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1. Introduction

1.1. Dependence and memory in time series

Dependence is one of the most fundamental concepts in econometrics, statistics
and probability. Numerous notions of dependence are available in the literature
(see, among others, the reviews in Joe, 1997; Nze and Doukhan, 2004). Moti-
vated, in part, by empirical applications in economics and finance, many works
provide examples of time series and stochastic processes that exhibit dependence
and autocorrelation properties ranging from short to long memory (see, among
others, Cont, 2001, and references therein). Naturally, stationary Markov pro-
cesses are regarded as canonical examples of short memory processes. The value
of such processes at a given time depends only on their value at the previous
period. In addition, the autocorrelation functions of the most commonly used
stationary Markov processes, stationary autoregressive time series, exhibit fast
exponential decline to zero as lags increase. There are several definitions of long
memory and persistence in a time series {Xt} available in the literature. These
definitions differ in measures of dependence between the variables Xt and Xt+h

they are based upon. The most commonly used notions of long memory em-
ploy the standard autocovariance or autocorrelation functions and take their
slow decay to be the defining property of long memory processes (see, among
others, Lo 1991, Baillie 1996, Hosking 1996, Doukhan, Oppenheim and Taqqu
2003 and Appendix A1 for a review of the commonly used definitions of long
memory processes and their properties).

1.2. Copulas in economics and finance

In recent years, a number of studies in economics, finance and econometrics
have argued that the use of (auto)correlations and (auto)covariances is prob-
lematic in many settings, including the departure from Gaussianity and el-
liptic distributions that is common in economic, financial and insurance mar-
ket data (see, among others, Embrechts, Klüppelberg and Mikosch, 1997, Em-
brechts, McNeil and Straumann 2002, McNeil, Frey and Embrechts 2015, Ibrag-
imov, Ibragimov and Walden 2015, and Ibragimov and Prokhorov, 2017). As
discussed in Granger (2003), naturally, since (auto)correlations capture only
linear relationships, they may not be appropriate in describing persistence in
unconditional distributions of time series, that is, persistent relations that are in-
variant under increasing transformations of data. In addition, (auto)correlations
and (auto)covariances are defined only in the case of data with finite sec-
ond moments. Furthermore, their reliable estimation is problematic in the case
of infinite fourth moments (see Davis and Mikosch 1998, Mikosch and Stărică
2000 and the discussion in Cont 2001). At the same time, as discussed in
a number of studies (see Loretan and Phillips, 1994; Cont, 2001; Ibragimov,
2009b; Ibragimov, Jaffee and Walden, 2009, and references therein) heavy-
tailed behavior with infinite fourth moments is present in many financial, in-
surance and economic market data sets and even first moments or variances
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are infinite for certain time series in finance and economics. Several approaches
have been proposed recently to deal with the above problems. One of these
approaches, which is becoming increasingly popular in dependence modeling
and analysis is the one based on copulas. Copulas are (dependence) functions
that allow one, by a famous theorem due to Sklar, to represent a joint dis-
tribution of random variables (r.v.’s) as a function of marginal distributions
(see Joe 1997, Nelsen 1999 and Appendix A2 for the definition of copulas
and a review of their main properties). Copulas, therefore, allow one to sep-
arate the analysis of dependence from the properties of marginals (for instance,
heavy-tailedness and skewness) and to quantify their relative contributions to
a model in consideration. In recent years, copulas and related concepts have
been applied to a wide range of problems in economics, finance, economet-
rics, statistics and probability (see Cherubini, Luciano and Vecchiato 2004, and
references therein, Ibragimov 2009a, de la Peña, Ibragimov and Sharakhmetov
2006, Granger, Teräsvirta and Patton 2006, Hu 2006, Patton 2006 and Lowin
2007, McNeil, Frey and Embrechts 2015, and Ibragimov and Prokhorov, 2017).
Chen and Fan (2004, 2006) consider copula estimation procedures for time-
series based on bivariate copulas and apply the results in the problems of eval-
uating density forecasts. Fermanian, Radulović and Wegkamp (2004) establish
weak convergence of empirical copula processes. Doukhan, Fermanian and Lang
(2004) focus on the analysis of the asymptotics of empirical copula processes for
weakly dependent sequences of random vectors. A number of works have also
focused on dependence characterizations for time series and joint cdf’s (see the
review in Nze and Doukhan 2004, the monographs by Joe 1997 and Nelsen 1999
and the references therein). Darsow, Nguyen and Olsen (1992) obtain charac-
terizations of first-order Markov chains in terms of copula functions correspond-
ing to their bivariate distributions. Ibragimov (2009a) provides extensions of
these characterizations to the case of Markov processes of an arbitrary order
and establishes necessary and sufficient copula-based conditions for (possibly
higher-order) Markov processes to exhibit m−dependence, r−independence or
conditional symmetry. The results in Ibragimov (2009a) are based on general
U−statistics-based representations for joint distributions and copulas of depen-
dent r.v.’s obtained in de la Peña, Ibragimov and Sharakhmetov (2006) (see
Section 1.4).

1.3. Copula-based approaches to long memory

Granger (2003) proposes definitions of long memory and short memory pro-
cesses {Xt}∞t=−∞ using the (copula-linked) Hellinger measure of dependence
H(t, h) = HXt,Xt+h

between the r.v.’s Xt and Xt+h given by relations (33) and
(36) in Appendix A2. He suggests calling a process {Xt} long or short memory
depending on whether, for some constant A > 0,

H(t, h) ∼ Ah−p, h → ∞, (1)
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where p > 0, or H(t, h) = O
[
exp(−Ah)

]
, h → ∞ (as in relations (19) and (21)

in Appendix A1 for the case of autocovariances).1

Granger (2003) further indicates that the difficulty with the above definition
is that it depends on a particular measure of dependence and it has to be shown
that some general rule applies. He also indicates the possibility of using other
measures of dependence and remarks that there seems to be no single measure
that provides a dominant alternative to autocovariances and autocorrelations,
while the measure H has the advantage of simplicity and of having the link to
copulas via relation (36) in Appendix A2.

1.4. Objectives and key results

This paper focuses on the analysis of persistence properties of copula-based time
series. We introduce and compare various definitions of long memory on the level
of copulas (Section 2). In particular, we derive relationships between the com-
monly used measures of dependence and the implied long memory concepts
(Proposition 1). We further present theoretical results that generalize the well-
known autocovariance-based short memory properties of stationary autoregres-
sive processes and show that several widely used copula families, such as Gaus-
sian and Eyraud-Farlie-Gumbel-Morgenstern (EFGM) copulas, always produce
short memory stationary Markov processes (Proposition 2). This is the case in
terms of an exponential decay of both the autocorrelation functions and copula-
based dependence measures. In Section 3 we show via simulations that, in finite
samples, standard methods of inference and estimation for long memory time
series may indicate a spurious long memory-like behavior on the level of copulas
for stationary Markov processes. In particular, the standard estimation methods
applied to Clayton copula-based stationary Markov processes produce the point
estimates ranging from 0.08 to 0.14 for the (spurious) long memory parameter p
in an analogue of characteristic property (1) for the dependence measure based
on the L1−distance to the independence copula (Section 3.5). We further dis-
cuss applications copula-based Markov processes to volatility modeling and the
analysis of nonlinear dependence properties of returns in real financial markets
that provide attractive generalizations of GARCH families of models (Section
4). The constructions and the results obtained in the paper overcome several
technical problems due to complexity of copulas and computations (see Sections
3.1 and 3.2). The methods proposed can also be used in the analysis of a number
of related problems in econometrics and stochastic processes (see the discussion
in Section 5).

The focus of the theoretical part of the paper on the Gaussian and EFGM
copula families is motivated by importance of these classes of dependence func-
tions and corresponding and related distributions (Gaussian and EFGM copulas

1As usual, throughout the paper, for functions g and h, g(x) ∼ h(x) as x → ∞ denotes

that limx→∞
g(x)
h(x)

= 1, and g(x) = O(h(x)) denotes that |g(x)| ≤ A|h(x)| for some constant

A > 0 and all x > x0.
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and distributions, their mixtures and approximations based on them) in copula
theory and many other areas of probability and statistics.

Importance of Gaussian distribution and copula families cannot be overem-
phasized. In particular, as discussed in many works in the literature (see, among
others, Chs. 3 and 10 in McLachlan and Peel, 2000 and Chs. 6 and 8 in Fruhwirth-
Schnatter, 2006), their mixtures can be used to represent a variety of heterogene-
ity and dependence patterns arising in many applications.2 Naturally, Gaussian
copulas and distributions provide a building block for defining tail-dependent
Student-t copula and distribution families and their mixtures (Op. cit.). Many
works in the copula literature focus on the analysis of tail-dependent copula
mixtures, including those that involve Gaussian and related copulas, and their
applications (see, among others, Patton, 2006, and Hu, 2006).

