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This is a combination of notes from two mini-courses that I gave. In neither
course did I cover all the material here. The Seattle course covered Sections 1,
4–6, and the Cornell course covered Sections 2, 3, 5, 6. The first three sections
discuss particular models. Section 1, which was the initial lecture in Seattle,
surveys a number of models whose limit should be the Schramm-Loewner evo-
lution. Sections 2–3, which are from the Cornell school, focus on a particular
model, the loop-erased walk and the corresponding random walk loop measure.
Section 3 includes a sketch of the proof of conformal invariance of the Brown-
ian loop measure which is an important result for SLE. Section 4, which was
covered in Seattle but not in Cornell, is a quick summary of important facts
about complex analysis that people should know in order to work on SLE and
other conformally invariant processes. The next section discusses the determin-
istic Loewner equation and the remaining sections are on SLE itself. I start with
some very general comments about models in statistical mechanics intended for
mathematicians with little experience with physics models.

I would like to thank an anonymous referee for a careful reading and pointing
out a number of misprints in a previous draft. I thank Geoffrey Grimmett for
permission to include Figure 8.

Introductory thoughts: Models in equilibrium statistical physics

The Schramm-Loewner evolution is a particularly powerful tool in the under-
standing of critical systems in statistical physics in two dimensions. Let me give
a rather general view of equilibrium statistical physics and its relationship to
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probability theory. The typical form of a model is a collection of configurations
γ and a base measure say m1. If the collection is finite, a standard base measure
is counting measure, perhaps normalized to be a probability measure. If the col-
lection is infinite, there can be subtleties in defining the base measure. There is
also a function E(γ) on configurations called the energy or Hamiltonian. There
are also some parameters; let us assume there is one that we call β ≥ 0. Many
models choose β to be a constant times the reciprocal of temperature. For this
reason large values of β are called “low temperature” and small values of β are
called “high temperature”. The physical assumption is that the system in equi-
librium tries to minimize energy. In the Gibbsian framework, this means that
we consider the new measure m2 which can be written as

dm2 = e−βE dm1. (1)

When mathematicians write down expressions like (1), it is implied that the
measure m2 is absolutely continuous with respect to m1. We might allow E to
take on the value infinity, butm2 would give measure zero to such configurations.
However, physicists are not so picky. They will write expressions like this when
the measures are singular and the energy E is infinite for all configurations. Let
me give one standard example where m1 is “Lebesgue measure on all functions
g on [0, 1] with g(0) = 0” and m2 is one-dimensional Wiener measure. In that
case we set β = 1/2 and

E(g) =

∫ 1

0

|g′(x)|2 dx.

This is crazy in many ways. There is no “Lebesgue measure on all functions”
and we cannot differentiate an arbitrary function — even a typical function in
the measure m2. However, let us see how one can make some sense of this. For
each integer N we consider the set of functions

g : {1/N, 2/N, . . . , 1} → R,

and denote such a function as a vector (x1, . . . , xN ). The points have the density
of Lebesgue measure in R

N . The energy is given by a discrete approximation of
E(g):

EN (g) =
1

N

N
∑

j=1

(

xj − xj−1

1/N

)2

,

where x0 = 0, and hence

exp

{

−1

2
EN (g)

}

= exp
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N
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.

If we multiply both sides by a scaling factor of (N/2π)N/2, then the right hand
side becomes exactly the density of

(W1/N ,W2/N , . . .W1)
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with respect to Lebesgue measure on RN whereWt denotes a standard Brownian
motion. Therefore as N → ∞, modulo scaling by a factor that goes to infinity,
we get (1).

This example shows that even though the expression (1) is meaningless, there
is “truth” in it. The way to make it precise is in terms of a limit of objects that
are well defined. This is the general game in taking scaling limits of systems.
The basic outline is as follows.

• Consider a sequence of simple configurations. In many cases, and we will
assume it here, for each N , there is a set of configurations of cardinality
cN < ∞ (cN → ∞) and a well defined energy EN (γ) defined for each
configuration γ. For ease, let us take counting measure as our base mea-
sure m1,N .

• Define m2,N using (1).
• Define the partition function ZN to be the total mass of the measurem2,N .
If m1 is counting measure

ZN =
∑

γ

e−βEN (γ).

• Find scaling factors rN and hope to show that rN m2,N has a limit as a
measure. (One natural choice is rN = 1/Zn in which case we hope to have
a probability measure in the limit. However, this not the only important
possibility.)

All of this has been done with β fixed. Critical phenomena studies systems
where the behavior of the scaling limit changes dramatically at a critical value
βc. (The example we did above with Brownian motion does not have a critical
value; changing β only changes the variance of the final Brownian motion.) We
will be studying systems at this critical value. A nonrigorous (and, frankly, not
precise) prediction of Belavin, Polyakov, and Zamolodchikov [1, 2] was that the
scaling limits of many two-dimensional systems at criticality are conformally
invariant. This idea was extended by a number of physicists using nonrigorous
ideas of conformal field theory. This was very powerful, but it was not clear how
to make it precise. A big breakthrough was made by Oded Schramm [22] when
he introduced what he called the stochastic Loewner evolution (SLE). It can be
considered the missing link (but not the only link!) in making rigorous many
predictions from physics.

Probability naturally rises in studying models from statistical physics. In-
deed, any nontrivial finite measure can be made into a probability measure by
normalizing. Probabilistic techniques can then be very powerful; for example,
the study of Wiener measure is much, much richer when one uses ideas such
as the strong Markov property. However, some of the interesting measures in
statistical physics are not finite, and even for those that are one can lose in-
formation if one always normalizes. SLE, as originally defined, was a purely
probabilistic technique but it has become richer by considering nonprobability
measures given by (normalized) partition functions.

We will be going back and forth between two kinds of models:
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• Configurational where one gives weights to configurations. This is the stan-
dard in equilibrium statistical mechanics as well as combinatorics.

• Kinetic (or kinetically growing) where one builds a configuration in time.
For deterministic models, this gives differential equations and for models
with randomness we are in the comfort zone for probabilists.

It is very useful to be able to go back and forth between these two approaches.
The models in Section 1 and Section 2 are given as configurational models.
However, when one has a finite measure one can create a probability measure by
normalization and then one can create a kinetic model by conditioning. For the
case of the loop-erased walk discussed in Section 2, the kinetically growing model
is the Laplacian walk. Brownian motion, at least as probabilists generally view
it, is a kinetic model. However, one get can get very important configurational
models and Section 3 takes this viewpoint. The Schramm-Loewner evolution,
as introduced by Oded Schramm, is a continuous kinetic model derived from
continuous configurational models that are conjectured to be the scaling limit for
discrete models. In some sense, SLE is an artificial construction — it describes
a random configuration by giving random dynamics even though the structure
we are studying did not grow in this fashion. Although it is artificial, it is a very
powerful technique. However, it is useful to remember that it is only a partial
description of a configurational model. Indeed, our definition of SLE here is
really configurational.

1. Scaling limits of lattice models

The Schramm-Loewner evolution (SLE) is a measure on continuous curves that
is a candidate for the scaling limit for discrete planar models in statistical
physics. Although my lectures will focus on the continuum model, it is hard
to understand SLE without knowing some of the discrete models that motivate
it. In this lecture, I will introduce some of the discrete models. By assuming some
kind of “conformal invariance” in the limit, we will arrive at some properties
that we would like the continuum measure to satisfy.

1.1. Self-avoiding walk (SAW)

A self-avoiding walk (SAW) of length n in the integer lattice Z2 = Z + iZ is a
sequence of lattice points

ω = [ω0, . . . , ωn]

with |ωj − ωj−1| = 1, j = 1, . . . , n, and ωj 6= ωk for j < k. If Jn denotes the
number of SAWs of length n with ω0 = 0, it is well known that

Jn ≈ eβn, n→ ∞,

where eβ is the connective constant whose value is not known exactly. Here ≈
means that log Jn ∼ βn where f(m) ∼ g(m) means f(m)/g(m) → 1. In fact, it
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is believed that there is an exponent, usually denoted γ, such that

Jn ≍ nγ−1 eβn, n→ ∞,

where ≍means that each side is bounded by a constant times the other. Another
exponent ν is defined roughly by saying that the typical diameter (with respect
to the uniform probability measure on SAWs of length n with ω0 = 0) is of order
nν . The constant β is special to the square lattice, but the exponents ν and γ
are examples of lattice-independent critical exponents that should be observable
in a “continuum limit”. For example, we would expect the fractal dimension of
the paths in the continuum limit to be d = 1/ν.

To take a continuum limit we let δ > 0 and

ωδ(jδd) = δ ω(j).

We can think of ωδ as a SAW on the lattice δZ2 parametrized so that it goes
a distance of order one in time of order one. We can use linear interpolation to
make ωδ(t) a continuous curve. Consider the square in C

D = {x+ iy : −1 < x < 1,−1 < y < 1},

and let z = −1, w = 1. For each integer N we can consider a finite measure
on continuous curves γ : (0, tγ) → D with γ(0+) = z, γ(tγ) = w obtained
as follows. To each SAW ω of length n in Z2 with ω0 = −N,ωn = N and
ω1, . . . , ωn−1 ∈ ND we give measure e−βn. If we identify ω with ω1/N as above,
this gives a measure on curves in D from z to w. The total mass of this measure
is

ZN(D; z, w) :=
∑

ω:Nz→Nw,ω⊂ND

e−β|ω|.

It is conjectured that there is a b such that as N → ∞,

ZN (D; z, w) ∼ C(D; z, w)N−2b. (2)

Moreover, if we multiply by N2b and take a limit, then there is a measure
µD(z, w) of total mass C(D; z, w) supported on simple (non self-intersecting)
curves from z to w in D. The dimension of these curves will be d = 1/ν.

Similarly, if D is another domain and z, w ∈ ∂D, we can consider SAWs from
z to w in D. If ∂D is smooth at z, w, then (after taking care of the local lattice
effects — we will not worry about this here), we define the measure as above,
multiply by N2b and take a limit. We conjecture that we get a measure µD(z, w)
on simple curves from z to w in D. We write the measure µD(z, w) as

µD(z, w) = C(D; z, w)µ#
D(z, w),

where µ#
D(z, w) denotes a probability measure.

It is believed that the scaling limit satisfies some kind of “conformal in-
variance”. To be more precise we assume the following conformal covariance
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0 N

N

z w

Fig 1. Self-avoiding walk in a domain.

wz

Fig 2. Scaling limit of SAW.

property: if f : D → f(D) is a conformal transformation and f is differentiable
in neighborhoods of z, w ∈ ∂D, then

f ◦ µD(z, w) = |f ′(z)|b |f ′(w)|b µf(D)(f(z), f(w)).

In other words the total mass satisfies the scaling rule

C(D; z, w) = |f ′(z)|b |f ′(w)|b C(f(D); f(z), f(w)), (3)

and the corresponding probability measures are conformally invariant:

f ◦ µ#
D(z, w) = µ#

f(D)(f(z), f(w)).

Note that (3) is consistent with (2).
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z w

Fig 3. Scaling limit of SAW in a different domain.

Let us be a little more precise about the definition of f ◦ µ#
D(z, w). Suppose

γ : (0, tγ) → D is a curve with γ(0+) = z, γ(tγ−) = w. For ease, let us assume
that γ is simple. Then the curve f ◦ γ is the corresponding curve from f(z) to
f(w). At the moment, we have not specified the parametrization of f ◦ γ. We
will consider two possibilities:

• Ignore the parametrization. We consider two curves equivalent if one
is an (increasing) reparametrization of the other. In this case we do not
need to specify how we parametrize f ◦ γ.

• Scaling by the dimension d. If γ has the parametrization as given in
the limit, then the amount of time need for f ◦ γ to traverse f(γ[t1, t2]) is

∫ t2

t1

|f ′(γ(s))|d ds. (4)

In either case, if we start with the probability measure µ#
D(z, w), the transfor-

mation γ 7→ f ◦ γ induces a probability measure which we call f ◦ µ#
D(z, w).

There are two more properties that we would expect the family of measures
µD(z, w) to have. The first of these will be shared by all the examples in this
section while the second will not. We just state the properties, and leave it to
the reader to see why one would expect them in the limit.

