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CMAP, École Polytechnique
Palaiseau, France

e-mail: sylvie.meleard@polytechnique.edu

and

Denis Villemonais

e-mail: denis.villemonais@inria.fr

Abstract: This survey concerns the study of quasi-stationary distribu-
tions with a specific focus on models derived from ecology and popula-
tion dynamics. We are concerned with the long time behavior of different
stochastic population size processes when 0 is an absorbing point almost
surely attained by the process. The hitting time of this point, namely the
extinction time, can be large compared to the physical time and the popu-
lation size can fluctuate for large amount of time before extinction actually
occurs. This phenomenon can be understood by the study of quasi-limiting
distributions. In this paper, general results on quasi-stationarity are given
and examples developed in detail. One shows in particular how this notion
is related to the spectral properties of the semi-group of the process killed
at 0. Then we study different stochastic population models including non-
linear terms modeling the regulation of the population. These models will
take values in countable sets (as birth and death processes) or in continu-
ous spaces (as logistic Feller diffusion processes or stochastic Lotka-Volterra
processes). In all these situations we study in detail the quasi-stationarity
properties. We also develop an algorithm based on Fleming-Viot particle
systems and show a lot of numerical pictures.
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1. Introduction

We are interested in the long time behavior of isolated biological populations
with a regulated (density-dependent) reproduction. Competition for limited re-
sources impedes these natural populations without immigration to grow in-
definitely and leads them to become extinct. When the population’s size at-
tains zero, nothing happens anymore and this population’s size process stays
at zero. This point 0 is thus an absorbing point for the process. Nevertheless,
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the time of extinction can be large compared to the individual time scale and
it is common that population sizes fluctuate for large amount of time before
extinction actually occurs. For example, it has been observed in populations of
endangered species, as the Arizona ridge-nose rattlesnakes studied in Renault-
Ferrière-Porter [52], that the statistics of some biological traits seem to stabilize.
Another stabilization phenomenon is given by the mortality plateau. While de-
mographers thought for a long time that the rate of mortality of individuals
grows as an exponential function of the age, it has been observed more re-
cently that the rate of mortality slows at advanced ages, or even stabilizes. To
capture these phenomena, we will study the long time behavior of the process
conditioned on non extinction and the related notion of quasi-stationarity. In
particular, we will see that a Markov process with extinction which possesses a
quasi-stationary distribution has a mortality plateau.

In all the following, the population’s size process (Zt, t ≥ 0) will be a Markov
process going almost surely to extinction. We are interested in looking for char-
acteristics of this process giving more information on its long time behavior.
One way to approach this problem is to study the “quasi-limiting distribution”
(QLD) of the process (if it exists), that is the limit, as t → +∞, of the dis-
tribution of Zt conditioned on non-absorption up to time t. This distribution,
which is also called Yaglom limit, provides particularly useful information if the
time scale of absorption is substantially larger than the one of the quasi-limiting
distribution. In that case, the process relaxes to the quasi-limiting regime after
a relatively short time, and then, after a much longer period, absorption will
eventually occur. Thus the quasi-limiting distribution bridges the gap between
the known behavior (extinction) and the unknown time-dependent behavior of
the process.

There is another point of view concerning quasi-stationarity. A quasi-stationary
distribution for the process (Zt, t ≥ 0) denotes any proper initial distribution
on the non-absorbing states such that the distribution of Zt conditioned on
non-extinction up to time t is independent of t, t ≥ 0.

There is a large literature on quasi-stationary distributions and Yaglom limits
(see for example the large bibliography updated by Pollett [50]) and a lot of
references will be given during the exposition. The present paper is by no means
exhaustive, but is a survey presenting a collection of tools for the study of QSD
concerning specific population’s size models. More than the originality of the
proofs, we emphasize some general patterns for qualitative and quantitative
results on QSD. We also provide a lot of numerical illustrations of the different
notions.

In Section 2 of this survey, we will introduce the different notions of QSD
and review theoretical properties on QSD and QLD. We will also highlight the
relations between QSDs and mortality plateaus. In Section 3, we will study the
simple case of QSD for processes in continuous time with finite state space. We
develop a simple example to make things more concrete. Thus we will concen-
trate on QSD for several stochastic population models corresponding to different
space and time scales. We will underline the importance of spectral theory as
mathematical tool for the research of QSD, in these different contexts. In Sec-
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tion 4, we will consider birth and death processes. We will state results giving
explicit conditions on the coefficients ensuring the almost sure extinction of the
process, and the existence and uniqueness (or not) of a QSD. We will especially
focus on the density-dependence case, when the death rate of each individual is
proportional to the population’s size (called logistic birth and death process).
We will show that in that case, the process goes almost surely to extinction,
and that there is a unique QSD, coinciding with the unique QLD. In Section 5,
the birth and death process is rescaled by a growing initial population and by
small individual weights (small biomass). This process is proved to converge,
as the initial population’s size tends to infinity, to the unique solution of the
deterministic logistic equation, whose unique stable equilibrium is given by the
carrying capacity. If the individual birth and death rates are proportional to the
population’s size while preserving the ecological balance, more numerous are
the individuals, smaller are their weights and faster are their birth and death
events, reflecting allometric demographies. In that case, the rescaled birth and
death process converges, as the initial population size increases, to the solution
of a stochastic differential equation with a 1/2-Hölder diffusion coefficient and
a quadratic drift, called logistic Feller equation. The existence of the QSD is
proved in this case and uniqueness is characterized by a condition meaning the
return of the process from infinity in finite time. The proof relies QSD investi-
gation to spectral theory tools developed in a functional L2−space. The logistic
Feller equation describes the size of a mono-type population where individuals
are indistinguable. Motivated by ecological and biodiversity problems, we gen-
eralize the model to multi-type populations with intra-specific and inter-specific
competition. That leads us to consider stochastic Lotka-Volterra processes. We
give conditions ensuring mono-type transient states or coexistence, preserving
one or several dominant types in a longer scale. A large place in the survey is
given to illustrations obtained by simulations. Some of them derive from an ap-
proximation method based on Fleming-Viot interacting particle systems, which
is carefully described in Section 6.

A brief bibliography on quasi-stationary distributions

The study of quasi-stationary distributions began with the work of Yaglom on
sub-critical Galton-Watson processes [66]. Since then, the existence, uniqueness
and other properties of quasi-stationary distributions for various processes have
been studied.

In particular, the case of Markov processes on finite state spaces has been
studied by Darroch and Seneta, who proved under some irreducibility conditions
the existence and uniqueness of the QSD, for both discrete [18] and continuous
time settings [19] (detailed proofs and results are reproduced in Section 3 of
the present paper). We also refer the reader to the works of van Doorn and
Pollett [60] for a relaxation of the irreducibility condition.

The case of discrete time birth and death processes has been treated by
Seneta and Vere-Jones [54] and Ferrari, Mart́ınez and Picco [24]. For continuous
time birth and death processes, we refer to van Doorn [58]. This last case is
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quite enlightening, since it leads to examples of processes with no QSD, of
processes with a Yaglom limit and an infinite number of QSD and to processes
with a Yaglom limit which is the unique QSD (detailed proofs and results are
also developed in Section 4 of this survey). For further developments, we may
refer to Pakes and Pollett [48] (where results on continuous-time birth and
death processes with catastrophic events are obtained), to Bansaye [5] (where a
discrete time branching process in random environment is studied), to Coolen-
Schrijner [17] (where general discrete time processes are studied) and references
therein.

Diffusion processes have also been extensively studied in the past decades,
beginning with the seminal work of Mandl [45] for the one-dimensional case
and of Pinsky [49] and Gong, Qian and Zhao [29] in the multi-dimensional
situation. Mart́ınez, Picco and San Mart́ın [46] and Lladser and San Mart́ın [44]
highlighted cases of diffusions with infinitely many quasi-limiting distributions,
with a non-trivial dependence on the initial distribution of the process. For
recent development of the theory of QSDs for diffusion processes, we refer to
Steinsaltz and Evans [57] and Kolb and Steinsaltz [41] where the case of one
dimensional diffusions with different boundary conditions is studied. We also
emphasize that in the case of Wright-Fisher diffusions and some of its relatives,
Huillet [35] derived explicit values of QSDs. Other diffusion processes related to
demographic models have been studied in Cattiaux, Collet, Lambert, Mart́ınez,
Méléard and San Mart́ın [13], where the case of the Feller logistic diffusion
is developed (proofs and results are also written in detail in Section 5 of this
paper), and in Cattiaux and Méléard [14], where the case of a two dimensional
stochastic Lotka-Volterra system is developed (k types stochastic Lotka-Volterra
systems are also studied in Section 5.4 of this survey).

Let us mention the original renewal approach of Ferrari, Kesten, Mart́ınez and
Picco [22], also studied recently by Barbour and Pollett [6] in order to provide an
approximation method for the QSD of discrete state space Markov processes in
continuous time. Other approximation methods have been proposed by Pollett
and Stewart [51] and by Hart and Pollett [34]. In this survey, we describe the
approximation method based on Fleming-Viot type interacting particle systems,
introduced by Burdzy, Holyst, Ingerman and March [10] in 1996 and studied
later by Burdzy, Holyst and March [11], Grigorescu and Kang [32], Ferrari and
Maric̀ [23], Villemonais [64, 65] and Asselah, Ferrari and Groisman [3].

For studies on the so-called Q-process, which is the process distributed as the
original process conditioned to never extinct, we refer the reader to the above
cited articles [45, 49, 29, 18, 19] and, for further developments, to the works of
Collet, Mart́ınez and San Mart́ın [16] and of Lambert [43] and references therein.

The framework

Let us now introduce our framework in more details. The population’s size
(Zt, t ≥ 0) is a Markov process taking values in a subset E of N or R+, in a
discrete or continuous time setting. If the population is isolated, namely without
immigration, then the state 0, which describes the extinction of the population,
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is a trap. Indeed, if there are no more individuals, no reproduction can occur and
the population disappears. Thus if the system reaches 0, it stays there forever,
that is, if Zt = 0 for some t, then Zs = 0 for any s ≥ t.

We denote by T0 the extinction time, i.e. the stopping time

T0 = inf{t > 0, Zt = 0}. (1)

We will consider cases for which the process goes almost surely to zero, whatever
the initial state is, namely, for all z ∈ E,

Pz(T0 <∞) = 1. (2)

Before extinction, the process takes its values in the spaceE∗ = E\{0}.Any long
time distribution of the process conditioned on non-extinction will be supported
by E∗.

Notations For any probability measure µ on E∗, we denote by Pµ (resp. Eµ)
the probability (resp. the expectation) associated with the process Z initially
distributed with respect to µ. For any x ∈ E∗, we set Px = Pδx and Ex = Eδx .
We denote by (Pt)t≥0 the semi-group of the process Z killed at 0. More precisely,
for any z > 0 and f measurable and bounded on E∗, one defines

Ptf(z) = Ez(f(Zt)1t<T0
). (3)

For any finite measure µ and any bounded measurable function f , we set

µ(f) =

∫

E∗

f(x)µ(dx),

and we also define the finite measure µPt by

µPt(f) = µ(Ptf) = Eµ(f(Zt)1t<T0
).

2. Definitions, general properties and first examples

There are several natural questions associated with this situation.

Question 1. What is the distribution of the size of a non-extinct population at
a large time t ? The mathematical quantity of interest is thus the conditional
distribution of Zt defined, for any Borel subset A ⊂ E∗, by

Pν(Zt ∈ A|T0 > t) =
Pν(Zt ∈ A;T0 > t)

Pν(T0 > t)
=

νPt(1A)

νPt(1E∗)
, (4)

where ν is the initial distribution of the population’s size Z0. We will study the
asymptotic behavior of this conditional probability when t tends to infinity. The
first definition that we introduce concerns the existence of a limiting conditional
distribution.
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Definition 1. Let α be a probability measure on E∗. We say that α is a quasi-

limiting distribution (QLD) for Z, if there exists a probability measure ν on
E∗ such that, for any measurable set A ⊂ E∗,

lim
t→∞

Pν (Zt ∈ A|T0 > t) = α(A).

In some cases the long time behavior of the conditioned distribution can be
proved to be initial state independent. This leads to the following definition.

Definition 2. We say that Z has a Yaglom limit if there exists a probability
measure α on E∗ such that, for any x ∈ E∗ and any measurable set A ⊂ E∗,

lim
t→∞

Px (Zt ∈ A|T0 > t) = α(A). (5)

When it exists, the Yaglom limit is a QLD. The reverse isn’t true in general
and (5) will actually not imply the same property for any initial distribution.

Question 2. As in the ergodic case, we can ask if this Yaglom limit has the
conditional stationarity property given by the following definition.

Definition 3. Let α be a probability measure on E∗. We say that α is a
quasi-stationary distribution (QSD) if, for all t ≥ 0 and any measurable set
A ⊂ E∗,

α(A) = Pα (Zt ∈ A|T0 > t) .

The main questions are: Does a QSD exists? Is there a unique QSD for the
process? We will study examples where QSDs do not exist, or with an infinity of
QSDs, or with a unique QSD. The relation between the existence of QSD, QLD
and Yaglom limit is clarified in Proposition 1 below. Namely, we will prove that

Yaglom limit ⇒ QSD ⇔ QLD.

Question 3. Since the processes we are interested in become extinct in finite
time almost surely, the event t < T0 becomes a rare event when t becomes
large. An important question is then to know whether the convergence to the
Yaglom limit happens before the typical time of extinction, or if it happens
only after very large time periods, in which case the populations whose size are
distributed with respect to the Yaglom limit are very rare. Both situations can
appear, as illustrated by the simple example of Section 2.3.

Question 4. While most of theoretical results on QLDs, QSDs and Yaglom
limits are concerned with existence and uniqueness problems, it would be useful
in practice to have qualitative information on the Yaglom limit. We present here
particle approximation results and numerical computations of the Yaglom limit
for some population’s size models, providing some enlightenment on Question 3
above.

Question 5. Another mathematical quantity related to this conditioning is based
on a pathwise point of view. In the finite state space case of Section 3 and the
logistic Feller diffusion case of Section 5, we will describe the distribution of the
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trajectories who never attain the trap. This will allow us to define a process,
commonly referred to as the Q process for Z. We will prove that the new process
defined by this distribution is ergodic, and that its stationary distribution is
absolutely continuous with respect to the QSD (but not equal).

The present section is organized as follows. In Subsection 2.1, we state general
properties of QLDs, QSDs and Yaglom limits. In Subsection 2.2, we develop the
case of the Galton-Watson process. This discrete time process is of historical
importance, since the notion of Yaglom limit has originally been developed for
this process by Yaglom itself (see [66]). In Subsection 2.3, we develop a very
simple example of a process evolving in a finite subset of N. For this process,
one can easily prove the existence of the Yaglom limit, the uniqueness of the
QSD, and compare the speed of extinction to the speed of convergence to the
Yaglom limit. We also provide numerical computation of the relevant quantities.

2.1. General properties

Most of the following results are already known by the QSD community. In this
section, we emphasize their generality.

2.1.1. QSD, QLD and Yaglom limit

It is clear that any Yaglom limit and any QSD is also a QLD. The reverse
implication has been proved by Vere-Jones [62] for continuous time Markov
chains evolving in a countable state space. The following proposition extends
this result to the general setting.

Proposition 1. Let α be a probability measure on E∗. The distribution α is a
QLD for Z if and only if it is a QSD for Z.

Remark 1. When it exists, the Yaglom limit is uniquely defined, while there
are processes with an infinity of QSDs (see the birth and death process case
of Section 4). We immediately deduce that there exist QSDs which aren’t a
Yaglom limit.

Proof. (1) If α is a QSD then it is a QLD for Z starting with distribution α.

(2) Assume now that α is a QLD for Z and for an initial probability measure µ
on E∗. Thus, for any measurable and bounded function f on E∗,

α(f) = lim
t→∞

Eµ(f(Zt)|T0 > t) = lim
t→∞

Eµ(f(Zt);T0 > t)

Pµ(T0 > t)
.

Applying the latter with f(z) = Pz(T0 > s), we get by the Markov property

Pα(T0 > s) = lim
t→∞

Pµ(T0 > t+ s)

Pµ(T0 > t)
.
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Let us now consider f(z) = Pz(Zs ∈ A, T0 > s), with A ⊂ E∗. Applying the
Markov property again, it yields

Pα(Zs ∈ A;T0 > s) = lim
t→∞

Pµ(Zt+s ∈ A;T0 > t+ s)

Pµ(T0 > t)

= lim
t→∞

Pµ(Zt+s ∈ A;T0 > t+ s)

Pµ(T0 > t+ s)

Pµ(T0 > t+ s)

Pµ(T0 > t)
.

By definition of the QLD α,
Pµ(Zt+s∈A;T0>t+s)

Pµ(T0>t+s) converges to α(A) and
Pµ(T0>t+s)
Pµ(T0>t)

converges to Pα(T0 > s), when t goes to infinity. We deduce that, for any Borel
set A of E∗ and any s > 0,

α(A) = Pα(Zs ∈ A|T0 > s).

The probability measure α is then a QSD.

2.1.2. Exponential extinction rate

Proposition 2. Let us consider a Markov process Z with absorbing point 0
satisfying (2). Assume that α is a QSD for the process. Then there exists a
positive real number θ(α) depending on the QSD such that

Pα(T0 > t) = e−θ(α)t. (6)

This theorem shows us that starting from a QSD, the extinction time has an
exponential distribution with parameter θ(α) independent of t > 0, given by

θ(α) = − lnPα(T0 > t)

t
.

Proof. By the Markov property,

Pα (T0 > t+ s) = Eα (PZt
(T0 > s)1T0>t)

= Pα(T0 > t)Eα (PZt
(T0 > s)|T0 > t) ,

since T0 ≤ t implies Zt = 0, and P0(T0 > s) = 0. By definition of a QSD, we get

Eα (PZt
(T0 > s)|T0 > t) = Pα(T0 > s).