Further, as is shown in Sharakhmetov and Ibragimov (2002) (see also de la
Peña et al., 2006, p. 190), EFGM families can be used to represent any joint
distribution of two-valued random variables. de la Peña et al. (2006) obtain
U−statistic based representations for general multivariate copulas and distri-
butions and apply them to define new wide classes of copulas, including power
copula families. From the results in de la Peña et al. (2006) it follows, essen-
tially, that extensions of EFGM families in the form of expansions by degenerate
U−statistics kernels can be used to represent and approximate any multivari-
ate copulas and joint distributions, including those that exhibit tail dependence
properties important in financial and economic applications. The U−statistic
based characterizations of multivariate distributions and copulas are used in
Ibragimov (2009a) to obtain copula-based representations for general Markov
processes and other time series, characterize their dependence properties and
introduce some new flexible copula classes, such as Fourier copulas.3

Ibragimov and Prokhorov (2016) focus on the analysis of diversification opti-
mality for heavy-tailed risks with dependence in the form of EFGM copulas and
their power copula family extensions (see also Ibragimov et al., 2015, and Ch. 4
in Ibragimov and Prokhorov, 2017). As discussed in Ibragimov and Prokhorov
(2016), EFGM copulas provide first order approximations to Ali-Mikhail-Haq
(AMH), Plackett and Frank copula families (see, e.g., Nelsen, 1999, p. 100,
133). From the approximation results in Nelsen et al. (1997); Cuadras (2009);
Cuadras and Diaz (2012) it follows that power generalizations of the bivariate
EFGM copulas with cubic terms can be used to approximate some well-known
families of copulas such as the copulas of Kimeldorf and Sampson (1975) and
Lin (1987). From the results it also follows that such extensions of the EFGM
copulas are second-degree Maclaurin approximations to members of the Frank
and Plackett copula families. Cuadras (2009) studies the power series class of
copulas, obtained as weighted geometric means of the EFGM and AMH copu-
las, and shows that it provides first-order approximations to Gumbel-Barnett
and Cuadras-Auge copulas. Cuadras and Diaz (2012) provide approximations of
tail-dependent Clayton-Oakes copulas, which also have the form of power-type

2We are grateful to an anonymous referee for these references.
3See also Lowin (2007) for the analysis of properties and applications of Fourier copulas

in finance and economies.
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generalizations of EFGM copulas.
In papers that appeared after an earlier version of this work referred to in

them was prepared for publication, Chen, Wu and Yi (2009) and Beare (2010)
obtain several results on short memory and mixing properties of stationary
copula-based Markov processes that are closely related to those presented in
this paper (see the discussion in Section 5). In particular, among many other re-
sults, Beare (2010) establishes sufficient conditions for short memory properties
of copula-based stationary Markov processes that generalize the results for sta-
tionary Markov time series generated by Gaussian and EFGM copula families
obtained, for the first time, in this work. Beare (2010) also provides numerical
results that suggest exponential decay in mixing coefficients and, thus, also in
copula-based dependence measures between Xt and Xt+h for Clayton copula-
based stationary Markov processes. Chen, Wu and Yi (2009) obtain theoretical
results that show that tail-dependent Clayton, survival Clayton, Gumbel and
t−copulas always generate Markov processes that are geometric ergodic and
hence geometric β−mixing and short memory in any meaningful sense of the
world: In particular, the processes are short memory on the level of copulas.
Given the above subsequent recent results in the literature on short memory
properties of many copula-based time series, the conclusions on a spurious long
memory-like behavior of copula-based stationary Markov processes in finite sam-
ples in this paper further indicate non-robustness of copula-level analogues of
standard procedures for detecting long memory on the level of copulas and em-
phasize the necessity of developing alternative inference methods (see further
discussion in Section 5).

1.5. Organization of the paper

The paper is organized as follows. Section 2 discusses several copula-based def-
initions of long memory processes and relations among them. It also presents
the results on short memory properties of stationary Markov processes based
on widely used Gaussian and EFGM copulas. Section 3 provides numerical re-
sults that indicate that stationary Markov processes, such as those generated
by Clayton copulas, may exhibit a spurious long memory-like behavior on the
level of copulas in finite samples. Section 4 presents empirical applications of
copula-based time series to volatility modeling. Section 5 makes some conclud-
ing remarks. Section 6 contains the proofs of the results derived in the paper.
Appendix A1 reviews definitions of long memory processes based on autocorre-
lation functions. Appendix A2 discusses the definition and main properties of
copula functions, together with their examples. Appendix A3 reviews copula-
based characterizations of Markov processes.

2. Copulas and long and short memory: Definitions and main
properties

The concepts related to copulas and dependence measures dealt with in this
section and throughout the paper are defined in Appendices A2 and A3.
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In order to highlight the main concepts and ideas discussed, we assume
throughout the paper that all copulas, r.v.’s and their distributions considered
are absolutely continuous, if not stated otherwise. These assumptions imply, in
particular, that the copulas corresponding to finite-dimensional distributions of
the processes in consideration are unique (see Proposition 4 in Appendix A2).
However, most of the results discussed in the paper can be extended to the case
of not necessarily absolutely continuous distributions, copulas and processes.

Similar to Granger (2003), it is natural to consider definitions of long and
short memory that involve the speed of decay of dependence measures differ-
ent from the Hellinger distance discussed in Section 1.3. In particular, one can
define long memory in a way analogous to Granger (2003) using the following
measures of dependence between the r.v.’s Xt and Xt+h (see Appendix A2 for
definition and a review): Pearson’s φ2 coefficient φ2

X(t, h) = φ2
Xt,Xt+h

, relative

entropy δX(t, h) = δXt,Xt+h
, general divergence measures Dψ

X(t, h) = Dψ
Xt,Xt+h

,

or measures of dependence based on the distances to the product (indepen-
dence) copula κX(t, h) = κXt,Xt+h

and λ2
X(t, h) = λ2

Xt,Xt+h
. We will say that

a process {Xt}∞t=−∞ exhibits φ2−long memory (resp., φ2−short memory) if,
for some constant A > 0, φ2

X(t, h) = φ2
Xt,Xt+h

∼ Ah−p with p > 0 (resp.,

φ2
X(t, h) = O

[
exp(−Ah)

]
). The notions of δ−, Dψ−, κ− and λ2−long mem-

ory and short memory processes are defined in a similar way. We will refer to
time series {Xt} exhibiting long (short) memory in the sense of the definition
in Granger (2003) as H−long memory (resp., H−short memory) processes.

The following proposition provides several relationships between the measures
of dependence φ2

X,Y , δX,Y , HX,Y , D
ψ
X,Y , κX,Y , λ

2
X,Y , νX,Y and the correlation

coefficient Corr(X,Y ). This proposition holds for r.v.’s X,Y with arbitrary
dependence.

Proposition 1. The following inequalities hold:

δX,Y ≤ ln
(
1 + φ2

X,Y

)
≤ φ2

X,Y , (2)

κX,Y ≤ λX,Y ≤ νX,Y ≤ φX,Y , (3)

HX,Y ≤ (1/2)φX,Y . (4)

If EX2, EY 2 < ∞, then

Corr(X,Y ) ≤ φX,Y . (5)

From Proposition 1 it follows that φ−long memory is not shorter than long
memory in the usual sense (see (19)) or than δ−, κ−, λ−, ν− and H−long
memory. More precisely, if a process {Xt}∞t=−∞ exhibits φ−short memory, than
it is also a δ−, κ−, λ−, ν− and H−short memory process. By (5), provided
EX2

t < ∞, such process also has short memory in the sense of the usual def-
inition with autocovariances exhibiting at most exponential decline in (21). In
addition, if a process {Xt}∞t=−∞ exhibits long memory with hyperbolic decay
for autocovariances in (19) or for one of the measures of dependence δX(t, h),
κX(t, h), λX(t, h), νX(t, h) or HX(t, h) as h → ∞, then the decay of φ2

X(t, h) is
not slower than hyperbolic.
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Remark 1. Evidently, the inequalities in (1) hold as equalities in the case
of independent r.v.’s X,Y , as, under independence, all the dependence mea-
sures δ, φ, κ, λ, ν, H and the correlation Corr (for finite second moments)
equal zero. As follows from Example 1 in the Appendix, for r.v.’s X,Y that
have a Gaussian copula Cρ(u, v) with the correlation parameter ρ, one has
δX,Y = −0.5 ln(1 − ρ2), φ2

X,Y = ρ2/(1 − ρ2). Therefore, interestingly, inequali-
ties (2) also hold as equalities in the limiting case ρ → ±1, that is, in the case
of comonotonic/countermonotonic r.v.’s X,Y with perfect positive/negative de-
pendence.

In what follows, we refer to the processes {Xt}∞t=1 constructed via (53) in Ap-
pendix A3 as stationary Markov processes based on the copula C or as C−based
stationary Markov processes for short.4 Under stationarity, the measures of de-
pendence between the r.v.’s Xt and Xt+h considered above are independent of
t and will be denoted, in what follows, by φ2

X(h) = φ2
Xt,Xt+h

, δX(h) = δXt,Xt+h
,

κX(h) = κXt,Xt+h
, λ2

X(h) = λ2
Xt,Xt+h

, HX(h) = HXt,Xt+h
, νX(h) = νXt,Xt+h

and γ(h) = Cov(Xt, Xt+h) (as usual, we assume finiteness of the second mo-
ments whenever the covariance or correlation are used as a measure of depen-
dence). In what follows, for two r.v.’s X and Y , the notation X =d Y means
that their (one-dimensional) distributions are the same.

