×yz ⊆ 1×xz

L2.1(17)
→ 1×xz = 1×yz → xz ≡ yz.

We also have that ∃w⊆x (w0⊆x ∧ w1⊆y). Take such a w. By Lemma 2.1 (19),

x ⊆ xz. From Lemma 2.1 (18), one has w0 ⊆ xz. In a similar way prove w1 ⊆ yz.

Consequently, xz ≤w yz. The third case is trivial.

(12) Proof done in [6], pp. 67–68.

(13) Use Lemma 2.1 (16) to ensure that x = ǫ ∨ ∃z (z0 = x ∨ z1 = x).

All the cases are straightforward.

(14) It is a consequence of Proposition 3.1, for .w and +w, together with

Lemma 2.1 (1).
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(15) Fix x ∈ W1. It is possible to prove, by induction on notation on y ∈ W1,

that ∀y ∈ W1 ∀x′ ⊆ x ∃z � b+(x′, y) ∃w � b+(y, 1) ∃k � b+(z, 1)
(

G+(x′, y, z) ∧

G+(y, 1, w) ∧ G+(z, 1, k) ∧ G+(x′, w, k)
)

. Note that, by Proposition 3.1, it is

enough to prove this assertion. The case y = ǫ is clear. The case y0 ∈ W1 is

easy, considering the three possibilities GU (x′, ǫ), GU (x′, 0) and GU (x′, 1).

The case y1 (the only that requires the induction hypothesis) is also done con-

sidering the cases GU (x′, ǫ), GU (x′, 0) and GU (x′, 1). In the last two cases use

Lemma 3.2 (13) and note that if x′ ⊆ x and GT (x′, x̄) then x̄ ⊆ x′ ∧ x′ ⊆ x.

So by Lemma 2.1 (18), x̄ ⊆ x and we can apply the induction hypothesis to x̄.

(16) It is enough to prove that Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1 ∃z � b|.|(x)

∃w � b|.|(y) ∃u � b+(z, w)
(

G|.|(x, z) ∧ G|.|(y, w) ∧ G+(z, w, u) ∧ G|.|(xa y, u)
)

— see Proposition 3.1. Fix x ∈ W1. The proof is by induction on notation on

y ∈ W1. The case y = ǫ is clear. The step cases are immediate by the definition

of |.|w and Lemma 3.2 (13), (15).

(17) The proof is easy using the definition of ≤w and <w.

Theorem 3.1. S1
2 is interpretable in Σb

1−NIA.

Proof: According to the definition of interpretability between theories and

using Proposition 3.2, to prove that S1
2 is interpretable in Σb

1−NIA we have to

prove that all axioms of S1
2 translated by I are valid in Σb

1−NIA. Notice that I is

the translation associated with (σ, ν), presented in Remark 3.1. We analyse the

translation of the basic axioms in the following order: 1, 2, 3, 4, 6, 7, 8, 9, 11,

12, 14, 16, 17, 21, 22, 23, 24, 25, 19, 26, 28, 29, 27, 5, 10, 13, 15, 18, 20, 30, 31

and 32.

By Proposition 3.1, to each f ∈ PTIME we assign a formula Gf which in

particular verifies Σb
1−NIA ⊢ ∀x̄ ∃1z Gf (x̄, z). To improve readability in this

proof, we sometimes adopt the following abbreviation: for any formula A of

LW, and for any term t̄, A(f(t̄)) abbreviates ∀z (Gf (t̄, z) → A(z)). Namely,

for terms t̄ and s, f(t̄)=s abbreviates ∀z(Gf (t̄, z) → z = s). Moreover, Σb
1−NIA ⊢

(∀y (Gf (x̄, y) → y = z)) ↔ Gf (x̄, z). Therefore one may consider, modulo equiv-

alence, that f(t̄) = s abbreviates Gf (t̄, s). In some cases we use infix notation.

For instance x# y = z abbreviates G#(x, y, z).

We have to prove that:

1) Σb
1−NIA ⊢ I

(

∀x∀y (y ≤N x → y ≤NSNx)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

(

y ≤w x→ ∀z (GSw
(x, z) → y ≤w z)

)

, which is equivalent to prove that Σb
1−NIA ⊢

∀x ∈ W1 ∀y ∈ W1 ∀z (y ≤w x ∧GSw
(x, z) → y ≤w z). The result is immediate

using Lemma 3.2 (7) and (3).
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2) Σb
1−NIA ⊢ I(∀x (x 6= Sx)), i.e. Σb

1−NIA ⊢ ∀x ∈ W1 ∃y (GS(x, y) ∧ x 6= y).

This is a consequence of Proposition 3.1 and Lemma 3.2 (7).

3) Σb
1−NIA ⊢ I(∀x (0 ≤ x)), i.e. Σb

1−NIA ⊢ ∀x ∈ W1 (ǫ ≤w x). If x = ǫ, the re-

sult is trivial. If x 6= ǫ then by Definition 2.2 (4), Lemma 2.1 (19), (1), (5) and (15)

one has ǫ � x ∧ ¬(ǫ ≡ x) and so one has ǫ ≤w x.

4) Σb
1−NIA ⊢ I

(

∀x ∀y (x ≤ y ∧ x 6= y ↔ Sx ≤ y)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1

∀y ∈ W1

(

x ≤w y ∧ x 6= y ↔ ∀z (GS(x, z) → z ≤w y)
)

. Apply Lemma 3.2 (8)

to prove the direct implication. To the other implication i.e. to prove that

Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1 ∃z

(

(GS(x, z) → z ≤w y) → (x ≤w y ∧ x 6= y)
)

,

consider x, y ∈ W1 and z such that GS(x, z) (given by Proposition 3.1). If z ≤w y

(the only case to study) then note that z = y ∨ z <w y. If z = y use Lemma

3.2 (7). If z <w y use Lemma 3.2 (7) and (3).