Hence we obtain that for all s,t > 0, Pα(T0 > t + s) = Pα(T0 > s)Pα(T0 > t).
Let us denote g(t) = Pα(T0 > t). We have g(0) = 1 and, because of (2), g(t)
tends to 0 as t tends to infinity. An elementary proof allows us to conclude that
there exists a real number θ(α) > 0 such that

Pα(T0 > t) = e−θ(α)t.



348 S. Méléard and D. Villemonais

2.1.3. QSD and exponential moments

The following statement gives a necessary condition for the existence of QSDs
in terms of existence of exponential moments of the hitting time T0.

Proposition 3. Assume that α is a QSD. Then, for any 0 < γ < θ(α),

Eα(e
γT0) < +∞. (7)

In particular, there exists a positive number z such that Ez(e
γT0) < +∞.

Proposition 3 suggests that if the population can escape extinction for too
long times with positive probability, then the process has no QSD. This is the
case for the critical Galton-Watson process: its extinction time is finite almost
surely, but its expectation isn’t finite.

Proof. We compute the exponential moment in continuous and discrete time
settings. In both cases, it is finite if and only if θ(α) > γ.

In the continuous time setting, (6) says that, under Pα, T0 has an exponential
distribution with parameter θ(α). We deduce that, for any θ(α) > γ,

Eα

(

eγT0
)

=
θ(α)

θ(α) − γ
.

In the discrete time setting, (6) says that under Pα, T0 has a geometric distri-
bution with parameter e−θ(α). We deduce that

Eα

(

eγT0
)

=
1− e−θ(α)

e−γ − e−θ(α)
.

Since Eα(e
γT0) is equal to

∫

E∗
Ez(e

γT0)α(dz), the finiteness of the integral im-
plies the last assertion.

Remark 2. In the particular case of an irreducible continuous time Markov
chain with state space N such that limz→+∞ Pz(T0 ≤ t) = 0, ∀t ≥ 0, Ferrari,
Kesten, Mart́ınez and Picco [22] proved that the existence of the moment (7)
for some z ∈ N and some γ > 0 is equivalent to the the existence of a quasi-
stationary distribution.

It is actually not true in any case, as shown by the following counter-example.
Let Z be a continuous time random walk on N reflected on 1 and killed at rate
1. Thus, for any λ ∈ [0,1[ and any probability measure µ on N, Eµ(e

λT0) is finite.
Nevertheless the conditional distribution Pz(Zt ∈ ·|t < T0) is the distribution
of a standard continuous time random walk reflected on 1, which converges to
0 as t tends to infinity. In particular Z has no QLD and thus no QSD.

2.1.4. A spectral point of view

In this section, the results are stated in the continuous time setting. The operator
L with domain DL denotes the infinitesimal generator of the sub-Markovian
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semi-group (Pt) associated with the killed process Z. The next proposition links
the existence of QSDs for Z and the spectral properties of the dual of the
operator L. It is one of the main tools used in a large literature studying QSDs.

Proposition 4. Let α be a probability measure on E∗. We assume that there
exists a set D ⊂ D(L) such that, for any open interval A ⊂ E∗, there exists a
uniformly bounded sequence (fn) in D converging point-wisely to 1A.

Then α is a quasi-stationary distribution if and only if there exists θ(α) > 0
such that

α(Lf) = −θ(α)α(f), ∀f ∈ D.

We emphasize that the existence of D is always true if the state space E∗ is
discrete. It is also fulfilled if E∗ is an open subset of Rd and if Z is a diffusion
with locally bounded coefficients.

Proof. (1) Let α be a QSD for Z. By definition of a QSD, we have, for every
Borel set A ⊆ E∗,

α(A) =
αPt(1A)

αPt(1E∗)
.

By Theorem 6, there exists θ(α) > 0 such that for each t > 0,

αPt(1E∗) = Pα(T0 > t) = e−θ(α)t.

We deduce that, for any measurable set A ⊆ E∗, αPt(1A) = e−θ(α)tα(A), which
is equivalent to αPt = e−tθ(α)α. By Kolmogorov’s forward equation and by
assumption on D, we have

∣

∣

∣

∣

∂Ptf

∂t
(x)

∣

∣

∣

∣

= |PtLf(x)| ≤ ‖Lf‖∞ < +∞, ∀f ∈ D.

In particular, one can differentiate αPtf =
∫

E∗
Ptf(x)α(dx) under the integral

sign, which implies that

α(Lf) = −θ(α)α(f), ∀f ∈ D.

(2) Assume know that α(Lf) = −θ(α)α(f) for all f ∈ D. By Kolmogorov’s
backward equation and the same “derivation under the integral sign” argument,
we have

∂α(Ptf)

∂t
= α(LPtf) = −θ(α)αPt(f), ∀f ∈ D.

We deduce that
αPt(f) = e−tθ(α)α(f), ∀f ∈ D.

By assumption, there exists, for any open interval A ⊂ E∗, a uniformly bounded
sequence (fn) in D which converges point-wisely to 1A. Finally, we deduce by
dominated convergence that

αPt(1A) = e−tθ(α)α(A).

This implies immediately that α is a quasi-stationary distribution for Z.
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2.1.5. Long time limit of the extinction rate

Another quantity of interest in the demography and population’s dynamics is
given by the long time behavior of the killing or extinction rate. In the demog-
raphy setting, the process Z models the vitality of some individual and t its
physical age. Thus T0 is the death time of this individual. The long time behav-
ior of the extinction rate has been studied in detail by Steinsaltz-Evans [56] for
specific cases.

The definition of the extinction rate depends on the time setting:

- In the discrete time setting, the extinction rate of Z starting from µ at
time t ≥ 0 is defined by

rµ(t) = Pµ(T0 = t+ 1|T0 > t).

- In the continuous time setting, the extinction rate of Z starting from µ at
time t ≥ 0 is defined by

rµ(t) = −
∂
∂tPµ(T0 > t)

Pµ(T0 > t)
,

when the derivative exists and is integrable with respect to µ.

Historically (cf. [28]), demographers applied the Gompertz law meaning that
this extinction rate was exponentially increasing with time. However in 1932,
Greenwood and Irwin [31] observed that in some cases, this behavior was not
true. In particular there exist cases where the extinction rate converges to a
constant when time increases, leading to the notion of mortality plateau. This
behavior of the extinction rate has been observed in experimental situations (see
for instance [12]).

The QSDs play a main role in this framework. Indeed, by Proposition 2, if α
is a QSD, then the extinction rate rα(t) is constant and given by

rα(t) =

{

1− e−θ(α) in the discrete time setting
θ(α) in the continuous time setting

, ∀t ≥ 0.

We refer to the introduction of Steinsaltz-Evans [56] for a nice discussion of the
notion of QSD in relationship with mortality plateaus.

In the next proposition, we prove that the existence of a QLD for Z started
from µ implies the existence of a long term mortality plateau.

Proposition 5. Let α be a QLD for Z, initially distributed with respect to a
probability measure µ on E∗. In the continuous time setting, we assume more-
over that there exists h > 0 such that L(Ph1E∗) is well defined and bounded. In
both time settings, the rate of extinction converges in the long term:

lim
t→∞

rµ(t) = rα(0). (8)
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Proof. In the discrete time setting, by the semi-group property and the definition
of a QLD, we have

rµ(t) = 1− µPt(P11E∗)

µPt(1E∗)
−−−−→
t→+∞

1− α(P11E∗) = rα(0).

The limit is by definition the extinction rate at time 0 of Z starting from α.
In the continuous time setting, by the Kolmogorov’s backward equation, we

have
∂

∂t
Pt+h1E∗(x) = PtL(Ph1E∗)(x), ∀x ∈ E∗.

Since L(Ph1E∗) is assumed to be bounded, we deduce that

∂

∂t
µPt+h(1E∗) = µPtL(Ph1E∗).

Then

∂
∂tµPt+h(1E∗)

µPt(1E∗)
=
µPtL(Ph1E∗)

µPt(1E∗)
−−−→
t→∞

α(LPh1E∗) = −θ(α)α(Ph1E∗),

by the definition of a QLD and by Proposition 4. We also have

µ(Pt+h1E∗)

µ(Pt1E∗)
−−−→
t→∞

α(Ph1E∗).

Finally, we get

rµ(t+ h) = −
∂
∂tµ(Pt+h1E∗)

µ(Pt+h1E∗)
−−−→
t→∞

θ(α),

which allows us to conclude the proof of Proposition 5.

2.2. A historical example in discrete time: the Galton-Watson

process

The Galton-Watson process is a population’s dynamics model in discrete time,
whose size (Zn)n≥0 evolves according to the recurrence formula Z0 and

Zn+1 =

Zn
∑

i=1

ξ
(n)
i ,

where (ξ
(n)
i )i,n is a family of independent random variables, identically dis-

tributed following the probability measure µ on N with generating function g.
As defined, Zn is the size of the nth generation of a population where each indi-
vidual has a random number of children, chosen following µ and independently
of the rest of the population. This process has been introduced by Galton and
Watson (see [26]) in order to study the extinction of aristocratic surnames.
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We will assume in the whole section that 0 < µ({0})+µ({1}) < 1. We denote

by m = E(ξ
(0)
1 ) the average number of children by individual in our Galton-

Watson process. The independence of descendants implies that starting from Z0,
the process Z is equal to the sum of Z0 independent Galton-Watson processes
issued from a single individual. By this branching property, the probability of
extinction for the population starting from one individual is obtained as follows:

P1(∃n ∈ N, Zn = 0) = lim
n→+∞

E1(0
Zn) = lim

n→∞
g ◦ · · · ◦ g(0) (n times).

There are three different situations (see for instance Athreya-Ney [4]):

- The sub-critical case m < 1: the process becomes extinct in finite time
almost surely and the average extinction time E(T0) is finite.

- The critical case m = 1: the process becomes extinct in finite time almost
surely, but E(T0) = +∞.

- The super-critical case m > 1: the process is never extinct with a positive
probability, and it yields immediately that E(T0) = +∞.

Theorem 6 (Yaglom [66], 1947). Let (Zn)n≥0 be a Galton-Watson process with
the reproduction generating function g. There is no quasi-stationary distribution
in the critical and the super-critical case. In the subcritical case, there exists a
probability measure α on E∗ such that, for any probability measure µ with finite
mean on E∗, α is a QLD for Z starting with distribution µ, that is

α = lim
n→∞

Pµ (Zn ∈ · |n < T0) , ∀µ such that Eµ (Z0) < +∞. (9)

The measure α is a Yaglom limit for Z and its generating function ĝ is the
unique solution to the equation

ĝ(g(s)) = mĝ(s) + 1−m, ∀s ∈ [0,1]. (10)

Finally, there exists an infinite number of QSDs for the subcritical Galton-
Watson process.

Proof. The proof is adapted from Athreya and Ney [4] p. 13-14 and from Seneta
and Vere-Jones [54]. In the critical or the super-critical case, we have E1(T0) =
+∞, which implies that Eα(T0) = +∞ for all probability measure α on N∗. We
deduce from Proposition 3 that there is no QSD.

Assume now that m < 1. Let us first prove that there exists a QLD α for Z
starting from 1. For each n ≥ 0, we denote by gn the generating function of Zn,
gn(s) = E1

(

sZn
)

∀s ∈ [0,1]. Recall that gn+1 = g1 ◦ gn. Let us also denote by
ĝn the generating function of Zn conditioned to {Zn > 0} = {T0 > n}:

ĝn(s) = E1(s
Zn |Zn > 0) =

E1(s
Zn1Zn>0)

P1(Zn > 0)

=
E1(s

Zn)− P1(Zn = 0)

1− P1(Zn = 0)

=
gn(s)− gn(0)

1− gn(0)
= 1− 1− gn(s)

1− gn(0)
∈ [0,1].
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Note that ĝn(0) = 0, which is quite natural since the conditional law doesn’t

charge 0. For a fixed s ∈ [0,1), we set Γ(s) = 1−g1(s)
1−s . Then we have, for all

n ≥ 0,

1− ĝn+1(s) =
Γ(gn(s))

Γ(gn(0))
(1− ĝn(s)) .

Since g1 is convex, Γ is non-decreasing. Moreoverm < 1 implies that gn(x) ≥ x,
so that gn(s) and 1− ĝn(s) are non-decreasing in n. In particular, limn→∞ ĝn(s)
exists. Let us denote by ĝ(s) its limit and by α the corresponding finite measure
(whose mass is smaller than one). In order to prove that α is a probability
measure on N∗, it is sufficient to prove that ĝ(s) → 1 when s goes to 1. We have

Γ(gn(0)) (1− ĝn+1(s)) = (1− ĝn(g1(s))) .

Taking the limit on each side, where limn→∞ Γ(gn(0)) = Γ(1) = m, we deduce
that

m(1− ĝ(s)) = 1− ĝ(g1(s)),

which implies Equation (10). Since lims→1 g1(s) = 1 and m < 1, then ĝ(1) = 1.
Finally, α is a QLD for Z starting from 1.

Let µ be a probability measure on E∗ with finite mean. We prove now that
α is also a QLD for Z starting with distribution µ. Let gµ be the generating
function of µ. We have

Eµ(s
Zn |Zn > 0) =

Eµ(s
Zn1Zn>0)

P1(Zn > 0)
=

Eµ(s
Zn)− Pµ(Zn = 0)

1− Pµ(Zn = 0)

=
gµ ◦ gn(s)− gµ ◦ gn(0)

1− gµ ◦ gn(0)
= 1− 1− gµ ◦ gn(s)

1− gµ ◦ gn(0)
.

Since we assumed that µ has a finite mean, gµ has a finite derivative in 1 and
(gµ)′(1) = Eµ (Z0). But g

n(s) and gn(0) converge to 1 when n goes to infinity,
so that

Eµ(s
Zn |Zn > 0) ∼n→∞ 1− Eµ (Z0) (1− gn(s))

Eµ (Z0) (1− gn(0))
−−−−→
n→∞

ĝ(s).

This implies that α is a QLD for Z starting with distribution µ. In particular,
for any x ∈ E∗, α is a QLD for Z starting from x, so that α is a Yaglom limit
for Z.

We prove now that ĝ is the unique solution to Equation (10). Assume that

there exist two generating functions ĝ and ĥ which fulfill Equation (10). By
induction, we have, for all n ≥ 1 and all s ∈ [0,1],

ĝ(gn(s)) = mnĝ(s)−
(

mn−1 + · · ·+m+ 1
)

(m− 1),

ĥ(gn(s)) = mnĥ(s)−
(

mn−1 + · · ·+m+ 1
)

(m− 1).

We deduce that for s ∈ [0,1[

ĝ′(gn(s)) g
′
n(s) = mn ĝ′(s) ; ĥ′(gn(s)) g

′
n(s) = mn ĥ′(s).
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Since for the sub-critical case gn(0) ↑ 1 when n → ∞, for any s ∈ [0,1[ there
will be a k such that

gk(0) ≤ s ≤ gk+1(0).

Hence,

ĝ′(s)

ĥ′(s)
=
ĝ′(gn(s))

ĥ′(gn(s))
≤ ĝ′(gn+k+1(0))

ĥ′(gn+k(0))
=
ĝ′(0)

ĥ′(0)

mg′n+k(0)

g′n+k+1(0)
=
ĝ′(0)

ĥ′(0)

m

g′(gn+k(0))
.

When n goes to infinity, we obtain ĝ′(s)

ĥ′(s)
≤ ĝ′(0)

ĥ′(0)
. The converse inequality is

established similarly. Since ĝ and ĥ are generating functions of probability mea-
sures on N∗, we have ĝ(0) = ĥ(0) = 0 and ĝ(1) = ĥ(1) = 1. Finally, the two

functions ĝ and ĥ are equal.
Let us now conclude the proof of Theorem 6 by proving that there exists

an infinity of QSDs for Z. Let a ∈]0,1[ be a positive constant and let µa be
the probability measure on E∗ defined by the generating function gµa(s) =
1− (1− s)a. We have

Eµa
(sZn |Zn > 0) = 1− 1− gµa ◦ gn(s)

1− gµa ◦ gn(0)
= 1−

(

1− gn(s)

1− gn(0)

)a

−−−−→
n→∞

1− (1− ĝ(s))
a

Let us denote by αa the probability measure whose generating function is
gαa(s) = 1 − (1− ĝ(s))

α
. We just obtained that αa is a QLD for Z starting

with initial distribution µa and thus αa is a QSD for Z. Since α1 = α, we
deduce that the family (αa)a∈]0,1] is an infinite collection of QSDs for Z.

2.3. The simple example of an ergodic process with uniform killing

in a finite state space

We present a very simple Markov process with extinction whose quasi-stationary
distribution, Yaglom limit, speed of extinction and speed of convergence to the
Yaglom limit are very easy to obtain.

Let (Xt)t≥0 be an exponentially ergodic Markov process which evolves in the
state space E∗ = {1, . . . ,N}, N ≥ 1. By exponentially ergodic, we mean that
there exist a probability measure α on E∗ and two positive constants C,λ > 0
such that, for all z ∈ {1, . . . ,N} and all t ≥ 0,

sup
i∈E∗

|Pz(Xt = i)− α({i})| ≤ Ce−λt.

There is no possible extinction for (Xt). Let d > 0 be a positive constant and
let τd be an exponential random time of parameter d independent of the process
(Xt). We define the process (Zt) by setting

Zt =

{

Xt, if t < τd
0, if t ≥ τd.
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This model is a model for the size of a population which cannot be extinct,
except at a catastrophic event which happens with rate d. Thus we have

Pz(t < T0) = e−dt, ∀t ≥ 0.

The conditional distribution of Zt is simply given by the distribution of Xt:

Pz(Zt = i|Zt 6= 0) = Pz(Xt = i), ∀z ∈ E∗.

We deduce that the unique QSD is the Yaglom limit α and that for all z ∈ E∗

and all t ≥ 0,

sup
i∈E∗

|Pz(Zt = i|T0 > t)− α({i})| ≤ Ce−λt.

Thus in this case, the conditional distribution of Z converges exponentially
fast to the Yaglom limit α, with rate λ > 0 and the process becomes extinct
exponentially fast, with rate d > 0.

Hence the comparison between the speed of convergence to the Yaglom limit
and the speed of extinction will impact the observables of the process before
extinction:

(a) If λ≫ d, then the convergence to the Yaglom limit happens before the typ-
ical time of extinction of the population and the quasi-stationary regime
will be observable.