The following proposition justifies, in part, the definitions of short memory
processes proposed in Granger (2003) and in the above discussion and shows that
all stationary Markov processes based on Gaussian or EFGM copulas CG

ρ (u, v),

CEFGM
α (u, v) in (29), (31) exhibit short memory regardless of what dependence

measure (φ2, δ, κ, λ2, H, ν or the covariance γ) is used in their definition.

Proposition 2. Let {Xt}∞t=1 be a stationary Markov process based on a Gaus-
sian copula CG

ρ (u, v) with the correlation coefficient ρ or on an EFGM copula

CEFGM
α (u, v) with the parameter α. Then the process exhibits short memory in

the sense that its measures of dependence satisfy, for some constant A > 0,

φ2
X(h), δX(h), κX(h), λ2

X(h), HX(h), νX(h), γX(h) = O
[
exp(−Ah)

]
(6)

as h → ∞.

Remark 2. According to Proposition 2, Gaussian and EFGM copulas cannot be
used to construct long memory copula-based stationary Markov processes. This
complements the impossibility/reduction results in Ibragimov (2009a) who shows
that stationary k−th order Markov processes cannot exhibit m−dependence or
k−independence if they are based on Gaussian, Student-t (see relation (30)) or
EFGM-type copulas that involve products of functions of their arguments. The
proposition also complements the results in Cambanis (1991) that demonstrate
that constant, exponential and m−dependence cannot be exhibited by stationary
processes {Xt} whose finite-dimensional copulas are multivariate analogues of
bivariate EFGM copulas (see the discussion in Ibragimov, 2009a).

4Throughout the paper, stationarity refers to strict stationarity.
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Let, for a copula C(u, v), C̃(u, v) = u+v−1+C(1−u, 1−v) denote its survival
copula (see Nelsen, 1999, and McNeil, Frey and Embrechts, 2015). From the
following proposition it follows that the short (long) memory properties of C−
and C̃−based stationary Markov processes are the same. Similar to Proposition
1, this proposition holds for any copula and dependence structures.

Proposition 3. Let {Xt} be a C−based stationary Markov process and let {X̃t}
be a stationary Markov process based on the survival copula C̃(u, v) of C. The

measures of dependence of the processes {Xt} and {X̃t} are the same: φ2
X(h) =

φ2
X̃
(h), δX(h) = δX̃(h), κX(h) = κX̃(h), λ2

X(h) = λ2
X̃
(h), HX(h) = HX̃(h) and

νX(h) = νX̃(h). In particular, the process {Xt} exhibits long (short) memory
in the sense of hyperbolic (resp., at most exponential) decay of the measures of
dependence φ2

X(h), δX(h), κX(h), λ2
X(h), HX(h) or νX(h) to zero as h → ∞ if

and only if the same holds for the process {X̃t}.
The next section shows that stationary Markov processes, such as those gen-

erated by Clayton copulas, may exhibit a spurious long memory-like behavior
on copula level in finite samples, as indicated by standard inference and esti-
mation methods for long memory time series. In what follows, we choose to use
κ(h) = κXt,Xt+h

as the measure of copula dependence for two reasons. First, it
is more intuitive than divergence measures (where the choice of specific func-
tional form is not trivial). Second, compared to λ2(h) and to ν(h), the measure
κ(h) introduces less numerical error when using the grid approximation. Last
and most important, it follows from Proposition 1 that, for example, φ−long
memory is not shorter than κ−long memory and similar conclusions hold for
δ−, λ− and ν− long memory.

3. Copula-based persistent long memory-like processes:
Construction

3.1. Empirical problems

Despite their theoretical appeal, applications of copulas to construction of Markov
time series context run into serious problems. In particular, given C(u, v) :=
Ct,t+1 (u, v), the copula between Xt and Xt+1, evaluation of Ct,t+h (u, v) is ex-
tremely difficult due to the presence of nested integrals in the expression for
Ct,t+h (u, v) implied by iterations on relation (52), with the complexity increas-
ing as the time lag h increases. For example, Ct,t+2 (u, v) and Ct,t+3 (u, v) are
given by

Ct,t+2 (u, v) =

∫ 1

0

∂Ct,t+1 (u, t)

∂t

∂Ct+1,t+2 (t, v)

∂t
dt (7)

=

∫ 1

0

∂C (u, t)

∂t

∂C (t, v)

∂t
dt, (8)

Ct,t+3 (u, v) =

∫ 1

0

∂Ct,t+2 (s, v)

∂s

∂Ct+2,t+3 (u, s)

∂s
ds (9)
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=

∫ 1

0

∂C (u, s)

∂s

∂Ct,t+2 (s, v)

∂s
ds

=

∫ 1

0

∫ 1

0

∂C (u, s)

∂s

∂2C (s, t)

∂s∂t

∂C (t, v)

∂t
dtds. (10)

Analytical evaluation of these integrals when Ct,t+1 (u, v) is, for example, the
Clayton, or any other non-product copula, is usually impossible while numerical
approximation of these integrals will also fail after two or three lags, even with
very low accuracy. Moreover, the use of higher (than one) order Markov models
will make the evaluation of Ct,t+h (u, v) even more complicated, making the
use of copulas in a Markov time series context problematic in any real world
application.

3.2. Discretization method

We propose to overcome the problems discussed in Section 3.1 by introducing
a copula discretization method where the copula is redefined as a grid which is
then used to approximate the partial derivatives and definite integrals in equa-
tion (8). This method has three important advantages. First, it allows for the
reasonably fast evaluation of Ct,t+h (u, v), thus opening the way for meaningful
empirical applications of copula models to time series. Below, we provide the
results for calibrated copulas with h up to 50th lag. We also propose a method
to increase the estimation speed in applications with large h (h greater than
50). Second, under the proposed discretization method, the numerical complex-
ity of Ct,t+h (u, v) no longer increases with h but remains constant at the level
implied by the chosen accuracy. This allows one to evaluate the time necessary
for the evaluation of Ct,t+h (u, v) so that the accuracy can be chosen given the
time constraints of the application. Moreover, the discretization makes it pos-
sible to evaluate numerically functionals of the copula, including dependence
measures like φ2 (C) , κ (C) , λ (C) , δ (C) , H (C) and ν(C). Last but not least,
the discretization method can be directly applied to any parametric and non-
parametric copulas and easily generalized to higher-order Markov copula mod-
els.

The discretization method works as follows. We start with the copula
C(u, v) := Ct,t+1 (u, v), describing the dependence between the r.v.’s Xt and
Xt+1. This may be a copula with a simple parametric closed form (an “explicit”

copula), for example, the Clayton copula CClayton,θ (u, v) =
(
u−θ + v−θ − 1

)− 1
θ

in (26) or a copula with a more complicated form obtained via inversion method
discussed in Appendix A2 (an “implicit” copula), like a Gaussian or a t−copula
in (29) and (30).5 We evaluate the two partial derivatives

∂Ct,t+1 (u, v)

∂u

5The use of the terms “explicit” and “implicit” for the considered classes of copulas follows
that in Ch. 5 in McNeil, Frey and Embrechts (2015).
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∂Ct,t+1 (u, v)

∂v
,

analytically in the case of an explicit copula, or by the grid method presented
below for an implicit copula. Then we use

Ct,t+2 (u, v) =

∫ 1

0

∂C (u,w)

∂w

∂Ct,t+1 (w, v)

∂w
dw. (11)

to define CGrid
t,t+2 by calculating Ct,t+2 (u, v) on a M × M grid, where M is the

number of grid points and where the integral in equation (11) is evaluated
numerically given (u, v). The grid CGrid

t,t+2 is anM×M matrix whose (i, j) element
gives the probability

P

(
FXt (xt) ≤

i

M
, FXt+2 (xt+2) ≤

j

M

)
= P

(
U ≤ i

M
, V ≤ j

M

)
,

where
(

i
M , j

M

)
∈ [0, 1]

2
. Then, given CGrid

t,t+2, we use

Ct,t+3 (u, v) =

∫ 1

0

∂C (u,w)

∂w

∂Ct,t+2 (w, v)

∂w
dw, (12)

to create CGrid
t,t+3. The partial derivative in equation (12) is approximated using

the CGrid
t,t+2 grid, namely by

∂Ct,t+2 (w, v)

∂w
= lim

δ→0

Ct,t+2 (w + δ, v)− Ct,t+2 (w, v)

δ

≈
CGrid

t,t+2

(
i+ 1

M , j
)
− CGrid

t,t+2 (i, j)
1
M

.

We then iterate up to the required time lag h to get Ct,t+h. Finally, in order
to calculate, for example, κ (h), the distance of Ct,t+h from the independence
copula we numerically approximate the double integral

κ (h) =

∫ 1

0

∫ 1

0

|Ct,t+h (u, v)− uv| dudv,

using the CGrid
t,t+h, namely by

κ (h) =
1

M2

M∑
i=1

M∑
j=1

∣∣∣∣Ct,t+h

(
i

M
,
j

M

)
− i× j

M2

∣∣∣∣
=

1

M2

M∑
i=1

M∑
j=1

∣∣∣∣CGrid
t,t+h (i, j)−

i× j

M2

∣∣∣∣ .
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3.3. Clayton copula-based stationary Markov process

Using the discretization method we start with the Clayton copula Ct,t+1 (u, v)
and we then calculate the implied copulas Ct,t+s (u, v), s = 1, .., h, copulas
(as captured by the CGrid

t,t+s grids) for a number of different values of θ. We
numerically evaluate the distance κ(h) for h = 1, .., 50 and report the results
below. The numerical results indicate spurious slow decrease in κ(h) as the time
lag h increases, pointing out to a spurious κ−long memory-like behavior of the
copula-based time series considered in finite samples.

