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1. Introduction

The fundamental example of the type of result we address in this article is
the following version of the classical Berry-Esseen bound for the central limit
theorem.

Theorem 1.1. [56] Let X1, X2, . . . be i.i.d. random variables with E|X1|3 < ∞,E[X1] = 0, and Var(X1) = 1. If Φ denotes the c.d.f. of a standard normal
distribution and Wn =

∑n
i=1 Xi/

√
n, then

|P(Wn ≤ x)− Φ(x)| ≤ .4785
E|X1|3√

n
.

The theorem quantifies the error in the central limit theorem and has many
related embellishments such as assuming independent, but not identically dis-
tributed variables, or allowing a specified dependence structure. The proofs of
such results typically rely on characteristic function (Fourier) analysis, whereby
showing convergence is significantly easier than obtaining error bounds.

More generally, a central theme of probability theory is proving distributional
limit theorems, and for the purpose of approximation it is of interest to quantify
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the rate of convergence in such results. However, many of the methods commonly
employed to show distributional convergence (e.g. Fourier analyisis and method
of moments) only possibly yield an error rate after serious added effort. Stein’s
method is a technique that can quantify the error in the approximation of one
distribution by another in a variety of metrics. Note that the implications of
such an approximation can fall outside of the discussion above which relates
only to convergence.

Stein’s method was initially conceived by Charles Stein in the seminal paper
[54] to provide errors in the approximation by the normal distribution of the
distribution of the sum of dependent random variables of a certain structure.
However, the ideas presented in [54] are sufficiently abstract and powerful to be
able to work well beyond that intended purpose, applying to approximation of
more general random variables by distributions other than the normal (such as
the Poisson, exponential, etc).

Broadly speaking, Stein’s method has two components: the first is a frame-
work to convert the problem of bounding the error in the approximation of one
distribution of interest by another, well understood distribution (e.g. the nor-
mal) into a problem of bounding the expectation of a certain functional of the
random variable of interest (see (2.5) for the normal distribution and (4.4) for the
Poisson). The second component of Stein’s method is a collection of techniques
to bound the expectation appearing in the first component; Stein appropriately
refers to this step as “auxiliary randomization.” With this in mind, it is no
surprise that Stein’s monograph [55], which reformulates the method in a more
coherent form than [54], is titled “Approximate Computation of Expectations.”

There are now hundreds of papers expanding and applying this basic frame-
work above. For the first component, converting to a problem of bounding a
certain expectation involving the distribution of interest has been achieved for
many well-known distributions. Moreover, canonical methods (which are not
guaranteed to be fruitful or easy to implement) have been established for achiev-
ing this conversion for new distributions [22, 45].

For the second component, there is now an array of coupling techniques
available to bound these functionals for various distributions. Moreover, these
coupling techniques can be used in other types of problems which can be dis-
tilled into bounding expectations of a function of a distribution of interest.
Two examples of the types of problems where this program has succeeded are
concentration of measure inequalities [18, 28, 29] (using the well known Propo-
sition 7.1 below), and local limit theorems [50]. We cover the former example in
this article.

The purpose of this document is to attempt to elucidate the workings of
these two components at a basic level, in order to help make Stein’s method
more accessible to the uninitiated. There are numerous other introductions to
Stein’s method which this document draws from, mainly [23, 24] for Normal
approximation, [12, 20] for Poisson approximation, and an amalgamation of
related topics in the collections [11, 26]. Most of these references focus on one
distribution or variation of Stein’s method in order to achieve depth, so there
are themes and ideas that appear throughout the method which can be difficult
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to glean from these references. We hope to capture these fundamental concepts
in uniform language to give easier entrance to the vast literature on Stein’s
method and applications. A similar undertaking but with smaller scope can be
found in Chapter 2 of [51], which also serves as a nice introduction to the basics
of Stein’s method.

Of course the purpose of Stein’s method is to prove approximation results, so
we illustrate concepts in examples and applications, many of which are combina-
torial in nature. In order to facilitate exposition, we typically work out examples
and applications only in the most straightforward way and provide pointers to
the literature where variations of the arguments produce more thorough results.

The layout of this document is as follows. In Section 2, we discuss the basic
framework of the first component above in the context of Stein’s method for
normal approximation, since this setting is the most studied and contains many
of the concepts we need later. In Section 3 we discuss the commonly employed
couplings used in normal approximation to achieve the second component above.
We follow the paradigm of these two sections in discussing Stein’s method for
Poisson approximation in Section 4, exponential approximation in Section 5,
and geometric approximation in Section 6. In the final Section 7 we discuss how
to use some of the coupling constructions of Section 3 to prove concentration of
measure inequalities.

We conclude this section with a discussion of necessary background and no-
tation.

1.1. Background and notation

This is a document based on a graduate course given at U.C. Berkeley in the
Spring semester of 2011 and is aimed at an audience having seen probability
theory at the level of [35]. That is, we do not rely heavily on measure theoretic
concepts, but exposure at a heuristic level to concepts such as sigma-fields is use-
ful. Also, basic Markov chain theory concepts such as reversibility are assumed
along with the notion of coupling random variables which is used frequently in
what follows.

Many of our applications concern various statistics of Erdős-Rényi random
graphs. We say G = G(n, p) is an Erdős-Rényi random graph on n vertices
with edge probability p if, for each of the

(

n
2

)

pairs of vertices, there is an edge
connecting the vertices with probability p (and no edge connecting them with
probability 1 − p), independent of all other connections between other pairs of
vertices. These objects are a simple and classical model of networks that are
well studied; see [14, 37] for book length treatments.

For a set A, we write I[· ∈ A] to denote the function which is one on A and
0 otherwise. We write g(n) ≍ f(n) if g(n)/f(n) tends to a positive constant as
n → ∞, and g(n) = O(f(n)) if g(n)/f(n) is bounded as n → ∞. For a function
f with domain D, we write ‖f‖ = supx∈D |f(x)|.

Since Stein’s method is mainly concerned with bounding the distance between
probability distributions in a given metric, we now discuss the metrics that we
use.
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1.2. Probability metrics

For two probability measures µ and ν, the probability metrics we use have the
form

dH(µ, ν) = sup
h∈H

∣

∣

∣

∣

∫

h(x)dµ(x) −
∫

h(x)dν(x)

∣

∣

∣

∣

, (1.1)

where H is some family of “test” functions. For random variables X and Y
with respective laws µ and ν, we abuse notation and write dH(X,Y ) in place of
dH(µ, ν).1

We now detail examples of metrics of this form along with some useful prop-
erties and relations.

1. By taking H = {I[· ≤ x] : x ∈ R} in (1.1), we obtain the Kolmogorov met-
ric, which we denote dK. The Kolmogorov metric is the maximum distance
between distribution functions, so a sequence of distributions converging
to a fixed distribution in this metric implies weak convergence (although
the converse is not true since weak convergence only implies pointwise
convergence of distribution functions at continuity points of the limiting
distribution function).

2. By taking H = {h : R → R : |h(x) − h(y)| ≤ |x − y|} in (1.1), we obtain
the Wasserstein metric, which we denote dW. The Wasserstein metric is
a common metric occurring in many contexts and is the main metric we
use for approximation by continuous distributions.

3. By taking H = {I[· ∈ A] : A ∈ Borel(R)} in (1.1), we obtain the total
variation metric, which we denote dTV. We use the total variation metric
for approximation by discrete distributions.

Proposition 1.2. Retaining the notation for the metrics above, we have the
following.

1. For random variables W and Z, dK(W,Z) ≤ dTV(W,Z).
2. If the random variable Z has Lebesgue density bounded by C, then for any

random variable W ,

dK(W,Z) ≤
√

2C dW(W,Z).

3. For W and Z random variables taking values in a discrete space Ω,

dTV(W,Z) =
1

2

∑

ω∈Ω

|P(W = ω)−P(Z = ω)|.

Proof. The first item follows from the fact that the supremum on the right side
of the inequality is over a larger set, and the third item is left as an exercise. For
the second item, consider the functions hx(w) = I[w ≤ x], and the ‘smoothed’

1In some contexts this abuse could cause some confusion, but our use of these metrics is
largely outside of such issues.
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hx,ε(w) defined to be one for w ≤ x, zero for w > x + ε, and linear between.
Then we haveEhx(W )−Ehx(Z) = Ehx(W )−Ehx,ε(Z) +Ehx,ε(Z)−Ehx(Z)

≤ Ehx,ε(W )−Ehx,ε(Z) + Cε/2

≤ dW(W,Z)/ε+ Cε/2.

Taking ε =
√

2 dW(W,Z)/C shows half of the desired inequality and a similar
argument yields the other half.

Due to its importance in our framework, we reiterate the implication of Item
2 of the proposition that a bound on the Wasserstein metric between a given
distribution and the normal or exponential distribution immediately yields a
bound on the Kolmogorov metric.

2. Normal approximation

The main idea behind Stein’s method of distributional approximation is to re-
place the characteristic function typically used to show distributional conver-
gence with a characterizing operator.

Lemma 2.1 (Stein’s Lemma). Define the functional operator A by

Af(x) = f ′(x)− xf(x).

1. If Z has the standard normal distribution, then EAf(Z) = 0 for all abso-
lutely continuous f with E|f ′(Z)| < ∞.

2. If for some random variable W , EAf(W ) = 0 for all absolutely continuous
functions f with ‖f ′‖ < ∞, then W has the standard normal distribution.

The operator A is referred to as a characterizing operator of the standard normal
distribution.

Before proving Lemma 2.1, we record the following lemma and then observe
a consequence.

Lemma 2.2. If Φ(x) is the c.d.f. of the standard normal distribution, then the
unique bounded solution fx of the differential equation

f ′
x(w)− wfx(w) = I[w ≤ x]− Φ(x) (2.1)

is given by

fx(w) = ew
2/2

∫ ∞

w

e−t2/2 (Φ(x)− I[t ≤ x]) dt

= −ew
2/2

∫ w

−∞

e−t2/2 (Φ(x) − I[t ≤ x]) dt.
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Lemmas 2.1 and 2.2 are at the heart of Stein’s method; observe the following
corollary.

Corollary 2.3. If fx is as defined in Lemma 2.2, then for any random vari-
able W ,

|P(W ≤ x)− Φ(x)| = |E[f ′
x(W )−Wfx(W )]|. (2.2)

Although Corollary 2.3 follows directly from Lemma 2.2, it is important to
note that Lemma 2.1 suggests that (2.2) may be a fruitful equality. That is, the
left hand side of (2.2) is zero for all x ∈ R if and only if W has the standard
normal distribution. Lemma 2.1 indicates that the right hand side of (2.2) also
has this property.

Proof of Lemma 2.2. The method of integrating factors shows that

d

dw

(

e−w2/2fx(w)
)

= e−w2/2 (I[w ≤ x]− Φ(x)) ,

which after integrating and considering the homogeneous solution implies that

fx(w) = ew
2/2

∫ ∞

w

e−t2/2 (Φ(x)− I[t ≤ x]) dt+ Cew
2/2 (2.3)

is the general solution of (2.1) for any constant C. To show that (2.3) is bounded
for C = 0 (and then clearly unbounded for other values of C) we use

1− Φ(w) ≤ min

{

1

2
,

1

w
√
2π

}

e−w2/2, w > 0,

which follows by considering derivatives. From this point we use the represen-
tation

fx(w) =

{ √
2πew

2/2Φ(w)(1 − Φ(x)), w ≤ x√
2πew

2/2Φ(x)(1 − Φ(w)), w > x

to obtain that ‖fx‖ ≤
√

π
2 .

Proof of Lemma 2.1. We first prove Item 1 of the lemma. Let Z be a stan-
dard normal random variable and let f be absolutely continuous such thatE|f ′(Z)| < ∞. Then we have the following formal calculation (justified by Fu-
bini’s Theorem) which is essentially integration by parts.Ef ′(Z) =

1√
2π

∫R e−t2/2f ′(t)dt

=
1√
2π

∫ ∞

0

f ′(t)

∫ ∞

t

we−w2/2dwdt+
1√
2π

∫ 0

−∞

f ′(t)

∫ t

−∞

we−w2/2dwdt

=
1√
2π

∫ ∞

0

we−w2/2

[
∫ w

0

f ′(t)dt

]

dw +
1√
2π

∫ 0

−∞

we−w2/2

[
∫ 0

w

f ′(t)dt

]

dw

= E[Zf(Z)].
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For the second item of the Lemma, assume that W is a random variable
such that E[f ′(W ) − Wf(W )] = 0 for all absolutely continuous f such that
‖f ′‖ < ∞. The function fx satisfying (2.1) is such a function, so that for all
x ∈ R,

0 = E[f ′
x(W )−Wfx(W )] = P(W ≤ x)− Φ(x),

which implies that W has a standard normal distribution.

Our strategy for bounding the maximum distance between the distribution
function of a random variable W and that of the standard normal is now fairly
obvious: we want to bound E[fx(W ) − Wfx(W )] for fx solving (2.1). This
setup can work, but it turns out that it is easier to work in the Wasserstein
metric. Since the critical property of the Kolmogorov metric that we use in
the discussion above is the representation (1.1), which the Wasserstein metric
shares, extending in this direction comes without great effort.2

2.1. The general setup

For two random variables X and Y and some family of functions H, recall the
metric

dH(X,Y ) = sup
h∈H

|Eh(X)−Eh(Y )|, (2.4)

and note that such a metric only depends on the marginal laws of X and Y .
For h ∈ H, let fh solve

f ′
h(w)− wfh(w) = h(w)− Φ(h)

where Φ(h) is the expectation of h with respect to a standard normal distri-
bution. We have the following result which easily follows from the discussion
above.

Proposition 2.4. If W is a random variable and Z has the standard normal
distribution, then

dH(W,Z) = sup
h∈H

|E[f ′
h(W )−Wfh(W )]|. (2.5)

The main idea at this point is to bound the right side of (2.5) by using the
structure of W and properties of the solutions fh. The latter issue is handled
by the following lemma.

Lemma 2.5. Let fh be the solution of the differential equation

f ′
h(w)− wfh(w) = h(w)− Φ(h) (2.6)

2It is important to note, however, that this change typically comes at the cost of sharp
rates in the Kolmogorov metric which can be difficult to obtain, even in reasonable problems.
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which is given by

fh(w) = ew
2/2

∫ ∞

w

e−t2/2 (Φ(h)− h(t)) dt

= −ew
2/2

∫ w

−∞

e−t2/2 (Φ(h)− h(t)) dt.

1. If h is bounded, then

‖fh‖ ≤
√

π

2
‖h(·)− Φ(h)‖, and ‖f ′

h‖ ≤ 2‖h(·)− Φ(h)‖.

2. If h is absolutely continuous, then

‖fh‖ ≤ 2‖h′‖, ‖f ′
h‖ ≤

√

2

π
‖h′‖, and ‖f ′′

h‖ ≤ 2‖h′‖.

The proof of Lemma 2.5 is similar to but more technical than the proof of
Lemma 2.2. We refer to [24] (Lemma 2.4) for the proof.

3. Bounding the error

We focus mainly on the Wasserstein metric when approximating by continuous
distributions. This is not a terrible concession as firstly the Wasserstein metric is
a commonly used metric, and also by Proposition 1.2, for Z a standard normal
random variable and W any random variable we have

dK(W,Z) ≤ (2/π)1/4
√

dW(W,Z),

where dK is the maximum difference between distribution functions (the Kol-
mogorov metric); dK is an intuitive and standard metric to work with.

The reason for using the Wasserstein metric is that it has the form (2.4) for
H the set of functions with Lipschitz constant equal to one. In particular, if h
is a test function for the Wasserstein metric, then ‖h′‖ ≤ 1 so that we know the
solution fh of equation (2.6) is bounded with two bounded derivatives by Item 2
of Proposition 2.5. Contrast this to the set of test functions for the Kolmogorov
metric where the solution fh of equation (2.6) is bounded with one bounded
derivative (by Item 1 of Proposition 2.5) but is not twice differentiable.

To summarize our progress to this point, we state the following result which
is a corollary of Proposition 2.4 and Lemma 2.5. The theorem is the kernel of
Stein’s method for normal approximation.

Theorem 3.1. If W is a random variable and Z has the standard normal dis-
tribution, and we define the family of functions F = {f : ‖f‖, ‖f ′′‖ ≤ 2, ‖f ′‖ ≤
√

2/π}, then

dW(W,Z) ≤ sup
f∈F

|E[f ′(W )−Wf(W )]|. (3.1)
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In the remainder of this section, we discuss methods which use the structure of
W to bound |E[f ′(W )−Wf(W )]|. We proceed by identifying general structures
that are amenable to this task (for other, more general structures see [49]), but
first we illustrate the type of result we are looking for in the following standard
example.