• Domain Markov property. Consider the measure µ#
D(z, w) and suppose

an initial segment of the curve γ(0, t] is observed. Then the conditional
distribution of the remainder of the curve given γ(0, t] is the same as

µ#
D\γ(0,t](γ(t), w).

• Restriction property. Suppose D′ ⊂ D. Then µD′(z, w) is µD(z, w)
restricted to paths that lie in D′. In terms of Radon-Nikodym derivatives,
this can be phrased as

dµD′(z, w)

dµD(z, w)
(γ) = 1{γ(0, tγ) ⊂ D′}.
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z w

Fig 4. Domain Markov property.

We have considered the case where z, w ∈ ∂D. We could consider z ∈ ∂D,w ∈
D. In this case the measure is defined similarly, but (2) becomes

ZD(z, w) ∼ C(D; z, w)N−bN−b̃,

where b̃ is a different exponent (see Lectures 5 and 6). The limiting measure
µD(z, w) would satisfy the conformal covariance rule

f ◦ µD(z, w) = |f ′(z)|b |f ′(w)|b̃ µf(D)(f(z), f(w)).

Similarly we could consider µD(z, w) for z, w ∈ D.

1.2. Loop-erased random walk

We start with simple random walk. Let ω denote a nearest neighbor random
walk from z to w in D. We no longer put in a self-avoidance constraint. We give
each walk ω measure 4−|ω| which is the probability that the first n steps of an
ordinary random walk in Z

2 starting at z are ω. The total mass of this measure
is the probability that a simple random walk starting at z immediately goes
into the domain and then leaves the domain at w. Using the “gambler’s ruin”
estimate for one-dimensional random walk, one can show that the total mass of
this measure decays like O(N−2); in fact

ZN (D; z, w) ∼ C(D; z, w)N−2, N → ∞, (5)

where C(D; z, w) is the “excursion Poisson kernel”, H∂D(z, w), defined to be
the normal derivative of the Poisson kernel HD(·, w) at z. In the notation of
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Fig 5. Illustrating the restriction property.

the previous section b = 1. For each realization of the walk, we produce a self-
avoiding path by erasing the loops in chronological order.

Again we are looking for a continuum limit µD(z, w) with paths of dimension
d (not the same d as for SAW). The limit should satisfy

• Conformal covariance
• Domain Markov property

However, we would not expect the limit to satisfy the restriction property. The
reason is that the measure given to each self-avoiding walk ω by this procedure
is determined by the number of ordinary random walks which produce ω after
loop erasure. If we make the domain smaller, then we lose some random walks
that would produce ω and hence the measure would be smaller. In terms of
Radon-Nikodym derivatives, we would expect

dµD1
(z, w)

dµD(z, w)
< 1.

We discuss this process more in Section 2.

1.3. Percolation

Suppose that every point in the triangular lattice in the upper half plane is
colored black or white independently with each color having probability 1/2. A
typical realization is illustrated in Figure 8 (if one ignores the bottom row).

We now put a boundary condition on the bottom row as illustrated — all
black on one side of the origin and all white on the other side. For any realization
of the coloring, there is a unique curve starting at the bottom row that has all
white vertices on one side and all black vertices on the other side. This is called
the percolation exploration process. Similarly we could start with a domain D
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0 N

N

z w

Fig 6. Simple random walk in D.

Fig 7. The walk obtained from erasing loops chronologically.

and two boundary points z, w; give a boundary condition of black on one of
the arcs and white on the other arc; put a fine triangular lattice inside D;
color vertices black or white independently with probability 1/2 for each; and
then consider the path connecting z and w. In the limit, one might hope for a
continuous interface. In comparison to the previous examples, the total mass of
the lattice measures is one. This implies that the scaling exponent should take
on the value b = 0. We suppose that the curve is conformally invariant, and one
can check that it should satisfy the domain Markov property.

The scaling limit of percolation satisfies another property called the locality
property. SupposeD1 ⊂ D and z, w ∈ ∂D∩∂D1 as in Figure 5. Suppose that only
an initial segment of γ is seen. To determine the measure of the initial segment,
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Fig 8. The percolation exploration process.

one only observes the value of the percolation cluster at vertices adjoining γ.
Hence the measure of the path is the same whether it is considered as a curve
in D1 or a curve in D. The locality property is stronger than the restriction
property which SAW satisfies. The restriction property is a similar statement
that holds for the entire curve γ but not for all initial segments of γ.

1.4. Ising model

The Ising model is a simple model of a ferromagnet. We will consider the tri-
angular lattice as in the previous section. Again we color the vertices black or
white although we now think of the colors as spins. If x is a vertex, we let
σ(x) = 1 if x is colored black and σ(x) = −1 if x is colored white. The measure
on configurations is such that neighboring spins like to have the same sign.

It is easiest to define the measure for a finite collection of spins. Suppose D
is a bounded domain in C with two marked boundary points z, w which give us
two boundary arcs. We consider a fine triangular lattice in D; and fix boundary
conditions +1 and −1 respectively on the two boundary arcs. Each configuration
of spins is given energy

E = −
∑

x∼y

σ(x)σ(y),

where x ∼ y means that x, y are nearest neighbors. We then give measure e−βE

to a configuration of spins. If β is small, then the correlations are localized
and spins separated by a large distance are almost independent. If β is large,
there is long-range correlation. There is a critical βc that separates these two
phases.
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z

w

+1 −1

Fig 9. Ising interface.

For each configuration of spins there is a well-defined boundary between +1
spins and −1 spins defined in exactly the same way as the percolation explo-
ration process. At the critical βc it is believed that this gives an interesting
fractal curve and that it should satisfy conformal covariance and the domain
Markov property.

1.5. Assumptions on limits

Our goal is to understand the possible continuum limits for these discrete mod-
els. We will discuss the boundary to boundary case here but one can also have
boundary to interior or interior to interior. (The terms “surface” and “bulk”
are often used for boundary and interior.) Such a limit is a measure µD(z, w)
on curves from z to w in D which can be written

µD(z, w) = C(D; z, w)µ#
D(z, w),

where µ#
D(z, w) is a probability measure. The existence of µD(z, w) assumes

smoothness of ∂D near z, w, but the probability measure µ#
D(z, w) exists even

without the smoothness assumption. The two basic assumptions are:

• Conformal covariance of µD(z, w) and conformal invariance of µ#
D(z, w).

• Domain Markov property.

The starting point for the Schramm-Loewner evolution is to show that if we
ignore the parametrization of the curves, then there is only a one-parameter
family of probability measures µ#

D(z, w) for simply connected domains D that
satisfy conformal invariance and the domain Markov property. We will construct
this family. The parameter is usually denoted κ > 0. By the Riemann mapping
theorem, it suffices to construct the measure for one simply connected domain
and the easiest is the upper half plane H with boundary points 0 and ∞. As we
will see, there are a number of ways of parametrizing these curves.
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2. Loop measures and loop-erased random walk

This section will focus on two closely related models: the loop-erased random
walk and a measure on simple random walk loops. They are also closely related
to the enumeration of spanning trees on a graph. Although much of what we
say here can be generalized to Markov chains, we will only consider the case
of random walk in Z2. We will not give complete proofs; a reference for more
details is [11, Chapter 9].

We write

ω = [ω0, ω1, . . . , ωn], ωj ∈ Z
2, |ωj − ωj−1| = 1, j = 1, . . . , n,

for a (nearest neighbor) path in Z2. We write |ω| = n for the number of steps
of the path. We call the path a (rooted) loop if ω0 = ωn. For each path ω, we
define

q(ω) = (1/4)|ω|.

Note that q(ω) is exactly the probability that a simple random walk in Z2

starting at ω0 traverses ω in its first n steps. We view q as a measure on the set
of paths of finite length.

�More generally, we can define q(ω) = λω for some λ > 0, but 1/4 is the “critical”

value of the parameter and most interesting to us.

A path ω is self-avoiding if ωj 6= ωk for j 6= k. For every path ω there is a
unique self-avoiding subpath

L(ω) = [η0, η1, . . . , ηk]

called its (chronological) loop-erasure satisfying the following.

• η0 = ω0, ηk = ωn.
• For each j, ηj ∈ ω. Moreover, if

σ(j) = max{m : ωm = ηj},

then σ(0) < σ(1) < · · · < σ(k) and

{η0, . . . , ηj} ∩ {ωσ(j)+1, . . . , ωn} = ∅.

Throughout this section, A will denote a nonempty finite subset of Z2 and

∂A = {z ∈ Z
2 : dist(z, A) = 1}.
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2.1. Excursion measure

An excursion in A is a random walk that starts on ∂A, immediately goes into A,
and ends when it reaches ∂A. To be more precise, a (boundary) excursion in A is
a path ω = [ω0, . . . , ωn] with n ≥ 2, ω0, ωn ∈ ∂A and ωj ∈ A for 1 ≤ j ≤ n− 1.
Let EA denote the set of excursions in A and if x, y ∈ ∂A let EA(x, y) denote
the set of excursions with ω0 = x, ωn = y. Let qA denote q restricted to EA. Let

HA(x, y) = qA [EA(x, y)]

which is called the boundary or excursion Poisson kernel. Note that qA(EA) <∞.
Indeed, if x ∈ ∂A,

∑

y∈∂A

HA(x, y) = r/4,

where r denotes the number of nearest neighbors of x in A.

2.2. Loop-erased measure

Let ÊA denote the set of excursions in A that are self-avoiding and define ÊA(x, y)
similarly. The (boundary) loop-erased measure q̂A is the measure on ÊA, where

q̂A(η) = qA {ω ∈ EA : L(ω) = η} .

Note that q̂A[ÊA(x, y)] = HA(x, y). If η ∈ ÊA, it is not obvious how to calculate
q̂A(η) which is the measure of the set of excursions ω ∈ ÊA whose loop-erasure
is η. It turns out that the calculation of this leads to some classical formulas
involving the determinant of the Laplacian for the random walk in A. We will
write

q̂A(η) = qA(η)Fη(A),

where Fη(A) will be a quantity that depends only on the sites in η and not on
the order that they are traversed. In the next subsection we will compute Fη(A)
in terms of a measure on unrooted loops.

2.3. Random walk loop measure

If ω = [ω0, . . . , ωn] is a loop, we call ω0 = ωn the root of the loop. We say that
ω is in A and write ω ⊂ A if all the sites in ω are in A. Let L(A) denote the set
of loops in A with length at least two, and Lx(A) the set of such loops rooted
at x. We define the measure m = mA on L(A) by

m(ω) =
q(ω)

|ω| , ω ∈ L(A). (6)

This called the rooted loop measure on A.
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�Throughout this section we will abuse notation so that ω can either refer to the path

or to the set of sites visited by ω. For example in the previous paragraph, the expression

ω ⊂ A uses ω to mean the set of sites while the expression ω ∈ L(A) uses ω to mean the

path. I hope this does not create confusion. Also, if x is a site, we also use x to denote

the singleton set {x}.

An unrooted loop is a rooted loop where one forgets which point is the start-
ing point. More precisely, it is an equivalence class of rooted loops under the
equivalence

[ω0, ω1, . . . , ωn] ∼ [ωj , ωj+1, . . . , ωn, ω1, . . . , ωj−1, ωj ].

We write ω for an unrooted loop and we write ω ∼ ω if ω is a rooted loop in the
equivalence class ω. We write L(A) for the set of unrooted loops. The (unrooted)
loop measure m is the measure given by

m(ω) =
∑

ω∼ω

m(ω).

�One thinks of the unrooted loop measure as assigning measure (1/4)n to each

unrooted loop of length n. However, this is not exactly correct because an unrooted

loop of length n may have fewer than n rooted representatives. For example, consider

ω = [x, y, x, y, x]. The length of the walk is four, but there are only two representatives of

the unrooted loop.

Let

F (A) = exp







∑

ω∈L(A)

m(ω)







,

and if B ⊂ A, let FB(A) be the corresponding quantity restricted to loops that
intersect B,

FB(A) = exp







∑

ω∈L(A), ω∩B 6=∅

m(ω)







,

Note that
F (A) = FB(A)F (A \B).

In particular, if η = [η0, . . . , ηk] ∈ ÊA,

Fη(A) =

k
∏

j=1

Fηj (A \ {η1, . . . , ηj−1}).
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In the expression on the right it is not so obvious that Fη(A) is independent of
the ordering of the vertices.