Since we are approximating each copula using a finite M × M grid, error
is inevitably introduced in our estimates. This error cumulates as the time lag
increases, hence a larger number of grid points is required the larger the number
of time lags h. Figure 1 shows how the cumulated error affects κ(h), the distance
from the independence copula for the first ten time lags. We see that the error
can cause κ(h) to spuriously increase with h, as for M = 10 toM = 50, although
in the latter case the increase happens at a higher lag. We also see that M ≈ 100
produces reasonably accurate results for the first 10 − 20 lags. Similar results
hold for θ = 100 and θ = 130 and a higher number of lags, summarized in
Figure 2. Moreover, since higher θ means that Ct,t+1 is closer to the upper
Fréchet-Hoeffding bound C(u, v) in (25) giving the measure κ(h) bound of 1

12
and thus the error is comparatively smaller, the grid approximation works better
for higher h. This is evident in Figure 3 where we keep the number of grid points
constant and alter h for the first ten time lags.

Fig 1. The measure κ(h) (OY axis) as function of lag h (OX axis): fixed θ = 10 and the
increasing number of grid points M = 10, 20, 30, 50, 100, 150, 200.
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Fig 2. The measure κ(h) (OY axis) as a function of lag h (OX axis): θ = 100, 130 and the
number of grid points M = 75, 100, 150, 175, 200.

Fig 3. The measure κ(h) (OY axis) as a function of lag h (OX axis): θ = 1, 5, 50 and the
fixed number of grid points M = 75.

3.4. Tail dependence coefficient

The grid approximation for Ct,t+s (u, v), s = 1, .., h, has the advantage that we
can also use the estimated grids to fit parametric copulas at each time lag. We
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can thus approximate the grids by fitting the Clayton copulas at each lag and
then infer the parameters θ and the implied coefficients of lower tail dependence
for the copulas given by λL = 2−1/θ (see McNeil, Frey and Embrechts, 2015). 6 7

This method can be applied to increase the calibration speed in applications with
large h, by having a increasing number of grid pointsM and periodically refitting
the Clayton at each increase of M . Actually, the tail dependence coefficients can
be more accurately estimated for a given copula C directly from the grid, namely
by approximating

λL = lim
q→0+

C (q, q)

q
,

for the coefficient of lower tail dependence and

λU = lim
q→1−

C̃ (q, q)

q
,

for the coefficient of upper tail dependence, where, as in Section 2, C̃ is the
survival copula of C. Using this method, we present in Figure 4 the decay of
the estimated coefficient of lower tail dependence λL for the first 20 lags. We
see that tail dependence decrease fast and essentially disappears after the 10th

lag.

Fig 4. The coefficient of lower tail dependence λ(h) (OY axis) as a function of lag h (OX
axis).

6The coefficient of upper tail dependence is zero for Clayton family: λU = 0.
7An alternative method would be to fit flexible mixture copulas at each lag.
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3.5. Spurious long memory-like behavior in finite samples

Similar to the preceding sections, we start with the Clayton copula Ct,t+1 (u, v),
calculate the implied copulas Ct,t+h (u, v) and numerically evaluate the cor-
responding distances κ(h) for h = 1, .., 54 using the discretization method as
described in Sections 3.2-3.4. To obtain estimates of the parameter p in the
following characteristic long memory relation given by an analogue of (1):

κ(h) ∼ Ah−p, (13)

we use a grid of M = 200 points and Clayton copula parameter θ = 10 and use
the standard estimation approach where the logarithm of the left-hand side of
(13) is regressed on the logarithm of its right-hand side for h = 1, ..., 59. The
results are as follows (the OLS standard errors are in parentheses):

ln[k(h)] = − 2.428 − 0.136 ln(h), R2 = 0.96.

(0.013) (0.004) (14)

Thus, the estimate of the parameter p ≈ 0.136 indicates (spurious) slow decay
of the distances κ(h) to zero at commonly used lag numbers. Since we are
particularly interested in the behavior of the distances κ(h) as the lag length
h increases we also calculate three more regressions, this time using truncated
samples, in which we drop the first 10, 20 and 30 observations respectively
in order to decrease the effect of the first few lags. The resulting estimates
for the parameter p are as follows (standard errors and R2 in parentheses):
0.159 (0.005, 0.96), 0.129 (0.007, 0.90), 0.077 (0.008, 0.79).

As discussed in the introduction and Section 5, Chen, Wu and Yi (2009) (see
also Beare, 2010) show that Clayton copulas always generate stationary Markov
processes that are geometrically ergodic and thus, geometrically β−mixing and
short memory on the level of copulas (in particular, κ−short memory). These
properties imply that the long memory-like behavior of Clayton copula-based
stationary Markov processes in finite samples in the above numerical results
is indeed spurious. This, in particular, points out to potential non-robustness
of copula-level analogues of standard procedures for detecting long memory
and emphasize the necessity of developing alternative inference methods. In
particular, the estimates of the parameter p obtained using (14) imply that such
procedures applied for commonly used lag numbers may lead to a conclusion
on long memory on the level of copulas despite the series in consideration being
weakly dependent, as follows from the results in Beare (2010) and Chen, Wu
and Yi (2009).

4. An empirical application: Volatility modeling using copulas

We apply the copula-based first-order Markov model to capturing the depen-
dence structure of squared returns. This is motivated by the autoregressive
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representation of the GARCH family of models, for which the squared resid-
ual process is ARMA with a martingale difference series innovation. Other au-
thors have already drawn on such squared residuals structures to extend the
usual GARCH models; Drost and Nijman (1993) introduced the class of weak
GARCH models, captured by a weak white noise innovation ARMA structure
for squared residuals, and showed that (unlike usual GARCH) are closed under
temporal dependence. Similarly, Meddahi and Renault (2004) built on this idea
to introduce the class of square-root stochastic autoregressive volatility models,
characterized by the autoregressive structure of the residuals and overcoming
important empirical limitations, inference difficulties and limiting symmetry as-
sumptions of the weak GARCH class approach.

Here we focus on a simple, zero mean, ARCH(1) model, for which

rt = εt, σ
2
t = ω + αε2t−1

εt = σtet, et
i.i.d.
˜ N (0, 1) ,

where rt is the asset return, σ2
t is the t − 1 conditional variance, ω > 0 and

0 < α < 1. This can be expressed as

r2t = ω + αr2t−1 + vt,

where vt, the volatility surprise, is a martingale difference series. Taking expec-
tations8 conditional on t− 1 we obtain σ2

t , the t− 1 conditional variance.
Abstracting from any time variation in the mean, the building block of our

model is the copula between r2t and r2t−1. For instance, using the Clayton copula
we assume that

Cr2t ,r
2
t−1

(u, v) = Clayton (θ)

σ2
t = E

(
r2t |r2t−1

)
,

plus some appropriate marginals r2t , r
2
t−1. This setup, is fundamentally different

from a standard ARCH specification (where the marginal distributions are a
byproduct of the conditionally normal distributions) and has several important
advantages. It generalizes the ARCH model by keeping the Markov property
for the stationary process of squared returns, but allowing for a non additive-
linear dependence structure between r2t and r2t−1, .., r

2
t−k, as captured by any

copula. Since we only consider here first-order Markov processes the results
are directly comparable to an ARCH(1), yet easily extendable to an ARCH(p)
setting using generalizations of copula-based characterizations of higher order
Markov processes in Ibragimov (2009a). Standard GARCH processes exhibit
short memory, regardless of their order. Short memory behavior of GARCH is
also obvious from their ARMA characterization, which contradicts the empirical
stylized fact of long memory of squared returns. In fact, a number of authors, in-
cluding Bollerslev and Mikkelsen (1996), Comte and Renault (1998) and Robin-
son and Zaffaroni (1998), among others, have discussed methods to introduce

8These are assumed to exist.
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long memory in a GARCH or a stochastic volatility option pricing setting. The
approach to volatility modeling based on copulas introduces another potential
way to model nonlinear dependence in financial returns. The proposed mod-
els, in particular, seamlessly allows for the calculation of descriptive quantities
other than the conditional variance, for example higher conditional moments,
tail dependence coefficients, quantiles or other descriptive statistics of interest.

We use demeaned Microsoft daily log-returns for the period 1997-2000 which
is the data set used by McNeil et. al. (2005) to fit a GARCH(1,1) model9. McNeil
et al. (2005) report that although the raw returns show no evidence of auto-
correlation their absolute values and squares show significant serial correlation
until the 19th lag, as illustrated in Figure 5.

Fig 5. Microsoft log returns 1997-2000; autocorrelation functions of raw, absolute and squared
log-returns.