6) Σb
1−NIA ⊢ I

(

∀x ∀y (y ≤ x ∨ x ≤ y)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1

(y ≤w x ∨ x ≤w y). Immediately by Lemma 3.2 (2).

7) Σb
1−NIA ⊢ I

(

∀x ∀y (x ≤ y ∧ y ≤ x → x = y)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1

∀y ∈ W1 (x ≤w y ∧ y ≤w x → x = y). The proof is straightforward by Lemma

3.2 (3) and (1).

8) Σb
1−NIA ⊢ I

(

∀x ∀y ∀z (x ≤ y∧y ≤ z → x ≤ z)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1

∀y ∈ W1 ∀z ∈ W1 (x ≤w y ∧ y ≤w z → x ≤w z). If x = y or y = z then the result

is clear. Otherwise x <w y ∧ y <w z and the result follows from Lemma 3.2 (3).

9) Σb
1−NIA ⊢ I(|0| = 0), i.e. Σb

1−NIA ⊢ ∀y
(

G|.|w(ǫ, y) → y = ǫ
)

. This is

immediate attending to the definition of | . |w and to Proposition 3.1.

11) Σb
1−NIA ⊢I(|S0|=S0), i.e. Σb

1−NIA ⊢ ∀y ∀z
(

GS(ǫ, y)∧G|.|(y, z) → z=y
)

.

The result is immediate using the definitions of Sw and |.|w together with Lemma

2.1 (1).

12) Σb
1−NIA ⊢ I

(

∀x ∀y (x≤y → |x|≤ |y|)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

∀z ∀w
(

x≤w y ∧G|.|(y, z) ∧G|.|(x,w) → w≤w z
)

. Given x, y, z, w such that x, y ∈

W1 and x ≤w y∧G|.|(y, z)∧G|.|(x,w). From x ≤w y, we have that x � y ∧ ¬(x≡y)

or x ≡ y. In the first case, Lemma 3.2 (9) entails w <w z and so we have w ≤w z.

In the second case, Lemma 3.2 (10) ensures that w = z and so w ≤w z.

14) Σb
1−NIA ⊢ I

(

∀y (0 # y = S0)
)

, i.e. Σb
1−NIA ⊢ ∀y∈W1 ∀z ∀w

(

GS(ǫ, z) ∧

G#(ǫ, y, w) → w = z
)

. Noticing that GS(ǫ, z) implies z = 1 and G#(ǫ, y, w) :=

w = 1 a ((0×ǫ)×y), the result follows immediately from Definition 2.2 (4),

Lemma 2.1 (4) and Definition 2.2 (1).
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16) Σb
1−NIA ⊢ I

(

∀x ∀y (x# y = y#x)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

∀z ∀w
(

G#(y, x, z)∧G#(x, y, w) → w = z
)

. It is enough to prove that Σb
1−NIA ⊢

∀x ∈ W1 ∀y ∈ W1

(

1 a ((0×x)× y) = 1a ((0× y)×x)
)

. By Lemma 2.1 (9),

1 a ((0×x)×y) = 1a (0×(x×y)). By Lemma 2.1 (7), we have 1 a (0×(x×y)) =

1 a (0×(y×x)). Again by Lemma 2.1 (9), 1a (0×(y×x)) = 1a ((0×y)×x).

Thus 1a ((0×x)×y) = 1a ((0×y)×x).

17) Σb
1−NIA ⊢ I

(

∀x∀y ∀z (|x|= |y| → x# z = y# z)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1

∀y ∈ W1 ∀z ∈ W1 ∃v ∃w
(

(G|.|(y, v) ∧ G|.|(x,w) → w = v) → 1 a ((0×x)×z) =

1a((0×y)×z)
)

. Suppose x, y, z∈W1. Let v, w be such thatG|.|(y, v) andG|.|(x,w).

We have to prove that whenever one has w = v we have 1 a ((0×x)×z) =

1 a ((0×y)×z). Lemma 3.2 (10), implies x ≡ y, i.e. 1×x = 1×y. Then from

Lemma 2.1 (12), we have 0×x = 0×y. Therefore 1a ((0×x)×z) = 1a ((0×y)×z).

21) Σb
1−NIA ⊢ I

(

∀x ∀y (x+ y = y + x)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1

∀z ∀w
(

G+(y, x, z) ∧G+(x, y, w) → w = z
)

. Take x ∈ W1. It is enough to prove,

by induction on notation on y ∈ W1, that ∀y ∈ W1 ∀x′ ⊆ x ∃z � b+(y, x′) ∃w �

b+(x′, y)
(

G+(y, x′, z) ∧ G+(x′, y, w) ∧ w = z
)

— see Proposition 3.1. The case

y = ǫ is clear. For the step cases use the definition of +w and the induction

hypothesis applied to v such that GT (x′, v). Notice that v ⊆ x.

22) Σb
1−NIA ⊢I

(

∀x (x+0=x)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y

(

G+(x, ǫ, y)→y=x
)

.

Immediate by definition of +w.

23) Σb
1−NIA ⊢ I

(

∀x ∀y (x+Sy = S(x+y))
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

∀z ∀w ∀v
(

G+(x, y, z)∧GS(z, w)∧GS(y, v) → G+(x, v, w)
)

. This is a consequence

of Lemma 3.2 (13) and (15).