3.1. Sum of independent random variables

We have the following result which follows from Theorem 3.1 and Lemma 3.4
below.

Theorem 3.2. Let X1, . . . , Xn be independent mean zero random variables such
that E|Xi|4 < ∞ and EX2

i = 1. If W = (
∑n

i=1 Xi)/
√
n and Z has the standard

normal distribution, then

dW(W,Z) ≤ 1

n3/2

n
∑

i=1

E|Xi|3 +
√
2√
πn

√

√

√

√

n
∑

i=1

E[X4
i ].

Before the proof we remark that if the Xi of the theorem also have common
distribution, then the rate of convergence is order n−1/2, which is the best
possible. It is also useful to compare this result to Theorem 1.1 which is in a
different metric (neither result is recoverable from the other in full strength)
and only assumes third moments. A small modification in the argument below
yields a similar theorem assuming only third moments (see Lecture 3 of [23]),
but the structure of proof for the theorem as stated is one that we copy in what
follows.

In order to prepare for arguments to come, we break the proof into a series
of lemmas. Since our strategy is to apply Theorem 3.1 by estimating the right
side of (3.1) for bounded f with bounded first and second derivative, the first
lemma shows an expansion of the right side of (3.1) using the structure of W
as defined in Theorem 3.2.

Lemma 3.3. In the notation of Theorem 3.2, if Wi = (
∑

j 6=i Xi)/
√
n thenE[Wf(W )] = E[ 1√

n

n
∑

i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(W ))

]

(3.2)

+E[ 1√
n

n
∑

i=1

Xi(W −Wi)f
′(W )

]

. (3.3)

Proof. After noting that the negative of (3.3) is contained in (3.2) and removing
these terms from consideration, the lemma is equivalent toE[Wf(W )] = E[ 1√

n

n
∑

i=1

(Xif(W )−Xif(Wi))

]

. (3.4)

Equation (3.4) follows easily from the fact that Wi is independent of Xi so thatE[Xif(Wi)] = 0.
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The theorem follows after we show that (3.2) is small and that (3.3) is close
to Ef ′(W ); we see this strategy appear frequently in what follows.

Lemma 3.4. If f is a bounded function with bounded first and second derivative,
then in the notation of Theorem 3.2,

|E[f ′(W )−Wf(W )]| ≤ ‖f ′′‖
2n3/2

n
∑

i=1

E|Xi|3 +
‖f ′‖
n

√

√

√

√

n
∑

i=1

E[X4
i ]. (3.5)

Proof. Using the notation and results of Lemma 3.3, we obtain

|E[f ′(W )−Wf(W )]|

≤
∣

∣

∣

∣

∣

E[ 1√
n

n
∑

i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(W ))

]∣

∣

∣

∣

∣

(3.6)

+

∣

∣

∣

∣

∣

E[f ′(W )

(

1− 1√
n

n
∑

i=1

Xi(W −Wi)

)]∣

∣

∣

∣

∣

. (3.7)

By Taylor expansion, the triangle inequality, and after pushing the absolute
value inside the expectation, we obtain that (3.6) is bounded above by

‖f ′′‖
2
√
n

n
∑

i=1

E|Xi(W −Wi)
2|.

Since (W −Wi) = Xi/
√
n, we obtain the first term in the bound (3.5), and we

also find that (3.7) is bounded above by

‖f ′‖
n
E ∣∣∣∣
∣

n
∑

i=1

(1−X2
i )

∣

∣

∣

∣

∣

≤ ‖f ′‖
n

√

√

√

√Var

(

n
∑

i=1

X2
i

)

,

where we have used the Cauchy-Schwarz inequality. By independence and the
fact that Var(X2

i ) ≤ E[X4
i ], we obtain the second term in the bound (3.5).

The work above shows that the strategy to bound E[f ′(W ) − Wf(W )] is
to use the structure of W to rewrite E[Wf(W )] so that it is seen to be close
to E[f ′(W )]. Rather than attempt this program anew in each application that
arises, we develop ready to use theorems that provide error terms for various
canonical structures that arise in many applications.

3.2. Dependency neighborhoods

We generalize Theorem 3.2 to sums of random variables with local dependence.

Definition 3.5. We say that a collection of random variables (X1, . . . , Xn) has
dependency neighborhoods Ni ⊆ {1, . . . , n}, i = 1, . . . , n, if i ∈ Ni and Xi is
independent of {Xj}j 6∈Ni

.
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Dependency neighborhoods are also referred to as dependency graphs since
we can represent their structure in the form of a graph with vertices {1, . . . , n}
where i is connected to j 6= i if j ∈ Ni. Using the Stein’s method framework and
a modification of the argument for sums of independent random variables we
prove the following theorem, some version of which can be read from the main
result of [9].

Theorem 3.6. Let X1, . . . , Xn be random variables such that E[X4
i ] < ∞,E[Xi] = 0, σ2 = Var (

∑

i Xi), and define W =
∑

i Xi/σ. Let the collection
(X1, . . . , Xn) have dependency neighborhoods Ni, i = 1, . . . , n, and also define
D := max1≤i≤n |Ni|. Then for Z a standard normal random variable,

dW(W,Z) ≤ D2

σ3

n
∑

i=1

E|Xi|3 +
√
28D3/2

√
πσ2

√

√

√

√

n
∑

i=1

E[X4
i ]. (3.8)

Note that this theorem quantifies the heuristic that a sum of many locally
dependent random variables are approximately normal. When viewed as an
asymptotic result, it is clear that under some conditions a CLT holds even with
D growing with n. It is also possible to prove similar theorems using further
information about the dependence structure of the variables; see [25].

The proof of the theorem is analogous to the case of sums of independent
random variables (a special case of this theorem), but the analysis is a little
more complicated due to the dependence.

Proof. From Theorem 3.1, to upper bound dW(W,Z) it is enough to bound
|E[f ′(W ) − Wf(W )]|, where ‖f‖, ‖f ′′‖ ≤ 2 and ‖f ′‖ ≤

√

2/π. Let Wi =
∑

j 6∈Ni
Xj and note that Xi is independent of Wi. As in the proof of Theo-

rem 3.2, we can now write

|E[f ′(W )−Wf(W )]|

≤
∣

∣

∣

∣

∣

E[ 1
σ

n
∑

i=1

Xi (f(W )− f(Wi)− (W −Wi)f
′(W ))

]∣

∣

∣

∣

∣

(3.9)

+

∣

∣

∣

∣

∣

E[f ′(W )

(

1− 1

σ

n
∑

i=1

Xi(W −Wi)

)]∣

∣

∣

∣

∣

. (3.10)

We now proceed by showing that (3.9) is bounded above by the first term in
(3.8) and (3.10) is bounded above by the second.

By Taylor expansion, the triangle inequality, and after pushing the absolute
value inside the expectation, we obtain that (3.9) is bounded above by

‖f ′′‖
2σ

n
∑

i=1

E|Xi(W −Wi)
2| ≤ 1

σ3

n
∑

i=1

E ∣∣∣∣∣
∣

∣

Xi





∑

j∈Ni

Xj





2
∣

∣

∣

∣

∣

∣

∣

≤ 1

σ3

n
∑

i=1

∑

j,k∈Ni

E |XiXjXk| . (3.11)
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The arithmetic-geometric mean inequality implies thatE |XiXjXk| ≤
1

3

(E|Xi|3 +E|Xj |3 +E|Xk|3
)

,

so that (3.9) is bounded above by the first term in the bound (3.8), where we
use for example that

n
∑

i=1

∑

j,k∈Ni

E|Xj |3 ≤ D2
n
∑

j=1

E|Xj |3.

Similar consideration implies that (3.10) is bounded above by

‖f ′‖
σ2
E ∣∣∣∣
∣

∣

σ2 −
n
∑

i=1

Xi

∑

j∈Ni

Xj

∣

∣

∣

∣

∣

∣

≤
√
2√

πσ2

√

√

√

√

√Var





n
∑

i=1

∑

j∈Ni

XiXj



, (3.12)

where the inequality follows from the Cauchy-Schwarz inequality coupled with
the representation

σ2 = E n
∑

i=1

Xi

∑

j∈Ni

Xj



 .

The remainder of the proof consists of analysis on (3.12), but note that in
practice it may be possible to bound this term directly. In order to bound the
variance under the square root in (3.12), we first computeE







n
∑

i=1

∑

j∈Ni

XiXj





2





=
∑

i6=j

∑

k∈Ni

∑

l∈Nj

E[XiXjXkXl] (3.13)

+

n
∑

i=1

∑

j∈Ni

E[X2
i X

2
j ] +

n
∑

i=1

∑

j∈Ni

∑

k∈Ni/{j}

E[X2
i XjXk]. (3.14)

Using the arithmetic-geometric mean inequality, the first term of the expression
(3.14) is bounded above by

1

2

n
∑

i=1

∑

j∈Ni

(E[X4
i ] +E[X4

j ]
)

≤ D

n
∑

i=1

E[X4
i ],

and the second by

1

4

n
∑

i=1

∑

j∈Ni

∑

k∈Ni/{j}

(

2E[X4
i ] +E[X4

j ] +E[X4
k ]
)

≤ D(D − 1)

n
∑

i=1

E[X4
i ].
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We decompose the term (3.13) into two components;
∑

i6=j

∑

k∈Ni

∑

l∈Nj

E[XiXjXkXl]

=
∑

{i,k},{j,l}

E[XiXk]E[XjXl] +
∑

{i,k,j,l}

E[XiXjXkXl], (3.15)

where the first sum denotes the indices in which {Xi, Xk} are independent of
{Xj, Xl}, and the second term consists of those remaining. Note that by the
arithmetic-geometric mean inequality, the second term of (3.15) is bounded
above by

6D3
n
∑

i=1

E[X4
i ],

since the number of “connected components” with at most four vertices of the
dependency graph induced by the neighborhoods, is no more than D×2D×3D.
Using a decomposition of σ4 similar to that provided by (3.13) and (3.14), we
find the first term of (3.15) is bounded above by

σ4 −
∑

{i,k,j,l}

E[XiXk]E[XjXl]−
n
∑

i=1

∑

j∈Ni

∑

k∈Ni/{j}

E[XiXj ]E[XiXk],

and a couple applications of the arithmetic-geometric mean inequality yields

−E[XiXk]E[XjXl] ≤
1

2

(E[XiXk]
2 +E[XjXl]

2
)

≤ 1

2

(E[X2
i X

2
k ] +E[X2

jX
2
l ]
)

≤ 1

4

(E[X4
i ] +E[X4

j ] +E[X4
k ] +E[X4

l ]
)

.

Putting everything together, we obtain that

Var





n
∑

i=1

∑

j∈Ni

XiXj



 = E






n
∑

i=1

∑

j∈Ni

XiXj





2





− σ4

≤ (12D3 + 2D2)

n
∑

i=1

E[X4
i ] ≤ 14D3

n
∑

i=1

E[X4
i ],

which yields the theorem.

Note that much of the proof of Theorem 3.6 consists of bounding the error
in a simple form. However, an upper bound for dW(W,Z) is obtained by adding
the intermediate terms (3.11) and (3.12) which in many applications may be
directly bounded (and produce better bounds).

Theorem 3.6 is an intuitively pleasing result that has many applications; a
notable example is [8] where CLTs for statistics of various random geometric
graphs are shown. We apply it in the following setting.



224 N. Ross

3.2.1. Application: Triangles in Erdős-Rényi random graphs

Let G = G(n, p) be an Erdős-Rényi random graph on n vertices with edge
probability p and let T be the number of triangles in G. We have the decom-
position T =

∑N
i=1 Yi, where N =

(

n
3

)

, and Yi is the indicator that a triangle is
formed at the “ith” set of three vertices, in some arbitrary but fixed order. We
can take the set Ni/{i} to be the indices which share exactly two vertices with
those indexed by i, since due to the independence of edges, Yi is independent
of the collection of triangles with which it shares no edges. With this definition,
|Ni| = 3(n − 3) + 1, and we can apply Theorem 3.6 with Xi = Yi − p3 and
D = 3n− 8. SinceE|Xi|k = p3(1− p3)[(1 − p3)k−1 + p3(k−1)], k = 1, 2, . . .

we now only have to compute Var(T ) to apply the theorem. A simple calculation
using the decomposition of T into the sum of the indicators Yi shows that

σ2 := Var(T ) =

(

n

3

)

p3[1− p3 + 3(n− 3)p2(1− p)],

and Theorem 3.6 implies that for W = (T −E[T ])/σ and Z a standard normal
random variable

dK(W,Z) ≤ (3n− 8)2

σ3

(

n

3

)

p3(1− p3)[(1− p3)2 + p6]

+

√
26(3n− 8)3/2√

πσ2

√

(

n

3

)

p3(1− p3)[(1 − p3)3 + p9].

This bound holds for all n ≥ 3 and 0 ≤ p ≤ 1, but some asymptotic analysis
shows that if, for example, p ∼ n−α for some 0 ≤ α < 1 (so that Var(T ) → ∞),
then the number of triangles satisfies a CLT for 0 ≤ α < 2/9, which is only
a subset of the regime where normal convergence holds [52]. It is possible that
starting from (3.11) and (3.12) would yield better rates in a wider regime, and
considering finer structure yields better results [13].

3.3. Exchangeable pairs

We begin with a definition.

Definition 3.7. The ordered pair (W,W ′) of random variables is called an

exchangeable pair if (W,W ′)
d
= (W ′,W ). If for some 0 < a ≤ 1, the exchangeable

pair (W,W ′) satisfies the relationE[W ′|W ] = (1− a)W,

then we call (W,W ′) an a-Stein pair.

The next proposition contains some easy facts related to Stein pairs.



Fundamentals of Stein’s method 225

Proposition 3.8. Let (W,W ′) an exchangeable pair.

1. If F : R2 → R is an anti-symmetric function; that is F (x, y) = −F (y, x),
then E[F (W,W ′)] = 0.

If (W,W ′) is an a-Stein pair with Var(W ) = σ2, then

2. E[W ] = 0 and E[(W ′ −W )2] = 2aσ2.

Proof. Item 1 follows by the following equalities, the first by exchangeability
and the second by anti-symmetry of F .E[F (W,W ′)] = E[F (W ′,W )] = −E[F (W,W ′)].

The first assertion of Item 2 follows from the fact thatE[W ] = E[W ′] = (1 − a)E[W ],

and the second by calculatingE[(W ′ −W )2] = E[(W ′)2] +E[W 2]− 2E[WE[W ′|W ]]

= 2σ2 − 2(1− a)σ2 = 2aσ2.

From this point we illustrate the use of the exchangeable pair in the following
theorem.

Theorem 3.9. If (W,W ′) is an a-Stein pair with E[W 2] = 1 and Z has the
standard normal distribution, then

dW(W,Z) ≤
√

Var (E[(W ′ −W )2|W ])√
2πa

+
E|W ′ −W |3

3a
.

Before the proof comes a few remarks.

Remark 3.10. The strategy for using Theorem 3.9 to obtain an error in the
approximation of the distribution of a random variable W by the standard
normal is to construct W ′ on the same space as W , such that (W,W ′) is an
a-Stein pair. How can we achieve this construction?

Typically W = W (ω) is a random variable on some space Ω with probability
measure µ. For example, Ω is the set of sequences of zeros and ones of length
n where coordinate i is one with probability p, independent of all the other
coordinates and W is the number of ones in a sequence (i.e. W has the binomial
distribution). It is not too difficult to see that in some generality, if X0, X1, . . .
is a stationary Markov chain on Ω which is reversible with respect to µ, then
(W (X0),W (X1)) is an exchangeable pair. In the example above, a Markov chain
on Ω which is reversible with respect to the measure defined there follows the rule
of independently resampling a randomly chosen coordinate. By only considering
the number of ones in this stationary chain, we find an exchangeable pair with
binomial marginals.
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Since there is much effort put into constructing reversible Markov chains
(e.g. Gibbs sampler), this is a useful method to construct exchangeable pairs.
However, the linearity condition is not as easily abstractly constructed and must
be verified.

Remark 3.11. It is also useful to note that

Var
(E[(W ′ −W )2|W ]

)

≤ Var
(E[(W ′ −W )2|F ]

)

,

for any sigma-field F which is larger than the sigma-field generated by W . In
the setting of the previous remark where W := W (X0) and W ′ := W (X1), it
can be helpful to condition on X0 rather than W when computing the error
bound from Theorem 3.9.

Remark 3.12. A heuristic explanation for the form of the error terms appearing
in Theorem 3.9 arises by considering an Ornstein-Uhlenbeck (O-U) diffusion
process. Define the diffusion process (D(t))t≥0 by the following properties.