Consistency and asymptotic normality of the semiparametric estimators of
the parameters of Clayton copulas and Clayton survival copulas in the models
considered below follows from Propositions 4.2 and 4.3 in Chen and Fan (2006),
the results in Chen, Wu and Yi (2009) that show that stationary Markov pro-
cesses based on Clayton and Clayton survival copulas are β−mixing with ex-
ponential decay rates (see Theorem 2.1 and Remark 2.2 in Chen, Wu and Yi

9We thank Alexander McNeil for providing the data. During this time the stock splits
twice and for these dates we use CRSP simple return instead of logreturn.
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2009 and the discussion in Section 5 in this paper) and Section 5.3 in Chen and
Fan (2006) that verifies the remaining conditions in Propositions 4.2 and 4.3 for
Clayton copulas (verification of these conditions for Clayton survival copulas is
similar).

The GARCH model assumes that the distribution of rt conditional on rt−1

rt|rt−1˜N
(
0, σ2

t

)
,

and hence that rt follows a fat tailed mixture of normals. Here we instead explic-
itly describe the marginal distributions of the squared returns r2t , r

2
t−1, using the

Weibull distribution. The Weibull is one of many candidate distributions such
as, for example, the lognormal or the gamma laws as was chosen using a like-
lihood ratio test. (Choice of alternative distributions for r2t does not alter our
results).

We consider mainly two copulas as candidates for the dependence of squared
returns, the Clayton copula and the Clayton survival copula and fit the non-
parametrically derived quantile sample to estimate their dependence parame-
ters. We expect that the Clayton survival copula will be more appropriate for
capturing the dependence of squared returns than the Clayton copula because
the former allows for upper tail dependence (and hence volatility clustering)
while the latter for lower tail dependence. Upper tail dependence is also possible
using the Gumbel copula so estimates for the Gumbel copula are also provided
as a benchmark case. Figure 6 shows the densities of the three copulas.

To calculate the conditional volatility σt in copula models we use

σ2
t+1 = E

(
r2t+1|r2t

)
=

∫ ∞

0

r2t+1

f
(
r2t+1, r

2
t

)
f (r2t )

dr2t+1

=

∫ ∞

0

r2t+1c
(
F
(
r2t+1

)
, F

(
r2t
))

f
(
r2t+1

)
dr2t+1, (15)

where c (u, v) is the copula density and F
(
r2t+1

)
and f

(
r2t+1

)
are the kernel or

parametrically estimated cumulative and probability density functions respec-
tively. Since Weibull densities are used the asymptotic theory of Chen and Fan
(2006) for conditional moments cannot be applied but the volatility estimates
are still consistent.

Example 3. (Independence) If Cr2t ,r
2
t−1

(u, v) = uv then

σ2
t+1 = E

(
r2t+1|r2t

)
=

∫ ∞

0

r2t+1

f
(
r2t+1, r

2
t

)
f (r2t )

dr2t+1

=

∫ ∞

0

r2t+1f
(
r2t+1

)
dr2t+1

= σ2,

no matter what the value of r2t is.
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Fig 6. Copula Densities.

Therefore, the intuitive explanation of (15) is that the copula reweighs the
values of r2t+1 according to the realized r2t . We can actually calculate and draw
the distribution of weights given r2t , an example of which is shown in Figure 7.
We see that a higher theta (i.e. higher dependence) makes the distribution of
weights more centered around the r2t value on which we have conditioned

We estimate the conditional volatility using the Clayton, Clayton survival
and Gumbel copulas whose parameters have in turn been estimated using max-
imum likelihood. The results show that, as expected, the Clayton copula per-
forms poorly in capturing the dependence structure of square returns (see Fig-
ure 8) since it results in an estimated volatility time series that looks like white
noise around the unconditional level. Moreover, as Figure 9 shows, the ACF of
the devolatilized data using the Clayton copula shows little improvement over
that of the original data. Intuitively, this is because -due to lack of upper tail
dependence- high volatility today does not mean high volatility tomorrow for
the Clayton copula model.

As a benchmark against which to compare first order Markov copula models,
Figures 10 and 11 show the ACF of the devolatilized returns and the estimated
volatility time series for an ARCH(1) model. Compared to the Clayton copula
model we can see that the simple ARCH(1) creates a much more realistic time
series of estimated volatilities and an improvement in the ACF of devolatilized
returns.
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Fig 7. Conditional Clayton distribution of weights.

The time series of estimated conditional standard deviations for the Clayton
survival copula and the corresponding ACF for devolatilized data are shown in
Figures 12 and 13. Comparing with the autocorrelation functions of the orig-
inal data and of the devolatilized data using ARCH(1) model we see that the
Clayton survival copula performs very well. One of the main conclusion is that
the Clayton copula almost reduces to zero the first order autocorrelation of the
devolatilized data that provides the benchmark for comparison of first order
Markov processes (see Figure 13): the magnitude of the first order autocorrela-
tion for the fitted Clayton survival copula-based Markov process in Figure 13
is much smaller than that for the ARCH(1) case in Figure 10. In addition, as
is seen in Figure 12, the fitted survival Clayton copula-based Markov process
creates a convincing estimated volatility time series.

However, the need for a model with a longer lag is evident by the significant
autocorrelations of lags higher than one in the ARCH case and all copula models
considered. Similar results follow from estimating the Gumbel copula, shown in
Figures 14 and 15. According to the results in this section and the paper, despite
these shortcomings, one of the main advantages of the copula-based approaches
to volatility modeling is that such copula-based models, in contrast to GARCH-
type processes, allow one to separate the analysis of marginal and dependence
properties of time series dealt with.

In lack of a formal statistical test it is hard to compare the Clayton survival
model to the ARCH(1) and, therefore, developing such a test is a definite direc-
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Fig 8. Microsoft log returns 1997-2000; Conditional standard deviation estimated from the
fitted Clayton copula-based Markov process

tion for future work. Moreover, a straightforward extension of the copula model
is to estimate time varying higher moments, such as for example the conditional
kurtosis of the returns in order to model potential “hetero-kurtosis” of asset
returns. Since squaring the square returns is an increasing transformation the
copula parameter does not change and only the margins need to be estimated
again. The estimated conditional kurtosis is shown in Figure 16 and exhibits a
structure similar to the estimated conditional volatility.

5. Conclusion

Theory and applications of copulas and long range dependence are now well-
developed in economics, econometrics, statistics and probability. However, only
recently these concepts started to intersect in the literature, with copula-based
definitions of long memory introduced by Granger (2003). In this paper, we
provide an analysis of relations between different concepts of long memory, in-
cluding those based on autocorrelations and copula functions. The theoretical
results obtained in the paper demonstrate that Gaussian and Eyraud-Farlie-
Gumbel-Morgenstern copulas always produce short memory stationary Markov
processes. We further show via simulations that, on the other hand, Clayton
copula-based stationary Markov processes may exhibit a spurious long memory-
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Fig 9. Microsoft log returns 1997-2000; autocorrelation function of devolatilized data using
the Clayton copula

like behavior on the level of copulas in finite samples, as indicated by standard
inference and estimation methods for long memory time series. We also discuss
applications of copula-based Markov processes to volatility modeling and the
analysis of nonlinear dependence properties of returns in real financial markets
that provide attractive generalizations of GARCH models.

The results presented in the paper overcome several technical and computa-
tional difficulties that have so far hindered empirical applications of copula mod-
els to time series modeling. These constructions and the methods proposed can
be used in the study of several related problems in econometrics, statistics and
probability. This includes the analysis of properties of copula-based higher-order
Markov processes, applications of various copula families in volatility modeling
using copula-based processes and computations involving copula-based time se-
ries. In addition, the copula-based modeling may be perspective in empirical
applications by providing parsimonious alternatives with a simple low-order
Markovian structure and fewer parameters to higher-order GARCH models and
their analogues.

As discussed in the introduction, in recent papers that appeared after an
earlier version of this work referred to in them was prepared for publication,
Beare (2010) and Chen, Wu and Yi (2009) obtained several results on short
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Fig 10. Microsoft log returns 1997-2000; autocorrelation function of devolatilized data using
an ARCH(1)

memory and mixing properties of stationary copula-based Markov processes
that are closely related to those presented in this paper. For a copula C :
[0, 1]2 → [0, 1] denote by �(C) the maximal correlation coefficient of C : �(C) =
supg,h Corr(g(U), h(V )), where the supremum is taken over all square inte-
grable functions g, h : [0, 1] → [0, 1], and U, V are r.v.’s with the joint cdf C (see
Definition 1). The results in Beare (2010) provide generalizations of Proposi-
tion 2 that imply that (6) holds for the C−based stationary Markov processes
{Xt} if C is symmetric and absolutely continuous with square integrable den-
sity c and �(C) < 1 (as is shown in Beare 2010, square integrability of c rules
out copulas C that exhibit lower or upper tail dependence, such as Clayton,
Clayton survival or Gumbel copulas). Since, as is discussed in Beare (2010),
α− and β−mixing coefficients αX(h) and βX(h) corresponding to {Xt} satisfy
κX(h) ≤ αX(h) ≤ βX(h) ≤ 1/2φX(h), this implies, in particular, that, under
the same conditions, {Xt} exhibits α− and β−mixing with exponential decay
rates. As follows from Lancaster (1957), �(C) = ρ for the Gaussian copula
CG