24) Σb
1−NIA ⊢ I

(

∀x ∀y ∀z ((x+y)+z = x+(y+z))
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1

∀y∈W1 ∀z∈W1 ∀w ∀k ∀u
(

G+(y, z, w) ∧G+(x,w, k) ∧G+(x, y, u) → G+(u, z, k)
)

.

The proof is done, by induction on notation on z ∈ W1 over the following

assertion: ∀z ∈ W1 ∀x′⊆ x ∀y′⊆ y ∃w � b+(y′, z) ∃k � b+(x′, w) ∃u � b+(x′, y′)
(

G+(y′, z, w)∧G+(x′, w, k)∧G+(x′, y′, u)∧G+(u, z, k)
)

and it uses two facts (*)

and (**) which result from Lemma 3.2 (15) and Theorem 3.1 (21):

(*) Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1 ∀z ∀w ∀k

(

G+(1, y, z)∧G+(x, z, w)∧G+(x, 1, k)

→ G+(k, y, w)
)

(**) Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1 ∀z ∀w ∀k

(

G+(x, y, z)∧G+(1, z, w)∧G+(1, x, k)

→ G+(k, y, w)
)

.

The case z = ǫ is clear. Suppose, by induction hypothesis, that we have

the above assertion for an arbitrary z ∈ W1 and suppose z0 ∈ W1. Being x′⊆ x
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and y′ ⊆ y we want to prove that ∃w′� b+(y′, z0) ∃k′� b+(x′, w′) ∃u′� b+(x′, y′)

G+(y′, z0, w′) ∧ G+(x′, w′, k′) ∧ G+(x′, y′, u′) ∧ G+(u′, z0, k′). Consider w′, k′, u′

such thatG+(y′, z0, w′)∧G+(x′, w′, k′)∧G+(x′, y′, u′). Suppose thatG+(u′, z0, r).

We want to prove that r = k′. The cases x′ = ǫ or y′ = ǫ are easily verified.

Here we study the case x′, y′ 6= ǫ. By definition of +w, we have r = aa b, where

GT (u′, s), G+(s, z, a) and GU (u′, b). We consider the three possible situations:

a) GU (x′, 1)∧GU (y′, 1), b) GU (x′, 0)∧GU (y′, 0), c) not in the previous cases.

In situation a), by Lemma 3.1 (1) and (2), considering that GT (x′, x̄), GT (y′, ȳ),

G+(x̄, ȳ, ū) and G+(ū, 1, c) we have r = da 0, with G+(c, z, d). By Theorem

3.1 (21) (already verified), G+(1, ū, c) and so, using fact (**), r = ea 0, where

G+(ū, z, l) and G+(1, l, e). By induction hypothesis applied to x̄ and ȳ, we have

G+(x̄, h, l), where G+(ȳ, z, h), and again by Theorem 3.1 (21) we have r = f a 0,

where G+(l, 1, f). So, by definition of +w, G+(x′, h1, r). Provided GU (y′, 1),

we have G+(x′,m, r) where G+(y′, z0,m). Analogously, we also conclude that in

situations b) and c) one obtainsG+(x′,m, r), whereG+(y′, z0,m). By hypothesis,

we have G+(y′, z0, w′) and G+(x′, w′, k′) and so m = w′ and r = k′. The case z1

is analogous to the case z0. Use the definition of +w, consider the situations a),

b) and c) as before, use the Lemma 3.1 (1) and (2), the fact (*), Theorem 3.1 (21)

(already verified), Lemma 3.2 (15) and the induction hypothesis. This finishes

the proof.

25) Σb
1−NIA ⊢ I

(

∀x ∀y ∀z (x+ y ≤ x+ z ↔ y ≤ z)
)

, i.e. Σb
1−NIA ⊢

∀x∈W1 ∀y∈W1 ∀z ∈ W1

(

∀w ∀k (G+(x, z, w)∧G+(x, y, k) → k ≤ww) ↔ y ≤w z
)

.

First we need some facts:

Fact 3.1. Σb
1−NIA ⊢ ∀a∈W1 ∀b∈W1 ∀c

(

G+(a, b, c) ∧ b 6= ǫ → a <w c
)

.

Fix a ∈ W1. To prove this fact we show, by induction on notation on b ∈ W1,

that ∀b ∈ W1 ∀a′ ⊆ a ∃c � b+(a′, b)
(

G+(a′, b, c) ∧ (b 6= ǫ→ a′ <w c)
)

, or simpli-

fying ∀b∈W1 ∀a′⊆ a (b 6= ǫ→ a′ <w a
′+b). The case b = ǫ is clear. For b0 ∈ W1,

fix a′ ⊆ a. We want to prove that a′ <w a
′ + b0. If a′ = ǫ the result is clear.

If a′ 6= ǫ, then a′ + b0 = (T (a′) + b)U(a′). Notice that T (a′) ⊆ a. Therefore, by

induction hypothesis, T (a′) <w T (a′) + b. Consequently, by Lemma 3.2 (17), we

have that T (a′)aU(a′) <w (T (a′)+b)U(a′). By Lemma 3.1 (3), T (a′)U(a′) = a′,

so a′ <w a
′ + b0. For b1 proceed in a similar way.

Fact 3.2. Σb
1−NIA ⊢ ∀a∈W1 ∀b∈W1 ∀c∈W1 ∀d ∀e

(

G+(b, c, d)∧G+(a, c, e)

→ (e 6= d↔ a 6= b)
)

.