Proposition 1. If η ∈ ÊA, then

q̂(η) = q(η)Fη(A). (7)

We will not prove the proposition, but we will state some other expressions
for Fη(A). Let G(x, x;A) denote the usual Green’s function for the random walk,
that is, the expected number of visits to x, starting at x, before leaving A. Then
[11, Lemma 9.3.2],

G(x, x;A) = Fx(A). (8)

In particular,

Fη(A) =

k
∏

j=1

G(ηj , ηj ;A \ {η1, . . . , ηj−1}).

The expression on the right-hand side is what one naturally gets if one tries to
compute q̂(η)/q(η). The proposition above then requires the generating function
identity (8). Another expression involves the determinant of the Laplacian. Let
Q = QA denote the #(A) × #(A) matrix Q(x, y) = 1/4 if |x − y| = 1 and
Q(x, y) = 0 for other x. Then the (negative of the) Laplacian of the random
walk on A is the matrix I −Q. Then [11, Proposition 9.3.3],

F (A) =
1

det(I −Q)
.

2.4. Spanning trees and Wilson’s algorithm

A spanning tree of a connected graph is a subgraph containing all the vertices
that is also a tree. If A is a finite subset of Z2, then a wired spanning tree of A
is a spanning tree of the graph A ∪ {∂} where a vertex x ∈ A is adjacent to ∂
if dist(x, ∂A) = 1. Wilson’s algorithm [24] for choosing a wired spanning tree is
as follows.

• Choose a vertex in A and run a random walk until it reaches ∂A.
• Perform loop-erasure on the walk and add those edges to the tree.
• If there are vertices that are not on the tree, choose one and do a random
walk until it reaches a vertex in the tree.

• Perform loop-erasure on this walk and add those new edges to the tree.
• Continue this procedure until all vertices have been added to the tree.

This is a very efficient way to choose a random tree, and the amazing fact
is that it chooses a tree uniformly over the set of all wired spanning trees. This
is called informally a uniform spanning tree where this means “a spanning tree
chosen uniformly among all spanning trees”.
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Proposition 2. If T is a wired spanning tree of A, then the probability that T
is chosen in Wilson’s algorithm is 4−#(A) F (A). In particular, every spanning
tree is equally likely to be chosen and the total number of spanning trees is

4#(A)

F (A)
= 4#(A) det[I −Q] = det[4(I −Q)].

While the algorithm is due to Wilson, the formula for the number of spanning
trees is much older, going back to Kirchhoff. In graph theory the Laplacian is
written as 4(I −Q) which makes this formula nicer. To prove the proposition,
one just takes any tree and considers the probability that it is chosen, see [11,
Propsition 9.7.1].

2.5. Laplacian random walk

If x, y ∈ ∂A are distinct, then the loop-erased walk gives a measure q̂A,x,y on

ÊA(x, y) of total mass HA(x, y). We can normalize to make this a probability
measure. Under this measure we have a stochastic process Xj with X0 = x
and XT = y where T is a random stopping time. It is clearly nonMarkovian
since, for example, we cannot visit any site that we have already visited. To give
the transition probabilities, we need to give for every η = [η0 = a, . . . , ηj ] and
z ∈ A \ η,

P{Xj+1 = z | [X0, . . . , Xj ] = η}.
Using the definition, it is easy to check that this is given by

1

4
HA\η(z, y).

Note that the function z 7→ HA\η(z, y) is the unique function that is discrete
harmonic (satisfies the discrete Laplace equation) on A \ η with boundary value
δy on ∂[A \ η]. For this reason the loop-erased walk is often called the Laplacian
random walk (with exponent 1).

Using the transition probability, one can check that the stochastic process
Xn satisfies the following domain Markov property.

• Given [X0, . . . , Xj ] = η, the distribution of the remainder of the path is
the same as the loop-erased walk from Xj to w in A \ η.

�The term “loop-erased random walk” has two different, but similar, meanings.
Sometimes it is used for the probability measure and sometimes for the measure q̂A or
q̂A,x,y which is not a probability measure. Of course we can write

q̂A,x,y = HA(x, y) q̂
#

A,x,y

where q̂#A,x,y is a probability measure. The Laplacian random walk is a description of the

probability measure.
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2.6. Boundary perturbation

The boundary perturbation rule is the way to compare q̂A and q̂A′ for different
sets A,A′. It is easier to state this property using the unnormalized measure
q̂A,x,y. It follows immediately from (7).

• Suppose A′ ⊂A and x, y are distinct points in (∂A′)∩(∂A) withHA′(x, y) >
0. Then for every η ∈ EA′(x, y),

q̂A′,x,y(η)

q̂A,x,y(η)
=
q̂A′(η)

q̂A(η)
= exp

{

−
∑

m(ω))
}

,

where the sum is over all loops ω ⊂ A that intersect both η and A \ A′.
In other words, over loops in A that intersect η but are not loops in A′.

2.7. Loop soup

The measure q̂ on ÊA(x, y) is obtained from the measure q on EA(x, y) by the
deterministic operation of erasing loops. The total mass of the measure does not
change. This leads to asking if we can obtain q from q̂ by “adding on loops”.
Here we show how to do this. The operation is not deterministic (there is no
way it could be since many different simple paths give the same loop erasure).
We will describe it by introducing independent randomness, the random walk
loop soup, and then giving a deterministic algorithm using the soup and the
SAW η to produce the path ω.

The random walk loop soup is a Poissonian realization of unrooted loops from
the measure m. To be more precise, for each unrooted loop ω, there is a Poisson
process Nω

t with rate m(ω). These processes are independent. A realization of
these processes gives for each ω an increasing sequence of times

0 < t(1, ω) < t(2, ω) < · · ·
where the corresponding Poisson process jumps. With probability one, the times
t(j, ω) over all j, ω are distinct.

If we restrict loops to a finite set A, then
∑

ω⊂A

m(ω) = logF (A) <∞,

from which we can conclude

{t(j, ω) : t(j, ω) ≤ 1, ω ⊂ A},
is finite. Writing this differently, we can write down the loops that have appeared
by time one,

ω1, ω2, . . . , ωk

where k is finite (random) and the loops have been written in the order that
they appeared. Some loops may appear more than once in this listing. Indeed,
if t(j, ω) < 1 < t(j + 1, ω), then the loop ω appears j times. We can now give
the “loop addition” algorithm.
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• Choose η = [η0, . . . , ηn] ∈ EA(x, y) using measure q̂A.
• Take an independent loop soup in A and consider the loops that have
arrived by time one.

• Take the subset of these which correspond to loops that have at least one
point in common with η. Let us write these loops (using the same order
as before)

ω1, . . . , ωl.

• For each ωj let i be the smallest integer such that ηi ∈ ωj . Choose a
rooted representative of ωj that is rooted at ηi. If there is more than one
choice at this stage choose uniformly among the choices. This gives a finite
sequence of rooted loops

ω1, . . . , ωl

whose roots are ησ(1), . . . , ησ(l) with σ(i) ≤ σ(j) if i < j. Moreover,

ωj ∩ {η0, . . . , ησ(j)−1} = ∅.

• Consider the loops
ω∗
1 , . . . , ω

∗
n−1

where ω∗
i is the concatenation of all the loops ωj with σ(j) = i. If there

are no such loops, choose ω∗
i to be the trivial loop of zero steps at ηi.

• Form a nearest neighbor path by

ω = [η0, η1]⊕ ω∗
1 ⊕ [η1, η2]⊕ · · · ⊕ [ηn−2, ηn−1]⊕ ω∗

n−1 ⊕ [ηn−1, ηn].

Proposition 3. If η is chosen according to the measure q̂A on ÊA and ω is
formed using the above algorithm, then the induced measure on paths is qA.

See [11, 9.4-9.5] for a proof.

3. Brownian loop measure

We will consider the scaling limit of the random walk loop measure described in
the last section. For any positive integer N , let ZN = N−1 Z2. If ω is a loop, we
let ωN denote the corresponding loop on Z obtained from scaling. If |ω| = n we
can also view ω as a continuous function ω : [0, n] → C obtained in the natural
way by linear interpolation. For ωN , we use Brownian scaling,

ωN(t) = N−1 ω(tN2), 0 ≤ t ≤ n/N2.

We consider the limit as N → ∞ of the rooted random walk loop measure.
What happens is that small loops shrink to points; we will ignore these. How-
ever, at each scaling level N there are “macroscopic” loops. The Brownian loop
measure will be the limit of these. We will define the Brownian loop measure
directly, and then return to the question of how the scaled random walk loop
measure approaches this limit.
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3.1. Brownian measures

Probabilists tend to view Brownian motion as a stochastic process, that is,
a probability measure on paths. However, it is useful sometimes to consider
“configurational” measures given by Brownian paths. This will be useful when
studying the Brownian loop measure, and also helps in understanding other
configurational measures such as that given by SLE. We will do this for two-
dimensional Brownian motion. We write |µ| for the total mass of a measure µ,
and if 0 < |µ| < ∞, we write µ# = µ/|µ| for the probability measure obtained
by normalization. We will write µD(z, w; t) for measures on paths in D, starting
at z, ending at w, of time duration t. When the t is omitted, we allow different
time durations, but we will always be considering paths of finite duration. When
D = C we will drop the subscript.

Let µ(z, w; t) be the measure corresponding to Brownian paths starting at z,
ending at w, of time duration t. We can write this as

µ(z, w; t) = pt(w − z)µ#(z, w; t),

where

pt(z) =
1

2πt
exp

{

−|z|2
2t

}

,

is the density for Brownian motion and µ#(z, w; t) is the corresponding proba-
bility measure often called the Brownian bridge. We let

µ(z, w) =

∫ ∞

0

µ(z, w; t) dt.

This is an example of an infinite measure. All of the infinite measures we deal
with here will be σ-finite. We could take other integrals. For example the mea-
sure

µ(z, ·; t) =
∫

C

µ(z, w; t) dA(w)

is a probability measure, exactly the measure on paths given by a Brownian
motion starting at z stopped at time t. Here and throughout dA will represent
integrals with respect to usual Lebesgue measure (area) on C.

�One might be worried about what it means to integrate when the integrands are

measures. In all our examples, we could put topologies on measures so that the corre-

sponding functions are continuous and these integrals are Riemann integrals. We will not

bother with these tedious details.

We write µD(z, w; t), µD(z, w), etc. for the corresponding measures obtained
by restricting the measure to curves staying in D. By definition our measures
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will have the restriction property: if D1 ⊂ D, then µD1
(· · · ) is µD(· · · ) restricted

to curves lying in D1.

�We emphasize that we are restricting rather than conditioning; in other words, we

are not normalizing to have total mass one. When we restrict a measure we decrease the

total mass.

If D is a bounded domain, or, more generally, a domain with sufficiently
large boundary that Brownian motion will eventually exit the domain, then if
z 6= w the measure µD(z, w) is a finite measure whose total mass is the Green’s
function

G(z, w) =

∫ ∞

0

|µD(z, w; t)| dt <∞.

The measure µD(z, z) is well defined but is an infinite measure.

3.2. Conformal invariance

Brownian motion is a conformally invariant object. We will make a precise
statement of this in terms of the measures above. Suppose D ⊂ C is a domain
and f : D → f(D) is a conformal transformation. If γ : [0, tγ ] → D is a curve,
we define the curve f ◦ γ as follows. Let

σ(t) =

∫ t

0

|f ′(γ(s))|2 ds.

Then f ◦ γ is the curve of time duration σ(tγ) given by

(f ◦ γ)(σ(s)) = f(γ(s)), 0 ≤ s ≤ tγ .

If µ is a measure on curves in D, we define f ◦µ to be the measure on curves in
f(D) defined by

(f ◦ µ)(V ) = µ{γ : f ◦ γ ∈ V }.
Proposition 4 (Conformal invariance). Suppose z, w ∈ D and f : D → f(D)
is a conformal transformation. Then

f ◦ µD(z, w) = µf(D)(f(z), f(w)). (9)

While this is not the usual way that conformal invariance is stated it is a
useful formulation when considering configurational measures. A consequence
of the statement is that the total masses of the measures are the same. Indeed,
it is well known that the Green’s function is conformally invariant

Gf(D)(f(z), f(w)) = GD(z, w),
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In studying the Brownian loop measure, we will use (9) with z = w where the
measures are infinite:

f ◦ µD(z, z) = µf(D)(f(z), f(z)).