(b) If λ ≪ d, then the extinction of the population occurs before the quasi-
stationary regime is reached. As a consequence, we are very unlikely to
observe the Yaglom limit.

(c) If λ ∼ d, the answer is not so immediate and depends on other parameters,
in particular the initial distribution.

Example 1. The population size Z is described by a random walk in continuous
time evolving in E = {0,1,2, . . . ,N} with transition rates given by

i→ i+ 1 with rate 1, for all i ∈ {1,2, . . . ,N − 1},
i→ i− 1 with rate 1, for all i ∈ {2,3, . . . ,N},
i→ 0 with rate d > 0, for all i ∈ {1,2, . . . ,N}.

The boundedness of the population size models a constraint of fixed resources
which acts on the growth of the population. We will see more realistic fixed
resources models including logistic death rate in the next sections. One can
check that the quasi-stationary probability measure of Z is given by αi = 1/N
for all i ∈ E∗.

Numerical simulations. We fix N = 100. In that finite case, one can obtain
by numerical computation the whole set of eigenvalues and eigenvectors of
the infinitesimal generator L (we use here the software SCILAB). Numerical
computation using the fact that λ is the spectral gap of the generator of X
gives λ = 9.8 × 10−4. For different values d = 0.1 × 10−4, d = 50 × 10−4 and
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Fig 1. Example 1. A numerical computation leads to λ = 9.8×10−4. Three different situations
are observed, which lead to three very different patterns for the speed of convergence to the
Yaglom limit in the extinction’s time scale: (⋄) λ ≫ d = 0.1× 10−4; (✷) λ ≪ d = 50× 10−4;
(·) λ = d = 9.8× 10−4.

d = 9.8 × 10−4, we compute numerically the mathematical quantities of inter-
est: the extinction probability Pz(T0 > t) = e−dt as a function of t (cf. Figure 1
left picture) and the distance supi∈E∗ |Pz(Zt = i|T0 > t)− α({i})| between the
conditional distribution of Zt and α as a function of − logPz(T0 > t), which
gives the extinction’s time scale. (cf. Figure 1 right picture).

We observe that the convergence to the Yaglom limit happens rapidly in
the case (⋄) λ = 9.8 × 10−4 ≫ d = 0.1 × 10−4. Indeed the distance to the
Yaglom limit is equal to 0.05, while the survival probability can’t be graphically
distinguished from 1. On the contrary, we observe that the convergence happens
very slowly in the case (✷) λ = 9.8×10−4 ≪ d = 50×10−4. Indeed, the distance
to the Yaglom limit is equal to 0.05 when the survival probability appears to be
smaller than e−15 ≃ 3×10−7. The case (·) λ = 9.8×10−4 = d is an intermediate
case, where the distance to the Yaglom limit is equal to 0.05 when the survival
probability appears to be equal to e−3 ≃ 0.05.

3. The finite case, with general killing’s rate

3.1. The quasi-stationary distributions

The Markov process (Zt)t≥0 evolves in continuous time in E = {0,1, . . . ,N},
N ≥ 1 and we still assume that 0 is its unique absorbing state. The semi-group
(Pt)t≥0 is the sub-Markovian semi-group of the killed process and we still denote
by L the associated infinitesimal generator. In this finite state space case, the
operators L and Pt are matrices, and a probability measure on the finite space
E∗ is a vector of non-negative entries whose sum is equal to 1. The results of
this section have been originally proved by Darroch and Seneta ([18] and [19]).

Theorem 7. Assume that Z is an irreducible and aperiodic process before ex-
tinction, which means that there exists t0 > 0 such that the matrix Pt0 has only
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positive entries (in particular, it implies that Pt has positive entries for t > t0).
Then the Yaglom limit α exists and is the unique QSD of the process Zt.

Moreover, denoting by θ(α) the extinction rate associated to α (see Proposi-
tion 2), there exists a probability measure π on E∗ such that, for any i,j ∈ E∗,

lim
t→∞

eθ(α)t Pi(Zt = j) = πi αj

and

lim
t→∞

Pi(T0 > t+ s)

Pj(T0 > t)
=
πi
πj
e−θ(α)s.

The main tool of the proof of Theorem 7 is the Perron-Frobenius Theorem,
which gives us a complete description of the spectral properties of Pt and L.
The main point is that the matrix P1 has positive entries. For the proof of the
Perron-Frobenius Theorem, we refer to Gantmacher [27] or Serre [55].

Theorem 8 (Perron-Frobenius Theorem). Let (Pt) be a submarkovian semi-
group on {1, . . . ,N} such that the entries of P1 are positive. Thus, there exists
a unique (simple) positive eigenvalue ρ, which is the maximum of the modulus
of the eigenvalues, and there exists a unique left-eigenvector α such that αi > 0
and

∑N
i=1 αi = 1, and there exists a unique right-eigenvector π such that πi > 0

and
∑N

i=1 αiπi = 1, satisfying

αP1 = ρα ; P1π = ρ π. (11)

In addition, since (Pt) is a sub-Markovian semi-group, ρ < 1 and there exists
θ > 0 such that ρ = e−θ. Therefore for any t > 0,

Pt = e−θtA+ ϑ(e−χt), (12)

where A is the matrix defined by Aij = πiαj, and χ > θ and ϑ(e−χt) denotes a
matrix such that none of the entries exceeds Ce−χt, for some constant C > 0.

Proof of Theorem 7. Applying Perron-Frobenius Theorem to the submarkovian
semi-group (Pt)t≥0, it is immediate from (12) that there exists θ > 0 and a
probability measure α on E∗ such that, for any i,j ∈ E∗,

eθtPi(Zt = j) = eθt[Pt]ij = πiαj + ϑ(e−(χ−θ)t). (13)

Summing over j ∈ E∗, we deduce that

eθtPi(T0 > t) = πi + ϑ(e−(χ−θ)t). (14)

It follows that, for any i,j ∈ E∗,

Pi(Zt = j|T0 > t) =
Pi(Zt = j)

Pi(T0 > t)
−−−→
t→∞

αj .

Thus the Yaglom limit exists and is equal to α. Since E is finite, we have for
any initial distribution ν on E∗

lim
t→∞

Pν(Zt = j|T0 > t) =
∑

i∈E∗

νi lim
t→∞

Pi(Zt = j|T0 > t) =
∑

i∈E∗

νiαj = αj .
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We deduce that the Yaglom limit α is the unique QLD of Z, and thus it is
its unique QSD. By Proposition 2, we have αP1(1E∗) = e−θ(α). By (11), this
quantity is also equal to e−θ, so that θ = θ(α). The end of Theorem 7 is thus a
straightforward consequence of (13) and (14)

Remark 3. One can deduce from (13) and (14) that there exists a positive
constant CL such that

sup
j∈E∗,i∈E∗

|Pi(Zt = j|Zt > 0)− αj | ≤ CLe
−(χ−θ(α)),

where the quantity χ− θ(α) is the spectral gap of L, i.e. the distance between
the first and the second eigenvalue of L. Thus if the time-scale χ− θ(α) of the
convergence to the quasi-limiting distribution is substantially bigger than the
time scale of absorption (χ − θ(α) ≫ θ(α)), the process will relax to the QSD
after a relatively short time, and after a much longer period, extinction will
occur. On the contrary, if χ− θ(α) ≪ θ(α), then the extinction happens before
the process had time to relax to the quasi-limiting distribution.

In intermediate cases, where λ−θ(α) ≈ θ(α), the constant CL, which depends
on the whole set of eigenvalues and eigenfunctions of L, plays a main role which
needs further investigations.

We generalize Example 1 to a more realistic case where the killing’s rate can
depend on the size of the population. For instance, it can be higher for a small
population than for a big one.

Example 2. Let Z be a Markov process which models a population whose
individuals reproduce and die independently, with individual birth rate λ > 0
and individual death rate µ = 1. In order to take into account the finiteness of
the resources, the process is reflected when it attains a given value N , that we
choose here arbitrarily equal to 100. Thus the process Z evolves in the finite
state space {0,1, . . . ,100} and its transition rates are given by

i→ i+ 1 with rate λi, for all i ∈ {1,2, . . . ,99},
i→ i− 1 with rate µi = i, for all i ∈ {1,2,3, . . . ,100}.

The infinitesimal generator of Z is given by

L1,1 = −1− λ and L1,2 = λ,

Li,i−1 = i, Li,i = −(1 + λ)i and Li,i+1 = λ i, ∀i ∈ {2, . . . ,99},
L100,99 = 100 and L100,100 = −100,

Li,j = 0, ∀i,j ∈ {1, . . . ,100} such that |j − i| > 1.

The process Z clearly fulfills the conditions of Theorem 7. As a consequence,
it has a Yaglom limit α, which is its unique QSD. Moreover, the probability
measure α is the unique normalized and positive left eigenvector of L. Since L
is a finite matrix of size 100× 100, one can numerically compute the whole set
of eigenvectors and eigenvalues of the matrix (Lij). This will allow us to obtain
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Fig 2. Example 2. Yaglom limits for different values of λ. The following values of θ(α) are
obtained by numerical computation. (a) λ = 0.9, θ(α) = 0.100; (b) λ = 1.0, θ(α) = 0.014;
(c) λ = 1.1, θ(α) = 5.84× 10−5.

numerically the Yaglom limit α, its associated extinction rate θ(α), and the
speed of convergence χ − θ(α). Moreover, for any t ≥ 0, one can compute the
value of etL, which is equal to Pt (the semi-group of Z at time t). Hence, we may
obtain the numerical value of the conditioned distribution PZ0

(Zt ∈ .|t < T0),
for any initial size Z0. Finally, we are also able to compute numerically the
distance between α and the conditioned distribution PZ0

(Zt ∈ .|t < T0), for any
value of λ > 0 and Z0 ∈ {1, . . . ,100}.

In Figure 2, we represent the Yaglom limit α for different values of λ, namely
λ = 0.9, λ = 1.0 and λ = 1.1. Let us comment the numerical results.

(a) In the first case (λ = 0.9), an individual is more likely to die than to
reproduce and we observe that the Yaglom limit is concentrated near the
absorbing point 0. The rate of extinction θ(α) is the highest in this case,
equal to 0.100. In fact, the process reaches the upper bound 100 very
rarely, so that the behavior of the process is very similar to the one of a
linear birth and death process with birth and death rates equal to λ and µ
respectively. In Section 4, we study such linear birth and death processes.
We show that the Yaglom limit (which exists if and only if λ < µ) is given
by a geometric law and θ(α) = µ− λ.

(b) In the second case (λ = µ = 1), we observe that α decreases almost linearly
from α1 to α100 and the upper bound N = 100 plays a crucial role. In fact,
letting N tend to +∞, one would observe that for any i ≥ 1, αi decreases
to 0. The extinction rate θ(α) which is equal to 0.014 for N = 100 would
also go to 0. The counterpart of this phenomenon for the linear birth and
death process studied in Section 4 is that the Yaglom limit will not exist
when µ = λ.

(c) In the third case (λ = 1.1), the Yaglom limit α is concentrated near the
upper bound 100, while the extinction rate is θ(α) = 5.84 × 10−5. The
comparison with the linear birth and death process is no more relevant,
since the important factor in this case is the effect of the upper bound
N = 100, which models the finiteness of the resources in the environment.

In Figure 3, we study the effect of the initial position and of the value of
the parameter λ on the speed of convergence to the Yaglom limit and on the
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Fig 3. Example 2. Pictures (a) and (c) correspond to different values of λ (the following
values of θ(α)− χ have been obtained by numerical computation): (a) λ = 0.9, θ(α) = 0.100,
θ(α)− χ = 0.102; (c) λ = 1.1, θ(α) = 5.84× 10−5, θ(α)− χ = 0.103; each curve corresponds
to a given initial size of the population: (·) Z0 = 1; (⋄) Z0 = 10; (✷) Z0 = 100.

speed of extinction. We choose the positions Z0 = 1, Z0 = 10 and Z0 = 100,
and we look at the two different cases λ = 0.9 and λ = 1.1, which correspond
to the subcritical case (a) and to the supercritical case (c) respectively. We
represent, for each set of values of (λ,Z0), the distance to the Yaglom limit,
supi∈{1,...,100} |PZ0

(Zt = i|t < T0)− αi| as a function of the time, and the same
distance as a function of the logarithm of the survival probability − logPZ0

(t <
T0) (i.e. the extinction time scale). By numerical computation, we also obtain
that

(a) λ = 0.9: θ(α) = 0.100 and θ(α)− χ = 0.102.
(c) λ = 1.1: θ(α) = 5.84× 10−5 and θ(α)− χ = 0.103.

In the case (a), we have θ(α) = 0.100 ≃ χ − θ(α) = 0.102 and we observe
that the speed of convergence depends on the initial position in a non-trivial
way: while the survival probability is smaller for the process starting from 10
than for the process starting from 100, the convergence to the Yaglom limit in
the extinction’s time scale happens faster in the case Z0 = 10. In the case (c),
we have θ(α) = 5.84 × 10−5 ≪ χ − θ(α) = 0.103. The speed of convergence to
the Yaglom limit in the extinction’s time scale depends on the initial position: if
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(✷) Z0 = 100, then it is almost immediate; if (⋄) Z0 = 10, the distance between
the conditional distribution and the Yaglom limit is equal to 0.05 when the
survival probability is around e−0.5 ≃ 0.61; if (·) Z0 = 1, then this distance is
equal to 0.05 when the survival probability is around e−2.4 ≃ 0.091.

3.2. The Q-process

Let us now study the marginals of the process conditioned to never be extinct.

Theorem 9. Assume that we are in the conditions of Theorem 7. For any
i0, i1, . . . , ik ∈ E∗, any 0 < s1 < · · · , sk < t, the limiting value limt→∞ Pi0(Zs1 =
i1, . . . , Zsk = ik|T0 > t) exists.

Let (Yt, t ≥ 0) be the process starting from i0 ∈ E∗ and defined by its finite
dimensional distributions

Pi0(Ys1 = i1, . . . , Ysk = ik) = lim
t→∞

Pi0(Zs1 = i1, . . . , Zsk = ik|T0 > t). (15)

Then Y is a Markov process with values in E∗ and transition probabilities given
by

Pi(Yt = j) = eθ(α)t
πi
πj

Pij(t).

It is conservative, and has the unique stationary probability measure (αjπj)j.

We remark that the stationary probability is absolutely continuous with re-
spect to the QSD, but, contrary to intuition, it is not equal to the QSD.

Proof. Let us denote θ(α) by θ for simplicity. Let i0, i1, . . . , ik ∈ E∗ and 0 <
s1 < · · · < sk < t. We introduce the filtration Fs = σ(Zu, u ≤ s). Then

Pi0(Zs1 = i1, . . . , Zsk = ik ; T0 > t)

= Ei0

(

1Zs1
=i1,...,Zsk

=ik Ei0 (1T0>t|Fsk)
)

= Ei0 (1Zs1
=i1,...,Zsk

=ik Eik(1T0>t−sk)) (by Markov property)

= Pi0 (Zs1 = i1, . . . ,Zsk = ik)Pik(T0 > t− sk).

By Theorem 7,

lim
t→∞

Pik(T0 > t− sk)

Pi0(T0 > t)
=
πik
πi0

eθsk .

Thus

lim
t→∞

Pi0(Zs1 = i1, . . . , Zsk = ik|T0 > t) = Pi0(Zs1 = i1, . . . , Zsk = ik)
πik
πi0

eθsk .

(16)
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Let us now show that Y is a Markov process. We have

Pi0(Ys1 = i1, . . . , Ysk = ik, Yt = j)

= eθt
πj
πi0

Pi0(Zs1 = i1, . . . , Zsk = ik, Zt = j)

= eθ(t−sk) eθsk
πj
πik

πik
πi0

Pi0(Zs1 = i1, . . . , Zsk = ik)

× Pik(Zt−sk = j) (by Markov property of Z)

= Pi0(Ys1 = i1, . . . , Ysk = ik) Pik(Yt−sk = j),

and thus P(Yt = j|Ys1 = i1, . . . , Ysk = ik) = Pik(Yt−sk = j).
By (16) and Theorem 7, we have

Pi(Yt = j) =
πj
πi

Pi(Zt = j) eθt −−−−→
t→+∞

πj
πi

αj πi = αjπj .

Moreover let us compute the infinitesimal generator L̂ of Y from the infinitesimal
generator L of Z. We have for j 6= i,

L̂ij = lim
s→0

P̂ij(s)

s
=
πj
πi

Lij .

For j = i,

L̂ii = − lim
s→0

1− P̂ii(s)

s
= − lim

s→0

1− eθsPii(s)

s

= − lim
s→0

1− eθs + eθs(1− Pii(s))

s
= θ + Lii.

We thus check that
∑

j∈E∗

L̂ij =
∑

j∈E∗

πj
πi
Lij + θ.

We have Lπ = −θπ. Indeed, considering (11), we get P1Lπ = LP1π = ρLπ.
Since ρ is a simple eigenvalue of P1, it turns out that Lπ = βπ for some real
number β. Therefore P1π = eβπ, so that β = −θ. Writing

∑

j∈E∗ πjLij = −θπi,
we get

∑

j∈E∗ L̂ij = 0.

4. QSD for birth and death processes

We are describing here the dynamics of isolated asexual populations, as for
example populations of bacteria with cell binary division, in continuous time.
Individuals may reproduce or die, and there is only one child per birth. The pop-
ulation size dynamics will be modeled by a birth and death process in continu-
ous time. The individuals may interact, competing (for example) for resources
and therefore the individual death’s rate will depend on the total size of the
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population. In a first part, we recall and partially prove some results on the
non-explosion of continuous time birth and death processes. We will also recall
conditions on the birth and death rates which ensure that the process goes to
extinction in finite time almost surely. In a second part, we concentrate on the
cases where the process goes almost surely to zero and we study the existence
and uniqueness of quasi-stationary distributions.