1. E[D(t+ a)−D(t)|D(t) = x] = −ax+ o(a).
2. E[(D(t + a)−D(t))2|D(t) = x] = 2a+ o(a).
3. For all ε > 0, P[|D(t+ a)−D(t)| > ε|D(t) = x] = o(a).

Here the function g(a) is o(a) if g(a)/a tends to zero as a tends to zero. These
three properties determine the O-U diffusion process, and this process is re-
versible with the standard normal distribution as its stationary distribution.
What does this have to do with Theorem 3.16? Roughly, if we think of W as
D(t) and W ′ as D(t + a) for some small a, then Item 1 corresponds to the
a-Stein pair linearity condition. Item 2 implies that the first term of the error
in Theorem 3.9 is small since E[(D(t + a) − D(t))2] = 2a + o(a) (compare to
Item 2 of Proposition 3.8) so that the variance appearing in the first term of
the error will be o(a2). Finally, Item 3 relates to the second term in the error.

Proof of Theorem 3.9. The strategy of the proof is to use the exchangeable pair
to rewrite E[Wf(W )] so that it is seen to be close to E[f ′(W )]. To this end, let f
be bounded with bounded first and second derivative and let F (w) :=

∫ w

0
f(t)dt.

Now, exchangeability and Taylor expansion imply that

0 = E[F (W ′)− F (W )]

= E [(W ′ −W )f(W ) +
1

2
(W ′ −W )2f ′(W ) +

1

6
(W ′ −W )3f ′′(W ∗)

]

, (3.16)

where W ∗ is a random quantity in the interval with endpoints W and W ′. Now,
the linearity condition on the Stein pair yieldsE [(W ′ −W )f(W )] = E[f(W )E[(W ′ −W )|W ]] = −aE[Wf(W )]. (3.17)

Combining (3.16) and (3.17) we obtainE[Wf(W )] = E [ (W ′ −W )2f ′(W )

2a
+

(W ′ −W )3f ′′(W ∗)

6a

]

.
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From this point we can easily see

|E[f ′(W )−Wf(W )]|

≤ ‖f ′‖E ∣∣∣
∣

1− E[(W ′ −W )2|W ]

2a

∣

∣

∣

∣

+ ‖f ′′‖E|W ′ −W |3
6a

, (3.18)

and the theorem follows after noting that we are only considering functions f
such that ‖f ′‖ ≤

√

2/π, and ‖f ′′‖ ≤ 2, and that from Item 2 of Proposition 3.8
(using the assumption Var(W ) = 1), we have E[E[(W ′ −W )2|W ]] = 2a so that
an application of the Cauchy-Schwarz inequality yields the variance term in the
bound.

Before moving to a heavier application, we consider the canonical example of
a sum of independent random variables.

Example 3.13. Let X1, . . . , Xn independent with E[X4
i ] < ∞, E[Xi] = 0,

Var(Xi) = 1, and W = n−1/2
∑n

i=1 Xi. We construct our exchangeable pair by
choosing an index uniformly at random and replacing it by an independent copy.
Formally, let I uniform on {1, . . . , n}, (X ′

1, . . . , X
′
n) be an independent copy of

(X1, . . . , Xn), and define

W ′ = W − XI√
n
+

X ′
I√
n
.

It is a simple exercise to show that (W,W ′) is exchangeable, and we now verify
that is also a 1/n-Stein pair. The calculation below is straightforward; in the
penultimate equality we use the independence of Xi and X ′

i and the fact thatE[X ′
i] = 0.E[W ′ −W |(X1, . . . , Xn)] =

1√
n
E[X ′

I −XI |(X1, . . . , Xn)]

=
1√
n

n
∑

i=1

1

n
E[X ′

i −Xi|(X1, . . . , Xn)]

= − 1

n

n
∑

i=1

Xi√
n
= −W

n
.

Since the conditioning on the larger sigma-field only depends on W , we have
that E[W ′ −W |W ] = −W/n, as desired.

We can now apply Theorem 3.9. We first boundE|W ′ −W |3 =
1

n3/2

n
∑

i=1

E|Xi −X ′
i|3

≤ 8

n3/2

n
∑

i=1

E|Xi|3,
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where we used the arithmetic-geometric mean inequality for the cross terms of
the expansion of the cube of the difference (we could also express the error in
terms of these lower moments by independence). Next we computeE[(W ′ −W )2|(X1, . . . , Xn)] =

1

n2

n
∑

i=1

E[(X ′
i −Xi)

2|Xi]

=
1

n2

n
∑

i=1

1 +X2
i .

Taking the variance we see that

Var
(E[(W ′ −W )2|W ]

)

≤ 1

n4

n
∑

i=1

E[X4
i ].

Combining the estimates above we have

dW(W,Z) ≤
√

2

π

√
∑n

i=1E[X4
i ]

2n
+

2

3n

n
∑

i=1

E|Xi|3.

Note that if the Xi are i.i.d. then this term is of order n−1/2, which is best
possible. Finally, we could probably get away with only assuming three moments
for the Xi if we use the intermediate term (3.18) in the proof of Theorem 3.16.

3.3.1. Application: Anti-voter model

In this section we consider an application of Theorem 3.9 found in [47]; we
closely follow their treatment. Let G be an r-regular3 graph with vertex set V
and edge set E. We define the anti-voter Markov chain on the space {−1, 1}V
of labelings of the vertices of V by +1 and −1. Given the chain is at a state
x = (xu)u∈V ∈ {−1, 1}V , the chain follows the rule of first uniformly choosing
a vertex v ∈ V , then uniformly choosing a vertex w from the set of r vertices
connected to v and finally obtaining X′ = (X ′

u)u∈V , the next step in the chain,
by changing the sign of the label of v to the opposite of this second vertex:

X ′
u =

{

xu u 6= v,

−xw u = v.
(3.19)

The model gets its name from thinking of the vertices as people in a town full
of curmudgeons where a positive (negative) labeling corresponding to a yes (no)
vote for some measure. At each time unit a random person talks to a random
neighbor and decides to switch votes to the opposite of that neighbor.

It is known (Chapter 14, Section 4 of [1]) that if the underlying graph G is
not bipartite or a cycle, then the anti-voter chain is irreducible and aperiodic

3The term r-regular means that every vertex has degree r.
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and has a unique stationary distribution. This distribution can be difficult to
describe, but we can use Theorem 3.9 to obtain an error in the Wasserstein
distance to the standard normal distribution for the sum of the labels of the
vertices. We now state the theorem and postpone discussion of computing the
relevant quantities in the error until after the proof.

Theorem 3.14. Let G be an r-regular graph with n vertices which is not bipar-
tite or a cycle. Let X = (Xi)

n
i=1 ∈ {−1, 1}n have the stationary distribution of

the anti-voter chain and let X′ = (X ′
i)

n
i=1 be one step in the chain from X as in

the description leading up to (3.19). Let σ2
n = Var(

∑

i Xi), W = σ−1
n

∑

iXi, and
W ′ = σ−1

n

∑

i X
′
i. Then (W,W ′) is a 2/n-Stein pair, and if Z has the standard

normal distribution, then

dW(W,Z) ≤ 4n

3σ3
n

+

√

Var(Q)

rσ2
n

√
2π

,

where

Q =
n
∑

i=1

∑

j∈Ni

XiXj,

and Ni denotes the neighbors of i.

Part of the first assertion of the theorem is that (W,W ′) is exchangeable,
which is non-trivial to verify since the anti-voter chain is not necessarily re-
versible. However, we can apply the following lemma - the proof here appears
in [48].

Lemma 3.15. If W and W ′ are identically distributed integer-valued random
variables defined on the same space such that P(|W ′ − W | ≤ 1) = 1, then
(W,W ′) is an exchangeable pair.

Proof. The fact that W and W ′ only differ by at most one almost surely impliesP(W ′ ≤ k) = P(W < k) +P(W = k,W ′ ≤ k) +P(W = k + 1,W ′ = k),

for any k, while we also haveP(W ≤ k) = P(W < k) +P(W = k,W ′ ≤ k) +P(W = k,W ′ = k + 1).

Since W and W ′ have the same distribution, the left hand sides of the equations
above are equal, and equating the right hand sides yieldsP(W = k + 1,W ′ = k) = P(W = k,W ′ = k + 1),

which is the lemma.

Proof of Theorem 3.14. For the proof below let σ := σn so that σW =
∑n

i=1 Xi.
The exchangeability of (W,W ′) follows by Lemma 3.15 sinceP(σ(W ′ −W )/2 ∈ {−1, 0, 1}) = 1.
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To show the linearity condition for the Stein pair, we define some auxiliary
quantities related to X. Let a1 = a1(X) be the number of edges in G which
have a one at each end vertex when labeled by X. Similarly, let a−1 be the
analogous quantity with negative ones at each end vertex and a0 be the number
of edges with a different labal at each end vertex. Due to the fact that G is
r-regular, the number of ones in X is (2a1 + a0)/r and the number of negative
ones in X is (2a−1 + a0)/r. Note that these two observation imply

σW =
2

r
(a1 − a−1) . (3.20)

Now, since conditional on X the event σW ′ = σW + 2 is equal to the event
that the chain moves to X′ by choosing a vertex labeled −1 and then choosing
a neighbor with label −1, we haveP(σ(W ′ −W ) = 2|X) =

2a−1

nr
(3.21)

and similarly P(σ(W ′ −W ) = −2|X) =
2a1
nr

. (3.22)

Using these last two formulas and (3.20), we obtainE[σ(W ′ −W )|X] =
2

nr
(a−1 − a1) = −2σW

n
,

as desired.
From this point we compute the error terms from Theorem 3.9. The first

thing to note is that |W ′ −W | ≤ 2/σ impliesE|W ′ −W |3
3a

≤ 4n

3σ3
,

which contributes the first part of the error from the Theorem. Now, (3.21) and
(3.22) imply E[(W ′ −W )2|X] =

8

σ2nr
(a−1 + a1) , (3.23)

and since

2a1 + 2a−1 + 2a0 =

n
∑

i=1

∑

j∈Ni

1 = nr,

2a1 + 2a−1 − 2a0 =

n
∑

i=1

∑

j∈Ni

XiXj = Q,

we have

Q = 4(a−1 + a1)− rn,

which combining with (3.23) and a small calculation yields the second error
term of the theorem.
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In order for Theorem 3.14 to be useful for a given graph G, we need lower
bounds on σ2

n and upper bounds on Var(Q). The former item can be accom-
plished by the following result of [1] (Chapter 14, Section 4).

Lemma 3.16. [1] Let G be an r-regular graph and let κ = κ(G) be the minimum
over subsets of vertices A of the number of edges that either have both ends in A
or else have both ends in Ac. If σ2 is the variance of the stationary distribution
of the anti-voter model on G, then

2κ

r
≤ σ2 ≤ n.

The strategy to upper bound Var(Q) is to associate the anti-voter model to a
so-called “dual process” from interacting particle system theory. This discussion
is outside the scope of our work, but see [1, 27] and also Section 2 of [47] where
concrete applications of Theorem 3.14 are worked out.

3.4. Size-bias coupling

Our next method of rewritingE[Wf(W )] to be compared toE[f ′(W )] is through
the size-bias coupling which first appeared in the context of Stein’s method for
normal approximation in [34].

Definition 3.17. For a random variable X ≥ 0 with E[X ] = µ < ∞, we say
the random variable Xs has the size-bias distribution with respect to X if for
all f such that E|Xf(X)| < ∞ we haveE[Xf(X)] = µE[f(Xs)].

Before discussing existence of the size-bias distribution, we remark that our
use of Xs is a bit more transparent than the use of the exchangeable pair above.
To wit, if Var(X) = σ2 < ∞ and W = (X − µ)/σ, thenE[Wf(W )] = E [X − µ

σ
f

(

X − µ

σ

)]

=
µ

σ

[

f

(

Xs − µ

σ

)

− f

(

X − µ

σ

)]

, (3.24)

so that if f is differentiable, then the Taylor expansion of (3.24) about W allows
us to compare E[Wf(W )] to E[f ′(W )]. We make this precise shortly, but first
we tie up a loose end.

Proposition 3.18. If X ≥ 0 is a random variable with E[X ] = µ < ∞ and
distribution function F , then the size-bias distribution of X is absolutely con-
tinuous with respect to the measure of X with density read from

dF s(x) =
x

µ
dF (x).
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Corollary 3.19. If X ≥ 0 is an integer-valued random variable having finite
mean µ, then the random variable Xs with the size-bias distribution of X is
such that P(Xs = k) =

kP(X = k)

µ
.

The size-bias distribution arises in other contexts such as the waiting time
paradox and sampling theory [3]. We now record our main Stein’s method size-
bias normal approximation theorem.

Theorem 3.20. Let X ≥ 0 be a random variable such that µ := E[X ] < ∞ and
Var(X) = σ2. Let Xs be defined on the same space as X and have the size-bias
distribution with respect to X. If W = (X − µ)/σ and Z ∼ N(0, 1), then

dW(W,Z) ≤ µ

σ2

√

2

π

√

Var(E[Xs −X |X ]) +
µ

σ3
E[(Xs −X)2].

Proof. Our strategy (as usual) is to bound |E[f ′(W )−Wf(W )]| for f bounded
with two bounded derivatives. Starting from (3.24), a Taylor expansion yieldsE[Wf(W )] =

µ

σ
E [Xs −X

σ
f ′

(

X − µ

σ

)

+
(Xs −X)2

2σ2
f ′′

(

X∗ − µ

σ

)]

,

for some X∗ in the interval with endpoints X and Xs. Using the definition of
W in terms of X in the previous expression, we obtain

|E[f ′(W )−Wf(W )]| ≤
∣

∣

∣E [f ′(W )
(

1− µ

σ2
(Xs −X)

)]∣

∣

∣ (3.25)

+
µ

2σ3

∣

∣

∣

∣

E [f ′′

(

X∗ − µ

σ

)

(Xs −X)2
]∣

∣

∣

∣

. (3.26)

Since we are taking the supremum over functions f with ‖f ′‖ ≤
√

2/π and
‖f ′′‖ ≤ 2, it is clear that (3.26) is bounded above by the second term of the
error stated in the theorem and (3.25) is bounded above by

√

2

π
E ∣∣∣1− µ

σ2
E[Xs −X |X ]

∣

∣

∣ ≤ µ

σ2

√

2

π

√

Var(E[Xs −X |X ]);

here we use the Cauchy-Schwarz inequality after noting that by the definition
of Xs, E[Xs] = (σ2 + µ2)/µ.

3.4.1. Coupling construction

At this point it is appropriate to discuss methods to couple a random variable
X to a size-bias version Xs. In the case that X =

∑n
i=1 Xi, where Xi ≥ 0 andE[Xi] = µi, we have the following recipe to construct a size-bias version of X .
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1. For each i = 1, . . . , n, let Xs
i have the size-bias distribution of Xi indepen-

dent of (Xj)j 6=i and (Xs
j )j 6=i. Given Xs

i = x, define the vector (X
(i)
j )j 6=i

to have the distribution of (Xj)j 6=i conditional on Xi = x.
2. Choose a random summand XI , where the index I is chosen proportional

to µi and independent of all else. Specifically, P(I = i) = µi/µ, where
µ = E[X ].

3. Define Xs =
∑

j 6=I X
(I)
j +Xs

I .

Proposition 3.21. Let X =
∑n

i=1 Xi, with Xi ≥ 0, E[Xi] = µi, and also
µ = E[X ] =

∑

i µi. If X
s is constructed by Items 1 - 3 above, then Xs has the

size-bias distribution of X.

Remark 3.22. Due to the form of the error term in Theorem 3.20 we would
like to closely couple X and Xs. In terms of the construction above, it is ad-

vantageous to have X
(i)
j closely coupled to Xj for j 6= i.

Proof. Let X = (X1, . . . , Xn) and for i = 1, . . . , n, let Xi be a vector with

coordinate j equal to X
(i)
j for j 6= i and coordinate i equal to Xs

i as in item 1
above. In order to prove the result, it is enough to showE[Wf(X)] = µE[f(XI)], (3.27)

for f : Rn → R such that E|Wf(X)| < ∞. Equation (3.27) follows easily after
we show that for all i = 1, . . . , n,E[Xif(X)] = µiE[f(Xi)]. (3.28)

To see (3.28), note that for h(Xi) = E[f(X)|Xi],E[Xif(X)] = E[Xih(Xi)]

= µiE[h(Xs
i )],

which is the right hand side of (3.28).

Note the following special cases of Proposition 3.21.