�There are no topological assumptions on the domain D. In particular, it can be

multiply connected.

We will consider the infinite measure on loops

µD =

∫

D

µD(z, z) dA(z).

The measure µD is not a conformal invariant. Indeed,

f ◦ µD =

∫

D

f ◦ µD(z, z) dA(z)

=

∫

D

µf(D)(f(z), f(z)) dA(z)

=

∫

D

µf(D)(f(z), f(z)) |f ′(z)|−2 |f ′(z)|2 dA(z)

=

∫

f(D)

µf(D)(w,w) |g′(w)|2 dA(w), (10)

where g = f−1. We will write µD for the measure µD considered as a measure
on unrooted loops by forgetting the root. The measure µD is the scaling limit of
the macroscopic loops in D ∩ ZN under the measure q. The measure we want
should be the scaling limit under m and this leads to the following definition.

Definition

• The rooted Brownian loop measure in D is the measure on (rooted) loops
νD defined by

dνD
dµD

(γ) =
1

tγ
.

• The (unrooted) Brownian loop measure in D is the measure on unrooted
loops defined by

dνD
dµD

(γ) =
1

tγ
.

Equivalently, it is the measure obtained from νD by forgetting the root.

The factor 1/tγ is analogous to the factor 1/|ω| in (6). The phrase Brownian
loop measure refers to the unrooted version which is most important because it
turns out to be the conformal invariant as the next theorem shows. However,
the rooted version is often more convenient for computations.
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Theorem 5. If f : D → f(D) is a conformal transformation, then

f ◦ νD = νf(D).

�The family of measures {µD} satisfies both the restriction property and confor-

mal invariance. One can easily see that any nontrivial family that satisfies both of these

properties must be a family of infinite measures.

Sketch of proof. If γ is a loop of time duration tγ we can view γ as a curve γ :
(−∞,∞) → C of period tγ . If s ∈ R, we write θsγ for the loop θsγ(t) = γ(t+s).
Note that γ and θsγ generate the same unrooted loop. Suppose that ν̃D is a
measure that is absolutely continuous with respect to µD with Radon-Nikodym
derivative φ. Note that νD is an example with φ(γ) = 1/tγ. Suppose that for
every loop γ of time duration tγ ,

∫ tγ

0

φ(θsγ) ds = 1.

Then ν̃D viewed as a measure on unrooted loops is the same as νD. Let g = f−1

and choose

φ(θsγ) =
|f ′(θsγ(0))|2

tf◦γ
=

|f ′(γ(s))|2
tf◦γ

.

By the definition of the parametrization of f ◦ γ we know that

∫ tγ

0

φ(θsγ) ds =
1

tf◦γ

∫ tγ

0

|f ′(γ(s))|2 ds = 1.

We will now give an important property of the measure µD. Consider the
measure on curves obtained by selecting γ according to µD; choosing a number
s ∈ [0, tγ ] uniformly; and then outputting θsγ. Then the new measure is the
same as µD. More generally, suppose that Ψ is a positive, continuous function
on D. Consider the measure µΨ defined by:

• For each γ, we have a measure ργ on {θsγ : 0 ≤ s ≤ tγ} with density
Ψ(γ(s)). The total mass of this measure is

∫ tγ

0

Ψ(γ(s)) ds.

• First choose γ according to µD and then choose s according to ργ and
output θsγ.
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Then µΨ is the same as
∫

D

Ψ(z)µD(z, z) dA(z).

In other words
dµΨ

dµD
(γ) = Ψ(γ(0)).

Computing as in (10), we see that

f ◦ µΨ =

∫

f(D)

Ψ(g(w)) |g′(w)|2 µD(z, z) dA(z).

In particular, if Ψ(z) = |f ′(z)|2,

f ◦ µΨ = µf(D).

Returning to φ as above, we see that if νφ is the measure on rooted loops
with dνφ/dµD = φ,

f ◦ νφ = νf(D).

Since νφ considered as a measure on unrooted loops is the same as νD, we get

f ◦ νD = νf(D).

3.3. Brownian loop soup

The Brownian loop soup is a Poissonian realization from the measure νD. Al-
ternatively, we can take a rooted Brownian loop soup, that is, a realization of
νD, and then forget the roots of the loops. We can think of the soup as growing
a set of loops where At denotes the set of loops that have been created at time
t. By conformal invariance, the conformal image of a soup in D gives a soup in
f(D). Soups also satisfy the restriction property.

The Brownian loop soup is the limit of the macroscopic loops from the random
walk loop soup. This can be made precise. We refer to [14] for the precise result,
but we give a rough version here. LetD be a bounded domain. There exists δ > 0
such that, except for an event of probability O(N−δ), a Brownian soup At in
D and a (scaled) random walk soup Ãt in D ∩ ZN can be defined on the same
probability space such that for 0 ≤ t ≤ 1, there is a one-to-one correspondence
between the loops in At and those in Ãt of time duration at least N−δ such
that if two loops are paired up, their time duration differs by at most N−2 and
the parametrized curves lie within distance O(N−1 logN) of each other.

3.4. Excursion measure and boundary bubbles

Suppose D is a domain with piecewise smooth boundary. The Poisson kernel
HD(z, w), z ∈ D,w ∈ ∂D is the density of harmonic measure starting at z. In
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other words, the probability that a Brownian motion starting at z exists D at
V ⊂ ∂D is

hmD(z, V ) :=

∫

V

HD(z, w) |dw|.

We can write the probability measure associated to Brownian motion starting
at z stopped when it reaches ∂D as

∫

V

µD(z, w) |dw|

where µD(z, w) is a finite measure on paths starting at z ending at w. Indeed,

µD(z, w) = HD(z, w)µ
#
D(z, w),

where the probability measure µ#
D(z, w) corresponds to Brownian motion started

at z conditioned to leave D at w. This is conditioning on an event of probability
zero but one can make rigorous sense of this using a number of methods, e.g.,
the theory of h-processes.

�We will use µD(z, w) for various Brownian measures. Before we used it with z, w ∈ D

and here we use it with z ∈ D,w ∈ ∂D. Below we will define a version with z, w ∈ ∂D. I

hope that using the same notation will not be confusing.

Conformal invariance of Brownian motion implies that harmonic measure is
conformally invariant:

hmD(z, V ) = hmf(D)(f(z), f(V )).

If ∂D and ∂f(D) are smooth near w, f(w), this gives a conformal covariance
rule for µD(z, w)

f ◦ µD(z, w) = |f ′(w)|µf(D)(f(z), f(w)).

This is shorthand for the scaling rule on H :

HD(z, w) = |f ′(w)|Hf(D)(f(z), f(w)),

and the conformal invariance of the probability measures:

f ◦ µ#
D(z, w) = µ#

f(D)(f(z), f(w)).

The scaling limit of the random walk excursion measure from Section 2.1 is
the (Brownian motion) excursion measure that we now describe. Suppose ∂D
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is smooth. If z, w are distinct points in ∂D, let H∂D(z, w) be the boundary or
excursion Poisson kernel defined by

H∂D(z, w) = ∂nHD(z, w),

where the derivative is in the first component and n = nz is the inward unit
normal at z. We get the same number if we take ∂nw

HD(w, z). There is a
corresponding measure on paths that we denote by

µD(z, w) = H∂D(z, w)µ
#
D(z, w).

Note that µD(z, w) satisfies the conformal covariance relation

f ◦ µD(z, w) = |f ′(z)| |f ′(w)|µf(D)(f(z), f(w)). (11)

A simple calculation shows that

H∂H(0, x) =
1

πx2
.

(Sometimes it is useful to multiply the Poisson kernel by π in order to avoid
having a constant in this formula.)

�Combining these ideas we can say that the Brownian measures have a boundary

scaling exponent of 1 and an interior scaling exponent of 0.

Excursion measure is the infinite measure on paths connecting boundary
points of D given by

ED =

∫

∂D

∫

∂D

µD(z, w) |dz| |dw|.

Using (11) we can check that the excursion measure is conformally invariant:

f ◦ ED = Ef(D).

In particular, it is well defined even if the boundaries are not smooth provided
that we can map D conformally to a domain with piecewise smooth boundaries.
(This is always possible for finitely connected domains.) The term excursion
measure is sometimes used for the measure on ∂D × ∂D given by

ED(V1, V2) =
∣

∣

∣

∣

∫

V1

∫

V2

µD(z, w) |dz| |dw|
∣

∣

∣

∣

=

∫

V1

∫

V2

H∂D(z, w) |dz| |dw|.

This latter view of the excursion measure is a nice conformal invariant and can
be used in the study of conformal mappings. It is related to, but not the same
as, extremal distance or extremal length which is often used for such purposes.
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As w → z, the measures µD(z, w) approach an infinite measure called the
Brownian bubble measure. There are a number of ways of writing this measure.
For ease, assume that D = H and z = 0. Then

µH(0, 0) = lim
x↓0

π µH(0, x) = lim
ǫ↓0

π µH(ǫi, 0),

provided that one interprets these limits correctly. For example, if r > 0 and
µH(0, 0; r), µH(0, x; r) denote these measures restricted to curves that do not lie
in the disk of radius r about the origin, then these are finite measures and

µH(0, 0; r) = lim
x↓0

π µH(0, x; r).

(Convergence of finite measures means convergence of the total masses and
convergence of the probability measures in some appropriate topology.) IfD ⊂ H

with dist(0,H \D) > 0, let Γ(D) denote the µH(0, 0) measure of loops that do
not stay in D ∩ {0}. The factor of π is put in the definition so that

Γ(D+) = 1, D+ = H ∩ D.

If D is simply connected and f : D → H is a conformal transformation with
f(0) = 0, then [7, Proposition 5.22]

Γ(D) = −Sf(0)
6

,

where S denotes the Schwarzian derivative

Sf(z) =
f ′′′(z)

f ′(z)
− 3f ′′(z)2

2f ′(z)2
.

We know of no such nice formulas for multiply connected D. The Brownian
bubble measure satisfies the conformal covariance rule

f ◦ µD(z, z) = |f ′(z)|2 µf(D)(f(z), f(z)).

We will state one more result which will be important in the analysis of
SLE. Suppose K is a bounded, relatively closed subset of H. Then the half-
plane capacity of K is defined by

hcap(K) = lim
y→∞

yEiy[Im(Bτ )].

Here B is a standard complex Brownian motion, τ is the first time that that
it hits R ∪ K, and Eiy denotes expectations assuming that B0 = iy. One can
check that the limit exists. In fact

hcap(K) = Γ(D)

where D is the image of H \K under the inversion z 7→ −1/z.

Proposition 6. Suppose γ : (0,∞) → H is a curve with γ(0) = 0 and such that
for each t,

hcap[γ(0, t]) = t.
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Suppose D ⊂ H is a domain with dist(0,H \ D) > 0. Let m(t) denote the
Brownian loop measure of loops in H that intersect both γ(0, t] and H \D. Then
as t ↓ 0,

m(t) = Γ(D) t [1 + o(1)]. (12)

4. Complex variables and conformal mappings

In order to study SLE, one must know some basic facts about conformal maps.
Some of this material appears in standard first courses in complex variables and
a few are more specialized. We will discuss the main results here. For proofs and
more details see, e.g., [5, 6, 7].

4.1. Review of complex analysis

Definition

• A domain in C is an open, connected subset. Two main examples are the
unit disk

D = {z : |z| < 1}
and the upper half plane

H = {z = x+ iy : y > 0}.

• The Riemann sphere is the set C∗ = C ∪ {∞} with the topology of the
sphere which is to say that the open neighborhoods of ∞ are the comple-
ments of compact subsets of C.

• A domainD ⊂ C is simply connected if its complement in C∗ is a connected
subset of C∗.

• A domain D ⊂ C is finitely connected if its complement in C∗ has a finite
number of connected components.

• A function f : D → H is holomorphic or analytic if the complex derivative
f ′(z) exists at every point.