4.1. Birth and death processes

We consider birth and death processes with rates (λi)i and (µi)i, that is N-valued
pure jump Markov processes, whose jumps are +1 or −1, with transitions

i → i+ 1 with rate λi ,

i → i− 1 with rate µi,

where λi and µi, i ∈ N, are non-negative real numbers.
Knowing that the process is at state i at a certain time, the process will wait

for an exponential time of parameter λi before jumping to i+1 or independently,
will wait for an exponential time of parameter µi before jumping to i− 1. The
total jump rate from state i is thus λi + µi. We will assume in what follows
that λ0 = µ0 = 0. This condition ensures that 0 is an absorbing point, modeling
the extinction of the population. Since these processes have a main importance
in the modeling of biological processes, we study in detail their existence and
extinction properties, and then their QSDs.

The most standard examples are the following ones.

1. The Yule process. For each i ∈ N, λi = λi for a positive real number λ,
and µi = 0. There are no deaths. It’s a fission model.

2. The linear birth and death process, or binary branching process. There
exist positive numbers λ and µ such that λi = λi and µi = µi. This model
holds if individuals reproduce and die independently, with birth rate equal
to λ and death rate equal to µ.

3. The logistic birth and death process. We assume that every individual in
the population has a constant birth rate λ > 0 and a natural death rate
µ > 0. Moreover the individuals compete to share fixed resources, and
each individual j 6= i creates a competition pressure on individual i with
rate c > 0. Thus, given that the population’s size is i, the individual death
rate due to competition is given by c(i − 1) and the total death rate is
µi = µi + ci(i− 1).

In the following, we will assume that λi > 0 and µi > 0 for any i ∈ N∗.
We denote by (τn)n the sequence of the jump times of the process, either

births or deaths. Let us first see under which conditions on the birth and death
rates the process is well defined for all time t ≥ 0, i.e. τ = limn τn = +∞ almost
surely. Indeed, if τ = limn τn <∞ with a positive probability, the process would
only be defined for t < τ on this event. There would be an accumulation of jumps
near τ and the process could increase until infinity in finite time.
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Let us give a necessary and sufficient condition ensuring that a birth and
death process does not explode in finite time. The result is already stated in
Anderson [2], but the following proof is actually far much shorter and easier to
follow.

Theorem 10. The birth and death process does not explode in finite time,
almost surely, if and only if

∑

n rn = +∞, where

rn =
1

λn
+

n−1
∑

k=1

µk+1 · · ·µn

λkλk+1 · · ·λn
+
µ1 · · ·µn

λ1 · · ·λn
.

Proof. 1) Let us more generally consider a pure jump Markov process (Xt, t ≥ 0)
with values in N, and generator (Lij , i, j ∈ N). We set qi = −Lii. Let (τn)n be
the sequence of jump times of the process and (Un)n the sequence of inter-jump
times defined by

Un = τn − τn−1, ∀n ≥ 1; τ0 = 0, U0 = 0.

We also set τ∞ = limn→∞ τn ∈ [0,+∞]. The process does not explode in finite
time almost surely (and is well defined for all time t ∈ R+), if and only if for
each i ∈ N

Pi(τ∞ <∞) = 0.

Let us show that this property is equivalent to the fact that the unique non-
negative and bounded solution x = (xi)i∈N of Lx = x is the null solution.

For any i, we set h
(0)
i = 1 and, for n ∈ N∗, h

(n)
i = Ei(exp(−

∑n
k=1 Uk)). For

any n ∈ N, we have

h
(n+1)
i =

∑

j 6=i

Lij

qi
h
(n)
j Ei(exp(−U1)).

Indeed, the property is true for n = 0 since
∑

i6=j
Lij

qi
= 1. Moreover, by condi-

tioning with respect to U1 and using the strong Markov property, we get

Ei

(

exp(−
n+1
∑

k=1

Uk)

∣

∣

∣

∣

∣

U1

)

= exp(−U1) EXU1

(

exp(−
n
∑

k=1

Uk)

)

, (17)

since the jump times of the U1-translated process are the τn − U1, n ∈ N∗. We
have

Ei

(

EXU1

(

exp(−
n
∑

k=1

Uk)

))

=
∑

j 6=i

Pi(XU1
= j) Ej

(

exp(−
n
∑

k=1

Uk)

)

=
∑

j 6=i

Lij

qi
Ej(exp(−

n
∑

k=1

Uk)),
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since Pi(XU1
= j) =

Lij

qi
. By independence of U1 and XU1

, we deduce from (17)
that

Ei

(

exp(−
n+1
∑

k=1

Uk)

)

=
∑

j 6=i

Lij

qi
Ej

(

exp(−
n
∑

k=1

Uk)

)

Ei (exp(−U1)) .

As

Ei(exp(−U1)) =

∫ ∞

0

qie
−qise−sds =

qi
1 + qi

,

it turns out that

h
(n+1)
i =

∑

j 6=i

Lij

1 + qi
h
(n)
j . (18)

Let (xi)i be a nonnegative solution of Lx = x bounded by 1, then xi =
∑

j Lij xj = Liixi +
∑

j 6=i Lijxj = −qixi +
∑

j 6=i Lijxj , so that

xi =
∑

j 6=i

Lij

1 + qi
xj . (19)

Since h
(0)
i = 1 ≥ xi ≥ 0 and

Lij

1+qi
≥ 0 for all i,j ∈ E, we deduce by iteration

from (18) and (19) that h
(n)
i ≥ xi ≥ 0, for any n ∈ N.

Let us in the other hand define for any j the quantity zj = Ej(e
−τ∞). Using

τ∞ = limn τn, and τn =
∑n

k=1 Uk, we deduce by monotone convergence that

zj = limn h
(n)
j .

If the process does not explode a.s., then τ∞ = ∞ a.s., and limn h
(n)
i = zi = 0.

Since h
(n)
i ≥ xi ≥ 0, we deduce that xi = 0. It turns out that the unique

nonnegative bounded solution of Lx = x is zero.

If the process explodes with positive probability, then there exists i such that
Pi(τ∞ < ∞) > 0. Making n tend to infinity in (18), we get zi =

∑

j 6=i
Lij

1+qi
zj .

Since zi > 0, z is a positive and bounded solution of Lz = z.

2) Let us now apply this result to the birth and death process with λ0 = µ0 = 0.
Then for i ≥ 1, Li,i+1 = λi, Li,i−1 = µi, Li,i = −(λi+µi). The equation Lx = x
is given by x0 = 0 and for all n ≥ 1 by

λnxn+1 − (λn + µn)xn + µnxn−1 = xn.

Thus, if we set ∆n = xn − xn−1, we have ∆1 = x1 and for n ≥ 1, ∆n+1 =
∆n

µn

λn
+ 1

λn
xn. Let us remark that, for any n, ∆n ≥ 0 and the sequence (xn)n

is nondecreasing. If x1 = 0, the solution is zero. If not, we get by induction

∆n+1 =
1

λn
xn +

n−1
∑

k=1

1

λk

µk+1

λk+1
· · · µn

λn
xk +

µ1

λ1
· · · µn

λn
x1.
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Letting

rn =
1

λn
+

n−1
∑

k=1

µk+1 · · ·µn

λkλk+1 · · ·λn
+
µ1 · · ·µn

λ1 · · ·λn
,

we deduce that rn x1 ≤ ∆n+1 ≤ rn xn. Then

x1(1 + r1 + · · · rn) ≤ xn+1 ≤ x1

n
∏

k=1

(1 + rk).

The boundedness of the sequence (xn)n is thus equivalent to the convergence of
the series

∑

k rk.

Corollary 11. Let us consider a BD-process with birth rates (λi)i. If there
exists a constant λ > 0 such that

λi ≤ λi, ∀i ≥ 1,

then the process is well defined on R+.

The proof is immediate. It turns out that the linear BD-processes and the
logistic processes are well defined on R+.

Let us now recall under which assumption a BD-process goes to extinction
almost surely.

Proposition 12. The BD-process goes almost-surely to extinction if and only
if

∞
∑

k=1

µ1 · · ·µk

λ1 · · ·λk
= +∞. (20)

Proof. Let us introduce

ui := P(Extinction|Z0 = i) = Pi(T0 <∞),

which is the probability to attain 0 in finite time, starting from i. As before
T0 denotes the extinction time and TI the hitting time of any I. The Markov
property yields the induction formula

λi ui+1 − (λi + µi) ui + µi ui−1 = 0, ∀i ≥ 1.

To resolve this equation, we firstly assume that the rates λi, µi are nonzero until

some fixed level I such that λI = µI = 0. We set for each i, u
(I)
i := Pi(T0 < TI).

Thus ui = limI→∞ u
(I)
i . Defining UI :=

∑I−1
k=1

µ1···µk

λ1···λk
, an easy computation

shows that for i ∈ {1, . . . ,I − 1},

u
(I)
i = (1 + UI)

−1
I−1
∑

k=i

µ1 · · ·µk

λ1 · · ·λk
.
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In particular, u
(I)
1 = UI

1+UI
. Hence, either (UI)I tends to infinity when I → ∞

and any extinction probability ui is equal to 1 or (UI)I converges to a finite
limit U∞ and for i ≥ 1,

ui = (1 + U∞)−1
∞
∑

k=i

µ1 · · ·µk

λ1 · · ·λk
< 1.

Corollary 13. 1. The linear BD-process with rates λi and µi goes almost
surely to extinction if and only if λ ≤ µ.

2. The logistic BD-process goes almost surely to extinction.

Proof. 1) If λ ≤ µ, i.e. when the process is sub-critical or critical, we obtain
UI ≥ I − 1 for any I ≥ 1. Then (UI)I goes to infinity when I → ∞ and the
process goes to extinction with probability 1. Conversely, if λ > µ, the sequence
(UI)I converges to µ

λ−µ , and an easy computation gives ui = (λ/µ)i.

2) Here we have

λi = λi ; µi = µi+ ci(i− 1). (21)

It is easy to check that (20) is satisfied.

4.2. Quasi-stationary distributions for birth and death processes

We consider a BD-process (Zt) with almost sure extinction. A probability mea-
sure α on N∗ is given by a sequence (αj)j≥1 of non-negative numbers such that
∑

j≥1 αj = 1.
Our first result is a necessary and sufficient condition for such a sequence

(αj)j≥1 to be a QSD for Z. Thereafter we will study the set of sequences which
fulfill this condition (we refer the reader to van Doorn [58] for more details).

Theorem 14. The sequence (αj)j≥1 is a QSD if and only if

1. αj ≥ 0, ∀j ≥ 1 and
∑

j≥1 αj = 1.
2. ∀ j ≥ 1,

λj−1αj−1 − (λj + µj)αj + µj+1αj+1 = −µ1α1αj ;

−(λ1 + µ1)α1 + µ2α2 = −µ1α
2
1. (22)

The next result follows immediately.

Corollary 15. Let us define inductively the sequence of polynomials (Hn(x))n
as follows: H1(x) = 1 for all x ∈ R and for n ≥ 2,

λn Hn+1(x) = (λn + µn − x) Hn(x)− µn−1 Hn−1(x) ;

λ1 H2(x) = λ1 + µ1 − x. (23)
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Then, any quasi-stationary distribution (αj)j satisfies for all j ≥ 1,

αj = α1 πj Hj(µ1α1),

where

π1 = 1 ; πn =
λ1 · · ·λn−1

µ2 · · ·µn
. (24)

Proof of Theorem 14.. By Proposition 4, for a QSD α, there exists θ > 0 such
that

αL = −θ α,
where L is the infinitesimal generator of Z restricted to N∗. Taking the jth

component of this equation, we get

λj−1αj−1 − (λj + µj)αj + µj+1αj+1 = −θ αj , ∀j ≥ 2

−(λ1 + µ1)α1 + µ2α2 = −θ α1.

Summing over j ≥ 1, we get after re-indexing

0 =
∑

j≥1

λjαj − (λj + µj)αj + µjαj = −θ
∑

j≥1

αj + µ1α1.

We deduce that θ = µ1α1, which concludes the proof of Theorem 14.

The study of the polynomials (Hn) has been detailed in Van Doorn [58]. In
particular it is shown that there exists a non-negative number ξ1 such that

x ≤ ξ1 ⇐⇒ Hn(x) > 0, ∀n ≥ 1.

By Corollary 15, αj = α1 πj Hj(µ1α1). Since for any j, αj > 0, we have
Hj(µ1α1) > 0 for all j ≥ 1 and then

0 < µ1α1 ≤ ξ1.

We can immediately deduce from this property that if ξ1 = 0, then there is
no quasi-stationary distribution.

To go further, one has to study more carefully the spectral properties of the
semi-group (Pt) and the polynomials (Hn)n, as it has been done in [39, 30] and
[58]. From these papers, the polynomials (Hn)n are shown to be orthogonal
with respect to the spectral measure of (Pt). In addition, it yields a tractable
necessary and sufficient condition for the existence of QSD based on the birth
and death rates. The series (S) with general term

Sn =
1

λnπn

∞
∑

i=n+1

πi

plays a crucial role. Remark that (S) converges if and only if

∞
∑

n=1

πn

(

1

µ1
+

n−1
∑

i=1

1

λiπi

)

< +∞.
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Theorem 16 ([58], Theorems 3.2 and 4.1). We have the convergence

lim
t→∞

Pi(Zt = j|T0 > t) =
1

µ1
πj ξ1 Hj(ξ1).

In particular, we obtain

ξ1 = lim
t→∞

µ1P1(Zt = 1|T0 > t) (25)

1. If ξ1 = 0, there is no QSD.
2. If (S) converges, then ξ1 > 0 and the Yaglom limit is the unique QSD.
3. If (S) diverges and ξ1 6= 0, then there is a continuum of QSD, given by

the one parameter family (α̂j(x))0<x≤ξ1 :

α̂j(x) =
1

µ1
πj x Hj(x).

Remark 4. 1. Formula (25) and the approximation method described in
Section 6 allow us to deduce a simulation algorithm to get ξ1.

2. Cases with more general birth and death processes have also been studied
recently. Let us mention the infinite dimensional state space setting of
Collet, Mart́ınez, Méléard and San Mart́ın [15], where each individual has
a type in a continuous state space which influences its birth and death
rates, and mutation on the type can occur. The authors give sufficient
and quite general conditions for the existence and uniqueness of a QSD.
We also refer the reader to the recent work of van Doorn [59], where a
transition to the state 0 may occur from any state. The author provides
sufficient conditions for the existence of QSDs.

Let us now develop some examples.

The linear case. We assume λi = λ i ; µi = µ i and λ ≤ µ. In that case, the
BD-process is a branching process, where each individual reproduces with rate
λ and dies with rate µ. A straightforward computation shows that the series
(S) diverges.

Setting fs : k 7→ sk, we get by the Kolmogorov forward equation,

∂Ptfs(1)

∂t
= µPtfs(0)− (λ + µ)Ptfs(1) + λPtfs(2).

But the branching property of the process implies Ptfs(2) = (Ptfs(1))
2
, while

fs(0) = 1 so that

∂Ptfs(1)

∂t
= µ− (λ+ µ)Ptfs(1) + λ (Ptfs(1))

2 .

Setting m = 2 λ
λ+µ , we deduce that for s < 1,

Ptfs(1) = 1− 2(1− s)(2m− 1)

(ms+m− 2)e−(λ+µ)(m−1)t + (1 − s)m
.
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In particular, we deduce that the generating function Ft : s 7→ E(sZt |Zt > 0) of
Zt conditioned to Zt > 0 converges when t goes to infinity:

Ft(s) =
Ptfs(1)− Ptf0(1)

1− Ptf0(1)
−−−→
t→∞

(λ− µ)s

λs− µ
.

We deduce that the Yaglom limit of Z does not exist if λ = µ and is given by
the geometric distribution with parameter λ

µ if λ < µ:

αk =

(

λ

µ

)k−1(

1− λ

µ

)

.

An easy computation yields ξ1 = µ − λ, since by (25), α1 = ξ1
µ . But the series

(S) diverges so that for λ < µ, ξ1 > 0 and there is an infinite number of QSD.
If λ = µ, ξ1 = 0 and there is no QSD.

The logistic case. We assume λi = λi ; µi = µi + ci(i − 1). Because of
the quadratic term, the branching property is lost and we can not compute the
Yaglom limit as above. Therefore, we have no other choice than to study the
convergence of the series (S).

We have

∞
∑

i=n+1

πi ≤
∞
∑

i=n+1

(

λ

c

)i−1
1

i!
=

∞
∑

p=0

(

λ

c

)n+p
1

(n+ p+ 1)!

≤
(

λ

c

)n
1

(n+ 1)!

∞
∑

p=0

(

λ

c

)p
1

p!
=

(

λ

c

)n
1

(n+ 1)!
e

λ
c ,

since (n+1)!
(n+p+1)! ≤ 1

p! . Thus as
1
πn

≤ C
(

c
λ

)n−1
n! , we get

1

λnπn

∞
∑

i=n+1

πi ≤
C

c

1

n(n+ 1)
e

λ
c .

Hence the series converges. Thus the Yaglom limit exists and is the unique
quasi-stationary distribution.

One can obtain substantial qualitative information by looking closer to the
jump rates of the process. For instance, (λ−µ)/c is a key value for the process.
Indeed, given a population size i, the expectation of the next step is equal to
i(λ−µ−c(i−1))
λi+µi+ci(i−1) . Then the sign of this expectation depends on the position of i− 1

with respect to (λ− µ)/c:

• If i ≤ (λ−µ)/c+1, then the expectation of the next step will be positive.
• If i = (λ− µ)/c+ 1, then it will be 0.
• If i > (λ− µ)/c+ 1, then it will be negative.

We deduce that the region around (λ − µ)/c is stable: it plays the role of a
typical size for the population and we expect that the mass of the Yaglom limit
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Fig 4. Example 3. A random path of a logistic birth and death process with initial size Z0 = 1
and with parameters λ = 10, µ = 1 and c = 1

is concentrated around it. The value (λ − µ)/c is called (by the biologists) the
charge capacity of the logistic BD-process with parameters λ, µ and c. In the
next section, we will consider large population processes, which means logistic
BD-processes with large charge capacity.