The direct implication is immediate. The other implication is done by in-

duction on notation on c ∈ W1. Fix a, b ∈ W1 such that a 6= b and prove that
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∀c ∈ W1 ∀a′⊆ a ∀b′⊆ b ∃d � b+(b′, c) ∃e � b+(a′, c)
(

G+(b′, c, d) ∧G+(a′, c, e) ∧

(a′ 6= b′ → e 6= d)
)

. In an abridged manner, ∀c ∈ W1 ∀a′ ⊆ a ∀b′ ⊆ b (a′ 6= b′ →

a′ + c 6= b′ + c). The case c = ǫ is clear. For c0 ∈ W1 we want to prove that

∀a′ ⊆ a ∀b′ ⊆ b (a′ 6= b′ → a′+ c0 6= b′+ c0). Fix a′ ⊆ a and b′ ⊆ b such that

a′ 6= b′. If a′ = ǫ or b′ = ǫ the result is immediate considering that a′ 6= b′ and

using Fact 3.1. Let us study the case a′ 6= ǫ and b′ 6= ǫ. We have a′ 6= b′
L3.1(3)
→

T (a′)U(a′) 6= T (b′)U(b′) → T (a′) 6=T (b′)∨U(a′) 6=U(b′). Noticing that T (a′)⊆a′

and T (b′) ⊆ b′ one has

i) T (a′) 6= T (b′)
I.H.
→ T (a′) + c 6= T (b′) + c

L3.2(17)
→ (T (a′) + c)U(a′) 6=

(T (b′) + c)U(b′)
P3.1 for +w→ a′ + c0 6= b′ + c0

ii) U(a′) 6= U(b′)
D2.2(12)

→ (T (a′) + c)U(a′) 6= (T (b′) + c)U(b′)
P3.1 for +w→

a′ + c0 6= b′ + c0.

In any case a′ + c0 6= b′ + c0. The case c1 is similar to the one above.

The only difference is that while using the definition of +w, we have to consider

four situations: GU (a′, 0), GU (a′, 1), GU (b′, 0) and GU (b′, 1).

To prove 25), fix y ∈ W1 and z ∈ W1 and prove, by induction on notation on

x∈W1, that ∀x∈W1 ∀y′⊆ y ∀z′⊆z ∃w � b+(z′, x) ∃k � b+(y′, x)
(

G+(z′, x, w)∧

G+(y′, x, k) ∧ (k ≤w w ↔ y′ ≤w z
′)
)

, which is enough by Proposition 3.1 and

Theorem 3.1 (21) already verified. This is equivalent to prove that ∀x∈W1 ∀y′⊆y

∀z′⊆ z (y′+ x ≤w z
′+ x ↔ y′≤w z

′). The case x = ǫ is clear. Given x0 ∈ W1, fix

y′⊆ y, z′⊆ z. We want to prove that y′+x0 ≤w z
′+x0 ↔ y′ ≤w z

′. If y′= ǫ and

z′ = ǫ the result is trivial. If y′ = ǫ but z′ 6= ǫ then ǫ ≤ z′
F3.1,T3.1(3)

↔ x0 < x0 + z′

T3.1(21)
↔ x0 < z′ + x0. If y′ 6= ǫ and z′= ǫ then y′≤ z′ does not hold (because one

would have y′≤ ǫ but also by Theorem 3.1 (3) ǫ ≤ y′, therefore by Theorem 3.1 (7)

y′= ǫ). For y′ 6= ǫ ∧ z′ 6= ǫ, consider two cases:

a) U(y′) = U(z′) ∨
(

U(y′) = 0 ∧ U(z′) = 1
)

b) U(y′) = 1 ∧ U(z′) = 0.

In case a), y′+x0 ≤w z
′+x0

P3.1 for +w↔ (T (y′)+x)U(y′) ≤w (T (z′)+x)U(z′)
L3.2(17)
↔ T (y′)+x ≤wT (z′)+x

I.H.
↔ T (y′)≤wT (z′)

L3.2(17)
↔ T (y′)U(y′) ≤wT (z′)U(z′)

L3.1(3)
↔ y′ ≤w z

′.

In case b), y′ +x0 ≤w z
′ +x0

P3.1 for +w↔ (T (y′)+x)U(y′) ≤w (T (z′)+x)U(z′)
L3.2(17)
↔ T (y′) + x <w T (z′) + x

I.H.,F3.2
↔ T (y′) <w T (z′)

L3.2(17)
↔ T (y′)1 ≤w T (z′)0

L3.1(3)
↔ y′ ≤w z

′.
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The case z1 is proved in a similar way, using the definition of +w (this time di-

vided in the cases: GU (y′, 0)∧GU (z′, 0), GU (y′, 1)∧GU (z′, 1), GU (y′, 0)∧GU (z′, 1)

and GU (y′, 1)∧GU (z′, 0)), using Lemma 3.2 (17), Fact 3.2, the induction hypoth-

esis and the following result, whose proof does not involve any special difficulty:

Fact 3.3. Σb
1−NIA ⊢ ∀a∈W1 ∀b∈W1 ∀c

(

GS(b, c) → (a<w c ↔ a≤w b)
)

and

Σb
1−NIA ⊢ ∀a∈W1 ∀b∈W1 ∀c ∀d

(

G+(a, 1, c) ∧G+(b, 1, d) → (c≤w d↔ a≤w b)
)

.

19) Σb
1−NIA ⊢ I

(

∀x ∀y (x ≤ x+ y)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1 ∀w

(

G+(x, y, w) → x ≤w w
)

or Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1 x ≤ x+ y. This is

an immediate consequence of Theorem 3.1 (25) and (3).