Corollary 3.23. Let X1, . . . , Xn be non-negative independent random variables
with E[Xi] = µi, and for each i = 1, . . . , n, let Xs

i have the size-bias distribution
of Xi independent of (Xj)j 6=i and (Xs

j )j 6=i. If X =
∑n

i=1 Xi, µ = E[X ], and I
is chosen independent of all else with P(I = i) = µi/µ, then Xs = X−XI +Xs

I

has the size-bias distribution of X.

Corollary 3.24. Let X1, . . . , Xn be zero-one random variables and also let

pi := P(Xi = 1). For each i = 1, . . . , n, let (X
(i)
j )j 6=i have the distribution of

(Xj)j 6=i conditional on Xi = 1. If X =
∑n

i=1 Xi, µ = E[X ], and I is chosen

independent of all else with P(I = i) = pi/µ, then Xs =
∑

j 6=I X
(I)
j +1 has the

size-bias distribution of X.

Proof. Corollary 3.23 is obvious since due to independence, the conditioning in
the construction has no effect. Corollary 3.24 follows after noting that for Xi a
zero-one random variable, Xs

i = 1.
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3.4.2. Applications

Example 3.25. We can use Corollary 3.23 in Theorem 3.20 to bound the
Wasserstein distance between the normalized sum of independent variables with
finite third moment and the normal distribution; we leave this as an exercise.

Example 3.26. Let G = G(n, p) be an Erdős-Rényi graph and for i = 1, . . . , n,
let Xi be the indicator that vertex vi (under some arbitrary but fixed labeling)
has degree zero so that X =

∑n
i=1 Xi is the number of isolated vertices of G. We

use Theorem 3.20 to obtain an upper bound on the Wasserstein metric between
the normal distribution and the distribution of W = (X−µ)/σ where µ = E[X ]
and σ2 = Var(X).

We can use Corollary 3.24 to construct Xs, a size-bias version of X . Since X
is a sum of identically distributed indicators, Corollary 3.24 states that in order
to size-bias X , we first choose an index I uniformly at random from the set
{1, . . . , n}, then size-bias XI by setting it equal to one, and finally adjust the
remaining summands conditional on XI = 1 (the new size-bias value). We can
realize Xs

I = 1 by erasing any edges connected to vertex vI . Given that XI = 1
(vI is isolated), the graph G is just an Erdős-Rényi graph on the remaining n−1
vertices. Thus Xs can be realized as the number of isolated vertices in G after
erasing all the edges connected to vI .

In order to apply Theorem 3.20 using this construction, we need to computeE[X ], Var(X), Var(E[Xs −X |X ]), and E[(Xs −X)2]. Since the chance that a
given vertex is isolated is (1− p)n−1, we have

µ := E[X ] = n(1− p)n−1,

and also that

σ2 := Var(X) = µ
(

1− (1 − p)n−1
)

+ n(n− 1)Cov(X1, X2)

= µ[1 + (np− 1)(1− p)n−2], (3.29)

since E[X1X2] = (1− p)2n−3. Let di be the degree of vi in G and let Di be the
number of vertices connected to vi which have degree one. Then it is clear that

Xs −X = DI + I[dI > 0],

so that

Var(E[Xs −X |G]) =
1

n2
Var

(

n
∑

i=1

(Di + I[di > 0])

)

(3.30)

≤ 2

n2

[

Var

(

n
∑

i=1

Di

)

+Var

(

n
∑

i=1

I[di > 0]

)]

. (3.31)

Since
∑n

i=1 I[di > 0] = n − X , the second variance term of (3.31) is given by
(3.29). Now,

∑n
i=1 Di is the number of vertices in G with degree one which can
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be expressed as
∑n

i=1 Yi, where Yi is the indicator that vi has degree one in G.
Thus,

Var

(

n
∑

i=1

Di

)

= n(n− 1)p(1− p)n−2
(

1− (n− 1)p(1− p)n−2
)

+ n(n− 1)Cov(Y1, Y2)

= n(n− 1)p(1− p)n−2
[

1− (n− 1)p(1− p)n−2

+ (1 − p)n−2 + (n− 1)2p2(1− p)n−3
]

,

since E[Y1Y2] = p(1−p)2n−4+(n−1)2p2(1−p)2n−5 (the first term corresponds
to v1 and v2 being joined).

The final term we need to bound isE[(Xs −X)2] = E [E[(Xs −X)2|X ]
]

=
1

n

n
∑

i=1

E[(Di + I[di > 0])2]

≤ 1

n

n
∑

i=1

E[(Di + 1)2]

= E[D2
1 ] + 2E[D1] + 1.

Expressing D1 as a sum of indicators, it is not difficult to showE[D2
1] = (n− 1)p(1− p)n−2 + (n− 1)(n− 2)p2(1− p)2n−5,

and after noting that D1 ≤ D2
1 almost surely, we can combine the estimates

above with Theorem 3.20 to obtain an explicit upper bound between the distri-
bution of W and the standard normal in the Wasserstein metric. In particular,
we can read the following result from our work above.

Theorem 3.27. If X is the number of isolated vertices in an Erdős-Rényi graph
G(n, p), W = (X − µ)/σ, and for some 1 ≤ α < 2, limn→∞ nαp = c ∈ (0,∞),
then

dW(W,Z) ≤ C

σ
,

for some constant C.

Proof. The asymptotic hypothesis limn→∞ nαp = c ∈ (0,∞) for some 1 ≤ α < 2
implies that (1 − p)n tends to a finite positive constant. Thus we can see that
µ ≍ n, σ2 ≍ n2−α, Var(E[Xs − X |X ]) ≍ σ2/n2, and E[(Xs − X)2] ≍ n1−α,
from which the result follows from Theorem 3.20.

Example 3.25 can be generalized to counts of vertices of a given degree d
at some computational expense [32, 34]; related results pertain to subgraphs
counts in an Erdős-Rényi graph [10]. We examine such constructions in greater
detail in our treatment of Stein’s method for Poisson approximation where the
size-bias coupling plays a large role.



236 N. Ross

3.5. Zero-bias coupling

Our next method of rewritingE[Wf(W )] to be compared toE[f ′(W )] is through
the zero-bias coupling first introduced in [33].

Definition 3.28. For a random variable W with E[W ] = 0 and Var(W ) =
σ2 < ∞, we say the random variable W z has the zero-bias distribution with
respect to W if for all absolutely continuous f such that E|Wf(W )| < ∞ we
have E[Wf(W )] = σ2E[f ′(W z)].

Before discussing existence and properties of the zero-bias distribution, we
note that it is appropriate to view the zero-biasing as a distributional transform
which has the normal distribution as its unique fixed point. Also note that
zero-biasing is our most transparent effort to compare E[Wf(W )] to E[f ′(W )],
culminating in the following result.

Theorem 3.29. Let W be a mean zero, variance one random variable and let
W z be defined on the same space as W and have the zero-bias distribution with
respect to W . If Z ∼ N(0, 1), then

dW(W,Z) ≤ 2E|W z −W |.

Proof. Let F be the set of functions such that‖f ′‖ ≤
√

2/π and ‖f‖, ‖f ′′‖ ≤ 2.
Then

dW(W,Z) ≤ sup
f∈F

|E[f ′(W )−Wf(W )]|

= sup
f∈F

|E[f ′(W )− f ′(W z)]|

≤ sup
f∈F

‖f ′′‖E |W −W z| .

Before proceeding further, we discuss some fundamental properties of the
zero-bias distribution.

Proposition 3.30. Let W be a random variable such that E[W ] = 0 and
Var(W ) = σ2 < ∞.

1. There is a unique probability distribution for a random variable W z satis-
fying E[Wf(W )] = σ2E[f ′(W z)] (3.32)

for all absolutely continuous f such that E|Wf(W )| < ∞.
2. The distribution of W z as defined by (3.32) is absolutely continuous with

respect to Lebesgue measure with density

pz(w) = σ−2E [W I[W > w]] = −σ−2E [W I[W ≤ w]] . (3.33)
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Proof. Assume that σ2 = 1; the proof for general σ is similar. We show Items 1
and 2 simultaneously by showing that pz defined by (3.33) is a probability
density which defines a distribution satisfying (3.32).

Let f(x) =
∫ x

0 g(t)dt for a non-negative function g integrable on compact
domains. Then
∫ ∞

0

f ′(u)E[W I[W > u]]du =

∫ ∞

0

g(u)E[W I[W > u]]du

= E[W ∫ max{0,W}

0

g(u)du = E[Wf(W )I[W ≥ 0]].

and similarly
∫ 0

−∞ f ′(u)pz(u)du = E [Wf(W )I[W ≤ 0]], which implies that

∫R f ′(u)pz(u)du = E[Wf(W )] (3.34)

for all f as above. However, (3.34) extends to all absolutely continuous f such
that E|Wf(W )| < ∞ by routine analytic considerations (e.g. considering the
positive and negative part of g).

We now show that pz is a probability density. That pz is non-negative follows
by considering the two representations in (3.33) - note that these representations
are equal since E[W ] = 0. We also have

∫ ∞

0

pz(u)du = E[W 2
I[W > 0] and

∫ 0

−∞

pz(u)du = E[W 2
I[W < 0],

so that
∫R pz(u)du = E[W 2] = 1.

Finally, uniqueness follows since for random variables X and Y such thatE[f ′(X)] = E[f ′(Y )] for all continuously differentiable f with compact support

(say), then X
d
= Y .

The next result shows that little generality is lost in only considering W with
Var(W ) = 1 as we have done in Theorem 3.29. The result can be read from the
density formula above or by a direct computation.

Proposition 3.31. IfW has mean zero and finite variance then (aW )z
d
= aW z.

3.5.1. Coupling construction

In order to apply Theorem 3.29 to a random variableW , we need to coupleW to
a random variable having the zero-bias distribution of W . In general, achieving
this coupling can be difficult, but we discuss the nicest case where W is a sum of
independent random variables and also work out a neat theoretical application
using the construction. Another canonical method of construction that is useful
in practice can be derived from a Stein pair - see [33].

Let X1, . . . , Xn independent random variables having zero mean and such
that Var(Xi) = σ2

i ,
∑n

i=1 σ
2
i = 1, and define W =

∑n
i=1 Xi. We have the

following recipe for constructing a zero-bias version of W .
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1. For each i = 1, . . . , n, let Xz
i have the zero-bias distribution of Xi inde-

pendent of (Xj)j 6=i and (Xz
j )j 6=i.

2. Choose a random summand XI , where the index I satisfies P(I = i) = σ2
i

and is independent of all else.
3. Define W z =

∑

j 6=I Xj +Xz
I .

Proposition 3.32. Let W =
∑n

i=1 Xi be defined as above. If W z is constructed
as per Items 1 - 3 above, then W z has the zero-bias distribution of W .

Remark 3.33. Proposition 3.32 only moves the problem of zero-biasing a sum
of random variables to zero-biasing its summands. However, in the setting where
we expect a CLT to hold, these summands and their zero-bias versions will be
small, so that the error of Theorem 3.29 will also be small.

Proof. We must show that E[Wf(W )] = E[f ′(W z)] for all appropriate f . Using
the definition of zero-biasing in the coordinate Xi and the fact that W −Xi is
independent of Xi, we haveE[Wf(W )] =

n
∑

i=1

Xif(W −Xi +Xi)

=

n
∑

i=1

σ2
i f(W −Xi +Xz

i )

= E[f ′(W −XI +Xz
I )].

Since
∑

j 6=I Xj +Xz
I = W −XI +Xz

I , the proof is complete.

3.5.2. Lindeberg-Feller condition

We now discuss the way in which zero-biasing appears naturally in the proof of
the Lindeberg-Feller CLT. Our treatment closely follows [31].

Let (Xi,n)1≤n,1≤i≤n be a triangular array of random variables4 such that
Var(Xi,n) = σ2

i,n < ∞. Let Wn =
∑n

i=1 Xi,n, and assume that Var(Wn) = 1.
A sufficient condition for Wn to satisfy a CLT as n → ∞ is the Lindeberg
condition: for all ε > 0,

n
∑

i=1

E[X2
i,nI[|Xi,n| > ε]] → 0, as n → ∞. (3.35)

The condition ensures that no single term dominates in the sum so that the
limit is not altered by the distribution of a summand. Note that the condition
is not necessary as we could take X1,n to be standard normal and the rest of
the terms zero. We now have the following result.

Theorem 3.34. Let (Xi,n)n≥1,1≤i≤n be the triangular array defined above and
let In be a random variable independent of the Xi,n with P(In = i) = σ2

i,n. For

4That is, for each n, (Xi,n)1≤i≤n is a collection of independent random variables.
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each 1 ≤ i ≤ n, let Xz
i,n have the zero-bias distribution of Xi,n independent of

all else. Then the Lindeberg condition (3.35) holds if and only if

Xz
In,n

p→ 0 as n → ∞. (3.36)

From this point, we can use a modification of Theorem 3.29 to prove the fol-
lowing result which also follows from Theorem 3.34 and the classical Lindeberg-
Feller CLT mentioned above.

Theorem 3.35. In the notation of Theorem 3.34 and the remarks directly pre-
ceding it, if Xz

In,n
→ 0 in probability as n → ∞, then Wn satisfies a CLT.

Before proving these two results, we note that Theorem 3.35 is heuristically
explained by Theorem 3.29 and the zero-bias construction of Wn. Specifically,
|W z

n−Wn| = |Xz
In,n

−XIn,n| and Theorem 3.29 implies thatWn is approximately
normal if this latter quantity is small (in expectation). The proof of Theorem
3.35 uses a modification of the error in Theorem 3.29 and the (non-trivial) fact
that Xz

In,n
→ 0 in probability implies that XIn,n → 0 in probability. Finally,

the quantity |Xz
i,n −Xi,n| is also small if Xi,n is approximately normal, which

indicates that the zero-bias approach applies to show convergence in the CLT
for the sum of independent random variables when such a result holds.

Proof of Theorem 3.34. We first perform a preliminary calculation to relate the
Lindeberg-Feller condition to the zero-bias quantity of interest. For some fixed
ε > 0, let f ′(x) = I[|x| ≥ ε] and f(0) = 0. Using that xf(x) = (x2−ε|x|)I[|x| ≥ ε]
and the definition of the zero-bias transform, we findP(|Xz

In,n| ≥ ε) =
n
∑

i=1

σ2
i,nP(|Xz

i,n| ≥ ε)

=

n
∑

i=1

σ2
i,nE[f ′(Xz

i,n)]

=

n
∑

i=1

E [(X2
i,n − ε|Xi,n|)I[|Xi,n| ≥ ε]

]

.

Now we note that

x2

2
I[|x| ≥ 2ε] ≤ (x2 − ε|x|)I[|x| ≥ ε] ≤ x2

I[|x| ≥ ε]

which implies that for all ε > 0,

1

2

n
∑

i=1

E [X2
i,nI[|Xi,n| ≥ 2ε]

]

≤ P(|Xz
In,n| ≥ ε) ≤

n
∑

i=1

E [X2
i,nI[|Xi,n| ≥ ε]

]

,

so that (3.35) and (3.36) are equivalent.
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Proof of Theorem 3.35. According to the proof of Theorem 3.29, it is enough
to show that

|E[f ′(Wn)− f ′(W z
n)]| → 0 as n → ∞ (3.37)

for all bounded f with two bounded derivatives. We show that |W z
n −Wn| → 0

in probability which implies (3.37) by the following calculation.

|E[f ′(Wn)− f ′(W z
n)]| ≤ E|f ′(Wn)− f ′(W z

n)|

=

∫ ∞

0

P(|f ′(Wn)− f ′(W z
n )| ≥ t)dt

=

∫ 2‖f ′‖

0

P(|f ′(Wn)− f ′(W z
n)| ≥ t)dt

≤
∫ 2‖f ′‖

0

P(‖f ′′‖|Wn −W z
n | ≥ t)dt

≤
∫ 2‖f ′‖

0

P(|Wn −W z
n | ≥ t/‖f ′′‖)dt,

which tends to zero by dominated convergence.
We now must show that |W z

n−Wn| → 0 in probability. Since we are assuming
that Xz

In,n
→ 0 in probability, and |W z

n −Wn| = |Xz
In,n

−XIn,n|, it is enough

to show that XIn,n → 0 in probability. For ε > 0, and mn := max1≤i≤n σ
2
i,n,P(|XIn,n| ≥ ε) ≤ Var(XIn,n)

ε2

=
1

ε2

n
∑

i=1

σ4
i,n

≤ mn

ε2

n
∑

i=1

σ2
i,n =

mn

ε2
.