Example 3. We develop now a numerical illustration of the logistic BD-process
case. Across the whole example, the value of the charge capacity λ−µ

c is fixed,
arbitrarily chosen equal to 9.

In order to illustrate the concept of charge capacity, we represent in Figure 4
a random path of a logistic birth and death process with initial size Z0 = 1 and
with parameters λ = 10, µ = 1 and c = 1. We observe that the process remains
for long times in a region around the charge capacity. Moreover, we remark that
the process remains mainly below the charge capacity; this is because the jumps
rate are higher in the upper region, so that it is less stable than the region below
the charge capacity.

Let us now compare the Yaglom limits (numerically computed using the
approximation method presented in Section 6) of two different logistic BD pro-
cesses whose charge capacities are equal to 9 (see Figure 5):

(a) Z(a), whose parameters are λ = 10, µ = 1 and c = 1,
(b) Z(b), whose parameters are λ = 10, µ = 7 and c = 1/3.

We observe that the Yaglom limits of Z(a) and Z(b) are supported by a region
which is around the charge capacity. We also remark that the Yaglom limit of
the process Z(b) has a more flat shape than the Yaglom limit of Z(a). This is
because the competition parameter of Z(b) is small in comparison with the birth
and death parameters, so that the drift toward the charge capacity is small too,
both above and below the charge capacity.
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Fig 5. Example 3. The Yaglom limits of two logistic birth and death processes with the same
charge capacity λ−µ

c
= 9: (a) λ = 10, µ = 1 and c = 1; (b) λ = 10, µ = 7 and c = 1/3.

We compute now the distance between the conditioned distribution and the
Yaglom limit for the two processes Z(a) and Z(b) for different values of the
initial state, namely Z0 = 1, Z0 = 10 and Z0 = 100. The numerical results
are represented in Figure 6. We observe a strong dependence between the speed
of convergence and the initial position of the processes. In the case of Z(a), it
only takes a very short time to the process starting from 100 to reach the charge
capacity, because the competition parameter is relatively high and so is the drift
downward the charge capacity. On the contrary, in the case of Z(b), it takes a
longer time for the process to come back from 100 to the charge capacity, so
that the speed of convergence to the Yaglom limit is slow. In both cases, the
convergence to the Yaglom limit happens very fast when starting from the value
10, because it is near the charge capacity.
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Fig 6. Example 3. Evolution of the distance between the conditioned distribution and the
Yaglom limits of two logistic birth and death processes with the same charge capacity λ−µ

c
= 9:

(a) λ = 10, µ = 1 and c = 1; (b) λ = 10, µ = 7 and c = 1/3.

5. The logistic Feller diffusion process

5.1. A large population model

We are now rescaling logistic birth and death processes with a parameterK ∈ N∗

modeling a large population with small individuals, i.e. a population with a large
initial size of order K and a large charge capacity assumption. The individual’s
weights (or biomasses) are assumed to be equal to 1

K and we study the limiting

behavior of the total biomass process (
ZK

t

K , t ≥ 0) when K tends to infinity,
ZK
t being the population’s size at time t. In what follows, λ, µ and c are fixed

positive constants.
In Subsection 5.1.1, individual birth and death rates are assumed to be con-

stant and the competition rate depends linearly on the individual biomass 1
K .



374 S. Méléard and D. Villemonais

In Subsection 5.1.2, we investigate the qualitative differences of evolutionary
dynamics across populations with allometric demographics: life-lengths and re-
production times are assumed to be proportional to the individual’s weights.

In both cases, the charge capacity of (ZK) will be (λ − µ)K/c.

5.1.1. Convergence to the logistic equation

Given a parameter K scaling the population’s size, we consider the logistic
BD-process ZK with birth, death and competition parameters λ, µ and c/K
respectively. We assume that the initial value of ZK is of order K, in the sense
that there exists a non-negative real random variable X0 such that

ZK
0

K
−−−−→
K→∞

X0 with E(X3
0 ) < +∞.

We consider the total biomass process defined by XK = ZK/K for all K ≥ 1
and are interested in the limit of XK when K → ∞. The transitions of the
process (XK

t , t ≥ 0) are the following ones:

i

K
→ i+ 1

K
with rate λi = λK

i

K
;

i

K
→ i− 1

K
with rate µi+

c

K
i(i− 1) = K

i

K

(

µ+ c(
i

K
− 1

K
)

)

.

Theorem 17. Assume that X0 is a positive number x0. Then, the process
(XK

t , t ≥ 0) converges in law in D([0,T ],R+) to the unique continuous (in time)
deterministic function solution of

x(t) = x0 +

∫ t

0

(λ− µ− cx(s))x(s)ds.

Remark 5. The function x is thus solution of the ordinary differential equation

ẋ = (λ− µ)x− cx2 ; x(0) = x0, (26)

called the logistic equation. This equation has been historically introduced as
the first macroscopic model describing populations regulated by competition
(cf. [63]). In Theorem 17 above, it is obtained as the limit of properly scaled
stochastic jump models.

The function x solution of (26) hits 0 in finite time if λ < µ, while it remains
positive forever if λ > µ, converging in the long term to its charge capacity λ−µ

c .
Thus at this scale extinction does not happen.

Proof of Theorem 17. The Markov process (XK
t , t ≥ 0) is well defined and its

infinitesimal generator is given, for any measurable and bounded function φ, by

LKφ(x) = λKx

(

φ(x +
1

K
)− φ(x)

)

+K

(

µx+cx(x− 1

K
)

)(

φ(x − 1

K
)− φ(x)

)

.

(27)
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Hence, by Dynkin’s theorem ([21] Prop. IV-1.7), the process

φ(XK
t )− φ(XK

0 )−
∫ t

0

LKφ(X
k
s )ds (28)

defines a local martingale, and a martingale, as soon as each term in (28) is inte-
grable. In particular, taking φ(x) = x gives that (XK

t , t ≥ 0) is a semimartingale
and there exists a local martingale MK such that

XK
t = XK

0 +MK
t +

∫ t

0

XK
s

(

λ− µ− c

(

XK
s − 1

K

))

ds. (29)

Since x0 is deterministic and using a localization argument, we deduce that
E(supt≤T (X

K
t )2) <∞. Moreover, taking φ(x) = x2 applied to (28), and compar-

ing with Itô’s formula applied to (XK)2 prove that (MK) is a square-integrable
martingale with quadratic variation process

〈MK〉t =
1

K

∫ t

0

(

λ+ µ+ c

(

XK
s − 1

K

))

XK
s ds. (30)

Let us now study the convergence in law of the sequence (XK), whenK tends
to infinity. For any K, the law of XK is a probability measure on the trajectory
space DT = D([0,T ],R+), namely the Skorohod space of left-limited and right-
continuous functions from [0,T ] into R+, endowed with the Skorohod topology.
This topology makes DT a Polish state, that is a metrizable complete and sep-
arable space, which is not true if DT is endowed with the uniform topology. See
Billingsley [9] for details.

The proof of Theorem 17 is obtained by a compactness-uniqueness argument.
The uniqueness of the solution of (26) is immediate.

By a natural coupling, one may bound the birth and death process XK

stochastically from above by the Yule process Y K started from x0, which jumps
from x to x + 1

K , at the same birth times than XK . One easily shows that
supK E(supt≤T (Y

K
t )3) <∞ and thus

sup
K

E(sup
t≤T

(XK
t )3) <∞.

From this uniform estimate, we deduce the uniform tightness of the laws of
XK (as probability measures on DT ), using the Aldous criterion (cf. Aldous
[1], Joffe-Métivier [37]). Then, by Prokhorov’s Theorem, the compactness of
the laws of (XK) follows. Since supt≤T |XK

t − XK
t− | ≤ 1

K and the function
x 7→ supt≤T |xt − xt− | is continuous on DT , each limiting value (in law) of the

sequence (XK) will be a pathwise continuous process. In addition using (30)
and (5.1.1), it can be shown that limK→∞ E(〈MK〉t) = 0. Then, the random
fluctuations disappear when K tends to infinity and the limiting values are
deterministic functions. Now it remains to show that these limiting values are
solutions of (26), which can be done similarly to the proof of Theorem 18 (4)
stated below.
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5.1.2. The logistic Feller diffusion process

In this section, we study the logistic BD-processes ZK with birth and death
rates given by γ K + λ and γ K + µ respectively. Here γ, λ and µ are still
positive constants. We assume that the competition parameter is given by c/K,
so that the charge capacity of ZK is still (λ− µ)K/c.

Remark 6. This BD-process (ZK
t )t can also be interpreted as a time-rescaled

BD-process Y K
Kt, whose birth, death and competition parameters are given by

γ + λ/K, γ + µ/K and c/K2 respectively, that is a critical BD-process with
small pertubations.

We are considering as in Section 5.1.1 the sequence of processes XK defined

for all t ≥ 0 by XK
t =

ZK
t

K .

The transitions of the process (XK) are given by

i

K
→ i+ 1

K
with rate γKi+ λi (31)

i

K
→ i− 1

K
with rate γKi+ µi+

c

K
i(i− 1).

Formula (29) giving the semi-martingale decomposition of XK will stay true in
this case with another square integrable martingale part NK such that

〈NK〉t =
1

K

∫ t

0

(2γK + λ+ µ+ c

(

XK
s − 1

K

)

XK
s ds.

One immediately observes that the expectation of this quantity does not tend to
zero as K tends to infinity. Hence the fluctuations will not disappear at infinity
and the limit will stay random. Let us now state the convergence theorem.

Theorem 18. Assume γ, c, λ, µ > 0 and λ > µ.

i) Assume that the sequence (XK
0 )K converges in law to X0 with E(X3

0 ) < ∞.
Then the sequence of processes (XK)K with transitions (31) converges in law
in P(DT ) to the continuous process X, defined as the unique solution of the
stochastic differential equation

dXt =
√

2γXtdBt +
(

(λ− µ)Xt − cX2
t

)

dt; X0 ∈]0,+∞[, (32)

where (Bt)t∈[0,+∞[ is a standard Brownian motion.

ii) Let us introduce for each y ≥ 0 the stopping time

Ty = inf{t ∈ R+, Xt = y}. (33)

For any x ≥ 0, we get

Px(T0 <∞) = 1.
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When c = 0, Equation (32) defines the super-critical Feller diffusion process
and will explode with positive probability. In the general case where c 6= 0,
it defines the so-called logistic Feller diffusion process following the terminol-
ogy introduced by Etheridge [20] and Lambert [42]. Let us remark that the
quadratic term driven by c regulates the population size, which fluctuates un-
til it attains the absorbing point 0. Theorem 18 shows that an accumulation
of a large amount of birth and death events may create stochasticity, often
called by biologists ecological drift or demographic stochasticity. Contrarily to
the previous case (Theorem 17), the limiting process suffers extinction almost
surely.

Proof. As for Theorem 17, the proof is based on a uniqueness-compactness ar-
gument.

(1) The uniqueness of the solution of (32) follows from a general existence and
pathwise uniqueness result in Ikeda-Watanabe [36] Section IV-3 or Karatzas-
Shreve [38]. For a stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt,

with σ and b smooth enough, the existence and pathwise uniqueness are deter-
mined thanks to the following scale functions: for x > 0,

Q(x) = −
∫ x

1

2b(y)

σ2(y)
dy ; Λ(x) =

∫ x

1

eQ(z)dz ;

κ(x) =

∫ x

1

eQ(y)

(
∫ y

1

e−Q(z)dz

)

dy. (34)

More precisely, it is proved that (i) ∀x > 0, Px(T0 < T∞) = 1 and (ii) Λ(+∞) =
+∞ ; κ(0+) < +∞ are equivalent.

In that case, pathwise uniqueness follows, and then uniqueness in law.
In our situation, the coefficients are given by

σ(x) =
√

2γx ; b(x) = (λ− µ)x− cx2,

so that the functions Λ and κ satisfy (ii). Thus the SDE (32) has a pathwise
unique solution which reaches 0 in finite time almost surely.

(2) Let us assume that E(X3
0 ) <∞ and prove that supK E(supt≤T (X

K
t )2) <∞.

The infinitesimal generator of XK is given by

L̃Kφ(x) = (γKx+ λx)K

(

φ(x +
1

K
)− φ(x)

)

+

(

γKx+ µx+ cx(x − 1

K
)

)

K

(

φ(x − 1

K
)− φ(x)

)

. (35)
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With φ(x) = x3, we obtain that

(XK
t )3 = X3

0 +MK
t

+

∫ t

0

γK2XK
s

[

(

XK
s +

1

K

)3

+

(

XK
s − 1

K

)3

− 2
(

XK
s

)3

]

ds

+

∫ t

0

λKXK
s

[

(

XK
s +

1

K

)3

−
(

XK
s

)3

]

ds

+

∫ t

0

(µ+ c(XK
s − 1

K
))KXK

s

[

(

XK
s − 1

K

)3

−
(

XK
s

)3

]

ds,

where MK is a local martingale. Using a standard localization argument and

(

XK
s +

1

K

)3

+

(

XK
s − 1

K

)3

− 2
(

XK
s

)3
= 6

XK
s

K2
,

we get

E((XK
t )3) ≤ E(X3

0 ) + C

∫ t

0

(E((XK
s )3) + 1)ds,

where C is independent of K. Gronwall’s lemma yields

sup
t≤T

sup
K

E(|XK
t |3) <∞. (36)

Now, thanks to (36) and Doob’s inequality, we deduce from the semi-martingale
decomposition of (XK

t )2 (obtained using φ(x) = x2), that

sup
K

E(sup
t≤T

|XK
t |2) <∞. (37)

(3) As previously, the uniform tightness of the laws of (XK) is obtained from
(37) and the Aldous criterion [1]. Therefore, the sequence of laws is relatively
compact and it remains to characterize its limit values.

(4) As in the proof of Theorem 17, we remark that the limiting values only
charge the set of continuous trajectories, since supt≤T |∆XK

t | ≤ 1
K . Let Q ∈

P(C([0,T ],R+)) be a limiting value of the sequence of laws of the processes
XK . We will identify Q as the (unique) law of the solution of (32) and the
convergence will be proved. Let us denote CT = C([0,T ],R+) and define, for
φ ∈ C3

b and t > 0, the function

ψt : CT → R

X 7→ φ(Xt)− φ(X0)−
∫ t

0

(

γXsφ
′′(Xs) + ((λ − µ)Xs − cX2

s )φ
′(Xs)

)

ds,

which is continuous Q-a.s.. Let us show first that the process (ψt(X))t is a
Q-martingale.
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For x ∈ R+, we define

Lφ(x) = γxφ′′(x) + ((λ− µ)x− cx2)φ′(x).

Using Taylor’s expansion, we immediately get (with L̃K defined in (35))

L̃Kφ(x) − Lφ(x) = γK2 x

[

φ(x +
1

K
) + φ(x− 1

K
)− 2φ(x)− 1

K2
φ′′(x)

]

+ λ K x

[

φ(x +
1

K
)− φ(x) − 1

K
φ′(x)

]

+K (µx+ c x2)

[

φ(x − 1

K
)− φ(x) +

1

K
φ′(x)

]

+ c x

[

φ(x− 1

K
)− φ(x)

]

.

|L̃Kφ(x) − Lφ(x)| ≤ C

K
(x2 + 1), (38)

where C doesn’t depend on x and K. By (37), we deduce that E
(

|L̃Kφ(X
K
t )−

Lφ(XK
t )|
)

tends to 0 as K tends to infinity, uniformly for t ∈ [0,T ].
For s1 < · · · < sk < s < t, for g1, . . . , gk ∈ Cb, we introduce the function H

defined on the path space by

H(X) = g1(Xs1) · · · gk(Xsk) (ψt(X)− ψs(X)) .

Let us show now that

EQ(H(X)) = 0, (39)

which will imply that (ψt(X))t is a Q-martingale.

By construction, ψK
t (XK) = φ(XK

t ) − φ(X0) −
∫ t

0 L̃Kφ(X
K
s )ds defines a

martingale, then

E
[

g1(X
K
s1 ) · · · gk(XK

sk)
(

ψK
t (XK)− ψK

s (XK)
)]

= 0.

In another way, this quantity is equal to

E
[

g1(X
K
s1 ) · · · gk(X

K
sk
)
(

ψK
t (XK)− ψK

s (XK)− ψt(X
K) + ψs(X

K)
)]

+ E
[

g1(X
K
s1 ) · · · gk(X

K
sk)
(

ψt(X
K)− ψs(X

K)
)

− g1(Xs1) · · · gk(Xsk) (ψt(X)− ψs(X))
]

+ E
[

g1(Xs1) · · · gk(Xsk) (ψt(X)− ψs(X))
]

.

The first term is equal to E
[

g1(X
K
s1 ) · · · gk(XK

sk)
∫ t

0 (L̃Kφ(X
K
s ) − Lφ(XK

s ))ds
]

and tends to 0 by (37) and (38).
The second term is equal to E(H(XK)−H(X)). The function X 7→ H(X) is

continuous and sinceH(X) ≤ C(1+
∫ t

s
(1+X2

u)du), it is also uniformly integrable
by (36). This leads the second term to tend to 0 as K tends to infinity.
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Therefore, it turns out that (39) is fulfilled and the process ψt(X) = φ(Xt)−
φ(X0)−

∫ t

0 Lφ(Xs)ds is a Q-martingale, for any φ ∈ C3
b .

A standard localization argument, (37) and taking φ(x) = x lead to Xt =

X0 +Mt +
∫ t

0 ((λ− µ)Xs − cX2
s )ds, where M is a martingale. Taking φ(x) = x2

on the one hand and applying Itô’s formula for X2
t on the other hand allow us

to identify

〈M〉t =
∫ t

0

2 γ Xs ds.

By the representation theorem proved in [38] Theorem III-4.2 or in [36], there
exists a Brownian motion B such that

Mt =

∫ t

0

√

2γXs dBs.

That concludes the proof.

5.2. QSD for logistic Feller diffusion processes

5.2.1. Statement of the results

We are now interested in studying the quasi-stationarity for the logistic Feller
diffusion process solution of the equation

dZt =
√

ZtdBt + (rZt − cZ2
t )dt, Z0 > 0,

where the Brownian motion B and the initial state Z0 are given, and r and c
are assumed to be positive. (We have assumed that γ = 1/2). The results and
proofs that are presented in Section 5.2 have been obtained by Cattiaux, Collet,
Lambert, Mart́ınez, Méléard and San Mart́ın [13].