26) Σb
1−NIA ⊢I

(

∀x(x·0 = 0)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y

(

G·(x, ǫ, y)→ y=ǫ
)

.

Immediate by definition of ·w.

28) Σb
1−NIA ⊢ I

(

∀x ∀y (x · y = y · x)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1 ∀z ∀k

(G·(y, x, z) ∧G·(x, y, k) → k = z) or Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1 x · y = y · x.

The case x=ǫ is immediate. If x 6=ǫ then, by Lemma 2.1 (16), ∃z (z0=x∨z1=x).

Fix such a z. We want to prove that z0 · y = y · z0 and z1 · y = y · z1. Both

assertions can be proved by induction on notation on y ∈ W1. The reasoning

leading to the second one requires Theorem 3.1 (24) and (21).

29) Σb
1−NIA ⊢ I

(

∀x ∀y ∀z (x · (y + z) = (x · y) + (x · z))
)

, i.e. Σb
1−NIA ⊢

∀x ∈ W1 ∀y ∈ W1 ∀z ∈ W1 ∀w ∀k ∀l ∀r
(

G·(x, z, w) ∧G·(x, y, k) ∧G+(k,w, l) ∧

G+(y, z, r) → G·(x, r, l)
)

or ∀x ∈ W1 ∀y ∈ W1 ∀z ∈ W1 x·(y+z) = (x·y)+(x·z).

By Theorem 3.1 (28) this is equivalent to prove ∀x ∈ W1 ∀y ∈ W1 ∀z ∈ W1

(y+z) · x = (y ·x) + (z ·x). The proof is by induction on x∈W1. The case x= ǫ

is trivial using Theorem 3.1 (28) and (26). For x0∈W1, let us prove that (y · z) ·x0

= (y · x0) + (z · x0). If y = ǫ ∨ z = ǫ the result is immediate. If y 6= ǫ ∧ z 6= ǫ

then, noticing that y + z 6= ǫ, we have (y + z) · x0
P3.1 for .w= ((y + z) · x)0

IH
=

((y · x) + (z · x))0
P3.1 for +w,T,U

= (y · x)0 + (z · x)0
P3.1 for .w= (y · x0) + (z · x0).

For the case x1 the reasoning is analogous to the one above, using in addition

Theorem 3.1 (24) and (21).

27) Σb
1−NIA ⊢ I

(

∀x ∀y (x·(Sy) = (x·y)+x)
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

∀z ∀w ∀k
(

G·(x, y, z)∧G+(z, x, w)∧GS(y, k) → G·(x, k, w)
)

or Σb
1−NIA ⊢ ∀x∈W1

∀y∈W1 x·(Sy)=(x·y)+x. Given x, y∈W1 one has x·(Sy)
L3.2(13)

= x·(y+1)
T3.1(29)

=

(x · y) + (x · 1)
L3.2(14)

= (x · y) + x.

5) Σb
1−NIA ⊢ I

(

∀x (x 6= 0 → 2 · x 6= 0)
)

, i.e. Σb
1−NIA ⊢ ∀x ∈ W1

(

x 6= ǫ→

∃y (G·(10, x, y)∧ y 6= ǫ)
)

or Σb
1−NIA ⊢ ∀x ∈ W1 (x 6= ǫ→ 10 · x 6= ǫ). For x ∈ W1

such that x 6= ǫ one has 10 ·x
T3.1(28)

= x · 10
P3.1 for .w= (x · 1)0

L3.2(14)
= x0

D2.2(13)

6= ǫ.
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10) Σb
1−NIA ⊢ I

(

∀x (x 6= 0 → |2 · x| = S(|x|) ∧ |S(2 · x)| = S(|x|))
)

, i.e.

Σb
1−NIA ⊢ ∀x∈W1 (x 6=ǫ→ ∀y ∀z ∀w ∀v ∀u ∀k

(

G|.|(x, y)∧GS(y, z)∧G·(10, x, w)∧

G|.|(w, v)∧GS(w, u)∧G|.|(u, k) → v=z∧k=z)
)

or Σb
1−NIA ⊢ ∀x∈W1

(

x 6= ǫ→

|10 · x| = S(|x|) ∧ |S(10 · x)| = S(|x)|
)

. Given x ∈ W1 such that x 6= ǫ, one has

that 10 ·x = x0 — this uses Theorem 3.1 (28), Proposition 3.1 for .w and Lemma

3.2 (14). Then, by Proposition 3.1 for |.|w and Sw, the result is immediate.

20) Σb
1−NIA ⊢ I

(

∀x∀y (x≤y ∧ x 6=y → S(2 ·x)≤2 · y ∧ S(2 ·x) 6=2 · y)
)

, i.e.

Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

(

x≤w y∧x 6=y → ∀z ∀w ∀v (G·(10, y, z)∧G·(10, x, w)∧

GS(w, v) → v≤w z ∧ v 6= z)
)

or Σb
1−NIA ⊢ ∀x∈W1 ∀y ∈W1

(

x< y → S(10 ·x)<

10 · y
)

. Notice that, whenever x 6= ǫ, one has 10 · x = x0 (see proof of item 10).

If x= ǫ then ǫ< y
L3.2(17)
→ ǫ1<y0

L2.1(1)
→ 1<y0

P3.1 for Sw→ S(ǫ)<y0. Thus ǫ< y →

S(10 · ǫ)<10 · y. If x 6=ǫ the statement is a trivial consequence of Lemma 3.2 (17),

attending to Proposition 3.1 for Sw.