From this point we show mn → 0, which completes the proof. For any δ > 0,
we have

σ2
i,n = E[X2

i,nI[|Xi,n| ≤ δ]] +E[X2
i,nI[|Xi,n| > δ]]

≤ δ2 +E[X2
i,nI[|Xi,n| > δ]]. (3.38)

Using the calculations in the proof of Theorem 3.34 based on the assumption
that Xz

In,n
→ 0 in probability, it follows that

n
∑

i=1

E[X2
i,nI[|Xi,n| > δ]] → 0 as n → ∞,

so that the second term of (3.38) goes to zero as n goes to infinity uniformly in
i. Thus we have that lim supn mn ≤ δ2 for all δ > 0 which implies that mn → 0
since mn > 0.
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3.6. Normal approximation in the Kolmogorov metric

Our previous work has been to develop bounds on the Wasserstein metric be-
tween a distribution of interest and the normal distribution. For W a random
variable and Z standard normal, we have the inequality

dK(W,Z) ≤ (2/π)1/4
√

dW(W,Z),

so that our previous effort implies bounds for the Kolmogorov metric. However,
it is often the case that this inequality is suboptimal - for example if W is a
standardized binomial random variable with parameters n and p, then both
dK(W,Z) and dW(W,Z) are of order n−1/2. In this section we develop Stein’s
method for normal approximation in the Kolmogorov metric in hopes of rec-
onciling this discrepancy.5 We follow [24] in our exposition below but similar
results using related methods appear elsewhere [43, 47, 53].

Recall the following restatement of Corollary 2.3.

Theorem 3.36. Let Φ denote the standard normal distribution function and
let fx(w) be the unique bounded solution of

f ′
x(w) − wfx(w) = I[w ≤ x]− Φ(x). (3.39)

If W is a random variable with finite mean and Z is standard normal, then

dK(W,Z) = sup
x∈R |E[f ′

x(W )−Wfx(W )]|.

Moreover, we have the following lemma, which can be read from [24], Lemma 2.3.

Lemma 3.37. If fx is the unique bounded solution to (3.39), then

‖fx‖ ≤
√

π

2
, ‖f ′

x‖ ≤ 2,

and for all u, v, w ∈ R,

|(w + u)fx(w + u)− (w + v)fx(w + v)| ≤ (|w| +
√
2π/4)(|u|+ |v|).

Our program can be summed up in the following corollary to the results
above.

Corollary 3.38. If F is the set of functions satisfying the bounds of Lemma 3.37
and W is a random variable with finite mean and Z is standard normal, then

dK(W,Z) ≤ sup
f∈F

|E[f ′(W )−Wf(W )]|.

5Of course improved rates come at the cost of additional hypotheses, but we will see that
the theorems are still useful in application.
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3.6.1. Zero-bias transformation

To get better ready to use rates using the zero-bias transform, we must assume
a boundedness condition.

Theorem 3.39. Let W be a mean zero, variance one random variable and
suppose there is W z having the zero-bias distribution of W on the same space
as W such that |W z −W | ≤ δ almost surely. If Z is standard normal, then

dK(W,Z) ≤
(

1 +
1√
2π

+

√
2π

4

)

δ.

Proof. Our strategy of proof is to show that the condition |W z−W | ≤ δ implies
that | dK(W,Z)−dK(W

z, Z)| is bounded by a constant times δ. From this point
we only need to show that dK(W

z , Z) is of order δ, which is not as difficult
due heuristically to the fact that the zero-bias transform is smooth (absolutely
continuous with respect to Lebesgue measure).

We implement the first part of the program. For z ∈ R,P(W ≤ z)−P(Z ≤ z)

≤ P(W ≤ z)−P(Z ≤ z + δ) +P(Z ≤ z + δ)−P(Z ≤ z)

≤ P(W z ≤ z + δ)−P(Z ≤ z + δ) +
δ√
2π

≤ dK(W
z , Z) +

δ√
2π

, (3.40)

where the second inequality follows since {W ≤ z} ⊆ {W z ≤ z + δ} and since
Z has density bounded by (2π)−1/2. Similarly,P(W ≤ z)−P(Z ≤ z)

≥ P(W ≤ z)−P(Z ≤ z − δ) +P(Z ≤ z − δ)−P(Z ≤ z)

≥ P(W z ≤ z − δ)−P(Z ≤ z − δ)− δ√
2π

,

which after taking the supremum over z and combining with (3.40) implies that

| dK(W,Z)− dK(W
z , Z)| ≤ δ√

2π
. (3.41)

Now, by Corollary 3.38 (and using the notation there), we have

dK(W
z , Z) ≤ sup

f∈F
|E[f ′(W z)−W zf(W z)]| , (3.42)
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and for f ∈ F , we find after using the definition of the zero-bias transform and
Lemma 3.37

|E[f ′(W z)−W zf(W z)]| = |E[Wf(W )−W zf(W z)]|

≤ E[(|W |+
√
2π

4

)

|W z −W |
]

≤ δ

(

1 +

√
2π

4

)

. (3.43)

Combining (3.41), (3.42), and (3.43) yields the theorem.

Theorem 3.36 can be applied to sums of independent random variables which
are almost surely bounded (note that W bounded implies W z bounded), and
can also be used to derive a bound in Hoeffding’s combinatorial CLT under
some boundedness assumption [30].

3.6.2. Exchangeable pairs

To get better rates using exchangeable pairs, we again assume a boundedness
condition. A slightly more general version of this theorem appears in [53].

Theorem 3.40. If (W,W ′) is an a-Stein pair with Var(W ) = 1 and such that
|W ′ −W | ≤ δ, then

dK(W,Z) ≤
√

Var (E[(W ′ −W )2|W ])

2a
+

δ3

2a
+

3δ

2
.

Proof. Let fx the bounded solution of (3.39). Using exchangeability and the
linearity condition of the a-Stein pair, a calculation which is similar to that
used in (3.17) impliesE[Wfx(W )] =

1

2a
E[(W ′ −W )(fx(W

′)− fx(W ))],

so that we can seeE[f ′
x(W )−Wfx(W )] = E [f ′

x(W )

(

1− (W ′ −W )2

2a

)]

(3.44)

+E[W ′ −W

2a

∫ W ′−W

0

[f ′
x(W )− f ′

x(W + t)] dt

]

. (3.45)

Exactly as in the proof of Theorem 3.9, (the result analogous to Theorem 3.40
but for the Wasserstein metric) the term (3.44) contributes the first error term
from the theorem (using the bounds of Lemma 3.37). Now, since fx satisfies
(3.39), we can rewrite (3.45) as
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2a

∫ W ′−W

0

[Wfx(W )− (W + t)fx(W + t)] dt

]

(3.46)

+E[W ′ −W

2a

∫ W ′−W

0

[I[W ≤ x]− I[W + t ≤ x] dt

]

, (3.47)

and we can apply Lemma 3.37 to find that the absolute value of (3.46) is
bounded above byE[ |W ′ −W |

2a

∫ W ′−W

0

(

|W |+
√
2π

4

)

|t|dt
]

≤ E[ |W ′ −W |3
4a

(

|W |+
√
2π

4

)]

≤ δ3

2a
.

In order to bound the absolute value of (3.47), we consider separately the cases
W ′ −W positive and negative. For example,

∣

∣

∣

∣

E [(W ′ −W )I[W ′ < W ]

2a

∫ 0

W ′−W

I[x < W ≤ x− t]dt

]∣

∣

∣

∣

≤ 1

2a
E [(W ′ −W )2I[W ′ < W ]I[x < W ≤ x+ δ]

]

,

where we have used that |W ′−W | ≤ δ. A similar inequality can be obtained for
W ′ > W and combining these terms implies that the absolute value of (3.47) is
bounded above

1

2a
E [(W ′ −W )2I[x < W ≤ x+ δ]

]

. (3.48)

Lemma 3.41 below shows (3.48) is bounded above by 3δ/2, which proves the
theorem.

Lemma 3.41. If (W,W ′) is an a-Stein pair with Var(W ) = 1 and such that
|W ′ −W | ≤ δ, then for all x ∈ RE [(W ′ −W )2I[x < W ≤ x+ δ]

]

≤ 3δa.

Proof. Let g′(w) = I[x − δ < w ≤ x + 2δ] and g(x + δ/2) = 0. Using that
‖g‖ ≤ 3δ/2 in the first inequality below, we have

3δa ≥ 2aE[Wg(W )]

= E [(W ′ −W )(g(W ′)− g(W ))]

= E[(W ′ −W )

∫ W ′−W

0

g′(W + t)dt

]

≥ E[(W ′ −W )

∫ W ′−W

0

I[x− δ < W + t ≤ x+ 2δ]I[x < W ≤ x+ δ]dt

]

= E [(W ′ −W )2I[x < W ≤ x+ δ]
]

,

as desired.
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Theorem 3.40 can be applied to sums of independent random variables which
are almost surely bounded, and can also be applied to the anti-voter model to
yield rates in the Kolmogorov metric that are comparable to those we obtained
in the Wasserstein metric in Section 3.3.1.

4. Poisson approximation

One great advantage of Stein’s method is that it can easily be adapted to various
distributions and metrics. In this section we develop Stein’s method for bounding
the total variation distance (see Section 1.2) between a distribution of interest
and the Poisson distribution. We move quickly through the material analogous
to that of Section 2 for normal approximation, as the general framework is
similar. We follow the exposition of [12].

Lemma 4.1. For λ > 0, define the functional operator A by

Af(k) = λf(k + 1)− kf(k).

1. If the random variable Z has the Poisson distribution with mean λ, thenEAf(Z) = 0 for all bounded f .
2. If for some non-negative integer-valued random variable W , EAf(W ) = 0

for all bounded functions f , then W has the Poisson distribution with
mean λ.

The operator A is referred to as a characterizing operator of the Poisson distri-
bution.

Before proving the lemma, we state one more result and then its consequence.

Lemma 4.2. Let Pλ denote probability with respect to a Poisson distribution
with mean λ and A ⊆ N ∪ {0}. The unique solution fA of

λfA(k + 1)− kfA(k) = I[k ∈ A]− Pλ(A) (4.1)

with fA(0) = 0 is given by

fA(k) = λ−keλ(k − 1)! [Pλ(A ∩ Uk)− Pλ(A)Pλ(Uk)] ,

where Uk = {0, 1, . . . , k − 1}.
Analogous to normal approximation, this setup immediately yields the fol-

lowing promising result.

Corollary 4.3. If W ≥ 0 is an integer-valued random variable with mean λ,
then

|P(W ∈ A)− Pλ(A)| = |E[λfA(W + 1)−WfA(W )]| .

Proof of Lemma 4.2. The relation (4.1) defines fA recursively, so it is obvious
that the solution is unique under the boundary condition fA(0) = 0. The fact
that the solution is as claimed can be easily verified by substitution into the
recursion (4.1).
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Proof of Lemma 4.1. Item 1 follows easily by direct calculation: if Z ∼ Po(λ)
and f is bounded, then

λE[f(Z + 1)] = e−λ
∞
∑

k=0

λk+1

k!
f(k + 1)

= e−λ
∞
∑

k=0

λk+1

(k + 1)!
(k + 1)f(k + 1)

= E[Zf(Z)].

For Item 2, let EAf(W ) = 0 for all bounded functions f . Lemma 4.4 below
shows that fk ≡ f{k} is bounded, and then EAfk(W ) = 0 implies that W
has Poisson point probabilities. Alternatively, for j ∈ N ∪ {0}, we could take
f(k) = I[k = j] so that the EAf(W ) = 0 implies that

λP(W = j − 1) = jP(W = j),

which is defining since W is a non-negative integer-valued random variable. A
third proof can be obtained by taking f(k) = e−uk, from which the Laplace
transform of W can be derived.

We now derive useful properties of the solutions fA of (4.1).

Lemma 4.4. If fA solves (4.1), then

‖fA‖ ≤ min
{

1, λ−1/2
}

and ‖∆fA‖ ≤ 1− e−λ

λ
≤ min

{

1, λ−1
}

, (4.2)

where ∆f(k) := f(k + 1)− f(k).

Proof. The proof of Lemma 4.4 follows from careful analysis. We prove the
second assertion and refer to [12] for further details. Upon rewriting

fA(k) = λ−k(k − 1)!eλ [Pλ(A ∩ Uk)Pλ(U
c
k)− Pλ(A ∩ U c

k)Pλ(Uk)] ,

some consideration leads us to observe that for j ≥ 1, fj := f{j} satisfies

• fj(k) ≤ 0 for k ≤ j and fj(k) ≥ 0 for k > j,
• ∆fj(k) ≤ 0 for k 6= j, and ∆fj(j) ≥ 0,
• ∆fj(j) ≤ min

{

j−1, (1− e−λ)/λ
}

.

And also ∆f0(k) < 0. Since

∆fA(k) =
∑

j∈A

fj(k)

is a sum of terms which are all negative except for at most one, we find

∆fA(k) ≤
1− e−λ

λ
. (4.3)

Since fAc = −fA, (4.3) yields the second assertion.
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We can now state our main Poisson approximation theorem which follows
from Corollary 4.3 and Lemma 4.4.

Theorem 4.5. Let F be the set of functions satisfying (4.2). If W ≥ 0 is an
integer-valued random variable with mean λ and Z ∼ Po(λ), then

dTV(W,Z) ≤ sup
f∈F

|E[λf(W + 1)−Wf(W )]| . (4.4)

We are ready to apply Theorem 4.5 to some examples, but first some re-
marks. Recall that our main strategy for normal approximation was to find
some structure in W , the random variable of interest, that allows us to compareE[Wf(W )] to E[f ′(W )] for appropriate f . The canonical such structures were

1. Sums of independent random variables.
2. Sums of locally dependent random variables.
3. Exchangeable pairs.
4. Size-biasing.
5. Zero-biasing.

Note that each of these structures essentially provided a way to break downE[Wf(W )] into a functional of f and some auxiliary random variables. Also,
from the form of the Poisson characterizing operator, we want to find some
structure in W (the random variable of interest) that allows us to compareE[Wf(W )] to λE[f(W + 1)] for appropriate f . These two observations imply
that the first four items on the list above may be germane to Poisson approxi-
mation, which is exactly the program we pursue (since zero-biasing involves f ′,
we won’t find use for it in our discrete setting).

4.1. Law of small numbers

It is well known that if Wn ∼ Bi(n, λ/n) and Z ∼ Po(λ) then dTV(Wn, Z) → 0
as n → ∞, and it is not difficult to obtain a rate of this convergence. From
this fact, it is easy to believe that if X1, . . . , Xn are independent indicators withP(Xi = 1) = pi, then W =

∑n
i=1 Xi is approximately Poisson if maxi pi is

small. In fact, we show the following result.

Theorem 4.6. Let X1, . . . , Xn independent indicators with P(Xi = 1) = pi,
W =

∑n
i=1 Xi, and λ = E[W ] =

∑

i pi. If Z ∼ Po(λ), then

dTV(W,Z) ≤ min{1, λ−1}
n
∑

i=1

p2i

≤ min{1, λ}max
i

pi.

Proof. The second inequality is clear and is only included to address the dis-
cussion preceding the theorem. For the first inequality, we apply Theorem 4.5.
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Let f satisfy (4.2) and note thatE[Wf(W )] =
n
∑

i=1

E[Xif(W )]

=

n
∑

i=1

E[f(W )|Xi = 1]P[Xi = 1]

=

n
∑

i=1

piE[f(Wi + 1)], (4.5)

where Wi = W − Xi and (4.5) follows since Xi is independent of Wi. Since
λf(W + 1) =

∑

i pif(W + 1), we obtain

|E[λf(W + 1)−Wf(W )]| =
∣

∣

∣

∣

∣

n
∑

i=1

piE[f(W + 1)− f(Wi + 1)]

∣

∣

∣

∣

∣

≤
n
∑

i=1

pi‖∆f‖E|W −Wi|

= min{1, λ−1}
n
∑

i=1

piE[Xi],

where the inequality is by rewriting f(W+1)−f(Wi+1) as a telescoping sum of
|W−Wi| first differences of f . Combining this last calculation with Theorem 4.5
yields the desired result.

4.2. Dependency neighborhoods

Analogous to normal approximation, we can generalize Theorem 4.6 to sums of
locally dependent variables [4, 5].

Theorem 4.7. Let X1, . . . , Xn indicator variables with P(Xi = 1) = pi, W =
∑n

i=1 Xi, and λ = E[W ] =
∑

i pi. For each i = 1, . . . , n, let Ni ⊆ {1, . . . , n}
such that i ∈ Ni and Xi is independent of {Xj : j 6∈ Ni}. If pij := E[XiXj ] and
Z ∼ Po(λ), then

dTV(W,Z) ≤ min{1, λ−1}





n
∑

i=1

∑

j∈Ni

pipj +

n
∑

i=1

∑

j∈Ni/{i}

pij



 .