Let us firstly state the main theorem of this part.

Theorem 19. Assume that Z0, r and c are positive. Then the Yaglom limit of
the process Z exists and is a QLD for Z starting from any initial distribution.
As a consequence, it is the unique QSD of Z.

Remark 7. 1) The theory studying the quasi-stationary distributions for one-
dimensional diffusion processes started with Mandl [45] and has been developed
by many authors. See in particular [16, 47, 57, 40]. Nevertheless in most of
the papers, the diffusion and drift coefficients are regular and the “Mandl’s
condition” κ(+∞) = ∞ (see (34)) is assumed. This condition is not satisfied in
our case because of the degeneracy of the diffusion and the unboundedness of
the drift coefficient.

2) Theorem 19 differs from the results obtained in case of drifts going slower to
infinity. For example, Lambert [43] proves that if c = 0 and r ≤ 0, then either
r = 0 and there is no QSD, or r < 0 and there is an infinite number of QSD.
Lladser and San Mart́ın [44] show that in the case of the Ornstein-Uhlenbeck
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process dYt = dBt − Ytdt, killed at 0, there is also a continuum of QSD. In the
logistic Feller diffusion situation as in the logistic BD-process, the uniqueness
comes from the quadratic term cX2

t induced by the ecological constraints.

3) We have seen that the rescaled charge capacity of the logistic birth and
death process converges to the charge capacity of the logistic Feller diffusion.
However, whether the rescaled Yaglom limit of the logistic birth and death
process converges to the Yaglom limit of the logistic Feller diffusion process
remains an open problem.

In order to prove Theorem 19, we firstly make a change of variable and
introduce the process (Xt, t ≥ 0) defined by Xt = 2

√
Zt. Of course, X is still

absorbed at 0 and QSDs for Z will be easily deduced from QSDs for X . From
now on, we focus on the process (Xt).

An elementary computation using Itô’s formula shows that (Xt) is the Kol-
mogorov diffusion process defined by

dXt = dBt − q(Xt)dt, (40)

with

q(x) =
1

2x
− rx

2
+
cx3

8
.

We mention that the function q is continuous on R∗
+ but explodes at 0 as 1

2x
and at infinity as c

8x
3. The strong (cubic) downward drift at infinity will force

the process to live essentially in compact sets. That will provide the uniqueness
of the QSD, as seen below.

We introduce the measure µ, defined by

µ(dy) = e−Q(y)dy,

where Q is given by

Q(y) =

∫ y

1

2q(z)dz = ln y +
r

2
(1− y2) +

c

16
(y4 − 1). (41)

In particular −Q/2 is a potential of the drift −q. The following result clearly
implies Theorem 19.

Theorem 20. [13] Assume that X0, r and c are positive. Then the Yaglom
limit α of the process X exists.

Moreover, there exists a positive function η1 ∈ L2(dµ) such that

1.

α(dx) =
η1(x)e

−Q(x)

∫

R∗

+

η1(y)e−Q(y)dy
dx, (42)

2. ∀x ∈ R∗
+, limt→∞ eθ(α)tPx(T0 > t) = 〈η1,1R+

〉µη1(x),
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3. there exists χ > 0 such that, ∀x ∈ R∗
+,

lim
t→+∞

e−(χ−θ(α))t |Px (Xt ∈ A|T0 > t)− α(A)| < +∞.

4. the QSD α attracts all initial distribution, which means that α is a QLD
for X starting from any initial distribution.

The proof of Theorem 20 will be decomposed in the next subsections.

5.2.2. Spectral theory for the killed semi-group

As previously we are interested in the semi-group of the killed process, that is,
for any x > 0, t > 0 and any f ∈ Cb(R

∗
+),

Ptf(x) = Ex(f(Xt)1t<T0
), (43)

with the associated infinitesimal generator given for φ ∈ C2
c ((0,+∞)) by

Lφ =
1

2
φ′′ − qφ′.

We are led to develop a spectral theory for this generator in L2(µ). Though the
unity function 1 does not belong to L2(µ), this space is the good functional space
in which to work. The key point we firstly show is that, starting from x > 0,
the law of the killed process at time t is absolutely continuous with respect to
µ with a density belonging to L2(µ). The first step of the proof is a Girsanov
Theorem.

Proposition 21. For any bounded Borel function F defined on Ω = C([0,t],R∗
+)

it holds

Ex

[

F (ω)1t<T0(ω)

]

= EWx

[

F (ω)1t<T0(ω) exp

(

1

2
Q(x)− 1

2
Q(ωt)−

1

2

∫ t

0

(q2 − q′)(ωs)ds

)]

where EWx denotes the expectation with respect to the Wiener measure starting
from x and ω the current point in Ω.

Proof. It is enough to show the result for non-negative and bounded functions
F . Let ε ∈ (0,1) and τε = Tε ∧ T1/ε. Let us choose some ψε which is a non-
negative C∞ function with compact support included in ]ε/2, 2/ε[ such that
ψε(u) = 1 if ε ≤ u ≤ 1/ε. For all x such that ε ≤ x ≤ 1/ε the law of the
diffusion (40) coincides up to τε with the law of a similar diffusion process Xε

obtained by replacing q with the cutoff function qε = qψε. For the latter we may
apply Novikov criterion (cf. [53] p.332), ensuring that the law of Xε is given via



Quasi-stationary distributions and population processes 383

Girsanov’s formula. Hence

Ex

[

F (ω)1t<τε(ω)

]

= EWx

[

F (ω)1t<τε(ω) exp

(∫ t

0

−qε(ωs)dωs −
1

2

∫ t

0

(qε)
2(ωs)ds

)]

= EWx

[

F (ω)1t<τε(ω) exp

(∫ t

0

−q(ωs)dωs −
1

2

∫ t

0

q2(ωs)ds

)]

= EWx

[

F (ω)1t<τε(ω) exp

(

1

2
Q(x)− 1

2
Q(ωt)−

1

2

∫ t

0

(q2 − q′)(ωs)ds

)]

integrating by parts the stochastic integral. But 1t<τε is non-decreasing in ε and
converges almost surely to 1t<T0

both for Wx and for Px (since Px(T0 <∞) =
1)). Indeed, almost surely,

lim
ε→0

Xτε = lim
ε→0

XTε
= lim

ε→0
ε = 0

so that limε→0 τε ≥ T0. But τε ≤ T0 yielding the equality. It remains to use the
monotone convergence theorem to finish the proof.

Theorem 22. For all x > 0 and all t > 0 there exists a density function r(t,x,.)
that satisfies

Ex[f(Xt)1t<T0
] =

∫ +∞

0

f(y) r(t,x,y)µ(dy)

for all bounded Borel function f . In addition, for all t > 0 and all x > 0,

∫ +∞

0

r2(t,x,y)µ(dy) ≤ (1/2πt)
1
2 eCt eQ(x) , (44)

where

C = − inf
y>0

(q2(y)− q′(y)) < +∞.

Proof. Define

G(ω) = 1t<T0(ω) exp

(

1

2
Q(ω0)−

1

2
Q(ωt)−

1

2

∫ t

0

(q2 − q′)(ωs)ds

)

.

Denote by e−v(t,x,y) = (2πt)−
1
2 exp

(

− (x−y)2

2t

)

the density at time t of the Brow-
nian motion starting from x. According to Proposition 21, we have

Ex (f(Xt)1t<T0
) = EWx

(

f(ωt) E
Wx(G|ωt)

)

=

∫ +∞

0

f(y)EWx(G|ωt = y) e−v(t,x,y) dy

=

∫ +∞

0

f(y)EWx(G|ωt = y) e−v(t,x,y)+Q(y) µ(dy) ,
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because EWx(G|ωt = y) = 0 if y ≤ 0. In other words, the law of Xt restricted to
non extinction has a density with respect to µ given by

r(t,x,y) = EWx(G|ωt = y) e−v(t,x,y)+Q(y) .

Hence
∫ +∞

0

r2(t,x,y)µ(dy) =

∫ +∞

0

(

EWx(G|ωt = y) e−v(t,x,y)+Q(y)
)2

× e−Q(y)+v(t,x,y) e−v(t,x,y) dy

= EWx

(

e−v(t,x,ωt)+Q(ωt)
(

EWx(G|ωt)
)2
)

≤ EWx

(

e−v(t,x,ωt)+Q(ωt) EWx(G2|ωt)
)

≤ eQ(x) EWx

(

1t<T0(ω) e
−v(t,x,ωt) e−

∫
t
0
(q2−q′)(ωs)ds

)

,

where we have used Cauchy-Schwarz’s inequality. Since e−v(t,x,.) ≤ (1/2πt)
1
2 ,

the proof is completed.

Thanks to Theorem 22, we can show, using the theory of Dirichlet forms
(cf. Fukushima’s book [25]) that the infinitesimal generator L of X , defined
by (5.2.2), can be extended to the generator of a continuous symmetric semi-
group of contractions of L2(µ) denoted by (Pt)t≥0. In all what follows, and for
f, g ∈ L2(µ), we will denote 〈f, g〉µ =

∫

R+
f(x)g(x)µ(dx). The symmetry of Pt

means that 〈Ptf, g〉µ = 〈f, Ptg〉µ.
In Cattiaux et al. [13], the following spectral theorem in L2(µ) is proved.

Theorem 23. The operator −L has a purely discrete spectrum 0 < λ1 < λ2 <
· · · . Furthermore each λi (i ∈ N∗) is associated with a unique (up to a multi-
plicative constant) eigenfunction ηi of class C

2((0,∞)), which satisfies the ODE

1

2
η′′i − qη′i = −λiηi. (45)

The sequence (ηi)i≥1 is an orthonormal basis of L2(µ) and η1(x) > 0 for all
x > 0.

In addition, for each i, ηi ∈ L1(µ).

Sketch of proof. The main difficulty consists in proving the compactness of the
operator −L which ensures that its spectrum is purely discrete. The proof is
based on a relation between the Fokker-Planck operator L and a Schrödinger
operator. Indeed, let us set for g ∈ L2(dx),

P̃tg = e−Q/2 Pt(g e
Q/2).

P̃t is a strongly semi-group on L2(dx) with generator defined for g ∈ C∞
c ((0,+

∞)) by

L̃g =
1

2
△g − 1

2
(q2 − q′) g.
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The spectral theory for such Schrödinger operator with potential (q2−q′)
2 on

the line (or the half-line) is well known (see for example the book of Berezin-

Shubin [7]), but in our situation, the potential (q2−q′)
2 does not belong to L∞

loc

as generally assumed. Nevertheless, in our case inf(q2 − q′) > −∞ and the
conclusions of Chapter 2 in [7] are still true. This ensures as in the bounded case
the compactness of the operators L̃ and P̃t and the existence of an orthonormal
basis (ψi)i of eigenfunctions of L̃ in L2(dx) associated with the purely discrete
spectrum (λi)i. Setting ηi = eQ/2ψi gives an orthonormal basis of eigenfunctions
of L in L2(dµ) and for any t > 0 and f ∈ L2(dµ), we get

Ptf =L2(µ)

∑

i∈N∗

e−λit〈f, ηi〉µ ηi. (46)

The following corollary extends (46) to bounded measurable functions.

Corollary 24. For any bounded and measurable function f , we have

Ptf =L2(µ)

∑

i∈N∗

e−λit 〈ηi,f〉µ ηi. (47)

In particular,

‖Ptf‖2 =
∑

i∈N∗

e−2λit〈ηi,f〉2µ. (48)

Proof. Fix t > 0 and let f be a bounded measurable function on R∗
+. Let us

first prove that Ptf belongs to L2(µ). On the one hand, we have

∫ +∞

1

(Ptf(x))
2dµ(x) ≤ ‖f‖2∞

∫ ∞

1

e−Q(x)dx <∞.

On the other hand, by Proposition 21, we have, for all x ∈ R∗
+,

Ptf(x) ≤ ‖f‖∞ e
1
2
Q(x)+ 1

2
Ct EWx

[

1t<T0(ω)e
− 1

2
Q(ωt)

]

≤ ‖f‖∞ e
1
2
Q(x)+ 1

2
Ct

∫ ∞

0

e−
1
2
Q(y) e

− 1
2t

(y−x)2

√
2πt

dy.

But the function

y 7→ e−
1
2
Q(y) =

1√
y
e−

r
4
(1−y2)− c

32
(y4−1),

is integrable on ]0, + ∞[. Since e−
1
2t

(y−x)2 ≤ 1, we deduce that there exists a
constant Kt > 0 independent of x and f such that

Ptf(x) ≤ Kt‖f‖∞e
1
2
Q(x),

and thus
∫ 1

0

(Ptf(x))
2dµ(x) ≤ K2

t ‖f‖2∞.

Finally (Ptf)
2 is integrable with respect to µ, so that Ptf ∈ L2(µ).
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Now we deduce from Theorem 23 that

Ptf =L2(µ)

∑

i∈N∗

〈Ptf, ηi〉µ ηi. (49)

If f belongs to L2(µ), then the symmetry of Pt implies that

〈Ptf, ηi〉µ = 〈f, Ptηi〉µ = e−λit 〈f, ηi〉µ.

Since ηi ∈ L1(µ), we deduce from the Dominated Convergence Theorem that the
equality 〈Ptf, ηi〉µ = e−λit 〈f, ηi〉µ extends to all measurable bounded functions.
This and the equality (49) allow us to conclude the proof of Corollary 24.

5.2.3. Existence of the Yaglom limit

By Corollary 24, we have for any bounded and measurable function f and t ≥ 1,

‖eλ1tPtf − 〈η1, f〉η1‖2L2(µ)

=
∑

i≥2

e−2t(λi−λ1)|〈ηi,f〉|2

≤ e−2(t−1)(λ2−λ1)
∑

i∈N∗

e−2(λi−λ1)|〈ηi,f〉|2 since for i ≥ 2, λi ≤ λ2

≤ e−2(t−1)(λ2−λ1) e2λ1 ‖P1f‖2L2(µ)

Using Cauchy-Schwartz inequality, we deduce that, for any function h ∈ L2(µ),
∣

∣eλ1t〈Ptf,h〉µ − 〈η1, f〉〈η1, h〉µ
∣

∣ ≤ e−(t−1)(λ2−λ1) eλ1 ‖P1f‖L2(µ) ‖h‖L2(µ). (50)

By Theorem 22, δxP1 has the density r(1,x,.) ∈ L2(µ) with respect to µ, so
that, taking h = r(1,x,·),

∣

∣eλ1tPt+1f(x)− 〈η1, f〉〈η1, r(1,x,·)〉µ
∣

∣

≤ e−(t−1)(λ2−λ1) eλ1 ‖P1f‖L2(µ)‖r(1,x,·)‖L2(µ).

By definition of η1, 〈η1, r(1,x,·)〉µ = e−λ1η1(x). Thus we have

eλ1tPt+1f(x) −−−−→
t→+∞

〈η1, f〉µ e−λ1η1(x)

and
eλ1tPt+11R∗

+
(x) −−−→

t→∞
〈η1,1R∗

+
〉µ e−λ1η1(x)

Finally, η1(x) being positive, for any x ∈ R∗
+,

Ptf(x)

Pt1R∗

+
(x)

−−−−→
t→+∞

〈η1, f〉µ
〈η1,1R∗

+
〉µ

= α(f),

where α is defined in (42). We conclude that α is the Yaglom limit for Z. We
also deduce parts (2) and (3) of Theorem 20.
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5.2.4. Attractiveness of any initial distribution

Let us first consider a compactly supported probability measure ν on (0,+∞).
By Theorem 22, the function y 7→

∫

E∗
r(1,x,y)ν(dx) is the density of νP1 with

respect to µ. In addition, using (44) and the compactness of the support of ν,
we obtain that this function belongs to L2(µ). Then we deduce from (50) that

Eν (f(Xt+1)|T0 > t+ 1) =
νPt+1(f)

νPt+1(1E∗)
−−−→
t→∞

α(f).

We conclude that α attracts any compactly supported probability measure.
Let us now prove that α attracts all initial distributions ν supported in (0,∞).

We want to show that, for any probability measure ν on R∗
+, for any Borel set

A, we get

lim
t→∞

Pν(Xt ∈ A|T0 > t) = α(A). (51)

This is part (4) of Theorem 20 and it clearly implies the uniqueness of the QSD
for X (and hence for Z).

Proposition 25. For any a > 0, there exists ya > 0 such that
supx>ya

Ex(e
aTya ) <∞.

Proof. Let us remark that
∫∞

1 eQ(y)
∫∞

y e−Q(z) dz dy < ∞. Let a > 0, and

pick xa large enough so that
∫∞

xa
eQ(x)

∫∞

x
e−Q(z) dz dx ≤ 1

2a . Let J be the

nonnegative increasing function defined on [xa,∞) by

J(x) =

∫ x

xa

eQ(y)

∫ ∞

y

e−Q(z) dz dy.

Then we check that J ′′ = 2qJ ′ − 1, so that LJ = −1/2. Set now ya = 1 + xa,
and consider a large M > x. Itô’s formula gives

Ex(e
a(t∧TM∧Tya ) J(Xt∧TM∧Tya

))

= J(x) + Ex

(

∫ t∧TM∧Tya

0

eas (aJ(Xs) + LJ(Xs)) ds

)

.

But LJ = −1/2, and J(Xs) < J(∞) ≤ 1/(2a) for any s ≤ Tya
, so that

Ex(e
a(t∧TM∧Tya ) J(Xt∧TM∧Tya

)) ≤ J(x).

For x≥ ya, one gets 1/(2a)>J(x)≥ J(ya)> 0. It follows that Ex(e
a(t∧TM∧Tya )) ≤

1/(2aJ(ya)). LettingM → ∞ then t→ ∞ , we deduce Ex(e
aTya ) ≤ 1/(2aJ(ya)),

by the monotone convergence theorem. So Proposition 25 is proved.