If 0 ∈ D, and f is holomorphic on D then we can write

f(z) =

∞
∑

j=0

aj z
j ,

where the radius of convergence is at least dist(0, ∂D). In particular, if f(0) = 0,
then either f is identically zero, or there exists a nonnegative integer n such that

f(x) = zn g(z),

where g is holomorphic in a neighborhood of 0 with g(0) 6= 0. In particular,
if f ′(0) 6= 0, then f is locally one-to-one, but if f ′(0) = 0, it is not locally
one-to-one.
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If we write a holomorphic function f = u + iv, then the functions u, v are
harmonic functions and satisfy the Cauchy-Riemann equations

∂xu = ∂yv, ∂yu = −∂xv.

Conversely, if u is a harmonic function on D and z ∈ D, then we can find a
unique holomorphic function f = u+iv with v(z) = 0 defined in a neighborhood
of z by solving the Cauchy-Riemann equations. It is not always true that f can
be extended to all of D, but there is no problem if D is simply connected.

Proposition 7. Suppose D ⊂ C is simply connected.

• If u is a harmonic function on D and z ∈ D, there is a unique holomorphic
function f = u+ iv on D with v(z) = 0.

• If f is a holomorphic function on D with f(z) 6= 0 for all z, then there
exists a holomorphic function g on D with eg = f. In particular, if w ∈
C \ {0} and h = eg/w, then hw = f .

The Cauchy integral formula states that if f is holomorphic in a domain
containing the closed unit disk, then

f (n)(0) =
n!

2πi

∫

∂D

f(z) dz

zn+1
.

In particular,
|f (n)(0)| ≤ n! ‖f‖∞.

Here ‖f‖∞ denotes the maximum of |f | on D which (by the n = 0 case which
is called the maximum principle) is the same as the maximum on ∂D.

Proposition 8. Suppose f is a holomorphic function on a domain D. Suppose
z ∈ D, and let

dz = dist(z, ∂D), Mz = sup{|f(w)| : |w − z| < dz}.

Then,
|f (n)(z)| ≤ n! d−nz Mz.

Proof. Consider g(w) = f(z + dzw).

A similar estimate exists for harmonic functions in Rd. It can be proved
by representing a harmonic function in the unit ball in terms of the Poisson
kernel.

Proposition 9. For all positive integers d, n, there exists C(d, n) < ∞ such
that if u is a harmonic function on the unit ball U = {x ∈ R

d : |x| < 1} and D
denotes an nth order mixed partial,

|Du(0)| ≤ C(d, n) ‖u‖∞.

Derivative estimates allow one to show “equicontinuity” results. We write
fn =⇒ f if for every compact K ⊂ D, fn converges to f uniformly on K.
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We state the following for holomorphic functions, but a similar result holds for
harmonic functions.

Proposition 10. Suppose D is a domain.

• If fn is a sequence of holomorphic functions on D, and fn =⇒ f , then f
is holomorphic.

• If fn is a sequence of holomorphic functions on D that is locally bounded,
then there exists a subsequence fnj

and a (necessarily, holomorphic) func-
tion f such that fnj

=⇒ f .

Proposition 11 (Schwarz lemma). If f : D → D is holomorphic with f(0) = 0,
then |f(z)| ≤ |z| for all z. If f is not a rotation, |f ′(0)| < 1 and |f(z)| < |z| for
all z 6= 0.

Proof. Let g(z) = f(z)/z with g(0) = f ′(0) and use the maximum principle.

4.2. Conformal transformations

Definition

• A holomorphic function f : D → D1 is called a conformal transformation
if it is one-to-one and onto.

• Two domains D,D1 are conformally equivalent if there exists a conformal
transformation f : D → D1.

It is easy to verify that “conformally equivalent” defines an equivalence re-
lation. A necessary, but not sufficient, condition for a holomorphic function f
to be a conformal transformation onto f(D) is f ′(z) 6= 0 for all z. Functions
that satisfy this latter condition can be called locally conformal. The function
f(z) = ez is a locally conformal transformation on C that is not a conformal
transformation. Proving global injectiveness can be tricky, but the following
lemma gives a very useful criterion.

Proposition 12 (Hurwitz). Suppose fn is a sequence of one-to-one holomorphic
functions on a domain D and fn =⇒ f . Then either f is constant or f is one-
to-one.

This is the big theorem.

Theorem 13 (Riemann mapping theorem). If D ⊂ C is a proper, simply
connected domain, and z ∈ D, there exists a unique conformal transformation

f : D → D

with f(0) = z, f ′(0) > 0.

Proof. The hard part is existence. We will not discuss the details, but just list the
major steps. The necessary ingredients to fill in the details are Propositions 7, 8,
10, 11, and 12. Consider the set A of conformal transformations g : D → g(D)
with g(z) = 0, g′(z) > 0, g(D) ⊂ D. Then one shows:
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• A is nonempty.
• M := sup{g′(z) : g ∈ A} <∞.
• There exists ĝ ∈ A with ĝ′(z) =M .
• ĝ(D) = D

If D is a simply connected domain, then to specify the conformal transforma-
tion f : D → D one needs to specify two quantities: z = f(0) and the argument
of f ′(0). We can think of this as “three real degrees of freedom”. Similarly, to
specify the map it suffices to specify where three boundary points are sent.

The Riemann mapping theorem does not say anything about the limiting
behavior of f(z) as |z| → 1. One needs to make more assumptions in order to
obtain further results.

Proposition 14. Suppose D is a simply connected domain and f : D → D is
a conformal transformation.

• If C\D is locally connected, then f extends to a continuous function on D.
• If ∂D is a Jordan curve (that is, homeomorphic to the unit circle), then
f extends to a homeomorphism of D onto D.

4.3. Univalent functions

Definition

• A function f is univalent if f is holomorphic and one-to-one.
• A univalent function f on D with f(0) = 0, f ′(0) = 1 is called a schlicht
function. Let S denote the set of schlicht functions.

The Riemann mapping theorem implies that there is a one-to-one correspon-
dence between proper simply connected domains D containing the origin and
(0,∞)× S. Any f ∈ S has a power series expansion at the origin

f(z) = z +

∞
∑

m=2

an z
n.

Much of the work of classical function theory of the twentieth century was
focused on estimating the coefficients an of the schlict functions. Three early
results are:

• [Bieberbach] |a2| ≤ 2
• [Loewner] |a3| ≤ 3
• [Littlewood] For all n, |an| < en.

Bieberbach’s conjecture was that the coefficients were maximized when the sim-
ply connected domain D was as large as possible under the constraint f ′(0) = 1.
A good guess would be that a maximizing domain would be of the form

D = C \ (−∞,−x]
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for some x > 0, where x is determined by the condition f ′(0) = 1. It is not hard
to show that the Koebe function

fKoebe(z) =
z

(1− z)2
=

∞
∑

n=1

n zn,

maps D conformally onto C \ (−∞,−1/4]. This led to Bieberbach’s conjecture
which was proved by de Branges.

Theorem 15 (de Branges). If f ∈ S, then |an| ≤ n for all n.

To study SLE, it is not necessary to use as powerful a tool as de Branges’
theorem. Indeed, the estimates of Bieberbach and Littlewood above suffice for
most problems. A couple of other simpler results are very important for analysis
of conformal maps. To motivate the first, suppose that f : D → f(D) is a con-
formal transformation with f(0) = 0 and z ∈ C\f(D) with |z| = dist(0, ∂f(D)).
If one wanted to maximize f ′(0) under these constraints, then it seems that the
best choice for f(D) would be the complex plane with a radial line to infin-
ity starting at z removed. This indeed is the case which shows that the Koebe
function is a maximizer.

Theorem 16 (Koebe-1/4). If f ∈ S, then f(D) contains the open disk of radius
1/4 about the origin.

Uniform bounds on the coefficients an give uniform bounds on the rate of
change of |f ′(z)|. The optimal bounds are given in the next theorem.

Theorem 17 (Distortion). If f ∈ S and |z| = r < 1,

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

The distortion theorem can be used to analyze conformal transformations of
multiply connected domains since such domains are “locally simply connected”.
Suppose D is a domain, and f : D → f(D) is a conformal transformation. Let
us write z ∼ w if

|z − w| < 1

2
min {dist(z, ∂D), dist(w, ∂D)} .

The distortion theorem implies that if z ∼ w, then

|f ′(z)|
12

≤ |f ′(w)| ≤ 12 |f ′(z)|.

The adjacency relation induces a metric ρ on D by ρ(z, w) = n where n is the
minimal length of a sequence

z = z0, z1, . . . , zn = w,

with zj ∼ zj−1, j = 1, . . . , n. We then get the inequality

12−ρ(z,w) |f ′(z)| ≤ |f ′(w)| ≤ 12ρ(z,w) |f ′(z)|.
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For simply connected domains, one can get better estimates than this using the
distortion theorem directly. However, this kind of estimate applies to multiply
connected domains (and also to estimates for positive harmonic functions in Rd).

4.4. Harmonic measure and the Beurling estimate

Harmonic measure is the hitting measure by Brownian motion. (This is not how
it is defined in the complex variables literature, but for probabilists it is the most
direct definition.) If D is a domain, and Bt is a (standard) complex Brownian
motion, let

τD = inf{t ≥ 0 : Bt 6∈ D}.

Definition

• The harmonic measure (in D from z ∈ D) is the probability measure
supported on ∂D given by

hmD(z, V ) = Pz {BτD ∈ V } .

• The Poisson kernel, if it exists, is the function HD : D × ∂D → [0,∞)
such that

hmD(z, V ) =

∫

V

HD(z, w) |dw|.

Conformal invariance of Brownian motion implies conformal invariance of
harmonic measure and conformal covariance of the Poisson kernel. To be more
specific, if f : D → f(D) is a conformal transformation,

hmD(z, V ) = hmf(D)(f(z), f(V )),

HD(z, w) = |f ′(w)|Hf(D)(f(z), f(w)).

The latter equality requires some smoothness assumptions on the boundary;
we will only need to use it when ∂D is analytic in a neighborhood of w, and
hence (by Schwarz reflection) the map f can be analytically continued in a
neighborhood of w. Two important examples are

HD(z, w) =
1

2π

1− |z|2
|z − w|2 , HH(x+ iy, x̃) =

1

π

y

(x− x̃)2 + y2
.

The Poisson kernel for any simply connected domain can be determined by con-
formal transformation and the scaling rule above. Finding explicit formulas for
multiply connected domains can be difficult. Using the strong Markov property,
we can see that if D1 ⊂ D and w ∈ ∂D ∩ ∂D1,

HD(z, w) = HD1
(z, w) +

∫

∂D1\∂D

HD1
(z, z1)HD(z1, w) |dz1|.
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Example Let D = {z ∈ H : |z| > 1}. Then

f(z) = z +
1

z
, f ′(z) = 1− 1

z2
=

1

z
[z − 1

z
],

is a conformal transformation of D onto H. Therefore,

HD(z, e
iθ) = |f ′(eiθ)|HH

(

z +
1

z
, f(eiθ)

)

= 2 [sin θ]HH

(

z +
1

z
, f(eiθ)

)

If we write z = reiψ , then we can see that for r ≥ 2,

HD(re
iψ , eiθ) =

2

π

sinψ sin θ

r

[

1 +O(r−1)
]

.

Theorem 18 (Beurling projection theorem). Suppose D ⊂ D is a domain
containing the origin and let

V = {0 < r < 1 : reiθ 6∈ D for some 0 ≤ θ < 2π}.

Then,
hmD(0, ∂D) ≤ hmD\V (0, ∂D).

This theorem is particular important when D\D is a connected set connected
to ∂D. By conformal invariance, one can show that

hmD\[r,1)(0, ∂D) ≍ r−1/2.

This leads to the following corollary.

Proposition 19 (Beurling estimate). There exists c < ∞ such that if D is
a simply connected domain containing the origin, Bt is a standard Brownian
motion starting at the origin, and r = dist(0, ∂D), then

P {B[0, τD) 6⊂ D} ≤ c r1/2.

In particular,
hmD(0, ∂D \ D) ≤ c r1/2.