13) Σb
1−NIA ⊢ I

(

∀x∀y (|x# y| = S(|x|·|y|))
)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

∀z ∀w ∀k ∀r ∀u ∀v
(

G|.|(x, z) ∧ G|.|(y, w) ∧ G·(z, w, k) ∧ GS(k, r) ∧ G#(x, y, u) ∧

G|.|(u, v) → v = r
)

. We mean Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1 |1 a ((0×x)×y)| =

S(|x| · |y|). We have 1×((0×x)×y)
L2.1(9)

= 1×(0×(x×y))
L2.1(8)

= 1×((x×y)×0)
L2.1(9)

= 1×(x×(y×0))
L2.1(6)

= 1×(x×y). Noticing that (0×x)×y ≡ x×y
L2.1(13)
→

1a((0×x)×y) ≡ 1a(x×y)
L2.1(11)
→ 1a((0×x)×y) ≡ (x×y)1

L3.2(10)
→ |1a((0×x)×y)|

= |(x×y)1|
P3.1 for |.|w

→ |1 a ((0×x)×y)| = S(|x×y|), we just need to prove that

|x×y| = |x| · |y|. We proceed by induction on y ∈ W1. The case y = ǫ is clear.

For y0 we have |x×y0|
D2.2(5)

= |(x×y)ax|
L3.2(16)

= |x×y|+ |x|
IH
= (|x| · |y|)+ |x|

T3.1(29)
=

|x| · (|y| + 1)
L3.2(13)

= |x| · S(|y|)
P3.1 for |.|w

= |x| · |y0|. The case y1 is analogous.

This finishes the proof.

15) Σb
1−NIA ⊢ I

(

∀x (x 6=0 → 1 # (2·x)=2(1 #x)∧1 # (S(2·x))=2(1 #x))
)

,

i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y ∀z

(

x 6=ǫ∧G·(10, x, y)∧GS(y, z) → x
)

, 1 a ((0×1)×z)))

or Σb
1−NIA ⊢ ∀x ∈ W1

(

x 6= ǫ →
(

10 · (1a ((0×1)×x)) = 1a ((0×1)×(10 · x)) ∧

10 · (1a ((0×1)×x)) = 1a ((0×1)×(S(10 · x)))
))

. Given x ∈ W1 such that x 6= ǫ,

let us prove the two equalities above. Note that 10 · (1a ((0×1)×x))
L2.1(6)

=

10 · (1a (0×x))
T3.1(28)

= (1a (0×x)) · 10
P3.1 for .w= ((1a (0×x)) · 1)a 0

L3.2(14)
=

(1a (0×x))a 0
L2.1(2)

= 1a ((0×x)a 0)
D2.2(5)

= 1a (0×x0). Now, for the first equal-

ity, just notice that 1a (0×x0)
L3.2(14)

= 1a (0×(x ·1)a 0)
P3.1 for .w= 1a (0×(x ·10))

T3.1(28)
= 1a (0×(10·x))

L2.1(6)
= 1a ((0×1)×(10·x)). To establish the other equality
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1a(0×x0)
D2.2(5),(6)

= 1a(0×x1)
L3.2(14)

= 1a(0×(x·1)a1)
P3.1 for Sw= 1a(0×S((x·1)a0))

P3.1 for .w= 1a (0×S(x · 10))
T3.1(28)

= 1a (0×S(10 · x))
L2.1(6)

= 1a ((0×1)×S(10 · x)).

18) Σb
1−NIA ⊢ I

(

∀x∀y ∀u ∀v (|x| = |u|+ |v| → x# y = (u# y) ·(v# y))
)

, i.e.

Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1 ∀u∈W1 ∀v∈W1 ∃z ∃w ∃k ∃l

((

G|.|(v, z) ∧G|.|(u,w) ∧

G+(w, z, k)∧G|.|(x, l) → l=k
)

→ G·

(

1a((0×u)×y), 1a((0×v)×y), 1a((0×x)×y)
))

or Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1 ∀u∈W1 ∀v∈W1

(

|x|= |u|+|v| → 1a((0×x)×y) =

(1a((0×u)×y))·(1×((0×v)×y))
)

. First notice that (*) Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1

(

x 6= ǫ → G·(x, 1a(0×y), xa(0×y))
)

can be easily proved by induction on nota-

tion on y ∈ W1. For y = ǫ use Lemma 3.2 (14). The cases y0 and y1 follow

straightforwardly using the axioms that define ×, a , the definition of ·w and

Lemma 2.1 (2). Now, fix x, y, u, v ∈ W1. |x| = |u|+|v|
L3.2(16)
→ |x| = |ua v|

L3.2(10)
→

x≡ua v
L2.1(12)
→ 0×x = 0×(ua v) → 1a((0×x)×y) = 1a((0×(ua v))×y). Now,

notice that 1a
(

(0×(ua v))×y
) L2.1(9)

= 1a
(

0×((uv)×y)
) L2.1(7)

= 1a
(

0×(y×uv)
)

L2.1(10)
= 1 a

(

0× ((y×u)(y×v))
) L2.1(10)

= 1 a
(

(0×(y×u)) a (0×(y×v))
) L2.1(7)

=

1 a
(

(0×(u×y)) a (0×(v×y))
) L2.1(9)

= 1 a
(

((0×u)×y) a (0×(v×y))
) L2.1(2)

=
(

1 a ((0×u)×y)
)

a (0×(v×y))
(∗)
=

(

1 a ((0×u)×y)
)

·
(

1 a (0×(v×y))
) L2.1(9)

=
(

1 a ((0×u)×y)
)

·
(

1 a ((0×v)×y)
)

.