Proving that α attracts all initial distributions requires the following esti-
mates near 0 and ∞.
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Lemma 26. For h ∈ L1(µ) strictly positive on (0,∞) we have

lim
ε↓0

lim sup
t→∞

∫ ε

0 h(x)Px(T0 > t)µ(dx)
∫ +∞

0 h(x)Px(T0 > t)µ(dx)
= 0, (52)

lim
M↑∞

lim sup
t→∞

∫ +∞

M h(x)Px(T0 > t)µ(dx)
∫ +∞

0 h(x)Px(T0 > t)µ(dx)
= 0. (53)

Proof. We start with (52). Let us first remark that for x ≤ y, Px(T0 > t) ≤
Py(T0 > t). For ε < 1 and large t, we get

∫ ε

0 h(x)Px(T0 > t)µ(dx)
∫ +∞

0
h(x)Px(T0 > t)µ(dx)

≤ P1(T0 > t)
∫ ε

0 h(z)µ(dz)
∫ +∞

1
h(x)Px(T0 > t)µ(dx)

,

then
∫ ε

0
h(x)Px(T0 > t)µ(dx)

∫ +∞

0
h(x)Px(T0 > t)µ(dx)

≤ P1(T0 > t)
∫ ε

0
h(z)µ(dz)

P1(T0 > t)
∫ +∞

1
h(x)µ(dx)

=

∫ ε

0
h(z)µ(dz)

∫ +∞

1
h(x)µ(dx)

,

and the first assertion of the lemma is proved since h ∈ L1(µ).

For the second limit, we set A0 := supx≥yλ1
Ex(e

λ1Tyλ1 ) < ∞, where yλ1
is

taken from Proposition 25. Then for large M > yλ1
, we have

Px(T0 > t) =

∫ t

0

Px0
(T0 > u)Px(Tx0

∈ d(t− u)) + Px(Tx0
> t).

Using limu→∞ eλ1uPx0
(T0 > u) = η1(x0)〈η1,1〉µ, we obtain B0 := supu≥0 e

λ1u ×
Px0

(T0 > u) <∞. Then

Px(T0 > t) ≤ B0

∫ t

0

e−λ1uPx(Tx0
∈ d(t− u)) + Px(Tx0

> t)

≤ B0 e
−λ1t Ex(e

λ1Tx0 ) + e−λ1t Ex(e
λ1Tx0 ) ≤ e−λ1tA0(B0 + 1),

and (53) follows immediately (since x ≥ x0 ≥ yλ1
⇒ Tx0

≤ Tyλ1
).

Let ν be any fixed probability distribution whose support is contained in
(0,∞). We must prove (51). We begin by claiming that ν can be assumed to
have a strictly positive density h, with respect to µ. Indeed, let

ℓ(y) =

∫ +∞

0

r(1,x,y)ν(dx).

Using Tonelli’s theorem we have

∫ +∞

0

∫ +∞

0

r(1,x,y)ν(dx)µ(dy) =

∫ +∞

0

∫ +∞

0

r(1,x,y)µ(dy) ν(dx)

=

∫ +∞

0

Px(T0 > 1)ν(dx) ≤ 1,
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which implies that
∫

r(1,x,y)ν(dx) is finite dy−a.s.. Finally, define h = ℓ/
∫

ℓdµ.
Notice that for dρ = hdµ

Pν(Xt+1 ∈ · | T0 > t+ 1) = Pρ(Xt ∈ · | T0 > t),

showing the claim.
Consider M > ε > 0 and any Borel set A included in (0,∞). Then
∣

∣

∣

∣

∣

∫

Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫

Px(T0 > t)h(x)µ(dx)
−
∫M

ε
Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫M

ε
Px(T0 > t)h(x)µ(dx)

∣

∣

∣

∣

∣

is bounded by the sum of the following two terms

I1 =

∣

∣

∣

∣

∣

∫

Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫

Px(T0 > t)h(x)µ(dx)
−
∫M

ε
Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫

Px(T0 > t)h(x)µ(dx)

∣

∣

∣

∣

∣

I2 =

∣

∣

∣

∣

∣

∫M

ε
Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫

Px(T0 > t)h(x)µ(dx)
−
∫M

ε
Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫M

ε
Px(T0 > t)h(x)µ(dx)

∣

∣

∣

∣

∣

.

We have the bound

I1 ∨ I2 ≤
∫ ε

0
Px(T0 > t)h(x)µ(dx) +

∫∞

M
Px(T0 > t)h(x)µ(dx)

∫

Px(T0 > t)h(x)µ(dx)
.

Thus, from Lemma 26 we get

lim
ε↓0,M↑∞

lim sup
t→∞

∣

∣

∣

∣

∫

Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫

Px(T0 > t)h(x)µ(dx)

−
∫M

ε Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫M

ε
Px(T0 > t)h(x)µ(dx)

∣

∣

∣

∣

∣

= 0.

On the other hand we have

lim
t→∞

∫M

ε
Px(Xt ∈ A, T0 > t)h(x)µ(dx)
∫M

ε
Px(T0 > t)h(x)µ(dx)

=

∫

A
η1(z)µ(dz)

∫

R+ η1(z)µ(dz)
= α(A),

since α attracts any compactly supported probability measures, and the result
follows.

Example 4. We develop now a numerical illustration of this logistic Feller
diffusion case. As for the logistic birth and death process (see Example 3, Section
4), the value of the charge capacity r

c will remain equal to the fixed value 9 across
the whole example.

We begin by showing in Figure 7 a random path of a logistic Feller diffusion
process with initial size Z0 = 1 and with parameters r = 9 and c = 1 (an Euler
method is used for the numerical simulation of the random path). We observe
that the process quickly attains the value of the charge capacity and remains
around it for a long time.

We compare now the Yaglom limits of two different logistic Feller diffusion
processes whose charge capacity is equal to 9 (see Figure 8):
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Fig 7. Example 4. A random path for logistic Feller diffusion process with initial size Z0 = 1
and parameters r = 9 and c = 1

(a) Z(a), whose parameters are r = 9 and c = 1,
(b) Z(b), whose parameters are r = 3 and c = 1/3.

As for the logistic BD-processes, we observe that the two Yaglom limits are
centered around the charge capacity. But as a consequence of the relatively
weak noise around the charge capacity, the Yaglom limit has clearly a smaller
variation around this value in the logistic Feller diffusion case than in the logistic
BD process case. We also observe that the smaller are the parameters, the flatter
is the Yaglom limit and with a similar explanation as in the logistic BD-process
case.

We observe now the distance (with respect to the total variation norm) be-
tween the conditional distributions of Z(a) and Z(b) and their respective Yaglom
limits, for different initial states, namely Z0 = 1, Z0 = 10 and Z0 = 100. The re-
sults, computed with the help of the approximation method studied in Section 6,
are represented on figure 9. For both Z(a) and Z(b), the speed of convergence
to the Yaglom limit is the highest for Z0 = 10, which is quite intuitive since
the value of the charge capacity is 9. We also observe that it is higher for the
processes starting from 100 than for the processes starting from 1. In particular,
this behavior is different than in the logistic birth and death process case.

5.3. The Q-process

Let us now describe the law of the trajectories conditioned to never attain 0.

Theorem 27. [13] Let us fix a time s and consider B a measurable subset of
C([0,s],R+). Then for any x ∈ R∗

+,

lim
t→∞

Px(X ∈ B|t < T0) = Qx(X ∈ B),
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Fig 8. Example 4. The Yaglom limits of two logistic Feller diffusion processes with the same
charge capacity: (a) r = 9 and c = 1; (b) r = 3 and c = 1/3.

where Qx is the law of a continuous process with transition probabilities given
by q(s,x,y)dy, with

q(s,x,y) = eλ1s
η1(y)

η1(x)
r(s,x,y) e−Q(y).

Proof. Since r(s,x,y) e−Q(y)dy is the law of Xs started from x before extinction,
we have to prove that

Qx(X ∈ B) = eλ1sEx

(

1B(X)
η1(Xs)

η1(x)
1T0>s

)

.

For t > s,

Px(X ∈ B;T0 > t)

Px(T0 > t)
=

Px(X ∈ B;T0 > s;EXs
(T0 > t− s))

Px(T0 > t)
,
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Fig 9. Example 4. Evolution of the distance between the conditioned distribution and the
Yaglom limits of two logistic Feller diffusion processes with the same charge capacity r

c
= 9:

(a) r = 9 and c = 1; (b) r = 3 and c = 1/3.

and we have proved that

lim
t→∞

Py(T0 > t− s)

Px(T0 > t)
= eλ1s η1(y)

η1(x)
.

Then,

lim
t→∞

Px(X ∈ B;T0 > t)

Px(T0 > t)
=

eλ1s

η1(x)
Px (1B(X) η1(Xs) 1T0>s) .

Corollary 28. For any Borel set A ⊂ (0,∞) and any x,

lim
s→∞

Qx(Xs ∈ A) =

∫

A

η21(y)µ(dy) =< η1, 1 >µ

∫

A

η1(y)α(dy).



Quasi-stationary distributions and population processes 393

Proof. Since 1A η1 ∈ L2(µ), thus

η1(x) Qx(Xs ∈ A) =

∫

1A(y) η1(y) e
λ1s r(s,x,y) µ(dy)

converges to η1(x)
∫

B η
2
1(y)µ(dy) as s → +∞, since eλ1sr(s,x,.) converges to

η1(x) η1(.) in L2(dµ).

Remark 8. The stationary measure of the Q-process is absolutely continuous
with respect to α, with Radon-Nikodym derivative < η1, 1 >µ η1.

5.4. The case of a multi-type population

Until now, we have considered a population where all individuals have the same
ecological parameters. This biological assumption corresponds to the case where
individuals have the same type. In this section, we generalize the previous study
to a population composed of k different types. The population size process de-
scribing the dynamics of each subpopulation is given by a k-dimensional stochas-
tic Lotka-Volterra process Z = (Z1

t , . . . , Z
k
t )t≥0 (SLVP), which describes the size

of a k-types density dependent population. This model generalizes to k types
the 2-types density dependent model introduced by Cattiaux and Méléard [14].

More precisely, we consider for i,j ∈ {1, . . . ,k} the coefficients

γi > 0 , ri > 0 ; cij > 0, ∀i,j ∈ {1, . . . ,k}.

The process Z takes its values in (R+)
k and is solution of the stochastic differ-

ential system

dZi
t =

√

γiZi
tdB

i
t + (riZ

i
t −

k
∑

j=1

cijZ
i
tZ

j
t ) dt, (54)

where (Bi)i=1,...,k are independent standard Brownian motions independent of
the initial data Z0. The system (54) can be obtained as (32) as approximation of
renormalized k-types birth and death processes in case of large population and
small life lengths and reproduction times. The coefficients ri are the asymp-
totic growth rates of i-type’s populations. The positive coefficients γi can be
interpreted as demographic parameters describing the ecological timescale. The
coefficient cij , for i,j = 1, . . . ,k, represents the pressure felt by an individual
holding type i from an individual with type j. Intra-specific competition is
modeled by the rates cii, while inter-specific competition is described by the
coefficients cij > 0, i 6= j. If cij = 0 for all i 6= j, the stochastic k-dimensional
process reduces to k independent Feller logistic diffusion processes. Extinction
of the population is modeled by the absorbing state (0, . . . , 0) and the extinction
of the subpopulation of type i is modeled by the absorbing set

Hi = (R∗
+)

i−1 × {0} × (R∗
+)

k−i.
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We denote by D the open subset of Rk defined by D = (R∗
+)

k and by ∂D
its boundary. We denote by T0 the first hitting time of (0, . . . ,0), by TA the
first hitting time of some subset A and thus by T∂D the exit time of D. Of
course, some of these stopping times are comparable. For example if the initial
condition belongs to D,

T∂D ≤ THi
≤ T0, ∀i = 1, . . . , k. (55)

On the other hand, THi
and THj

are not directly comparable for i 6= j.
Let us prove the existence of the SLVP.

Proposition 29. The process (Zt)t is well defined on R+. In addition, for all
x ∈ (R+)

k,
Px(T0 < +∞) = 1

and there exists λ > 0 such that

sup
x∈(R+)k

Ex(e
λT0) < +∞.

Proof. The existence of the SLVP is shown by a comparison argument (cf. Ikeda-
Watanabe [36] Chapter 6 Thm 1.1). Indeed, the coordinates (Zi

t)t can be upper-
bounded by the independent solutions of logistic Feller equations

dY i
t =

√

γiY i
t dB

i
t + (riY

i
t − cii(Y

i
t )

2) dt, (56)

for which we have obtained in the previous section that extinction occurs a.s. in
finite time and that the extinction time has some finite exponential moments.
The almost sure finiteness of each THi

, hence of T∂D and T0, thus follows.

As in the previous sections we are interested in the quasi-stationary distribu-
tions for the process (54). We firstly reduce the problem by a change of variable.

Let us define Xt = (X1
t , . . . , X

k
t ) with X

i
t = 2

√

Zi
t

γi
. We obtain via Itô’s formula

and for any i ∈ {1, . . . ,k},

dX i
t = dBi

t +





riX
i
t

2
−

k
∑

j=1

cijγj X
i
t(X

j
t )

2

8
− 1

2X i
t



 . (57)

In the following, we will focus on the symmetric case where X is a Kolmogorov
diffusion, that is a Brownian motion with a drift in gradient form as

dXt = dBt − ∇V (Xt)dt. (58)

Let us state a necessary and sufficient condition to write the drift of (X) as
in (58). The proof is obtained by computation and requires the equality of the
second order cross-derivatives of V .
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Proposition 30. If the following balance conditions on the ecological parame-
ters are satisfied,

cijγj = cjiγi, ∀i, j, (59)

then the process X is a Kolmogorov process with potential V given by

V (x1, . . . ,xk) =
1

2

k
∑

i=1

(

ln(xi) +
ciiγi(x

i)4

16
− ri(x

i)2

2

)

+
∑

i6=j

cijγj (x
i)2 (xj)2.

We will establish an existence and uniqueness result for the QSD of the
process (Xt). The re-statement of the results for the initial stochastic Lotka-
Volterra process follows immediately, since the hitting time of (0, . . . ,0) and Hi

and the exit time of D are the same for both processes (X) and (Z).
By generalizing to k-types populations the results proved in [14] for two-types

populations (an easy consequence of Girsanov’s theorem), we get

Proposition 31. For all x ∈ D, for all i 6= j,

Px(T∂D = THi∩Hj
) = 0.

Let us now state the first theorem, which is concerned by conditioning on the
co-existence of the k types.

Theorem 32. Under the balance conditions (59), there exists a unique quasi-
stationary distribution ν for the process (X) and the absorbing set ∂D, which
is the quasi-limiting distribution starting from any initial distribution: for any
µ on D and any A ⊂ D,

lim
t→+∞

Pµ(Xt ∈ A|T∂D > t) = ν(A).

Furthermore, there exist λ > 0 and a positive function η such that

lim
t→+∞

eλt Px(Xt ∈ A;T∂D > t) = η(x) ν(A).

Proof. The proof of the existence of a quasi-stationary distribution results from
the spectral theory for the semi-group of the killed process (Pt) (related to X)
established in Cattiaux-Méléard [14], Appendices A, B, C. Define the reference
measure on (R+)

k by

µ(dx1, . . . ,dxk) = e−2V (x) dx1 · · · dxk.

As in Subsection 5.2.2, one builds a self-adjoint operator on L2(µ) which co-
incides with Pt for bounded functions belonging to L2(µ). Its generator L is
self-adjoint on L2(µ) and

Lg =
1

2
∆g − V · ∇g, ∀g ∈ C∞

0 (D).

We check that the assumptions required in [14] Theorem A.4 are satisfied and
therefore, the operator −L is proved to have a purely discrete spectrum of
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non-negative eigenvalues and the smallest one λ is positive. The corresponding
eigenfunction η is proved to be in L1(µ) and the probability measure ν = η dµ∫

D
η dµ

is the Yaglom limit.
Let us emphasize that the uniqueness of the quasi-stationary distribution

results by [14] Proposition B.12 from the ultracontractivity of the semi-group
Pt (ultracontractivity means that Pt maps continuously L2(µ) in L∞(µ) for any
t > 0). The proof of the latter is easily generalized from the two-types case ([14]
Proposition B.14) to the k-types case.

Theorem 32 shows that in some cases, a stabilization of the process with
co-existence of the k types will occur before one of these types disappears. Let
us now come back to our initial question: the long-time behavior of the process
conditioned on non-extinction. For each i = 1, . . . ,k, we denote by λi the smallest
eigenvalue related to the purely discrete spectrum of the generator for the i-axis
diffusion defined by the stochastic differential equation (56).

Theorem 33. Under the balance conditions (59), there exists a Yaglom limit
m for the process (X) conditioned on non extinction: for any x 6= 0, for any
A ⊂ D,

lim
t→+∞

Px(Xt ∈ A|T0 > t) = m(A).

The support of this measure is included in the k axes.
Furthermore, if there exist i1, . . . , il ∈ {1, . . . , k} such that λi1 = · · · =

λil < mini6=i1,...,il λ
i, then this QSD is concentrated on the axes of coordinates

i1, . . . , il.

Proof. Recall that the existence of a Yaglom limit has been proved in the case
k = 1 (Section 5.2). In what follows, we prove by induction the existence of a
Yaglom limit for any k-type system (57).

The induction assumption (Ak−1) is as follows: we assume that, for any
(k − 1)-type Kolmogorov process X(k−1) satisfying (57) with (59), there ex-
ist a constant λ > 0, a uniformly bounded function η > 0 and a probability
measure ν on (R+)

k−1 such that, for any x ∈ (R+)
k−1 \ {0} and any bounded

measurable function f on (R+)k−1 such that f(0) = 0, we have

lim
t→∞

eλt Ex(f(X
(k−1)
t )) = η(x)ν(f);

sup
t≥0, x∈(R∗

+
)k−1

|eλt Ex(f(X
(k−1)
t ))| < +∞.

(60)

As mentioned above, Assumption (A1) is already proved. Let us assume that
(Ak−1) is true and show that (Ak) follows.