Remark 4.8. The neighborhoods Ni can be defined with greater flexibility (i.e.
dropping the assumption that Xi is independent of the variables not indexed by
Ni) at the cost of an additional error term that (roughly) measures dependence
(see [4, 5]).
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Proof. We want to mimic the proof of Theorem 4.6 up to (4.5), the point where
the hypothesis of independence is used. Let f satisfy (4.2), Wi = W −Xi, and
Vi =

∑

j 6∈Ni
Xj . Since Xif(W ) = Xif(Wi + 1) almost surely, we findE[λf(W + 1)−Wf(W )] =

n
∑

i=1

piE[f(W + 1)− f(Wi + 1)] (4.6)

+

n
∑

i=1

E[(pi −Xi)f(Wi + 1)] (4.7)

As in the proof of Theorem 4.6, the absolute value of (4.6) is bounded above by
‖∆f‖

∑

i p
2
i . Due to the independence ofXi and Vi, and the fact thatE[Xi] = pi,

we find that (4.7) is equal to

n
∑

i=1

E[(pi −Xi)(f(Wi + 1)− f(Vi + 1))],

so that the absolute value of (4.7) is bounded above by

‖∆f‖
n
∑

i=1

E[ |pi −Xi| |Wi − Vi|
]

≤ ‖∆f‖
n
∑

i=1

E[(pi +Xi)
∑

j∈Ni/{i}

Xj

]

= ‖∆f‖
n
∑

i=1

∑

j∈Ni/{i}

(pipj + pij) .

Combining these bounds for (4.6) and (4.7) yields the theorem.

4.2.1. Application: Head runs

In this section we consider an example that arises in an application from biology,
that of DNA comparison. We postpone discussion of the details of this relation
until the end of the section.

In a sequence of zeros and ones we call a given occurrence of the pattern
· · · 011 · · ·10 (or 11 · · ·10 · · · or · · · 011 · · ·1 at the boundaries of the sequence)
with exactly k ones a head run of length k. Let W be the number of head runs
of length at least k in a sequence of n independent tosses of a coin with head
probability p. More precisely, let Y1, . . . , Yn be i.i.d. indicator variables withP(Yi = 1) = p and let

X1 =

k
∏

j=1

Yj ,

and for i = 2, . . . , n− k + 1 let

Xi = (1− Yi−1)
k−1
∏

j=0

Yi+j .
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Then Xi is the indicator that a run of ones of length at least k begins at position
i in the sequence (Y1, . . . , Yn) so that we set W =

∑n−k+1
i=1 Xi. Note that the

factor 1−Yi−1 is used to “de-clump” the runs of length greater than k so that we
do not count the same run more than once. At this point we can apply Theorem
4.7 with only a little effort to obtain the following result.

Theorem 4.9. Let W be the number of head runs of at least length k in a
sequence of n independent tosses of a coin with head probability p as defined
above. If λ = E[W ] = pk((n− k)(1− p) + 1) and Z ∼ Po(λ), then

dTV(W,Z) ≤ λ2 2k + 1

n− k + 1
+ 2λpk. (4.8)

Remark 4.10. Although Theorem 4.9 provides an error for all n, p, k, it can
also be interpreted asymptotically as n → ∞ and λ bounded away from zero
and infinity. Roughly, if

k =
log(n(1 − p))

log(1/p)
+ c

for some constant c, then for fixed p, limn→∞ λ = pc. In this case the bound
(4.8) is of order log(n)/n.

Proof of Theorem 4.9. As discussed in the remarks preceding the theorem, W
has representation as a sum of indicators: W =

∑n−k+1
i=1 Xi. The fact that λ is

as stated follows from this representation using that E[X1] = pk and E[Xi] =
(1− p)pk for i 6= 1.

We apply Theorem 4.7 with Ni = {1 ≤ j ≤ n − k + 1 : |i − j| ≤ k} which
clearly has the property that Xi is independent of {Xj : j 6∈ Ni}. Moreover, if
j ∈ Ni/{i}, then E[XiXj ] = 0 since two runs of length at least k cannot begin
within k positions of each other. Theorem 4.7 now implies

dTV(W,Z) ≤
n
∑

i=1

∑

j∈Ni

E[Xi]E[Xj].

It only remains to show that this quantity is bounded above by (4.8) which
follows by grouping and counting the terms of the sum into those that containE[X1] and those that do not.

A related quantity which is of interest in the biological application below is
Rn, the length of the longest head run in n independent coin tosses. Due to the
equality of events, we have P(W = 0) = P(Rn < k), so that we can use Remark
4.10 to roughly state

∣

∣

∣

∣

P(Rn − log(n(1− p))

log(1/p)
< x

)

− e−px

∣

∣

∣

∣

≤ C

(

log(n)

n

)

.

The inequality above needs some qualification due to the fact that Rn is integer-
valued, but it can be made precise - see [4, 5, 6] for more details.
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Theorem 4.9 was relatively simple to derive, but many embellishments are
possible which can also be handled similarly, but with more technicalities. For
example, for 0 < a ≤ 1, we can define a “quality a” run of length j to be a run
of length j with at least aj heads. We could then take W to be the number of
quality a runs of length at least k and Rn to be the longest quality a run in n
independent coin tosses. A story analogous to that above emerges.

These particular results can also be viewed as elaborations of the classical
theorem:

Theorem 4.11 (Erdős-Rényi Law). If Rn is the longest quality a head run in
a sequence of n independent tosses of a coin with head probability p as defined
above, then almost surely,

Rn

log(n)
→ 1

H(a, p)
,

where for 0 < a < 1, H(a, p) = a log(a/p) + (1 − a) log((1 − a)/(1 − p)), and
H(1, p) = log(1/p).

Remark 4.12. Some of the impetus for the results above and especially their
embellishments stems from an application in computational biology - see [4,
5, 6, 58] for an entry into this literature. We briefly describe this application
here.

DNA is made up of long sequences of the letters A,G,C, and T which stand
for certain nucleotides. Frequently it is desirable to know how closely6 two se-
quences of DNA are related.

Assume for simplicity that the two sequences of DNA to be compared both
have length n. One possible measure of closeness between these sequences is the
length of the longest run where the sequences agree when compared coordinate-
wise. More precisely, if sequence A is A1A2 · · ·An, sequence B is B1B2 · · ·Bn,
and we define Yi = I[Ai = Bi], then the measure of closeness between the se-
quences A and B would be the length of the longest run of ones in (Y1, . . . , Yn).

Now, given the sequences A and B, how long should the longest run be in
order to consider them close? The usual statistical setup to handle this question
is to assume a probability model under the hypothesis that the sequences are
not related, and then compute the probability of the event “at least as long a
run” as the observed run. If this probability is low enough, then it is likely that
the sequences are closely related (assuming the model is accurate).

We make the simplifying assumption that letters in a sequence of DNA are
independently chosen from the alphabet {A,G,C, T } under some probability
distribution with frequencies pA, pG, pC , and pT (a more realistic assumption
is that letters are generated under some local dependence of nearby letters in
the sequence). The hypothesis that the sequences are unrelated corresponds to
the sequences being generated independently of each other.

6For example, whether one sequence could be transformed to the other by few mutations,
or whether the two sequences have similar biological function.
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In this framework, the distribution of the longest run between two unrelated
sequences of DNA of length n is exactly Rn above with

p := P(Yi = 1) = p2A + p2G + p2C + p2T .

Thus the work above can be used to approximate tail probabilities of the longest
run length under the assumption that two sequences of DNA are unrelated,
which can then be used to determine the likelihood of the observed longest run
lengths.

In practice, there are different methods of obtaining approximate tail proba-
bilities or “p-values” to determine the likelihood that two sequences are closely
related. Those most related to our work above are called alignment free [46, 57]
and basically count the number of common words of various lengths occurring
at different positions in the two sequences. Our Poisson approximation result
above is not directly relevant since we counted the number of common words of
a fixed length starting from the same position in the two sequences. However,
embellishments of the Stein’s method argument above can be fruitfully applied
to these statistics in some settings [39].

Another method of DNA sequence comparison aligns the two sequences by
optimizing a “score” function on alignments. In this setting, the main issues
are in determining algorithms that align two sequences of DNA in an optimal
way under various score functions and deriving the associated tail probabilities
(p-values) for such alignments. The results above and those related to them do
not rigorously apply to the typical methods used for such issues (e.g. BLAST),
but they have provided heuristic guidance. For a more thorough discussion of
the interplay between theory and practice in this setting, see Chapters 8, 9, and
11 of [58].

4.3. Size-bias coupling

The most powerful method of rewriting E[Wf(W )] so that it can be usefully
compared to E[W ]E[f(W +1)] is through the size-bias coupling already defined
in Section 3.4 - recall the relevant definitions and properties there. The book
[12] is almost entirely devoted to Poisson approximation through the size-bias
coupling (although that terminology is not used), so we spend some time fleshing
out their powerful and general results.

Theorem 4.13. Let W ≥ 0 be an integer-valued random variable such thatE[W ] = λ > 0 and let W s be a size-bias coupling of W . If Z ∼ Po(λ), then

dTV(W,Z) ≤ min{1, λ}E|W + 1−W s|.
Proof. Let f bounded and ‖∆f‖ ≤ min{1, λ−1}. Then

|E[λf(W + 1)−Wf(W )]| = λ |E[f(W + 1)− f(W s)]|
≤ λ‖∆f‖E|W + 1−W s|,

where we have used the definition of the size-bias distribution and rewritten
f(W + 1)− f(W s) as a telescoping sum of |W + 1−W s| terms.
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Due to the canonical “law of small numbers” for Poisson approximation, we
are mostly concerned with approximating a sum of indicators by a Poisson dis-
tribution. Recall the following construction of a size-bias coupling from Section
3.4, and useful special case.

Corollary 4.14. Let X1, . . . , Xn be indicator variables with P(Xi = 1) = pi,

W =
∑n

i=1 Xi, and λ = E[W ] =
∑

i pi. If for each i = 1, . . . , n, (X
(i)
j )j 6=i has

the distribution of (Xj)j 6=i conditional on Xi = 1 and I is a random variable

independent of all else such that P(I = i) = pi/λ, then W s =
∑

j 6=I X
(I)
j + 1

has the size-bias distribution of X.

Corollary 4.15. Let X1, . . . , Xn be exchangeable indicator variables and let

(X
(1)
j )j 6=1 have the distribution of (Xj)j 6=1 conditional on X1 = 1. If we define

X =
∑n

i=1 Xi, then Xs =
∑

j 6=1 X
(1)
j + 1 has the size-bias distribution of X.

Proof. Corollary 4.14 was proved in Section 3.4 and Corollary 4.15 follows
from the fact that exchangeability first implies that I is uniform and also that
∑

j 6=i X
(i)
j +Xs

i
d
=
∑

j 6=1 X
(1)
j +Xs

1 .

Example 4.16 (Law of small numbers). Let W =
∑n

i=1 Xi where the Xi are
independent indicators with P(Xi = 1) = pi. According to Corollary 4.14, in
order to size-bias W , we first choose an index I with P(I = i) = pi/λ, where

λ = E[W ] =
∑

i pi. Given I = i we construct X
(i)
j having the distribution

of Xj conditional on Xi = 1. However, by independence, (X
(i)
j )j 6=i has the

same distribution as (Xj)j 6=i so that we can take W s =
∑

j 6=I Xj +1. Applying
Theorem 4.13 we find that for Z ∼ Po(λ),

dTV(W,Z) ≤ min{1, λ}E[XI ] = min{1, λ}
n
∑

i=1

pi
λ
E[Xi] = min{1, λ−1}

n
∑

i=1

p2i ,

which agrees with our previous bound for this example.

Example 4.17 (Isolated Vertices). Let W be the number of isolated vertices
in an Erdős-Rényi random graph on n vertices with edge probabilities p. Note
that W =

∑n
i=1 Xi, where Xi is the indicator that vertex vi (in some arbitrary

but fixed labeling) is isolated. We constructed a size-bias coupling of W in
Section 3.4 using Corollary 4.14, and we can simplify this coupling by using
Corollary 4.157 as follows.

We first generate an Erdős-Rényi random graph G, and then erase all edges

connected to vertex v1. Then takeX
(1)
j be the indicator that vertex vj is isolated

in this new graph. By the independence of the edges in the graph, it is clear

that (X
(1)
j )j 6=1 has the distribution of (Xj)j 6=1 conditional on X1 = 1, so that

by Corollary 4.15, we can take W s =
∑

j 6=1 X
(1)
j + 1 and of course we take W

to be the number of isolated vertices in G.
7This simplification would not have yielded a useful error bound in Section 3.4 since the

size-bias normal approximation theorem contains a variance term; there the randomization
provides an extra factor of 1/n.
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In order to apply Theorem 4.13, we only need to compute λ = E[W ] andE|W + 1−W s|. From Example 3.26 in Section 3.4, λ = n(1 − p)n−1 and from
the construction aboveE|W + 1−W s| = E ∣∣∣∣

∣

∣

X1 +
n
∑

j=2

Xj −X
(1)
j

∣

∣

∣

∣

∣

∣

= E[X1] +
n
∑

j=2

E [X(1)
j −Xj

]

,

where we use the fact that X
(1)
j ≥ Xj which follows since we can only increase

the number of isolated vertices by erasing edges. Thus, X
(1)
j −Xj is equal to zero

or one and the latter happens only if vertex vj has degree one and is connected
to v1 which occurs with probability p(1 − p)n−2. Putting this all together in
Theorem 4.13, we obtain the following.

Proposition 4.18. Let W the number of isolated vertices in an Erdős-Rényi
random graph and λ = E[W ]. If Z ∼ Po(λ), then

dTV(W,Z) ≤ min{1, λ}
(

(n− 1)p(1− p)n−2 + (1− p)n−1
)

≤ min{λ, λ2}
(

p

1− p
+

1

n

)

.

To interpret this result asymptotically, if λ is to stay away from zero and
infinity as n gets large, p must be of order log(n)/n, in which case the error
above is of order log(n)/n.

Example 4.19 (Degree d vertices). We can generalize Example 4.17 by taking
W to be the number of degree d ≥ 0 vertices in an Erdős-Rényi random graph
on n vertices with edge probabilities p. Note that W =

∑n
i=1 Xi, where Xi is

the indicator that vertex vi (in some arbitrary but fixed labeling) has degree d.
We can construct a size-bias coupling of W by using Corollary 4.15 as follows.
Let G be an Erdős-Rényi random graph.

• If the degree of vertex v1 is d1 ≥ d, then erase d1−d edges chosen uniformly
at random from the d1 edges connected to v1.

• If the degree of vertex v1 is d1 < d, then add edges from v1 to the d− d1
vertices not connected to v1 chosen uniformly at random from the n−d1−1
vertices unconnected to v1.

Let X
(1)
j be the indicator that vertex vj has degree d in this new graph. By

the independence of the edges in the graph, it is clear that (X
(1)
j )j 6=1 has the

distribution of (Xj)j 6=1 conditional on X1 = 1, so that by Corollary 4.15, we

can take W s =
∑

j 6=1 X
(1)
j + 1 and of course we take W to be the number of

isolated vertices in G.
Armed with this coupling, we could apply Theorem 4.13 to yield a bound

in the variation distance between W and a Poisson distribution. However, the
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analysis for this particular example is a bit technical, so we refer to Section 5.2
of [12] for the details.

4.3.1. Increasing size-bias couplings

A crucial simplification occurred in Example 4.17 because the size-bias coupling
was increasing in a certain sense. The following result quantifies this simplifica-
tion.

Theorem 4.20. Let X1, . . . , Xn be indicator variables with P(Xi = 1) = pi,

W =
∑n

i=1 Xi, and λ = E[W ] =
∑

i pi. For each i = 1, . . . , n, let (X
(i)
j )j 6=i have

the distribution of (Xj)j 6=i conditional on Xi = 1 and let I be a random variable

independent of all else, such that P(I = i) = pi/λ so that W s =
∑

j 6=I X
(I)
j + 1

has the size-bias distribution of W . If X
(i)
j ≥ Xj for all i 6= j, and Z ∼ Po(λ),

then

dTV(W,Z) ≤ min{1, λ−1}
(

Var(W )− λ+ 2

n
∑

i=1

p2i

)

.

Proof. Let Wi =
∑

j 6=i X
(i)
j +1. From Theorem 4.13 and the size-bias construc-

tion of Corollary 4.14, we have

dTV(W,Z) ≤ min{1, λ−1}
n
∑

i=1

piE|W + 1−Wi|

= min{1, λ−1}
n
∑

i=1

piE∑
j 6=i

(

X
(i)
j −Xj

)

+Xi





= min{1, λ−1}
n
∑

i=1

piE [Wi −W − 1 + 2Xi] , (4.9)

where the penultimate equality uses the monotonicity of the size-bias coupling.
Using again the construction of the size-bias coupling we obtain that (4.9) is
equal to

min{1, λ−1}
(

λE[W s]− λ2 − λ+ 2

n
∑

i=1

p2i

)

,

which yields the desired inequality by the definition of the size-bias distribution.