30) Σb
1−NIA ⊢ I

(

∀x∀y ∀z (S0 ≤ x→ (x ·y ≤ x ·z ↔ y ≤ z))
)

, i.e. Σb
1−NIA ⊢

∀x∈W1 ∀y∈W1 ∀z∈W1

(

∀w (GS(ǫ, w) → w≤wx) → (∀k ∀l (G·(x, z, k)∧G·(x, y, l)

→ l≤wk) ↔ y≤w z)
)

or equivalently, using Theorem 3.1 (28) and Proposition 3.1

for Sw, Σb
1−NIA ⊢ ∀x∈W1 ∀y∈W1 ∀z∈W1

(

1 ≤ x → (y · x ≤ z · x ↔ y ≤ z)
)

.

The proof is by induction on x ∈ W1. The case x = ǫ is clear. For x0 ∈ W1

we can ensure that 1 ≤ x. If y = ǫ or z = ǫ the result is immediate. Otherwise,

y · x0 ≤ z · x0
P3.1 for .w↔ (y · x)0 ≤ (z · x)0

L3.2(17)
↔ y · x ≤ z · x

IH
↔ y ≤ z.

For x1 ∈ W1 notice that x = ǫ or 1 ≤ x. The case x = ǫ is trivial. For 1 ≤ x

y ≤ z
IH
↔ y ·x ≤ z ·x

L3.2(17)
↔ (y ·x)0 ≤ (z ·x)0

T3.1(21),(25)
↔ (y ·x)0+y ≤ (z ·x)0+y.

But also, y ≤ z
T3.1(25)
↔ (z · x)0 + y ≤ (z · x)0 + z. Thus, by Theorem 3.1 (8),

y≤z → (y ·x)0 + y ≤ (z ·x)0 + z and so y≤z → y ·x1 ≤ z ·x1. The other im-

plication is proved by contraposition. The reasoning is similar to the one above,

but it also uses Lemma 2.1 (3) and Theorem 3.1 (7). This finishes the proof.

31) Σb
1−NIA ⊢ I

(

∀x (x 6=0 → |x|=S(|⌊1
2x⌋|))

)

, i.e. Σb
1−NIA ⊢ ∀x∈W1 ∀y ∀z

∀w ∀k
(

x 6=ǫ∧G⌊ 1

2
.⌋(x, y)∧G|.|(y, z)∧GS(z, w)∧G|.|(x, k) → k=w

)

or Σb
1−NIA ⊢

∀x∈W1

(

x 6=ǫ→|x|=S(|⌊1
2x⌋|)

)

. Immediate by Proposition 3.1 for |.|w and ⌊1
2 .⌋w.
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32) Σb
1−NIA ⊢ I

(

∀x∀y (x=⌊1
2y⌋ ↔ (2·x = y∨S(2·x) = y))

)

, i.e. Σb
1−NIA ⊢

∀x ∈ W1 ∀y ∈ W1

(

G⌊ 1

2
.⌋(y, x) ↔ G·(10, x, y) ∨ (∀w (G·(10, x, w) → GS(w, y)))

)

or Σb
1−NIA ⊢ ∀x ∈ W1 ∀y ∈ W1

(

x = ⌊1
2y⌋ ↔ (10 · x = y ∨ S(10 · x) = y)

)

.

Immediate using Theorem 3.1 (28) and Proposition 3.1 for .w, ⌊1
2 .⌋w, Sw.

• Finally, let us study the induction scheme. We want to prove that

Σb
1−NIA ⊢ I

(

A(0)∧∀x (A(⌊1
2x⌋)→A(x))→∀xA(x)

)

, with A a Σb
1-formula in LN,

i.e. Σb
1−NIA ⊢ I(A(0)) ∧ ∀x∈W1

(

I(A(⌊1
2x⌋)) → I(A(x))

)

→ ∀x∈W1 I(A(x)),

which is equivalent to prove that Σb
1−NIA ⊢ I(A)(ǫ) ∧ ∀x∈W1

(

∀z (GT (x, z) →

I(A)(z))→I(A)(x)
)

→∀x∈W1I(A)(x) (see the definition of I and Proposition 3.1).

First we prove the following facts.

Fact 3.4. The following formulas are equivalent in Σb
1−NIA:

a) ∀y
(

G|.|(w, y) → ∀x ≤w y ϕ(x)
)

, i.e. ∀x ≤w |w| ϕ(x)

b) ∀x ⊆ w ∀z
(

G|.|(x, z) → ϕ(z)
)

, i.e. ∀x ⊆ w ϕ(|x|),

where ϕ is a formula in LW.

Noticing that x ⊆ w → x � w (by induction on notation on w) and using

Lemma 3.2 (9), (10), we have that a) implies b). The other implication is straight-

forward using Lemma 3.2 (12).

Fact 3.5. If A is a Σb
1-formula in LN, then I(A) is equivalent, in Σb

1−NIA,

to an extended Σb
1-formula in LW.

The proof of this fact is by induction on the complexity of the formula A.

We assume → defined, as usually, based on ¬ and ∨.

If A is an atomic formula in LN, we have A := t1 = t2 or A := t1 ≤ t2, where

t1, t2 are terms of LN.

If no function symbols occur in the terms, i.e. they are just variables or

the constant 0, then I(A) := t′1 = t′2 or I(A) := t′1 ≤w t
′
2, where t′i = ti if ti is

a variable and t′i = ǫ if ti is the constant 0 (i=1, 2). In both cases I(A) is an

extended Σb
1-formula in LW. Note that I(A) is also an extended Πb

1-formula

in LW (this is used later on while studying the negation case).