4.5. Multiply connected domains

Since conformal transformations are also topological homeomorphisms, topo-
logical properties must be preserved. In particular, multiply connected domains
are not conformally equivalent to simply connected domains. In fact, for mul-
tiply connected domains, topological equivalence is not sufficient for conformal
equivalence. When considering domains, isolated points in the complement are
not interesting because they can be added to the domain. Let R denote the set
of domains that are proper subsets of the Riemann sphere and whose boundary
contains no isolated points. (In particular, C is not in R because its complement
is an isolated point in the sphere; if we add this point to the domain, then the
domain is no longer a proper subset.)
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Definition Let Rk denote the set of k-connected domains of the Riemann
sphere whose complement consists of k + 1 connected components.

The Riemann mapping theorem states that all domains in R0 are conformally
equivalent. Domains in R1 are called conformal annuli. One example of such a
domain is

Ar = {z ∈ C : r < |z| < 1}, 0 < r < 1.

The next theorem states that there is a one-parameter family of equivalence
classes of 1-connected domains.

Theorem 20. If 0 < r1 < r2 < 1, then Ar1 and Ar2 are not conformally
equivalent. If D ∈ R1, then there exists a (necessarily unique) r such that D is
conformally equivalent to Ar.

The next theorem shows that the equivalence classes for Dk are parametrized
by 3k − 2 variables. Let R∗

k denote the set of domains D in Rk of the form

D = H \
n
⋃

j=1

Ij , Ij = [x−j + iyj, x
+
j + iyj].

Here x−j , x
+
j ∈ R, yj > 0, and we assume that the Ij are disjoint. The set R∗

k is
parametrized by 3k variables. However, if D ∈ R∗

k, x ∈ R and r > 0, then x+D
and rD are clearly conformally equivalent to D.

Theorem 21. If D1, D2 ∈ R∗
k and f : D1 → D2 is a conformal transformation

with f(∞) = ∞, then f(z) = rz + x for some r > 0, x ∈ R. Moreover, every
k-connected domain is conformally equivalent to a domain in R∗

k.

5. The Loewner differential equation

5.1. Half-plane capacity

Definition

• Let D denote the set of simply connected subdomains D of H such that
K = H \D is bounded.

• We call K = H \D a (compact) H-hull
• Let D0 denote the set of D ∈ D with dist(0,K) > 0.

If D ∈ D, let gD denote a conformal transformation of D onto H. Such a
transformation is not unique; indeed, if f is a conformal transformation of H
onto H, then f ◦ gD is also a transformation. In order to specify gD uniquely we
specify the following condition:

lim
z→∞

[gD(z)− z] = 0.

If we do this, then we can expand gD at infinity as

gD(z) = z +
a(D)

z
+O(|z|−2). (13)
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Definition If K is a H-hull, the half-plane capacity of K, denoted hcap(K), is
defined by

hcap(K) = a(D),

where a(D) is the coefficient in (13).

Examples

• K = {z ∈ H : |z| ≤ 1}, gD(z) = z + 1
z , hcap(K) = 1.

• K = (0, i], gD(z) =
√
z2 + 1 = z + 1

2z + · · · , hcap(K) = 1
2 .

Half-plane capacity satisifies the scaling rule

hcap(rK) = r2 hcap(K).

The next proposition gives a characterization of hcap in terms of Brownian
motion killed when it leaves D.

Proposition 22. If K is a H-hull then

ImgD(z) = Im(z)−Ez[Im(BτD )],

hcap(K) = lim
y→∞

yEiy [Im(BτD)]. (14)

Here Bt is a complex Brownian motion and

τD = inf{t : Bt 6∈ D}.

�We could use (14) as the definition of hcap(K). This requires K to be bounded,

but it is not necessary for H \K to be simply connected. One can use this formulation to

show that this definition of hcap is the same as that given in Section 3.4.

Proof. Write gD = u + iv. Then v is a positive harmonic function on D that
vanishes on ∂D and satisfies

v(x+ iy) = y − a(D)
y

|z|2 +O(|z|−2), z → ∞. (15)

In particular, Im(z) − v(z) is a bounded harmonic function on D, and the op-
tional sampling theorem implies that

Im(z)− v(z) = Ez [Im(BτD)− v(BτD )] = Ez [Im(BτD )] .

This gives the first equality, and the second follows from (15).
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Definition The radius (with respect to zero) of a set is

rad(K) = sup{|w| : w ∈ K}.

More generally, rad(K, z) = sup{|w − z| : z ∈ K}.

Proposition 23. Suppose K is an H-hull and |z| ≥ 2rad(K). Then

Ez [Im(BτD )] = hcap(K) [πHH(z, 0)]

[

1 +O

(

rad(K)

|z|

)]

.

Sketch. By scaling, we may assume that rad(K) = 1. Let D̃ = H\D+, ξ = τD̃ =
inf{t : Bt ∈ R or |Bt| = 1}. Note that ξ ≤ τD; indeed, any path from z that
exits D at K must first visit a point in ∂D+. By the strong Markov property,

Ez [Im(BτD )] =

∫ π

0

HD̃(z, e
iθ)Ee

iθ

[Im(BτD)] dθ.

The Poisson kernel HD̃(z, e
iθ) can be computed exactly by finding an appropri-

ate conformal map. For our purposes we need only the estimate

HD̃(z, e
iθ) = 2HH(z, 0) sin θ [1 +O(|z|−1)].

Therefore,

HD̃(z, e
iθ)

πHH(z, 0)
=

[

1 +O(|z|−1)
]

∫ π

0

Ee
iθ

[Im(BτD )]
2

π
sin θ dθ.

Using the Poisson kernel HD̃(iy, e
iθ), we see that

hcap(K) = lim
y→∞

yEiy [Im(Bτ )] =

∫ π

0

Ee
iθ

[Im(BτD )]
2

π
sin θ dθ.

5.2. Loewner differential equation in H

Definition A curve is a continuous function of time. It is simple if it is one-to-
one.

Suppose γ : (0,∞) −→ H is a simple curve with γ(0+) = 0. Let

Kt = γ(0, t], Dt = H \Kt, gt = gDt
, a(t) = hcap(Kt).

It is not hard to show that t 7→ a(t) is a continuous, strictly increasing, function.
We will also assume that a(∞) = ∞.
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Theorem 24 (Loewner differential equation). Suppose γ is a simple curve as
above such that a is continuous differentiable. Then for z ∈ H, gt(z) satisfies
the differential equation

∂tgt(z) =
ȧ(t)

gt(z)− Ut
, g0(z) = z,

where Ut = gt(γ(t)) = limw→γ(t) gt(w). Moreover, the function t 7→ Ut is con-
tinuous. If z 6∈ γ(0,∞), then the equation is valid for all t. If z = γ(s), then the
equation is valid for t < s.

Although we do not give the details, let us show where the equation arises
by computing the right-derivative at time t = 0. Let rt = rad(Kt). If we write
gt = ut + ivt, then Proposition (23) implies

vt(z)− Im(z) = −Ez[Im(BτDt
)] = −a(t) [πHH(z, 0)] [1 + O(rt/|z|)] .

Note that

Im[1/z] = −πHH(z, 0).

Hence (with a little care on the real part) we can show that

gt(z)− z = a(t) [1/z] [1 +O(rt/|z|)] ,

which implies

lim
t↓0

gt(z)− z

t
=
ȧ(t)

z
.

We see that it is convenient to parametrize the curve γ so that a(t) is differ-
entiable, and, in fact, and if we are going to go through the effort, we might as
well make a(t) linear.

Definition The curve γ is parametrized by (half-plane) capacity with rate a > 0
if a(t) = at.

The usual choice is a = 2. In this case, if the curve is parametrized by capacity,
then the Loewner equation becomes

∂tgt(z) =
2

gt(z)− Ut
. g0(z) = z. (16)

Example Suppose Ut = 0 for all t. Then the Loewner equation becomes

∂tgt(z) =
2

gt(z)
, g0(z) = z,

which has the solution

gt(z) =
√

z2 + 4t, Kt = (0, i2
√
t].
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If we start with a simple curve, then the function Ut which is called the driving
function is continuous. Let us go in the other direction. Suppose t 7→ Ut is a
continuous, real-valued function. For each z ∈ H we define gt(z) as the solution
to (16). Standard methods in differential equations show that the solution exists
up to some time Tz ∈ (0,∞]. We define

Dt = {z : Tz > t}.

Then it can be shown that gt is a conformal transformation of Dt onto H with
gt(z)− z = o(1) as z → ∞. We would like to define a curve γ by

γ(t) = g−1
t (Ut) = lim

y↓0
g−1
t (Ut + iy). (17)

The quantity g−1
t (Ut + iy) always makes sense for y > 0, but it is not true

that the limit can be taken for every continuous Ut. The “problem” functions
Ut have the property that they move faster along the real line than the hull is
growing. From the simple example above, we see that if the driving function
remains constant, then in time O(t) the hull grows at rate O(

√
t). If Ut = o(

√
t)

for small t, then we are fine. In fact, the following holds.

Theorem 25. [20]

• There exists c0 > 0 such that if Ut satisfies

|Ut+s − Ut| ≤ c0
√
s,

for all s sufficiently small, then the curve γ exists and is a simple curve.
• There exists c1 <∞ and a function Ut satisfying

|Ut+s − Ut| ≤ c1
√
s,

for all t, s for which the limit (17) does not exist for some t.

Definition Suppose t→ Ut is a driving function. We say that Ut generates the
curve γ : [0,∞) → H if for each t, Dt is the unbounded component of H\γ(0, t].

5.3. Radial parametrization

The half-plane capacity parametrization is convenient for curves going from one
boundary point to another (∞ is a boundary point of H). When considering
paths going from a boundary point to an interior point, it is convenient to con-
sider the radial parametrization which is another kind of capacity parametriza-
tion. Suppose D is a simply connected domain and z ∈ D.

Definition If D is a simply connected domain and z ∈ D, then the conformal
radius of z in D is defined to be |f ′(0)| where f : D → D is a conformal
transformation with f(0) = z. We let ΥD(z) denote one-half times the conformal
radius.
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By definition ΥD(0) = 1/2 and a straightforward calculation shows that
ΥH(z) = Im(z). (We put the factor 1/2 in the definition of ΥD(z) so that
the latter equation holds.)

Suppose γ : (0,∞) → D \ {z} is a simple curve with γ(0+) = w, γ(∞) = z,
and let Dt = D \ γ(0, t].
Definition The curve γ has a radial parametrization (with respect to z) if
logΥDt

(z) = −at+ r for some a, r.

5.4. Radial Loewner differential equation in D

Suppose γ is a simple curve as in the last subsection with D = D, |w| = 1,
and z = 0. For each t, let gt be the unique conformal transformation of Dt

onto D with gt(0) = 0, g′t(0) > 0. We assume that the curve has the radial
parametrization with log[2ΥDt

(0)] = −2at. In other words, g′t(0) = e2at. The
following is proved similarly to Theorem 24.

Theorem 26 (Loewner differential equation). Suppose γ is a simple curve as
above. Then for z ∈ D, gt(z) satisfies the differential equation

∂tgt(z) = 2a gt(z)
ei2Ut + gt(z)

ei2Ut − gt(z)
, g0(z) = z,

where ei2Ut = gt(γ(t)) = limw′→γ(t) gt(w
′). Moreover, the function t 7→ Ut is

continuous. If z 6∈ γ(0,∞), then the equation is valid for all t. If z = γ(s), then
the equation is valid for t < s.

For ease, let us assume a = 1, t = 0, Ut = 0, for which the equation becomes

∂tgt(z)|t=0 = z
1 + z

1− z
,

or

∂t[log gt(z)] =
1 + z

1− z
.

The function on the right hand side is (a multiple of) the complex form of the
Poisson kernel HD(z, 1). In H we considered separately the real and imaginary
parts; in D we consider separately the radial and angular parts, or equivalently,
the real and imaginary parts of the logarithm.

When analyzing the radial equation, it is useful to consider the function ht(z)
defined by

gt(e
2iz) = e2iht(z).

Then the Loewner equation becomes

∂tht(z) = a cot(ht(z)− Ut).

If ht(z)− Ut is near zero, then

cot(ht(z)− Ut) ∼
1

ht(z)− Ut
,

and hence this can be approximated by the chordal Loewner equation.
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6. Schramm-Loewner evolution (SLEκ)

6.1. Chordal SLEκ

Suppose we have a family of probability measures µ#
D(z, w) on simple curves

(modulo reparametrization) connecting distinct boundary points in simply con-
nected domains satisfying the Domain Markov and conformal covariance prop-
erties as in Section 1.5. By considering the measure on curves in H from 0 to
∞, we see that this induces a probability measure on driving functions Ut. This
measure satisfies:

• For every s < t, the random variable Ut − Us is independent of {Ur : 0 ≤
r ≤ s} and has the same distribution as Ut−s.