ρ (u, v) (see also Kendall and Stuart, 1973, pp. 599-600). Inequality (16) with
G(x, y) = g(x)h(y) implies that, for any copula C : [0, 1]2 → [0, 1], �(C) ≤ φ(C).
Thus, for the EFGM copula CEFGM

α (u, v) one has, by (47), �(C) ≤ 1/3. These
inequalities for Gaussian and EFGM copulas imply (6) (see also Remark 3.8
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Fig 11. Microsoft log returns 1997-2000; Conditional standard deviation estimated from an
ARCH(1)

in Beare 2010 on implications for mixing properties of stationary Markov pro-
cesses generated by Gaussian and EFGM copulas). Beare (2010) further shows
that a stationary C−based Markov process {Xt} with �(C) < 1 has exponential
decay rate for ρ−mixing coefficients ρX(h) that implies, together with the in-
equalities κX(h) ≤ αX(h) ≤ 1/4ρX(h), the exponential decay in the coefficients
κX(h) and αX(h). Beare (2010) also provides numerical results that suggest ex-
ponential decay in β−mixing coefficients and, thus, also in α−mixing and κ(h)
coefficients of Clayton copula-based stationary Markov processes. Chen, Wu and
Yi (2009) obtain theoretical results that show that tail-dependent Clayton, sur-
vival Clayton, Gumbel and t−copulas always generate Markov processes that
are geometric ergodic and hence geometric β−mixing and short memory on the
level of copulas (in particular, κ−short memory).

From the theoretical results in this paper and in Chen, Wu and Yi (2009)
it thus follows that short-memory obtains both for Markov processes generated
by both tail-independent (Gaussian or EFGM) copulas as in this work and also
those generated by tail-dependent (e.g., Clayton, Gumbel and t−) copulas. The
numerical results in this paper demonstrate that, on the other hand, standard
inference and estimation methods for long memory time series may indicate
a spurious long memory-like behavior in stationary copula-based Markov pro-
cesses in finite samples. The conclusions in Chen, Wu and Yi (2009), together
with the results presented in this paper, thus further indicate non-robustness
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Fig 12. Microsoft log returns 1997-2000; Conditional standard deviation estimated from the
fitted Clayton survival copula-based Markov process

of the copula-level analogues of standard procedures for detecting long mem-
ory: The inference approaches may lead to a conclusion on persistence on the
level of copulas despite the series in consideration being weakly dependent. As
discussed throughout the paper, this emphasizes importance of development of
robust methods for differentiating short and long memory in copula-based time
series. This important problem and other questions discussed in this section are
left for further research.

The numerical results in this paper demonstrate that spurious long memory-
like behavior (indicated by standard inference methods) may be exhibited by
(short-memory) Markov processes generated by tail-dependent (e.g., Clayton)
copulas. In subsequent research, it may be of interest to explore whether a sim-
ilar spurious long memory-like behavior is also indicated by standard inference
approaches even in the case of Markov processes generated by tail-independent
(e.g., EFGM or Gaussian) copula classes.

Typically, applications of volatility dynamics models in risk management and
finance mostly focus on downfalls in financial markets and negative extreme
movements of financial returns. Such applications may thus be naturally based
on Clayton, survival Clayton and Gumbel copulas that exhibit one (e.g., lower)
type of tail dependence. At the same time, motivated by the presence of clusters
of both upward and lower extreme movements of financial returns and other
time series in economic and financial markets, it would also be of interest to
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Fig 13. Microsoft log returns 1997-2000; autocorrelation function of devolatilized data using
the Clayton survival copula

consider extensions of copula-based models for volatility dynamics in the paper
to the case of copulas that exhibit both upper- and lower tail dependence such
as symmetrized Joe-Clayton copulas dealt with in Patton (2006) or t−copulas.
These and other extensions of the results in the paper are currently under way
by the authors and co-authors.

6. Proofs

Proof of Proposition 1. Relation (2) follows from more general results in The-
orem 7.1 in de la Peña, Ibragimov and Sharakhmetov (2006). According to
inequality (7.7) in de la Peña, Ibragimov and Sharakhmetov (2006), for any
Borel measurable function G : R2 → R, provided the expectations are finite,

EG(X,Y ) ≤ EG(ξ, η) + φX,Y

(
EG2(ξ, η)

)1/2
, (16)

where, as in Proposition 6, ξ, η are independent copies ofX,Y : ξ =d X, η =d Y .
Taking in (16) G(x, y) = (x− EX)(y − EY ), we obtain (5).

The first inequality in (3) follows from Hölder’s inequality, and the second
inequality in (3) is evident. Using Hölder’s inequality, we further have
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Fig 14. Microsoft log returns 1997-2000; autocorrelation function of devolatilized data using
the Gumbel copula

νX,Y ≤ sup
u,v∈[0,1]

∫ u

0

∫ v

0

|c(u, v)− 1|dudv ≤∫ 1

0

∫ 1

0

|c(u, v)− 1|dudv = E|c(U, V )− 1| ≤
[
E
(
c(u, v)− 1

)2]1/2
= φX,Y .

This proves the third inequality in (3). Using Hölder’s inequality again, we get

2HX,Y = E[c1/2(U, V )− 1]2 ≤
(
E[c1/2(U, V )− 1]4

)1/2
=

{
E
[
c(U, V )− 1

]2 − 4E
[
c1/2(U, V )(c1/2(U, V )− 1)2

]}1/2

≤
{
E
[
c(U, V )− 1

]2}1/2
= φX,Y .

Therefore, (4) holds.

Proof of Proposition 2. Let {Xt}∞t=1 be a stationary Markov process based on
an EFGM copula CEFGM

α (u, v) with the parameter α. Since, by Example 4.4 in
Darsow, Nguyen and Olsen (1992) the class of EFGM copulas is closed under
∗−operator, we then have that the copula Ct,t+h between the r.v.’s Xt and Xt+h

is also an EFGM copula with the parameter αh : Ct,t+h = CEFGM
αh . By relation

(47), this implies φ(h) = O(|α|h). Thus, by Proposition 1, relations (6) indeed
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Fig 15. Microsoft log returns 1997-2000; Conditional standard deviation estimated from the
fitted Gumbel copula-based Markov process

hold (these relations for λ(h), κ(h) and ν(h) can also be obtained from Example
2 in Appendix A2).

Suppose now that {Xt}∞t=1 is a stationary Markov process based on a Gaus-
sian copula CG

ρ (u, v) with the correlation coefficient ρ. Then (see Example 1
in Chen and Fan 2004 and Section 4 in Ibragimov 2009a) we conclude that
{Yt}∞t=1, where Yt = Φ−1[F (Xt)], t ≥ 1, is a Gaussian process and, thus,

Yt = ρYt−1 + εt = ρhYt−h +

h−1∑
k=0

ρkεt−k, (17)

where εt has a normal distribution: εt ∼ N (0, 1 − ρ2). Representation (17) im-
plies that the joint distribution of Yt and Yt−h is normal with the correlation
coefficient ρh and, thus, the copula of the r.v.’sXt andXt−h is Gaussian with the
correlation coefficient ρh: Ct,t−h = CG

ρh (these arguments thus show that Gaus-

sian copulas are closed under ∗−operator, similar to the case of EFGM copulas).
Using (42), we conclude that φ(h) = O(|ρ|h). Consequently, by Proposition 1,
relations (6) indeed hold for {Xt}∞t=1 (these relations for δ(h), H(h), κ(h) and
ν(h) can also be obtained from Example 1 in Appendix A2).

Proof of Proposition 3. Consider a C−based stationary Markov process {Xt}
and a stationary Markov process {X̃t} based on the survival copula S(u, v) =
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Fig 16. Microsoft log returns 1997-2000; Conditional kurtosis estimated from the fitted Clay-
ton survival copula-based Markov process

C̃(u, v) of C. As before, let Ct,t+h (u, v) = Ch(u, v) denote the copula of the
r.v.’s Xt and Xt+h, and, similarly, let St,t+h (u, v) = Sh(u, v) denote the copula
of the r.v.’s Xt and Xt+h. It is not difficult to see, using the definition of the
∗−operator in Appendix A3, that, for any two copulas A,B : [0, 1]2 → [0, 1],

the ∗−product of the survival copulas Ã and B̃ is the survival copula of A ∗B :

Ã ∗ B̃(u, v) = ˜A ∗B(u, v). Consequently, the copula St,t+h (u, v) = Sh(u, v)

is the survival copula of Ct,t+h (u, v) = Ch(u, v) : St,t+h(u, v) = C̃t,t+h(u, v).