If there are n function symbols occurring in A then I(A) is equivalent to

a formula of the form ∀y1...∀yn

(

G1(..., y1) ∧ ... ∧ Gn(..., yn) → B
)

, where B is

the atomic formula a = b or a ≤w b, with a and b variables or the constant ǫ,

and Gi’s are the extended Σb
1-formulas of LW assign by ν to the functions

symbols of LN in A. By Proposition 3.1, we know that I(A) is equivalent to

∃y1� b1(...) ...∃yn � bn(...)
(

G1(..., y1) ∧ ... ∧Gn(..., yn) ∧B
)

, so I(A) is equiva-

lent to an extended Σb
1-formula in LW. Notice that this is also equivalent to
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the formula ∀y1� b1(...) ...∀yn � bn(...)
(

G1(..., y1) ∧ ... ∧Gn(..., yn) → B
)

which

is an extended Πb
1-formula in LW.

If A and B are formulas in LN such that I(A) and I(B) are equivalent to ex-

tended Σb
1-formulas in LW, then I(A∧B) and I(A∨B) are respectively I(A)∧I(B)

and I(A) ∨ I(B), which are equivalent to extended Σb
1-formulas in LW.

If A := ∀x ≤ |t| B(x), such that I(B) is equivalent to an extended Σb
1-formula

in LW, then I(A) is the formula ∀x∈W1

(

I(x ≤ |t|) → I(B)(x)
)

. Suppose that

t has no function symbols, otherwise the result is similar just adding ∀y′is and

G′
is. So, I(A) has the form ∀x ∈ W1

(

∀y (G|.|(t, y) → x≤w y) → I(B)(x)
)

. This

is equivalent to ∀y
(

G|.|(t, y) → ∀x≤w y (x∈W1 → I(B)(x))
)

, which by Fact 3.4,

is equivalent to ∀x⊆ t ∀z
(

G|.|(x, z) → (z∈W1 → I(B)(z))). Now using Proposi-

tion 3.1 the formula above can be rewritten as ∀x⊆ t ∃z�b|.|(x)
(

G|.|(x, z)∧(z∈W1

→ I(B)(z))
)

which by its turn is equivalent to an extended Σb
1-formula in LW.

Note that it is also equivalent to ∀x⊆ t ∀z�b|.|(x)
(

G|.|(x, z)→(z∈W1→I(B)(z))
)

.

If A := ∃x ≤ |t| B(x) such that I(B) is equivalent to an extended Σb
1-formula

in LW, then the proof is similar to the previous case. One just need to prove

the following analogue of Fact 3.4: in Σb
1−NIA, ∀y

(

G|.|(w, y) → ∃x≤w y ϕ(x)
)

is equivalent to ∃x ⊆ w ∀z
(

G|.|(x, z) → ϕ(z)
)

.

Consider A := ¬B, for B a formula of LN where all quantifications are sharply

bounded. By the remarks we have been doing along the proof I(B) is equivalent

to an extended Πb
1-formula. Now noticing that the negation of an extended

Πb
1-formula is equivalent to an extended Σb

1-formula, we finish this case.

Consider now the case A := ∃x ≤ t B(x), where I(B) is equivalent to

an extended Σb
1-formula in LW. If t is a variable or the constant 0 then

I(∃x≤ t B(x)) := ∃x∈W1

(

x ≤w t
′ ∧ I(B)(x)

)

, where t′= t or t′= ǫ respectively.

This formula is equivalent to ∃x � t′
(

x ∈ W1 ∧ x ≤w t′ ∧ I(B)(x)
)

which,

noticing that x ≤w t
′ is here an abbreviation of a sw.q. formula, is equivalent to

an extended Σb
1-formula in LW. If t has function symbols, use Proposition 3.1

to deal with the quantifications and the formulas Gf we have to introduce.

This finishes the proof of Fact 3.5.

Now, to prove in Σb
1−NIA the translation of the induction scheme, suppose

that we have I(A)(ǫ) and ∀x∈W1

(

∀z (GT (x, z)→I(A)(z))→I(A)(x)
)

. We want

to prove that ∀x∈W1 I(A)(x). Taking x = y0 ∈ W1 we get I(A)(y) → I(A)(y0).

For x = y1 ∈ W1 we have I(A)(y) → I(A)(y1). Putting all together it comes

I(A)(ǫ) ∧ ∀y∈W1

[

I(A)(y) →
(

(y0∈W1→ I(A)(y0)) ∧ I(A)(y1)
)]

. By Fact 3.5,

we know that I(A) is equivalent to an extended Σb
1-formula in LW, so applying

Lemma 2.4 to that formula, we have that ∀x ∈ W1 I(A)(x).



450 GILDA FERREIRA and ISABEL OITAVEM

ACKNOWLEDGEMENTS – The first author was supported by a PhD grant from fct,
pocti/fct, feder and cmaf.

The second author thanks fct-unl, cmaf and fct (grant sfrh/bpd/9455/2002

and project poci/mat/61720/2004).

REFERENCES

[1] Buss, S. – Bounded Arithmetic, Bibliopolis, Napoli (1986).

[2] Cantini, A. – Asymmetric interpretations for bounded theories, Mathematical

Logic Quarterly, 42 (1996), 270–288.

[3] Enderson, H. – A Mathematical Introduction to Logic, Academic Press (1991).

[4] Fernandes, A. – Investigações em Sistemas de Análise Exeqúıvel , Ph.D. Disser-
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