Since Ut is also a continuous process, a well known result in probability tells us
that Ut must be a one-dimensional Brownian motion. Using the fact that the
measure is invariant under dilations, we can see that the drift of the Brownian
motion must equal zero. This leaves one parameter κ, the variance parameter
of the Brownian motion. This gives Schramm’s definition.

Definition The chordal Schramm-Loewner evolution with parameter κ (SLEκ)
(from 0 to ∞ in H) is the solution to the Loewner evolution

∂tg̃t(z) =
2

g̃t(z)− Ũt
, g̃0(z) = z,

where Ũt is a one-dimensional Brownian motion with variance parameter κ.

�Schramm used the term stochastic Loewner evolution and this is still used by some

in the literature. It was renamed the Schramm-Loewner evolution by others.

As before, we let D̃t be the domain of g̃t and K̃t = H \ D̃t. Under this
definition, hcap(K̃t) = 2t. For computational purposes, it is useful to consider
gt = g̃t/κ which satisfies

∂tgt(z) =
(2/κ)

gt(z)− Ũt/κ
.

Since Ũt/κ is a standard Brownian motion, we get an alternative definition. This
is the definition we will use; it is a linear time change of Schramm’s original
definition. Throughout these notes we will write a = 2/κ.

Definition The chordal Schramm-Loewner evolution with parameter κ (SLEκ)
(from 0 to ∞ in H) is the solution to the Loewner evolution

∂tgt(z) =
a

gt(z)− Ut
, g0(z) = z, (18)
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where Ut = −Bt is a standard one-dimensional Brownian motion and a = 2/κ.
Under this parametrization, hcap(Kt) = at.

A Brownian motion path is Hölder continuous of all orders less than 1/2,
but is not Hölder continuous of order 1/2. Hence, we cannot use the criterion
of Theorem 25 to assert that this gives a random measure on curves. However,
this is the case and we state this as a theorem. In many of the statements below
we leave out the phrase “with probability one”.

Theorem 27. Chordal SLEκ is generated by a (random) curve.

This was proved in [21] for κ 6= 8. The κ = 8 case is more delicate, and the
only known proof involves showing that the measure is obtained as a limit of
measures on discrete curves, see [12]. For κ 6= 8, the curve γ is Hölder continuous
of some order (depending on κ), but for κ = 8 it is not Hölder continuous of any
order α > 0. When we speak of Hölder continuity here, we mean with respect to
the capacity parametrization. It turns out that this is not the parametrization
that gives the optimal modulus of continuity. The next theorem describes the
phases of SLE.

Theorem 28.

• If κ ≤ 4, then γ is a simple curve with γ(0,∞) ⊂ H.
• If 4 < κ < 8, then γ has double points and γ(0,∞) ∩ R 6= ∅. The curve is
not plane-filling; in fact, for each z ∈ H, Pz{z ∈ γ(0,∞)} = 0.

• If κ ≥ 8, then the curve is space-filling, that is, γ[0,∞) = H.

Sketch of proof. If γ(s) = γ(t) for some s < t, and s < r < t, then the image
of the curve γ[r, t] under gr has the property that it hits the real line. Hence,
whether or not there are double points is equivalent to whether or not the real
line is hit. Let T be the first time that γ(t) ∈ [x,∞) where x > 0. Let

Xt = Xt(x) = gt(x)− Ut.

If T <∞, then XT = 0. By (18), we get

dXt =
a

Xt
dt+ dBt, X0 = x.

This is a Bessel equation and is the same equation satisfied by the absolute
value of a d-dimensional Brownian motion where a = (d−1)/2. It is well known
that solutions of this equation avoid the origin if and only if a ≥ 1/2 which
corresponds to κ ≤ 4.

To see if the curve is plane-filling, let us fix z ∈ H and ask if γ(t) = z for
some t. Let

Zt = Zt(z) = gt(z)− Ut,

which satisfies

dZt =
a

Zt
dt+ dBt.
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(A little care must be taken in reading this equation — Zt is complex but Bt
is a real-valued Brownian motion.) We reparametrize the curve using the radial
parametrization with respect to z,

Ẑt = Zσ(t).

In this new parametrization, the lifetime will be finite if the curve stays away
from z (for then the conformal radius does not go to zero), and the lifetime
will be infinite if the curve goes to z. For ease assume Im[z] = 1, and let
Θt = arg[Ẑt]. Then with the aid of some standard stochastic calculus, we can
see that Θt satisfies the equation

dΘt = (1− 2a) cotΘt dt+ dWt, Θ0 = arg z, (19)

where Wt is a standard Brownian motion. Whether or not the lifetime is finite
in the radial parametrization boils down to whether or not a process satisfying
(19) ever reaches {0, π}. Recalling that cot θ ∼ 1/θ for small θ, by comparison
with the Bessel process we find that the process avoids the origin if and only if
1− 2a ≥ 1/2 which corresponds to κ ≥ 8.

Two other interesting facts can be derived from (19).

• The process argZt is a martingale if and only if κ = 4 (1− 2a = 0). Note
that it does not matter which parametrization we use when we want to
see if a process is a martingale. The case κ = 4 is related to the harmonic
explorer and the Gaussian free field.

• If κ < 8, and
φ(θ) = P{ΘT = π | Θ0 = θ},

then φ(Θt∧T ) is a martingale, and hence by Itô’s formula, F satisfies

1

2
φ′′(θ) + (1− 2a)φ′(θ) = 0.

Solving this equation, with appropriate boundary conditions gives

φ(θ) = c

∫ θ

0

sin4a−2 x dx, c =

[
∫ π

0

sin4a−2 x dx

]−1

.

Note that κ < 8 implies 4a− 2 > −1, and hence the integral is finite. One
can check that φ(arg z) represents the probability that the curve γ goes
to the right of z.

�The formula for φ was first given by Schramm [23] and written in terms of hy-

pergeometric functions. Many of the functions from SLE (and conformal field theory) are

solutions of second order differential equations which is why hypergeometric functions

arise. Often one can give alternative forms of the solution. An important case historically

was the formula for percolation crossing which was first given by Cardy [4] in the upper half

plane terms of hypergeometric functions but, as first noted by Carleson, is much simpler

in an equilateral triangle.
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6.2. Dimension of the path

If κ ≥ 8, the SLE curve is plane-filling and hence has dimension two. For this
section, we assume κ < 8. Roughly speaking, the fractal dimension of the curve
γ[s, t] is given by d, where the number of balls of radius ǫ needed to cover γ[s, t]
grows like ǫ−d as ǫ → 0. For fixed z, let p(z, ǫ) denote the probability that the
curve gets within distance ǫ of z. Then a “back of the envelope” calculation
shows that the expected number of balls of radius ǫ needed to cover, say,

γ(0,∞) ∩ {z ∈ H : |z − i| ≤ 1/2}

should decay like ǫ−2 p(i, ǫ), or we would expect that p(i, ǫ) ≈ ǫ2−d.
Let us be more precise. Let Υt(z) = ΥDt

(z) where, as before, ΥD(z) equals
one-half times the conformal radius. Let Υ(z) = limt→∞ Υt(z). Then we might
expect that there is a function G̃(z) and a dimension d such that

P {Υ(z) ≤ ǫ} ∼ G̃(z) ǫ2−d, ǫ→ 0.

Again, let Zt = Zt(z) − gt(z). Then, if such a function existed, one can show
that

|g′t(z)|2−d Ĝ(Zt),
would have to be a local martingale. Using Itô’s formula, we can show that this
implies that Ĝ = cG where G is the chordal SLEκ Green’s function,

G(z) = Im(z)2−d [arg z]4a−1, d = 1 +
1

4a
= 1 +

κ

8
.

The proof of the following is discussed in [8].

Theorem 29. If κ < 8 and z ∈ H,

lim
ǫ→0+

ǫd−2P{Υ(z) ≤ ǫ} = c∗G(z), c∗ =

[
∫ π

0

sin4a x dx

]−1

.

This “one-point” estimate is not good enough to compute the Hausdorff
dimension of the path. A more difficult “two-point” estimate of the form

P{Υ(z) ≤ ǫ,Υ(w) ≤ ǫ} ≍ ǫ2(2−d)|z − w|d−2,

was proved by Beffara [3] (see also [18]) from which he concluded the following.

Theorem 30. If κ < 8, the SLEκ paths have Hausdorff dimension

d = 1 +
κ

8
.

In particular, for every 1 < d < 2, there exists a unique κ that produces
paths of dimension d.
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6.3. SLE in simply connected domains

The starting assumption for chordal SLEκ was that it was a conformally invari-
ant family of probability measures connecting distinct boundary points. Using
this, Schramm derived that there was only a one-parameter family of possible
measures which he defined as SLEκ. The definition was given in the upper
half-plane, but one can then define SLEκ connecting boundary points w1, w2

in a simply connected domain as the image of SLEκ in H under a conformal
transformation F : H → D with F (0) = w1, F (∞) = w2.

Remarks

• This definition is really a measure on curves modulo reparametrization.
• The map F is not unique but if F̃ is another such map one can show
that F̃ (z) = F (rz) for some r > 0. Using scale invariance (modulo
reparametrization) of SLEκ, which follows from a scaling rule for Brown-
ian motion, we see that the definition is independent of the choice of F .

In the calculation below, two important parameters will appear.

Definition

• The central charge c = c(κ) is defined by

c =
(6− κ) (3κ− 8)

2κ
=

(3a− 1) (3− 4a)

a

• The boundary scaling exponent b = b(κ) is defined by

b =
6− κ

2κ
=

3a− 1

2
.

• For any κ, its dual value κ′ is defined by κκ′ = 16.

We note that c ∈ (−∞, 1] and c(κ) = c(κ′). The relationship κ ↔ c(κ) is
two-to-one with a double root at κ = 4, c = 1. As κ increases from 0 to ∞, b(κ)
decreases from ∞ to −1/2.

6.4. Subdomains of H

Suppose that D = H\K ∈ D with dist(0,K) > 0. Let F = FD be the conformal
transformation of H onto D with F (0) = 0, F (∞) = ∞, F ′(∞) = 1, and let
Φ = F−1. If γ is an SLEκ curve in H, then γ∗(t) = F ◦ γ(t) is (a time change
of) SLEκ in D from F (0) to infinity. Let us write γt = γ(0, t], γ∗t = γ∗t (0, t].
Since γ∗t is a curve in H, we can write its Loewner equation,

∂tg
∗
t (z) =

ȧ∗(t)

g∗t (z)− U∗
t

,

where a∗(t) = hcap[γ∗t ]. Let Ft = g∗t ◦ F ◦ g−1
t , and note that Ft(Ut) = U∗

t

and that Ft is the corresponding conformal transformation of H onto g∗t (D)
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Fig 10. The maps.

with Ft(Ut) = U∗
t , Ft(∞) = ∞, F ′

t (∞) = 1. By using the scaling rule for the
half-plane capacity, we can show that

∂ta
∗(t) = aF ′(Ut)

2,

and hence

∂tg
∗
t (z) =

aF ′(Ut)
2

g∗t (z)− U∗
t

.

With the aid of some careful chain rule and stochastic calculus computations,
one can find the stochastic differential equation satisfied by the driving function
U∗
t . It turns out to be nicer if one reparametrizes so that the half-plane capacity

of γ∗ grows linearly at rate a. Let Ût = U∗
σ(t) denote the driving function in the

time change and let Φt = F−1
σ(t).

Proposition 31. Under the time change, the driving function Ût satisfies

dÛt = b
Φ′′
t (Ût)

Φ′
t(Ût)

dt+ dWt,

where Wt is a standard Brownian motion. This is valid up to the first time that
the curve hits K = H \D.

This proposition implies that there is another way to define SLEκ in D.
Consider a solution to the Loewner equation (18) where Ut satisfies the SDE

dUt = b
Φ′′
t (Ut)

Φ′
t(Ut)

dt+ dWt.