Since the densities c(u, v) and c̃t,t+h(u, v) of Ct,t+h(u, v) and C̃t,t+h(u, v) satisfy
c̃t,t+h(u, v) = ct,t+h(1 − u, 1 − v), from representations (34)-(36) we thus ob-

tain that the processes {Xt} and {X̃t} have the same measures of dependence
φ2, δ,H : φ2

X(h) = φ2
X̃
(h), δX(h) = δX̃(h), HX(h) = HX̃(h).10 Furthermore,

since, evidently, C̃t,t+h(u, v) − uv = Ct,t+h(1 − u, 1 − v) − (1 − u)(1 − v), it is
easy to obtain from representations (38)-(40), that the measures of dependence

κ, λ, ν are also the same for the processes {Xt} and {X̃t} : κX(h) = κX̃(h),
λX(h) = λX̃(h), νX(h) = νX̃(h). From these conclusions it follows, in particular,
that the process {Xt} exhibits short (long) memory in the sense of exponential
(resp., hyperbolic) decay of the measures of dependence φ2

X(h), δX(h), κX(h),

10From representation (37) it follows that, for all functions ψ in (32), the measure Dψ is

the same for the processes {Xt} and {X̃t} as well: Dψ
X(h) = Dψ

X̃
(h).
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λ2
X(h), HX(h) or νX(h) to zero as h → ∞ if and only if the same holds for the

process {X̃t}.

Appendix

Appendix A1: Long memory and autocorrelation functions

According to one of the commonly employed definitions, a weakly stationary
process {Xt}∞t=−∞ with autocovariance function γ(h) = Cov(Xt, Xt+h) is said
to have long memory if

∞∑
h=−∞

|γ(h)| (18)

is divergent, and to have short memory otherwise.
Another widely applied definition is based on the hyperbolic decay of auto-

covariances γ(h) as h → ∞. More precisely, a weakly stationary process {Xt}
is said to exhibit long memory or long-range dependence if

γ(h) ∼
{
hβl(h), for β ∈ (−1, 0), or

−hβl(h), for β ∈ (−2,−1),
as h → ∞, (19)

where l(h) is a slowly varying function at infinity: l(λh)/l(h) → 1, as h → ∞,
for all λ > 0 (see Lo 1991 and Section 2.6 in Lo 1997).

Well-known examples of long memory time series are given by fractional white
noise sequences and, more generally, by autoregressive fractionally integrated
moving average (ARFIMA) processes. A fractional white noise process {Xt} of
order d ∈ R is defined using the difference equation

(1− L)dXt = εt, (20)

where L is the lag operator and {εt} is a white noise process with E(εt) = 0,
V ar(εt) = σ2

ε and Cov(εs, εt) = 0 for s 
= t. In (20), (1− L)d is defined as

(1− L)d =

∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
,

where Γ(·) denotes the gamma function: Γ(x) =

∫ ∞

0

tx−1e−tdt. ARFIMA pro-

cesses are obtained by replacing the white noise process εt in (20) by stationary
and invertible autoregressive moving average (ARMA) processes. Long memory
properties of ARFIMA processes are similar to those of fractional white noise.

The process {Xt} in (20) is both stationary and invertible if |d| < 0.5. For
0 < d < 0.5, the process {Xt} exhibits long memory in the sense of definition
(18). For −0.5 < d < 0, the process is short memory in the sense of definition
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(18). In this case, {Xt} is said to exhibit intermediate memory (anti-persistence)
or long-range negative dependence.

A fractional white noise process with d ∈ (−0.5, 0.5) exhibits long memory in
the sense of definition (19) with β = 2d− 1 and l(h) ≡ A, where A is a positive
constant.

The decay of autocovariances in (19) is qualitatively different from and is
significantly slower than that of autocovariances of stationary and invertible
ARMA processes. Autocovariance functions γ(h) of such processes satisfy

γ(h) = O
[
exp(−Ah)

]
, A > 0, (21)

as h → ∞. For instance, in the case of a stationary AR(1) process

Xt = ρXt−1 + εt, (22)

where |ρ| < 1, and {εt} is a white noise process with E(εt) = 0, V ar(εt) = σ2
ε and

Cov(εs, εt) = 0 for s 
= t, one has γ(h) = ρhσ2
ε /(1−ρ2). Thus, autocorrelations of

stationary and invertible ARMA processes exhibit at most exponential decline to
zero and, thus, such processes are short memory in the sense of both definitions
(18) and (19).

Appendix A2: Copulas and measures of dependence

We begin with the definition of copulas and formulation of Sklar’s theorem men-
tioned in the introduction (see Nelsen, 1999; Embrechts, McNeil and Straumann,
2002; McNeil, Frey and Embrechts, 2015).

Definition 1. A function C : [0, 1]2 → [0, 1] is called a (bivariate) copula if it
satisfies the following conditions:

1. C(u, v) is increasing in each component u and v.
2. C(u, 0) = C(0, v) = 0 for all u, v ∈ [0, 1].
3. C(u, 1) = u and C(1, v) = v for all u, v ∈ [0, 1].
4. For all (u1, u2), (v1, v2) ∈ [0, 1]2 with u1 ≤ v1 and u2 ≤ v2, C(v1, v2) +

C(u1, u2)− C(u1, v2)− C(u2, v1) ≥ 0.
Equivalently, C is a copula if it is a joint cdf of two r.v.’s U, V each of which

is uniformly distributed on [0, 1].

Definition 2. A copula C : [0, 1]2 → [0, 1] is called absolutely continuous
if, when considered as a joint cdf, it has a joint density given by c(u, v) =
∂C2(u, v)/∂u∂v.

Proposition 4. (Sklar’s theorem). If X,Y are r.v.’s defined on a common
probability space, with the one-dimensional cdf ’s FX(x) = P (X ≤ x) and
FY (y) = P (Y ≤ y) and the joint cdf FX,Y (x, y) = P (X ≤ x, Y ≤ y), then
there exists a copula CX,Y (u, v) such that FX,Y (x, y) = CX,Y (FX(x), FY (y))
for all x, y ∈ R. If the univariate marginal cdf ’s FX , FY are both continuous,
then the copula is unique and can be obtained via inversion method:

CX,Y (u, v) = FX,Y (F
−1
X (u), F−1

Y (v)), (23)
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where F−1
X (u) = inf{x : FX(x) ≥ u} and F−1

Y (v) = inf{y : FY (y) ≥ v}.
Otherwise, the copula is uniquely determined at points (u, v), where u is in the
range of FX and v is in the range of FY .

As is well-known, copulas are invariant under strictly increasing transforma-
tions of r.v.’s with continuous univariate cdf’s.

Proposition 5. Let X,Y be r.v.’s with continuous univariate marginal cdf ’s
FX and FY and a copula CX,Y . If g, h : R → R are strictly increasing functions,
then the r.v.’s g(X) and h(Y ) have the same copula CX,Y .

The following proposition is an immediate corollary of Sklar’s theorem given
by Proposition 4.

Proposition 6. Let the r.v.’s X,Y have the univariate marginal cdf ’s FX and
FY and a copula CX,Y with the density cX,Y (u, v). Further, let ξ, η be indepen-
dent copies of X,Y (that is, independent r.v.’s with the same one-dimensional
distributions as those of X,Y , respectively: ξ =d X, η =d Y ). Then, for any
Borel measurable function G : R2 → R, provided the expectations are finite,
EG(X,Y ) = EG(ξ, η)c(FX(ξ), FY (η)).

de la Peña, Ibragimov and Sharakhmetov (2006) develop U−statistics-based
representations for multivariate joint distributions and copulas that general-
ize Proposition 6. As a corollary of the results, de la Peña, Ibragimov and
Sharakhmetov (2006) derive similar representations for multivariate dependence
measures and obtain sharp complete decoupling moment and probability in-
equalities for dependent r.v.’s in terms of their dependence characteristics (see
also the review in Ibragimov, 2009a)

R.v.’s X,Y with the copula CX,Y (u, v) are independent if and only if CX,Y

is the product (or independence) copula:

CX,Y (u, v) = uv. (24)

Any bivariate copula C(u, v) satisfies the following Fréchet-Hoeffding bounds:

C(u, v) ≤ C(u, v) ≤ C(u, v), (25)

where C(u, v) = max(u+ v − 1, 0) and C(u, v) = min(u, v).
Well-known examples of copulas with simple closed forms (“explicit” copulas)

are given by Clayton and Gumbel copulas (see Nelsen, 1999; Joe, 1997; McNeil,
Frey and Embrechts, 2015):

CClayton,θ (u, v) =
(
u−θ + v−θ − 1

)− 1
θ , θ > 0, (26)

CGumbel,θ (u, v) = exp
[
−

(
(− lnu)θ + (− ln v)θ

) 1
θ
]
, θ ≥ 1. (27)

The survival copula C̃(u, v) = u + v − 1 + C(1 − u, 1 − v) for the Clayton
family also has a simple explicit form

C̃Clayton,θ (u, v) = u+ v − 1 +
(
(1− u)−θ + (1− v)−θ − 1

)− 1
θ

, θ > 0. (28)
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Taking in (23) FX,Y (x, y) = Φρ(x, y) to be the bivariate normal cdf with the
linear correlation coefficient ρ, one obtains the well-known normal, or Gaussian,
copula CG

ρ (u, v):

CG
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√
1− ρ2

exp
(
− u2 − 2ρuv + v2

2(1− ρ2)

)
dudv, (29)

where Φ(x) denotes the standard normal univariate cdf. Similarly, let q > 0
and let F be the bivariate Student-t cdf tq,ρ with q degrees of freedom, the
linear correlation coefficient ρ and the location parameter 0 ∈ R2. That is,

F (x, y) = tq,ρ(x, y) is the joint cdf of the random vector
(√

qX/
√
S,

√
qY/

√
S
)

where Z = (X,Y ) ∼ N (0, ρ) has the bivariate normal distribution with the
correlation coefficient ρ and S ∼ χ2(q) is a chi-square r.v. with q degrees of
freedom that is independent of Z. Formula (23) then gives t−copulas with the
correlation coefficient ρ:

Ct
q,ρ(u, v) = tq,ρ(t

−1
q (u), t−1

q (v)) =∫ t−1
q (u)

−∞

∫ t−1
q (v)

−∞

1

2π
√

1− ρ2

(
1 +

u2 − 2ρuv + v2

q(1− ρ2)

)−(q+2)/2

dudv, (30)

where tq(x) denotes the cdf of the univariate Student-t distribution with q de-
grees of freedom.