4.3.2. Application: Subgraph counts

Let G = G(n, p) be an Erdős-Rényi random graph on n vertices with edge
probability p and let H be a graph on 0 < vH ≤ n vertices with eH edges
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and no isolated vertices. We want to analyze the number of copies of H in G;
that is, the number of subgraphs of the complete graph on n vertices which are
isomorphic to H which appear in G. For example, we could take H to be a
triangle so that vH = eH = 3.

Let Γ be the set of all copies of H in Kn, the complete graph on n vertices
and for α ∈ Γ, let Xα be the indicator that there is a copy of H in G at α and
set W =

∑

α∈Γ Xα. We now have the following result.

Theorem 4.21. Let H be a graph with no isolated vertices and W be the number
of copies H in G as defined above and let λ = E[W ]. If H has eH edges and
Z ∼ Po(λ), then

dTV(W,Z) ≤ min{1, λ−1} (Var(W )− λ+ 2λpeH ) .

Proof. We show that Theorem 4.20 applies to W . Since W =
∑

α∈Γ Xα is a sum
of exchangeable indicators, we can apply Corollary 4.15 to construct a size-bias

coupling of W . To this end, for a fixed α ∈ Γ, let X
(α)
β be the indicator that

there is a copy of H in G∪{α} at β. Here, G∪{α} means we add the minimum
edges necessary to G to have a copy of H at α. The following three evident facts
now imply the theorem:

1. (X
(α)
β )β 6=α has the distribution of (Xβ)β 6=α given that Xα = 1.

2. For all β ∈ Γ/{α}, X(α)
β ≥ Xβ .

3. E[Xα] = peH .

Theorem 4.21 is a very general result, but it can be difficult to interpret.
That is, what properties of a subgraph H make W approximately Poisson? We
can begin to answer that question by expressing the mean and variance of W
in terms of properties of H which yields the following.

Corollary 4.22. Let W be the number of copies of a graph H with no isolated
vertices in G as defined above and let λ = E[W ]. For fixed α ∈ Γ, let Γt

α ⊆ Γ be
the set of subgraphs of Kn isomorphic to H with exactly t edges not in α. If H
has eH edges and Z ∼ Po(λ), then

dTV(W,Z) ≤ min{1, λ}
(

peH +

eH−1
∑

t=1

|Γt
α|
(

pt − peH
)

)

.

Proof. The corollary follows after deriving the mean and variance of W . The
terms |Γt

α| account for the number of covariance terms for different types of
pairs of indicators. In detail,

Var(W ) =
∑

α∈Γ

Var(Xα) +
∑

α∈Γ

∑

β 6=α

Cov(Xα, Xβ)

= λ(1 − peH ) +
∑

α∈Γ

eH
∑

t=1

∑

β∈Γt
α

Cov(Xα, Xβ)
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= λ(1− peH ) +
∑

α∈Γ

peH
eH
∑

t=1

∑

β∈Γt
α

(E[Xβ|Xα = 1]− peH )

= λ

(

1− peH +

eH−1
∑

t=1

|Γt
α|
(

pt − peH
)

)

,

since λ =
∑

α∈Γ p
eH and for β ∈ Γt

α, E[Xβ |Xα = 1] = pt.

It is possible to rewrite the error in other forms which can be used to make
some general statements (see [12], Chapter 5), but we content ourselves with
some examples.

Example 4.23 (Triangles). Let H be a triangle. In this case, eH = 3, |Γ2
α| =

3(n − 3), and |Γ1
α| = 0 since triangles either share one edge or all three edges

(corresponding to t = 2 and t = 0). Thus Corollary 4.22 implies that for W the
number of triangles in G and Z an appropriate Poisson variable,

dTV(W,Z) ≤ min{1, λ}
(

p3 + 3(n− 3)p2(1− p)
)

. (4.10)

Since λ =
(

n
3

)

p3 we can view (4.10) as an asymptotic result with p of order 1/n.
In this case, (4.10) is of order 1/n.

Example 4.24 (k-cycles). More generally, we can let H be a k-cycle (a triangle
is 3-cycle). Now note that for some constants ct and Ck,

|Γt
α| ≤

(

k

k − t

)

ctn
t−1 ≤ Ckn

t−1,

since we choose the k− t edges shared in the k-cycle α, and then we have order
nt−1 sequences of vertices to create a cycle with t edges outside of the k − t
edges shared with α. The second equality follows by maximizing

(

k
k−t

)

ct over
the possible values of t. We can now find for W the number of k-cycles in G and
Z an appropriate Poisson variable,

dTV(W,Z) ≤ min{1, λ}
(

pk + Ckp

k−1
∑

t=1

(np)t−1

)

. (4.11)

To interpret this bound asymptotically, we note that λ = |Γ|pk and

|Γ| =
(

n

k

)

(k − 1)!

2
pk,

since the number of non-isomorphic k-cycles on Kk is k!/(2k) (since k! is the
number of permutations of the vertices, which over counts by a factor of 2k due
to reflections and rotations). Thus λ is of order (np)k for fixed k so that we take
p to be of order 1/n and in this regime (4.11) is of order 1/n.

Similar results can be derived for induced and isolated subgraph counts -
again we refer to [12], Chapter 5.
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4.3.3. Implicit coupling

In this section we show that it can be possible to apply Theorem 4.20 without
constructing the size-bias coupling explicitly. We first need some terminology.

Definition 4.25. We say a function f : Rn → R is increasing (decreasing) if for
all x = (x1, . . . , xn) and y = (y1, . . . , yn) such that xi ≤ yi for all i = 1, . . . , n,
we have f(x) ≤ f(y) (f(x) ≥ f(y)).

Theorem 4.26. Let Y = (Yi)
N
j=1 be a finite collection of independent indicators

and assume X1, . . . , Xn are increasing or decreasing functions from {0, 1}N into
{0, 1}. If W =

∑n
i=1 Xi(Y) and E[W ] = λ, then

dTV(W,Z) ≤ min{1, λ−1}
(

Var(W )− λ+ 2

n
∑

i=1

p2i

)

.

Proof. We show that there exists a size-bias coupling of W satisfying the hy-
potheses of Theorem 4.20, which implies the result. From Lemma 4.27 below,
it is enough to show that Cov(Xi(Y), φ ◦X(Y)) ≥ 0 for all increasing indicator
functions φ. However, since each Xi(Y) is an increasing or decreasing function
applied to independent indicators, then so is φ ◦X(Y). Thus we may apply the
FKG inequality (see Chapter 2 of [38]) which in this case statesE[Xi(Y)φ ◦X(Y)] ≥ E[Xi(Y)]E[φ ◦X(Y)],

as desired.

Lemma 4.27. Let X = (X1, . . . , Xn) be a vector of indicator variables and let

X(i) = (X
(i)
1 , . . . , X

(i)
n )

d
= X|Xi = 1. Then the following are equivalent:

1. There exists a coupling such that X
(i)
j ≥ Xj.

2. For all increasing indicator functions φ, E[φ(X(i))] ≥ E[φ(X)].
3. For all increasing indicator functions φ, Cov(Xi, φ(X)) ≥ 0.

Proof. The equivalence 1⇔2 follows from a general version of Strassen’s theorem
which can be found in [38]. In one dimension, Strassen’s theorem says that there
exists a coupling of random variables X and Y such that X ≥ Y if and only if
FX(z) ≤ FY (z) for all z ∈ R where FX and FY are distribution functions.

The equivalence 2⇔3 follows from the following calculation.E[φ(X(i))] = E[φ(X)|Xi = 1] = E[Xiφ(X)|Xi = 1] =
E[Xiφ(X)]P(Xi = 1)

.

Example 4.28 (Subgraph counts). Theorem 4.26 applies to the example of Sec-
tion 4.3.2, since the indicator of a copy of H at a given location is an increasing
function of the edge indicators of the graph G.
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Example 4.29 (Large degree vertices). Let d ≥ 0 and let W be the number
of vertices with degree at least d. Clearly W is a sum of indicators that are
increasing functions of the edge indicators of the graph G so that Theorem 4.26
can be applied. After some technical analysis, we arrive at the following result
- see Section 5.2 of [12] for details. If q1 =

∑

k≥d

(

n−1
k

)

pk(1 − p)n−k−1 and
Z ∼ Po(nq1), then

dTV(W,Z) ≤ q1 +
d2(1− p)

[(

n−1
d

)

pd(1 − p)n−d−1
]2

(n− 1)pq1
.

Example 4.30 (Small degree vertices). Let d ≥ 0 and let W be the number
of vertices with degree at most d. Clearly W is a sum of indicators that are
decreasing functions of the edge indicators of the graph G so that Theorem 4.26
can be applied. After some technical analysis, we arrive at the following result
- see Section 5.2 of [12] for details. If q2 =

∑

k≤d

(

n−1
k

)

pk(1 − p)n−k−1 and
Z ∼ Po(nq2), then

dTV(W,Z) ≤ q2 +
(n− d− 1)2p

[(

n−1
d

)

pd(1− p)n−d−1
]2

(n− 1)(1− p)q2
.

4.3.4. Decreasing size-bias couplings

In this section we prove and apply a result complementary to Theorem 4.20.

Theorem 4.31. Let X1, . . . , Xn be indicator variables with P(Xi = 1) = pi,

W =
∑n

i=1 Xi, and λ = E[W ] =
∑

i pi. For each i = 1, . . . , n, let (X
(i)
j )j 6=i have

the distribution of (Xj)j 6=i conditional on Xi = 1 and let I be a random variable

independent of all else, such that P(I = i) = pi/λ so that W s =
∑

j 6=I X
(I)
j + 1

has the size-bias distribution of W . If X
(i)
j ≤ Xj for all i 6= j, and Z ∼ Po(λ),

then

dTV(W,Z) ≤ min{1, λ}
(

1− Var(W )

λ

)

.

Proof. Let Wi =
∑

j 6=i X
(i)
j +1. From Theorem 4.13 and the size-bias construc-

tion of Corollary 4.14, we have

dTV(W,Z) ≤ min{1, λ−1}
n
∑

i=1

piE|W + 1−Wi|

= min{1, λ−1}
n
∑

i=1

piE∑
j 6=i

(

Xj −X
(i)
j

)

+Xi





= min{1, λ−1}
n
∑

i=1

piE [W −Wi + 1] , (4.12)
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where the penultimate equality uses the monotonicity of the size-bias coupling.
Using again the construction of the size-bias coupling we obtain that (4.12) is
equal to

min{1, λ−1}
(

λ2 − λE[W s] + λ
)

,

which yields the desired inequality by the definition of the size-bias distribution.

Example 4.32 (Hypergeometric distribution). Suppose we have N balls in an
urn in which 1 ≤ n ≤ N are colored red and we draw 1 ≤ m ≤ N balls uniformly
at random without replacement so that each of the

(

N
m

)

subsets of balls is equally
likely. Let W be the number of red balls. It is well known that if N is large and
m/N is small, then W has approximately a binomial distribution since the
dependence diminishes. Thus, we would also expect W to be approximately
Poisson distributed if in addition, n/N is small. We can use Theorem 4.31 to
make this heuristic precise.

Label the red balls in the urn arbitrarily and let Xi be the indicator that ball
i is chosen in the m-sample so that we have the representation W =

∑n
i=1 Xi.

Since the Xi are exchangeable, we can use Corollary 4.15 to size-bias W . If the
ball labelled one already appears in the m-sample then do nothing, otherwise,
we force Xs

1 = 1 by adding the ball labelled one to the sample and putting back

a ball chosen uniformly at random from the initial m-sample. If we let X
(1)
i be

the indicator that ball i is in the sample after this procedure, then it is clear

that (X
(1)
i )i≥2 has the distribution of (Xi)i≥2 conditional on X1 = 1 so that we

can take W s =
∑

i≥2 X
(1)
i + 1.

In the construction of W s above, no additional red balls labeled 2, . . . , n can

be added to the m-sample. ThusX
(1)
i ≤ Xi for i ≥ 2, and we can apply Theorem

4.31. A simple calculation yieldsE[W ] =
nm

N
and Var(W ) =

nm(N − n)(n−m)

N2(N − 1)
,

so that for Z ∼ Po(nm/N),

dTV(W,Z) ≤ min
{

1,
nm

N

}

(

n

N − 1
+

m

N − 1
− nm

N(N − 1)
− 1

N − 1

)

.

Remark 4.33. This same bound can be recovered after noting the well known
fact that W has the representation as a sum of independent indicators (see [44])
which implies that Theorem 4.31 can be applied.

Example 4.34 (Coupon collecting). Assume that a certain brand of cereal puts
a toy in each carton. There are n distinct types of toys and each week you pick
up a carton of this cereal from the grocery store in such a way as to receive a
uniformly random type of toy, independent of the toys received previously. The
classical coupon collecting problem asks the question of how many cartons of
cereal you must pick up in order to have received all n types of toys.
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We formulate the problem as follows. Assume you have n boxes and k balls
are tossed independently into these boxes uniformly at random. Let W be the
number of empty boxes after tossing all k balls into the boxes. Viewing the n
boxes as types of toys and the k balls as cartons of cereal, it is easy to see
that the event {W = 0} corresponds to the event that k cartons of cereal are
sufficient to receive all n types of toys. We use Theorem 4.31 to show that W is
approximately Poisson which yields an estimate with error for the probability
of this event.

Let Xi be the indicator that box i (under some arbitrary labeling) is empty
after tossing the k balls so that W =

∑n
i=1 Xi. Since the Xi are exchangeable,

we can use Corollary 4.15 to size-bias W by first setting Xs
1 = 1 by emptying

box 1 (if it is not already empty) and then redistributing the balls in box 1

uniformly among boxes 2 through n. If we let X
(1)
i be the indicator that box i is

empty after this procedure, then it is clear that (X
(1)
i )i≥2 has the distribution

of (Xi)i≥2 conditional on X1 = 1 so that we can take W s =
∑

i≥2 X
(1)
i + 1.

In the construction of W s above we can only add balls to boxes 2 through n,

which implies X
(1)
i ≤ Xi for i ≥ 2 so that we can apply Theorem 4.31. In order

to apply the theorem we only need to compute the mean and variance of W .
First note that P(Xi = 1) = ((n− 1)/n)k so that

λ := E[W ] = n

(

1− 1

n

)k

,

and also that for i 6= j, P(Xi = 1, Xj = 1) = ((n− 2)/n)k so that

Var(W ) = λ

[

1−
(

1− 1

n

)k
]

+ n(n− 1)

[

(

1− 2

n

)k

−
(

1− 1

n

)2k
]

.

Using these calculations in Theorem 4.31 yields that for Z ∼ Po(λ),

dTV(W,Z)

≤ min{1, λ}
(

(

1− 1

n

)k

+ (n− 1)

[

(

1− 1

n

)k

−
(

1− 1

n− 1

)k
])

. (4.13)

In order to interpret this result asymptotically, let k = n log(n)− cn for some
constant c so that λ = ec is bounded away from zero and infinity as n → ∞. In
this case (4.13) is asymptotically of order

λ

n
+ λ

[

1−
(

n(n− 2)

(n− 1)2

)k
]

,

and since for 0 < a ≤ 1, 1− ax ≤ − log(a)x and also log(1 + x) ≤ x, we find

1−
(

n(n− 2)

(n− 1)2

)k

≤ k log

(

(n− 1)2

n(n− 2)

)

≤ k

n(n− 2)
=

log(n)− c

(n− 2)
,
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which implies

dTV(W,Z) ≤ C
log(n)

n
.

Example 4.35 (Coupon collecting continued). We can embellish the coupon
collecting problem of Example 4.34 in a number of ways; recall the notation
and setup there. For example, rather than distribute the balls into the boxes
uniformly and independently, we could distribute each ball independently ac-
cording to some probability distribution, say pi is the chance that a ball goes
into box i with

∑n
i=1 pi = 1. Note that Example 4.34 had pi = 1/n for all i.

Let Xi be the indicator that box i (under some arbitrary labeling) is empty
after tossing k balls andW =

∑n
i=1 Xi. In this setting, theXi are not necessarily

exchangeable so that we use Corollary 4.14 to construct W s. First we compute

λ := E[W ] =

n
∑

i=1

(1− pi)
k

and let I be a random variable such that P(I = i) = (1−pi)
k/λ. Corollary 4.14

now states that in order to construct W s, we empty box I (forcing Xs
I = 1)

and then redistribute the balls that were removed into the remaining boxes
independently and with chance of landing in box j equal to pj/(1−pI). If we let

X
(I)
j be the indicator that box j is empty after this procedure, then it is clear

that (X
(I)
j )j 6=I has the distribution of (Xj)j 6=I conditional on XI = 1 so that

we can take W s =
∑

j 6=I X
(I)
j + 1.