Here Φt is a conformal transformation of gt(D) ontoH with Φt(∞) = ∞,Φ′
t(∞) =

1. Let γ denote the corresponding curve and let

τ = inf{t : γ(t) ∈ K}.

Then this gives the distribution of SLEκ in D up to time τ .
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The drift term is nontrivial unless b = 0 which corresponds to κ = 6. This
particular property of SLE6 is called locality. Note that the percolation explo-
ration process satisfies a discrete analogue of the locality property, and this is
one way to see that κ = 6 should correspond to percolation.

Proposition 32 (Locality). If γ is an SLE6 curve in D, then the distribution
of γ is the same as that of SLE6 in H up to the first time that the curve hits
H \D.

6.5. Fundamental local martingale

We will start this section by stating an important computation which first ap-
peared in [13]. We will not motivate it now, but we will discuss implication
below. Suppose γ is an SLEκ curve in H with driving function Ut = −Bt, and
D is a domain as above. Let Φt, τ be defined as in the previous subsection, and
recall the values of b, c. Let S denote the Schwarzian derivative,

Sf(z) =
f ′′′(z)

f ′(z)
− 3f ′′(z)2

2f ′(z)2
.

For t < τ , we define

Mt = Φ′
t(Ut)

b exp

{

−ac
12

∫ t

0

SΦs(Us) ds

}

.

Note that we can write Mt as

Mt = CtΦ
′
t(Ut)

b

where Ct has paths that are continuously differentiable in t.

Proposition 33. Mt is a local martingale satisfying

dMt = b
Φ′′
t (Ut)

Φ′
t(Ut)

Mt dUt, t < τ.

It is not hard to show that Φ′
t(Ut) ≤ 1 and SΦt(Ut) ≤ 0, and hence for

κ ≤ 8/3, Mt is a bounded martingale.
An important tool in understanding the curve is Giranov’s Theorem. The

form that we will need it is the following. Suppose Mt is a nonnegative martin-
gale satisfying

dMt =Mt Jt dUt.

Then we can define a new probability measure by stating that if E is an event
depending only on {Us : 0 ≤ s ≤ t}, then

Q(E) =M−1
0 E [Mt 1E] .

The theorem states that

Wt = Ut −
∫ t

0

Js ds,
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is a standard Brownian motion with respect to Q, or equivalently,

dUt = Jt dt+ dWt.

This is a theorem about martingales, but we can apply this theorem to positive
local martingales by choosing an increasing collection of stopping times ξn such
thatMt∧ξn are bounded martingales. Comparing this with Proposition 31 gives
us the following.

Proposition 34. SLEκ weighted (in the sense of the Girsanov theorem) by Mt

has the same distribution as SLEκ in D (up to the first time that the curve hits
H \D).

Recall that for κ ≤ 4, the SLEκ curve in H never hits the real line. This
implies that the SLEκ curve in D never hits H \D and the last proposition is
valid for all time. With a little more argument, one can let t → ∞ and prove
the following. As t → ∞, gt(D) looks more and more like H and from this one
gets Φ′

t(Ut) → 1.

Theorem 35. If κ ≤ 4,

Φ′(0)b = E[M0] = E[M∞] = E

[

1{γ(0,∞) ⊂ D} exp

{

−ac
12

∫ ∞

0

SΦt(Ut) dt

}]

.

6.6. Brownian loop measure

The “compensator” term

exp

{

−ac
12

∫ t

0

SΦs(Us) ds

}

from last subsection comes from a direct calculation. However, there is a nice
interpretation of this quantity in terms of loops of the Brownian loop measure.
We give a slightly different definition here, but one can easily check that this is
the same definition as given in Section 3.

A (rooted) loop ω is a continuous curve ω : [0, tω] → C with ω(0) = ω(tω).
Such a loop can also be considered as a periodic function of period tω. An
unrooted loop is a rooted loop with the root forgotten. To specify a rooted loop,
one can give a triple (z, t, ω̃) where z ∈ C is the root, t is the time duration, and
ω̃ is a loop of time duration one. To obtain ω from the triple, one uses Brownian
scaling to convert ω̃ to a loop of time duration t and then translates the loop
so it has root z.

Definition

• The rooted Brownian loop measure ν̃ = ν̃C is the measure on rooted loops
(z, t, ω̃) given by

area × dt

2π t2
× Brownian bridge ,
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where Brownian bridge denotes the probability measure associated to com-
plex Brownian motions Bt, 0 ≤ t ≤ 1 conditioned so that B0 = B1.

• The (unrooted) Brownian loop measure in C, ν = νC, is the measure on
unrooted loops obtained from ν̃C by forgetting the roots.

• If D ⊂ C, the measures ν̃D and νD are obtained by restricting ν̃ and ν,
respectively, to loops staying in D.

By definition the Brownian loop measure satisfies the “restriction property”.
It is an infinite measure since small loops have large measure. Its importance
comes from the fact that it also satisfies conformal invariance. The following
theorem only holds for the measure on unrooted loops.

Theorem 36. If f : D → f(D) is a conformal transformation, then

f ◦ νD = νf(D).

The relationship between the Brownian loop measure and the compensator
is as follows. If D is a domain and V1, V2 ⊂ D, let Λ(D;V1, V2) denote the
Brownian loop measure of the set of loops in D that intersect both V1 and V2.
Then, by analyzing the Brownian loop measure infinitesimally (see (12)), we
have the following. Here and below, we write γt for γ(0, t].

Proposition 37. Suppose γ is a curve in H parametrized so that hcap(γt) = at
and let D = H \K ∈ D. Then if

t < τ := inf{s : γ(s) ∈ K},

we have

−a
6

∫ t

0

SΦs(Us) ds = Λ(H; γt,K).

Therefore, the fundamental local martingale can be written as

Mt = Φ′
t(Ut)

b exp
{c

2
Λ(H; γt,K)

}

,

and if κ ≤ 4, we have a limiting value

M∞ = 1{γ ⊂ D} exp
{c

2
Λ(H; γ,K)

}

,

where γ = γ∞. Combining this we get the main theorem comparing SLEκ in D
to SLEκ in H.

Theorem 38. Suppose D = H \K ∈ D with dist(0,K) > 0 and κ ≤ 4. Let γ
be an SLEκ curve from 0 to ∞ in H defined on the probability space (Ω,F ,P),
and let

M∞ = 1{γ ⊂ D} exp
{c

2
Λ(H; γ,K)

}

.

Then,
E [M∞] = Φ′

D(0)
b.
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Moreover, if Q is defined by

dQ =
M∞

Φ′
D(0)

b
dP,

then the distribution of γ with respect to Q is that of SLEκ in D from 0 to ∞.

�We review what we have done here. We used Itô’s formula to derive a local martingale

with a compensator term that had a Schwarzian derivative. We then interpreted this

infinitesimal calculation in terms of a more global quantity, the Brownian loop measure.

Some of these ideas can be extended to multiply connected domains, but the substitute

for the Schwarzian derivative is the Brownian bubble quantity Γ(D) from Section 3.4.

6.7. SLEκ as a nonprobability measure

For this subsection, we assume that κ ≤ 4 so that SLEκ is supported on simple
paths. If D is a simply connected domain, we say that z, w ∈ ∂D are smooth
(boundary points of D) if ∂D is locally analytic near z, w. For any such D, there
is a unique conformal transformation

F = FD : H → D

with F (0) = z, F (∞) = w, |F ′(∞)| = 1. Here we abuse notation somewhat, to
write F (∞) = w, |F ′(∞)| = 1 to denote that as w′ → ∞,

F (w′) = w − 1

w′
n,

where n denotes the inward unit normal in D at w. We also call 0,∞ smooth
boundary points for domains D ∈ D. In this case, the map F is the same as the
F defined in Section 6.4.

Definition Suppose D is a simply connected domain and z, w are smooth. If
κ ≤ 4, the (unparametrized) SLEκ measure µD(z, w) is defined by

µD(z, w) = CD(z, w)µ
#
D(z, w),

where:

• µ#
D(z, w) is the probability measure on paths (modulo reparametrization)

obtained as the image of SLEκ in H under F .
• CD(z, w) = |F ′(z)|b.
In particular, we have normalized the measure so that CH(0,∞) = 1. In fact,

using the scaling rule for the Poisson kernel, we can see that for all simply
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connected domains
CD(z, w) = [πH∂D(z, w)]

b ,

where HD(z, w) is the excursion or boundary Poisson kernel defined as the
normal derivative of HD(·, w) at z. In particular,

CH(0, x) = |x|−2b.

We can summarize a number of the results in this section as follows.

Theorem 39. Assume κ ≤ 4, D,D′ are simply connected domains, and z, w
are smooth boundary points.

• Conformal covariance. If f : D → f(D) is a conformal transformation
and f(z), f(w) are smooth boundary points of f(D), then

f ◦ µD(z, w) = |f ′(z)|b |f ′(w)|b µf(D)(f(z), f(w)).

• Boundary perturbation. If D1 ⊂ D and ∂D, ∂D1, then µD1
(z, w) is

absolutely continuous with respect to µD(z, w) with

dµD1
(z, w)

dµD(z, w)
(γ) = Y (γ) (20)

where

Y (γ) = Y (D1, D; z, w)(γ) = 1{γ ⊂ D1} exp
{ c

2
Λ(D; γ,D \D1)

}

.

�The above characterization gives a natural way to extend the definition of SLEκ to

multiply connected domains at least for κ ≤ 4. See [9, 10]

We can also state (20) in terms of probability measures,

dµ#
D1

(z, w)

dµ#
D(z, w)

(γ) =
Y (γ)

E(Y )

where E denotes expectation with respect to µ#
D(z, w). This formulation has

the advantage that it does not require z, w to be smooth boundary points. Note
that if f : D → f(D) is a conformal transformation, then

Y (f(D1), f(D); f(z), f(w))(f ◦ γ) = Y (D1, D; z, w)(γ).

The definition of µD(z, w) very much used the fact that the curve was going
from z to w. However, many of the discrete examples indicate that the mea-
sure should be reversible, that is, the measure µD(w, z) can be obtained from
µD(z, w) by reversing the paths. This is not easy to show from the definition of
SLEκ, but fortunately, Zhan [25] has given a proof.

Theorem 40. For κ ≤ 4, µD(w, z) can be obtained from µD(z, w) by reversing
the paths.
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6.8. Natural parametrization (length)

Everything we have done so far has considered SLEκ in the capacity parametriza-
tion or “up to time change”. The natural parametrization or length should be a
d-dimensional measure where d is the Hausdorff dimension of the path. Here we
show how to define it. Let γ denote an SLEκ curve in H from 0 to ∞ and let
Θt denote the amount of time to traverse γ[0, t] in the natural parametrization.
If κ ≥ 8, the path is space filling and we define

Θt = area(γt).

For the remainder of this section, assume that κ < 8.
The starting point for the definition is the belief that the expected amount

of time spent in a bounded domain V should be (up to an arbitrary constant
multiple) equal to

∫

V

G(z) dA(z),

where G denotes the Green’s function and dA denotes integration with respect
to area. More generally, the expected amount of time spent in V after time t,
given the path γ(0, t] should be given by

Ψt(V ) :=

∫

V

GDt
(z; γ(t),∞) dA(z).

For each z, the process Mt(z) = GDt
(z; γ(t),∞) is a positive local martingale

and hence is a supermartingale. Using this, we see that Ψt(V ) is a supermartin-
gale. This leads to the following definition which comes from the Doob-Meyer
decomposition of a supermartingale.

Definition The natural parametrization Θt(V ) is the unique increasing process
Θt(V ) such that

Θt(V ) + Ψt(V )

is a martingale. The natural parametrization is given by

Θt = lim
n→∞

Θt(Vn),

where Vn is an increasing sequence of sets whose union is H.

Work needs to be done to show that this is well defined and nontrivial [17, 19].
Indeed, if Ψt(V ) were a local martingale, then we would not have a nontrivial
process.

This defines the natural length in H; there are two ways to define in subdo-
mains. Suppose D ∈ D. Then for each curve γ lying in D, we can consider as
a curve in H and compute its length, or we could use the conformal covariance
rule (4). Fortunately, they give the same answer [16].

It may be surprising at first, but the capacity parametrization and the natural
parametrization are singular with respect to each other.
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