A simple class of dependence functions is given by EFGM copulas that have
the form

CEFGM
α (u, v) = uv(1 + α(1− u)(1− v)), (31)

where |α| < 1.
A number of dependence measures for r.v.’s can be expressed or defined

using their copulas. Let X,Y be r.v.’s with the one-dimensional pdf’s fX(x)
and fY (y), and the joint pdf fX,Y (x, y). Consider the following measures of
dependence (see Joe, 1989):

φ2
X,Y =

∫ ∞

−∞

∫ ∞

−∞

f2
X,Y (x, y)

fX(x)fY (y)
dxdy − 1

(Pearson’s φ2 coefficient), and

δX,Y =

∫ ∞

−∞

∫ ∞

−∞
ln

(
fX,Y (x, y)

fX(x)fY (y)

)
fX,Y (x, y)dxdy

(relative entropy or Kullback-Leibler mutual information).
The Pearson’s φ2 coefficient and the relative entropy are particular cases of

divergence measures

Dψ
X,Y =

∫ ∞

−∞

∫ ∞

−∞
ψ

(
fX,Y (x, y)

fX(x)fY (y)

)
fX(x)fY (y)dxdy, (32)
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where ψ is a strictly convex function on R satisfying ψ(1) = 0. The multivariate
Pearson’s φ2 corresponds to ψ(x) = x2 − 1 and the relative entropy is obtained
with ψ(x) = x lnx.

The choice ψ(x) = (1/2)(1− x1/2)2 in (32) leads to the Hellinger measure of
dependence

HX,Y = (1/2)

∫ ∞

−∞

∫ ∞

−∞

(
f
1/2
X,Y (x, y)− f

1/2
X (x)f

1/2
Y (y)

)2

dxdy =

1−
∫ ∞

−∞

∫ ∞

−∞
f
1/2
X,Y (x, y)f

1/2
X (x)f

1/2
Y (y)dxdy (33)

considered in Granger (2003); Granger, Maasoumi and Racine (2004). As dis-
cussed in Granger, Maasoumi and Racine (2004), the measure HX,Y and its
scaled versions are rather unique among divergence measures since they satisfy
the triangular inequality and are, thus, proper measures of distance (see below).

Let C(u, v) = CX,Y (u, v) be the copula of X,Y and let U, V denote i.i.d. r.v.’s
uniformly distributed on [0, 1]. It is easy to see that the measures φ2

X,Y , δX,Y ,

HX,Y , D
ψ
X,Y can be written in terms of the copula density c(u, v) = ∂C2(u, v)/

∂u∂v as follows:

φ2
X,Y = φ2(C) =

∫ 1

0

∫ 1

0

c2(u, v)dudv − 1 = Ec2(U, V )− 1 = E(c(U, V )− 1)2,

(34)

δX,Y = δ(C) =

∫ 1

0

∫ 1

0

c(u, v) ln[c(u, v)]dudv = Ec(U, V ) ln[c(U, V )], (35)

HX,Y = H(C) = (1/2)

∫ 1

0

∫ 1

0

[c1/2(u, v)− 1]2dudv

= (1/2)E[c1/2(U, V )− 1]2 = 1− Ec1/2(U, V ). (36)

Dψ
X,Y = Dψ(C) =

∫ 1

0

∫ 1

0

ψ[c(u, v)]dudv = Eψ[c(U, V )]. (37)

The following measures of dependence between two r.v.’s X and Y with the
copula C(u, v) = CX,Y (u, v) are also of importance (see Schweizer and Wolff,
1981):

κX,Y = κ(C) =

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv = E|C(U, V )− UV |, (38)

λ2
X,Y = λ2(C) =

∫ 1

0

∫ 1

0

(C(u, v)− uv)2dudv = E
(
C(U, V )− UV

)2
, (39)

νX,Y = ν(C) = sup
u,v∈[0,1]

|C(u, v)− uv|. (40)

Using concavity of the function f(x) =
√
x it is easy to see that the following

triangular inequality holds for the Hellinger measure of dependence in the case
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of copula mixtures. Suppose that the copula C(u, v) = CX,Y (u, v) of the r.v.’s
X,Y is given by

C(u, v) = w1C1(u, v) + w2C2(u, v), w1, w2 ∈ [0, 1]. (41)

Then H(C) ≤ w1H(C1) + w2H(C2). It is not difficult to see, using Minkowski
inequality (see Marshall and Olkin 1979, Section 16.D) in the case of λX,Y ,
that the measures of dependence κX,Y , λX,Y and νX,Y satisfy similar triangular
inequalities as well: for the above copula mixtures, κ(C) ≤ w1κ(C1)+w2κ(C2),
λ(C) ≤ w1λ(C1) + w2λ(C2) and ν(C) ≤ w1ν(C1) + w2ν(C2).

Example 1. For a Gaussian copula CG
ρ (u, v) with the correlation coefficient ρ

in (29), one has

φ2(CG
ρ ) = ρ2/(1− ρ2), (42)

δ(CG
ρ ) = −0.5 ln(1− ρ2) (43)

(see Joe, 1989),

H(CG
ρ ) = 1− (1− ρ2)5/4

(1− ρ2

2 )3/2
(44)

(see Granger, Maasoumi and Racine, 2004),

κ(CG
ρ ) =

1

2π
arcsin(|ρ|/2), (45)

ν(CG
ρ ) =

1

2π
arcsin(|ρ|) (46)

(see Section 4 in Schweizer and Wolff, 1981).

Example 2. It is easy to see that the following relations hold for the EFGM
copula CEFGM

α (u, v) with the parameter α in (31):

φ2(CEFGM
α ) = α2/9, (47)

λ(CEFGM
α ) = |α|/30, (48)

κ(CEFGM
α ) = |α|/36, (49)

ν(CEFGM
α ) = |α|/16. (50)

Appendix A3: Markov processes and copulas

Darsow, Nguyen and Olsen (1992) obtain the following necessary and sufficient
conditions for a time series process based on bivariate copulas to be first-order
Markov. For copulas A,B : [0, 1]2 → [0, 1], set

(A ∗B)(x, y) =

∫ 1

0

∂A(x, t)

∂t
· ∂B(t, y)

∂t
dt.
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Further, for copulas A : [0, 1]m → [0, 1] and B : [0, 1] → [0, 1], define their
�−product A � B : [0, 1]m+n−1 → [0, 1] via

A � B(x1, ..., xm+n−1) =

∫ xm

0

∂A(x1, ..., xm−1, ξ)

∂ξ
· ∂B(ξ, xm+1, ..., xm+n−1)

∂ξ
dξ.

As shown in Darsow, Nguyen and Olsen (1992), the operators ∗ and � on the
class of copulas are distributive over convex combinations, associative and con-
tinuous in each place, but not jointly continuous. For a copula C denote by Cs

the s−fold product �k of C with itself.
Let Ct1,...,tk , ti ∈ T , i = 1, ..., k, t1 < ... < tk, stand for copulas correspond-

ing to the joint distribution of the r.v.’s Xt1 , ..., Xtk in the process {Xt}∞t=−∞ in
consideration. Darsow, Nguyen and Olsen (1992) prove that the transition prob-
abilities P (s, x, t, A) = P (Xt ∈ A|Xs = x) of a real-valued stochastic process
{Xt}∞t=−∞, satisfy the Chapman-Kolmogorov equations

P (s, x, t, A) =

∫ ∞

−∞
P (u, ξ, t, A)P (s, x, u, dξ) (51)

for all Borel sets A, all s < r < t and for almost all x ∈ R if and only if the
copulas corresponding to the bivariate distributions of Xt are such that

Cst = Csr ∗ Crt (52)

for all s < r < t. Darsow, Nguyen and Olsen (1992) also show that a real-valued
stochastic process {Xt}∞t=−∞ is a stationary first-order Markov process if and
only if the copulas corresponding to the finite-dimensional distributions of {Xt}
satisfy the conditions

C1,...,n(u1, ..., un) = C �k C �k ... �k C(u1, ..., un) = Cn−k+1(u1, ..., un) (53)

for all n ≥ 2. Ibragimov (2009a) provides copula-based characterizations of
higher-order Markov processes. The results are applied to establish necessary
and sufficient conditions for Markov processes of a given order to exhibit m-
dependence, r−independence or conditional symmetry. Ibragimov (2009a) also
presents a study of applicability and limitations of different copula families in
constructing higher-order Markov processes with the above dependence proper-
ties.bb
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