Let X(k) be a k-type Kolmogorov process satisfying (57) with (59). Once
hitting the boundary ∂D = ∪k

i=1Hi, the process will no more leave it. Hence,
for t ≥ T∂D, the process will stay on the union of hyperplanes Hi. Moreover,
T∂D = infi=1,...,k THi

. Fix i ∈ {1, . . . , k} and assume that the process leaves D

through Hi. The dynamics on Hi is given by the process (U
(i),j
t )j 6=i defined in
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(R+)
k−1 by:

dU
(i),j
t = dBj

t +





rjU
(i),j
t

2
−

k
∑

ℓ=1,ℓ 6=i

cjℓγj U
(i),j
t (U

(i),ℓ
t )2

8
− 1

2U
(i),j
t



 .

Remark that by Proposition 31, the process really leaves ∂D by the interior
of Hi. Each system (U (i),j)j 6=i is a (k − 1)-type Kolmogorov process (57) with
balance conditions. Hence, by our induction assumption (Ak−1), there exist for
each i ∈ {1, . . . , k} a positive constant vi, a positive function ηi and a probability
measure νi on Hi such that (60) holds for (U (i),j)j 6=i, i ∈ {1, . . . ,k}.

Let us define

vmin = inf
i∈{1,...,k}

vi.

For any bounded measurable function f on (R+)
k such that f(0) = 0 and for

all t ≥ 0, we have

evmintEx

(

f(X
(k)
t )
)

= evmintEx

(

f(X
(k)
t )1T∂D>t

)

+

k
∑

i=1

Ex

(

evmintf(X
(k)
t )1T∂D=THi

≤t

)

, (61)

where we used the fact that X(k) reaches ∂D by hitting the interior of one
and only one Hi. By Theorem 32, there exist a positive constant λ′, a positive
function η′ and a probability measure ν′ on (R∗

+)
k such that

lim
t→+∞

eλ
′tEx

(

f(X
(k)
t )1T∂D>t

)

= η′(x)ν′(f).

Let us prove that λ′ > vmin. Let (Y
1, . . . ,Y k) be the diffusion process defined

by the stochastic differential system

dY 1
t = dB1

t +

(

r1Y
1
t

2
− c11γ1(Y

1
t )

3

8
− 1

2Y 1
t

)

dY j
t = dBj

t +

(

rjY
j
t

2
−

k
∑

ℓ=2

cjℓγj Y
j
t (Y

ℓ
t )

2

8
− 1

2Y j
t

)

, ∀j ∈ {2, . . . ,k}.

An immediate coupling argument leads to X
(k),i
t ≤ Y i

t for any t ≥ 0 and any
i ∈ {1, . . . ,k}. In particular, we have

ev1t Px

(

X(k) reaches ∂D after time t
)

≤ ev1t Px

(

(Y 1, . . . ,Y k) reaches ∂D after time t
)

≤ ev1t Px

(

Y 1 reaches 0 after time t
)

×Px

(

(Y 2, . . . ,Y k) reaches (0, . . . ,0) after time t
)

,
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since Y 1 and (Y 2, . . . ,Y k) are independent. But (Y 2, . . . ,Y k) follows the same
stochastic differential system as U (1), so that ev1t Px((Y

2, . . . ,Y k) reaches 0
after time t) converges to η(x2, . . . ,xk) when t → ∞. Since Px(Y

1 reaches 0
after time t) converges to 0 when t→ ∞, we deduce that

ev1t Px

(

X(k) reaches ∂D after time t
)

−−−→
t→∞

0.

As a consequence, λ′ > v1 and thus λ′ > vmin.
In particular, we deduce that

lim
t→∞

evmintEx

(

f(X
(k)
t )1T∂D>t

)

= 0.

For each i ∈ {1, . . . , k}, we have by the Markov property

Ex

(

evmintf(X
(k)
t ) 1T∂D=THi

≤t

)

= Ex

(

evmint 1T∂D=THi
≤t EXT∂D

(

f(U
(i)
t−T∂D

)
))

= Ex

(

evminT∂D 1T∂D=THi
≤t EXT∂D

(

evmin(t−T∂D)f(U
(i)
t−T∂D

)
))

. (62)

By the induction assumption (Ak−1), e
vmin(t−T∂D)f(U

(i)
t−T∂D

) is uniformly bounded.

Moreover the inequality 0 < vi < λ′ and Proposition 3 ensure that Ex(e
vminT∂D ) <

+∞. Using the convergence property of the induction assumption (Ak−1) and
the dominated convergence theorem, we deduce that

lim
t→∞

Ex

(

evmintf(X
(k)
t )1T∂D=THi

≤t

)

=

{

Ex

(

evminT∂D1T∂D=THi
ηi(XT∂D

)
)

νi(f), if vi = vmin

0, otherwise.

We have then

lim
t→∞

evmintEx(f(X
(k)
t )) =

k
∑

i=1

1vi=vmin
Ex

(

evminT∂D1T∂D=THi
ηi(XT∂D

)
)

νi(f),

which gives us the first part of the induction assumption (Ak).
In order to prove the second part of (Ak), let us introduce the SLVP Y (k)

with coefficients (c′ij) defined by

c′kk = ckk, c
′
ij = cij and c′ki = c′ik = 0, ∀i,j = 1, . . . ,k − 1.

By the same coupling argument as above, the return time to ∂D for X(k) is

stochastically dominated by the return time to ∂D for Y (k), i.e. Px(X
(k)
t ∈

D) ≤ Px(Y
(k)
t ∈ D) for all t ≥ 0.

Since the k − 1 first components of Y (k) are independent of the last one and
since

{Y (k)
t ∈ D} = {(Y (k),1

t , . . . ,Y
(k),k−1
t ) ∈ (R∗

+)
k−1} ∩ {Y (k),k

t ∈ R∗
+},
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we have

Px(Y
(k)
t ∈ D) ≤ Px((Y

(k),1
t , . . . ,Y

(k),k−1
t ) ∈ (R∗

+)
k−1)× Px(Y

(k),k
t ∈ R∗

+).

On the one hand, the dynamic of (Y (k),1, . . . ,Y (k),k−1) is the same as U (k),
so that, by the second part of the induction assumption (Ak−1) and by the
definition of vmin,

sup
t≥0,x∈D

evmintPx((Y
(k),1
t , . . . ,Y

(k),k−1
t ) ∈ (R∗

+)
k−1) < +∞.

On the other hand, Y (k),k is a one dimensional SLVP, thus we deduce from (A1)
that there exists a positive constant λ1 such that

sup
t≥0,x∈D

eλ1tPx(Y
(k),k
t ∈ R∗

+) < +∞.

As a consequence, we have

sup
t≥0,x∈D

e(vmin+λ1)tPx(X
(k)
t ∈ D) ≤ sup

t≥0,x∈D
e(vmin+λ1)tPx(Y

(k)
t ∈ D) < +∞

and we deduce that

sup
x∈D

Ex(e
vminT∂D ) < +∞.

For any bounded measurable function f , this immediately leads us to

sup
t≥0,x∈E

Ex(e
vmint1t<T∂D

f(X
(k)
t )) < +∞.

Moreover, by Equality (62) and the second part of (Ak−1), we deduce that, for
each i ∈ {1, . . . ,k},

sup
t≥0,x∈E

Ex

(

evmintf(X
(k)
t )1T∂D=THi

≤t

)

< +∞.

By Equality (61), the second part of the induction assumption (Ak) is thus
proved.

By induction on k ≥ 1, we conclude that Assumption (Ak) is true for any
k ≥ 1, thus Theorem 33 follows.

Example 5. Let us numerically study a 3-type system and observe its long-time
behavior. The 3-tuple process (Z1, Z2, Z3) evolves as

dZ1
t =

√

γ1Z1
t dB

1
t +

(

r1Z
1
t − c11(Z

1
t )

2 − c12Z
1
tZ

2
t − c13Z

1
t Z

3
t

)

dt,

dZ2
t =

√

γ2Z2
t dB

2
t +

(

r2Z
2
t − c21Z

1
t Z

2
t − c22(Z

2
t )

2 − c23Z
2
t Z

3
t

)

dt,

dZ3
t =

√

γ3Z3
t dB

3
t +

(

r3Z
3
t − c31Z

1
t Z

3
t − c32Z

2
tZ

3
t − c33(Z

3
t )

2
)

dt,
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with

γi = 1, cii = 10, ∀i ∈ {1, 2, 3} and cij = 0.5, ∀ i 6= j ∈ {1, 2, 3},

and
r1 = 1.5, r2 = 1, r3 = 0.5 ; Z1

0 = Z2
0 = Z3

0 = 1.

We describe the dynamics of P(1,1,1)((Z
1
t ,Z

2
t ,Z

3
t ) ∈ · | T0 > t). As explained

above, the process conditioned on non-extinction initially behaves as a 3-type
population. Then a type goes extinct, then a second one and finally there only
remains one type in the population. In order to represent graphically these
transitions, we compute numerically the dynamics of the probabilities of coex-
istence and existence of the different types as functions of time. In Figure 10,
we represent

(a) the probability of coexistence of the three types P(1,1,1)(Z
1
t > 0, Z2

t >
0, Z3

t > 0 | T0 > t);
(b) the probability P(1,1,1)(Z

i
t > 0, Zj

t > 0, Zk
t = 0 | T0 > t) of coexistence of

exactly two types i 6= j, for each combination of types (i,j,k) = (1,2,3),
(i,j,k) = (2,3,1) and (i,j,k) = (1,3,2);

(c) the probability P(1,1,1)(Z
i
t > 0, Zj

t = 0, Zk
t = 0 | T0 > t) of existence of

one and only one type i, for each type i = 1, 2 and 3.

As expected, the 3-type mode disappears quickly and the 2-type modes are
transient. We also observe that the probability P(1,1,1)(Z

1
t > 0, Z2

t = 0, Z3
t =

0 | T0 > t) converges to 1 when t increases, meaning that the last state of the
population before extinction is monotype with type 1. It turns out that the
support of the conditional law P(1,1,1)((Z

1
t ,Z

2
t ,Z

3
t ) ∈ · | T0 > t) becomes more

and more concentrated on R∗
+ × {0} × {0} in the long time. The Yaglom limit

is thus equal to ν1 ⊗ δ(0,0), where ν1 is the Yaglom limit of the process

dZ ′1
t =

√

Z ′1
t dB

1
t +

(

r1Z
′1
t − c11(Z

′1
t )2

)

dt,

absorbed at 0 and is represented in Figure 11.

6. Simulation: the Fleming-Viot system

As seen in the previous sections, the spectral theory is a powerful tool to prove
existence and eventually uniqueness of a QSD for a given process Z. It is based
on the equivalence property of Proposition 4, stating that a probability measure
α on E∗ is a QSD for the killed process Z if and only if

αL = −θ(α)α, (63)

where L denotes the infinitesimal generator of Z and θ(α) a positive constant.
In some cases, such as in the finite state space case, one can easily compute
numerically the whole set of eigenvalues and eigenvectors of L as seen in Ex-
ample 1 and Example 2. For these numerical illustrations, we used the software
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Fig 10. Dynamics of the probabilities of co-existence and existence of the different types for
a 3-type stochastic Lotka-Volterra system. The horizontal axis is the time axis
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Fig 11. First marginal of the Yaglom limit of a 3-type stochastic Lotka-Volterra system. The
two other marginals are equal to the null measure.

SCILAB and its function spec. We also refer to [61] for a detailed description
of some algorithms available in MATLAB for the computation of eigenfunctions
and eigenvalues in large (but finite) state space cases.

In other cases, such as the logistic birth and death process of Section 4 and
the logistic Feller diffusion of Section 5, solving numerically Equation (63) is too
hard and we use a different approach. This approach consists in approximating
the QSD and the conditioned distribution Pz(Zt ∈ .|t < T0) by the empirical
distribution of a simulable interacting particle system. This Fleming-Viot type
system, built for any number of particles N ≥ 2, has been introduced by Burdzy,
Holyst and March [10] and explored in [11] and in Grigorescu-Kang [32] for d-
dimensional killed Brownian motions. It has also been studied in Villemonais [64]
for multi-dimensional diffusion processes with unbounded drifts and a general
result is available in [65]. Similar systems have also been considered by Ferrari-
Maric̀ [23] for continuous Markov chains in a countable state space. In this
section, we explain the approximation method based on the Fleming-Viot type
interacting particle systems.

Let Z be a killed Markov process which evolves in the state space E. Fix
N ≥ 2 and let Z0 ∈ E be its initial value. The interacting particle system
with N particles (Z1, . . . ,ZN) starts from (Z0, . . . ,Z0) and belongs to (E∗)N .
The particles evolve independently from this initial position according to the
law of the killed Markov process Z, until one of them hits the state 0. At that
time τ1, the killed particle jumps to the position at τ1 of one of the N − 1
remaining particles, chosen uniformly among them. Then the particles evolve
independently according to the law of Z until one of them attains 0 (time τ2),
and so on. The sequence of jumps is denoted by (τn)n and we set

τ∞ = lim
n→∞

τn.
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Fig 12. Fleming-Viot type system with two particles absorbed in 0 and 1.

This procedure defines the (E∗)N -valued process (Z1, . . . , ZN ) for all time t ∈ [0,τ∞[.
Figure 12 shows an illustration of such a system with two particles evolving be-
tween their jumps as Markov processes absorbed in 0 and 1.

If τ∞ = +∞ almost surely, then the Fleming-Viot particle system will be
well defined at all time t > 0. The condition τ∞ = +∞ is clearly fulfilled
for continuous time Markov chains with bounded jump rates. In the diffusion
process case, criteria have been provided in [8, 33, 64] and [65].

In that case, denote by µN
t the empirical distribution of (Z1, . . . ,ZN ) at

time t:

µN
t =

1

N

N
∑

i=1

δZi
t
, ∀t ≥ 0.

The following result is obtained in [65] by martingale methods.

Theorem 34. Assume that for all N ≥ 2, (Z1, . . . , ZN ) is well defined at any
time t ≥ 0. Then, for any time t > 0, the sequence of empirical distributions
(µN

t ) converges in law to the conditioned distribution PZ0
(Zt ∈ ·|t < T0), when

N goes to infinity.

If moreover (Z1, . . . , ZN ) is ergodic, we denote by MN its stationary dis-
tribution and by XN its empirical stationary distribution, which is defined by
XN = 1

N

∑N
i=1 δzi , where (z1, . . . ,zN ) ∈ E∗ is a random vector distributed with

respect to MN . In particular, µN
t converges in law to XN when t → ∞. We

refer to [64] for the proof of the following theorem.
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Theorem 35. Assume that Z has a QLD α which attracts all initial distribu-
tions: for any probability measure µ on E∗,

lim
t→+∞

Pµ (Zt ∈ ·|t < T0) = α.

Assume moreover that (Z1, . . . ,ZN ) is ergodic and that the family of laws of
(XN )N≥2 is uniformly tight. Then the sequence of random probability measures
(XN ) converges weakly to α.

If E is a bounded subset of Rd, d ≥ 1, and if Z is a drifted Brownian motion
with bounded drift which is killed at the boundaries of E, then the assumptions
of Theorems 34 and 35 are fulfilled (see [64]). The proofs of Theorems 34 and
35 are based on a coupling argument. More general (but longer) proofs can
also be found in [33] or [65]. In particular, these results provide us a numerical
approximation method of the Yaglom limit for such processes.

Let us now consider the Kolmogorov diffusion process X defined in (40). In
that case, the existence of the Fleming-Viot particle system remains an open
problem because of the unboundedness of the drift coefficient. In order to avoid
this difficulty, we introduce the law Pε of the diffusion process with bounded
coefficients defined by

dXε
t = dBt − q(Xε

t )dt ; X0 ∈ (ε, 1/ε), (64)

killed when it hits ε or 1
ε . One can easily show that at any time t ≥ 0, the

conditioned distribution of Xε converges to the one of X :

Pε
(

Xε
t ∈ ·|t < Tε ∧ T1/ε

)

−−−→
ε→0

P (Xt ∈ ·|t < T0) .

The existence of the Yaglom limit denoted by αǫ and the uniqueness of the
QSD for Pε are obtained from Pinsky [49]. The following approximation result
is proved in [64] using a compactness-uniqueness argument.

Proposition 36. The sequence (αε)ε weakly converges to the Yaglom limit α
of X as ε tends to 0.

For all N ≥ 2, we denote by (Xε,1, . . . , Xε,N) the interacting particle system
built as above, with the law Pǫ. Since the diffusion process Xǫ is a drifted
Brownian motion with bounded drift evolving in the bounded interval ]ǫ,1/ǫ[, the
interacting particle system (Xε,1, . . . , Xε,N) fulfills the assumptions of Theorems
34 and 35. Denoting by µǫ,N the empirical distribution of the simulable particle
system (Xε,1, . . . , Xε,N), we get

lim
ǫ→0

lim
N→∞

µε,N
t = PX0

(Xt ∈ ·|t < T0) , ∀t ≥ 0,

and
lim
ǫ→0

lim
N→∞

lim
t→∞

µε,N
t = lim

ǫ→0
αε = α.

Then, choosing ǫ small enough and N big enough, we get a numerical approxi-
mation method for the conditioned distribution and the Yaglom limit of X .
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Fig 13. The Yaglom limit of the Wright-Fisher diffusion conditioned to be absorbed at 0
obtained by numerical simulation.

Example 6. Let us now develop this simulation method in the case of the
Wright-Fisher diffusion conditioned to be absorbed at 0, which evolves in [0,1[
and is defined by

dZt =
√

Zt(1 − Zt)dBt − Ztdt, Z0 = z ∈]0,1[.

This is a model for a bi-type population in which the second type cannot disap-
pear. In that model, Zt is the proportion of the first type in the population at
time t ≥ 0 and 1−Zt the proportion of the other one. The existence of a Yaglom
limit for this process has been proved by Huillet in [35], which also proved that
it has the density 2− 2x with respect to the Lebesgue measure.

Using the approximation method described above with ǫ = 0.001 and N =
10000, we obtain after a time t = 10 a numerical approximation of the density
of the Yaglom limit for Z represented in Figure 13, which is very close to the
function x 7→ 2− 2x and shows the efficiency of the method.
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