Analogous to Example 4.34, X
(i)
j ≤ Xj for j 6= i so that we can apply

Theorem 4.31. The mean and variance are easily computed, but not as easily
interpreted. A little analysis (see [12] Section 6.2) yields that for Z ∼ Po(λ),

dTV(W,Z) ≤ min{1, λ}
[

max
i

(1− pi)
k +

k

λ

(

λ log(k)

k − log(λ)
+

4

k

)2
]

.

Remark 4.36. We could also consider the number of boxes with at most m ≥ 0
balls; we just studied the case m = 0. The coupling is still decreasing because it
can be constructed by first choosing a box randomly and if it has greater than m
balls in it, redistributing a random number of them among the other boxes. Thus
Theorem 4.31 can be applied and an error in the Poisson approximation can be
obtained in terms of the mean and the variance. We again refer to Chapter 6 of
[12] for the details.

Finally, one could also consider the number of boxes containing exactlym ≥ 0
balls, or containing at least m ≥ 1 balls; Theorem 4.20 applies to the latter
problem. See Chapter 6 of [12].

4.4. Exchangeable pairs

In this section, we develop Stein’s method for Poisson approximation using
exchangeable pairs as detailed in [20]. The applications for this theory are
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not as developed as that of dependency neighborhoods and size-biasing, but
the method fits well into our framework and the ideas here prove useful else-
where [50].

As we have done for dependency neighborhoods and size-biasing, we could
develop exchangeable pairs for Poisson approximation by following our devel-
opment for normal approximation which involved rewriting E[Wf(W )] as the
expectation of a term involving the exchangeable pair and f . However, this ap-
proach is not as useful as a different one which has the added advantage of
removing the a-Stein pair linearity condition.

Theorem 4.37. Let W be a non-negative integer valued random variable and
let (W,W ′) be an exchangeable pair. If F is a sigma-field with σ(W ) ⊆ F , and
Z ∼ Po(λ), then for all c ∈ R,

dTV(W,Z)

≤ min{1, λ−1/2}
(E∣∣λ− cP(W ′ = W + 1|F)

∣

∣+E∣∣W − cP(W ′ = W − 1|F)
∣

∣

)

.

Before the proof, a few remarks.

Remark 4.38. Typically c is chosen to be approximately equal to λ/P(W ′ =
W + 1) = λ/P(W ′ = W − 1) so that the terms in absolute value have a small
mean.

Remark 4.39. As with exchangeable pairs for normal approximation, there is
a stochastic interpretation for the terms appearing in the error of Theorem 4.37.
We can define a birth-death process on N∪{0} where the birth rate at state k is
α(k) = λ and death rate at state k is β(k) = k. This birth-death process has a
Po(λ) stationary distribution so that the theorem says that if there is a reversible
Markov chain with stationary distribution equal to the distribution of W such
that the chance of increasing by one is approximately proportional to some
constant λ and the chance of decreasing by one is approximately proportional
to the current state, then W is approximately Poisson.

Proof. As usual, we want to bound |E[λf(W + 1) − Wf(W )]| for functions f
such that ‖f‖ ≤ min{1, λ−1/2} and ‖∆f‖ ≤ {1, λ−1}. Now, the function

F (w,w′) = I[w′ = w + 1]f(w′)− I[w′ = w − 1]f(w)

is anti-symmetric, so that E[F (W,W ′)] = 0. Evaluating the expectation by
conditioning on F , we obtain thatE [P(W ′ = W + 1|F)f(W + 1)−P(W ′ = W − 1|F)f(W )] = 0.

Hence, for any c ∈ R,E[λf(W + 1)−Wf(W )]

= E [(λ− cP(W ′ = W + 1|F)) f(W + 1)− (W − cP(W ′ = W − 1|F)) f(W )] .
(4.14)
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Taking the absolute value and applying the triangle inequality yields the theo-
rem.

Example 4.40 (Law of small numbers). Let W =
∑n

i=1 Xi where the Xi are
independent indicators with P(Xi = 1) = pi and define W ′ = W − XI +
X ′

I , where I is uniform on {1, . . . , n} independent of W and X ′
1, . . . , X

′
n are

independent copies of the Xi independent of each other and all else. It is easy
to see that (W,W ′) is an exchangeable pair and thatP(W ′ = W + 1|(Xi)i≥1) =

1

n

n
∑

i=1

(1−Xi)pi,P(W ′ = W − 1|(Xi)i≥1) =
1

n

n
∑

i=1

Xi(1− pi),

so that Theorem 4.37 with c = n yields

dTV(W,Z)

≤ min{1, λ−1/2}
(E ∣∣∣∣

∣

n
∑

i=1

pi −
n
∑

i=1

(1 −Xi)pi

∣

∣

∣

∣

∣

+E ∣∣∣∣
∣

n
∑

i=1

Xi −
n
∑

i=1

Xi(1− pi)

∣

∣

∣

∣

∣

)

= 2min{1, λ−1/2}E[ n
∑

i=1

piXi

]

= 2min{1, λ−1/2}
n
∑

i=1

p2i .

This bound is not as good as that obtained using size-biasing (for example),
but the better result can be recovered with exchangeable pairs by bounding the
absolute value of (4.14) directly.

Example 4.41 (Fixed points of permutations). Let π be a permutation of
{1, . . . , n} chosen uniformly at random, let τ be a uniformly chosen random
transposition, and let π′ = πτ . Let W be the number of fixed points of π and
W ′ be the number of fixed points of π′. Then (W,W ′) is exchangeable and if
W2 is the number of transpositions when π is written as a product of disjoint
cycles, then P(W ′ = W + 1|π) = n−W − 2W2

(

n
2

) ,P(W ′ = W − 1|π) = W (n−W )
(

n
2

) .

To see why these expressions are true, note that in order for the number of
fixed points of a permutation to increase by exactly one after multiplication
by a transposition, a letter must be fixed that is not already and is not in a
transposition (else the number of fixed points would increase by two). Similar
considerations lead to the second expression.
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By considering W as a sum of indicators, it is easy to see that E[W ] = 1 so
that applying Theorem 4.37 with c = (n− 1)/2 yields

dTV(W,Z) ≤ E ∣∣∣
∣

1− n−W − 2W2

n

∣

∣

∣

∣

+E ∣∣∣
∣

W − W (n−W )

n

∣

∣

∣

∣

=
1

n
E [W + 2W2] +

1

n
E[W 2]

= 4/n,

where the final inequality follows by considering W and W2 as a sum of indi-
cators which leads to E[W 2] = 2 and E[W2] = 1/2. As is well known, the true
rate of convergence is much better than order 1/n; it is not clear how to get a
better rate with this method.

We could also handle the number of i-cycles in a random permutation, but
the analysis is a bit more tedious and is not worth pursuing due to the fact that
so much more is known in this example; see Section 1.1 of [2] for a thorough
account.

5. Exponential approximation

In this section we develop Stein’s method for bounding the Wasserstein distance
(see Section 1.2) between a distribution of interest and the Exponential distri-
bution. We move quickly through the material analogous to that of Section 2
for normal approximation, as the general framework is similar. Our treatment
follows [43] closely; alternative approaches can be found in [21].

Definition 5.1. We say that a random variable Z has the exponential distri-
bution with rate λ, or Z ∼ Exp(λ), if Z has density λe−λz for z > 0.

Lemma 5.2. Define the functional operator A by

Af(x) = f ′(x)− f(x) + f(0).

1. If Z ∼ Exp(1), then EAf(Z) = 0 for all absolutely continuous f withE|f ′(Z)| < ∞.
2. If for some non-negative random variable W , EAf(W ) = 0 for all abso-

lutely continuous f with E|f ′(Z)| < ∞, then W ∼ Exp(1).

The operator A is referred to as a characterizing operator of the exponential
distribution.

Before proving the lemma, we state one more result and then its consequence.

Lemma 5.3. Let Z ∼ Exp(1) and for some function h let fh be the unique
solution of

f ′
h(x)− fh(x) = h(x)−E[h(Z)] (5.1)

such that fh(0) = 0.
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1. If h is non-negative and bounded, then

‖fh‖ ≤ ‖h‖ and ‖f ′
h‖ ≤ 2‖h‖.

2. If h is absolutely continuous, then

‖f ′
h‖ ≤ ‖h′‖ and ‖f ′′

h‖ ≤ 2‖h′‖.
Analogous to normal approximation, this setup immediately yields the fol-

lowing promising result.

Theorem 5.4. Let W ≥ 0 be a random variable with EW < ∞ and also let
Z ∼ Exp(1).

1. If FW is the set of functions with ‖f ′‖ ≤ 1, ‖f ′′‖ ≤ 2, and f(0) = 0, then

dW(W,Z) ≤ sup
f∈FW

|E[f ′(W )− f(W )]| .

2. If FK is the set of functions with ‖f‖ ≤ 1, ‖f ′‖ ≤ 2, and f(0) = 0, then

dK(W,Z) ≤ sup
f∈FK

|E[f ′(W )− f(W )]| .

Proof of Lemma 5.3. Writing h̃(t) := h(t)−E[h(Z)], the relation (5.1) can easily
be solved to yield

fh(x) = −ex
∫ ∞

x

h̃(t)e−tdt. (5.2)

1. If h is non-negative and bounded, then (5.2) implies that

|fh(x)| ≤ ex
∫ ∞

x

|h̃(t)|e−tdt ≤ ‖h‖.

Since fh solves (5.1), we have

|f ′
h(x)| = |fh(x) + h̃(x)| ≤ ‖fh‖+ ‖h̃‖ ≤ 2‖h‖,

where we have used the bound on ‖fh‖ above and that h is non-negative.
2. If h is absolutely continuous, then by the form of (5.2) it is clear that fh

is twice differentiable. Thus we have that fh satisfies

f ′′
h (x)− f ′

h(x) = h′(x).

Comparing this equation to (5.1), we can use the arguments of the proof
of the previous item to establish the bounds on ‖f ′

h‖ and ‖f ′′
h‖.

Proof of Lemma 5.2. Item 1 essentially follows by integration by parts. More
formally, for f absolutely continuous, we haveE[f ′(Z)] =

∫ ∞

0

f ′(t)e−tdt =

∫ ∞

0

f ′(t)

∫ ∞

t

e−xdxdt

=

∫ ∞

0

e−x

∫ x

0

f ′(t)dtdx = E[f(Z)]− f(0),
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as desired. For the second item, assume that the random variableW ≥ 0 satisfiesE[f ′(W )] = E[f(W )]− f(0) for all absolutely continuous f with E|f ′(Z)| < ∞.
The functions f(x) = xk are in this family, so that

kE[W k−1] = E[W k],

and this relation determines the moments of W as those of an exponential
distribution with rate one, which satisfy Carleman’s condition (using Stirling’s
approximation). Alternatively, the hypothesis on W also determines the Laplace
transform as that of an exponential variable.

It is clear from the form of the error in Theorem 5.4 that we want to find
some structure in W , the random variable of interest, that allows us to compareE[f(W )] to E[f ′(W )] for appropriate f . Unfortunately the tools we have pre-
viously developed for the analogous task in Poisson and Normal approximation
do not help us directly here. However, we can define a transformation amenable
to the form of the exponential characterizing operator which will prove fruitful.
An alternative approach (followed in [21, 22]) is to use exchangeable pairs with
a modified a-Stein condition.

5.1. Equilibrium coupling

We begin with a definition.

Definition 5.5. Let W ≥ 0 a random variable with E[W ] = µ. We say that
W e has the equilibrium distribution with respect to W ifE[f(W )]− f(0) = µE[f ′(W e)] (5.3)

for all Lipschitz functions f .

Proposition 5.7 below implies that the equilibrium distribution is absolutely
continuous with respect to Lebesgue measure, so that the right hand side of (5.3)
is well defined. Before discussing that result, we note the following consequence
of this definition.

Theorem 5.6. Let W ≥ 0 a random variable with E[W ] = 1 and E[W 2] < ∞.
If W e has the equilibrium distribution with respect to W and is coupled to W ,
then

dW(W,Z) ≤ 2E|W e −W |.

Proof. Note that if f(0) = 0 and E[W ] = 1, then E[f(W )] = E[f ′(W e)] so that
for f with bounded first and second derivative and such that f(0) = 0, we have

|E[f ′(W )− f(W )]| = |E[f ′(W )− f ′(W e)]| ≤ ‖f ′′‖E|W e −W |.

Applying Theorem 5.4 now proves the desired conclusion.
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We now state a constructive definition of the equilibrium distribution which
we also use later.

Proposition 5.7. Let W ≥ 0 be a random variable with E[W ] = µ and let W s

have the size-bias distribution of W . If U is uniform on the interval (0, 1) and
independent of W s, then UW s has the equilibrium distribution of W .

Proof. Let f be Lipschitz with f(0) = 0. ThenE[f ′(UW s)] = E [∫ 1

0

f ′(uW s)du

]

= E [f(W s)

W s

]

= µ−1E[f(W )],

where in the final equality we use the definition of the size-bias distribution.

Remark 5.8. This proposition shows that the equilibrium distribution is the
same as that from renewal theory. That is, a stationary renewal process with
increments distributed as a random variable Y is given by Y e + Y1 + · · ·+ Yn,
where Y e has the equilibrium distribution of Y and is independent of the i.i.d.
sequence Y1, Y2, . . .

Below we apply Theorem 5.6 in some non-trivial applications, but first we
handle a canonical exponential approximation result.

Example 5.9 (Geometric distribution). Let N be geometric with parameter p
with positive support (denotedN ∼ Ge(p)), specifically,P(N = k) = (1−p)k−1p
for k ≥ 1. It is well known that as p → 0, pN converges weakly to an exponential
distribution; this fact is not surprising as a simple calculation shows that if Z ∼
Exp(λ), then the smallest integer no greater than Z is geometrically distributed.
We can use Theorem 5.6 above to obtain an error in this approximation.

A little calculation shows that N has the same distribution as a variable
which is uniform on {1, . . . , Ns}, where Ns has the size-bias distribution of N
(heuristically this is due to the memoryless property of the geometric distribu-
tion - see Remark 5.8). Thus Proposition 5.7 implies that for U uniform on (0, 1)
independent of N , N − U has the equilibrium distribution of N .

It is easy to verify that for a constant c and a non-negative variable X ,

(cX)e
d
= cXe, so that if we define W = pN our remarks above imply that

W e := W − pU has the equilibrium distribution with respect to W . We now
apply Theorem 5.6 to find that for Z ∼ Exp(1),

dW(W,Z) ≤ 2E[pU ] = p.

5.2. Application: Geometric sums

Our first application is a generalization of the following classical result which in
turn generalizes Example 5.9.

Theorem 5.10 (Rényi’s Theorem). Let X1, X2, . . . be an i.i.d. sequence of non-
negative random variables with E[Xi] = 1 and let N ∼ Ge(p) independent of
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the Xi. If W = p
∑N

i=1 Xi and Z ∼ Exp(1), then

lim
p→0

dK(W,Z) = 0.

The special case where Xi ≡ 1 is handled in Example 5.9; intuitively, the
example can be generalized because for p small, N is large so that the law of
large numbers implies that

∑N
i=1 Xi is approximately equal to N . We show the

following result which implies Rényi’s Theorem.

Theorem 5.11. Let X1, X2, . . . be square integrable, non-negative, and inde-
pendent random variables with E[Xi] = 1. Let N > 0 be an integer valued
random variable with E[N ] = 1/p for some 0 < p ≤ 1 and let M be defined on
the same space as N such thatP(M = m) = pP(N ≥ m).

If W = p
∑N

i=1 Xi, Z ∼ Exp(1), and Xe
i is an equilibrium coupling of Xi

independent of N,M , and (Xj)j 6=i, then

dW(W,Z) ≤ 2p (E|XM −Xe
M |+E|N −M |) (5.4)

≤ 2p
(

1 +
µ2

2
+E|N −M |

)

, (5.5)

where µ2 := supiE[X2
i ].

Before the proof of the theorem, we make a few remarks.

Remark 5.12. The theorem can be a little difficult to parse on first glance, so
we make a few comments to interpret the error. The random variable M is a
discrete version of the equilibrium transform which we have already seen above
in Example 5.9. More specifically, it is easy to verify that if Ns has the size-bias
distribution of N , then M is distributed uniformly on the set {1, . . . , Ns}. If
N ∼ Ge(p), then we can take M ≡ N so that the final term of the error of (5.4)
and (5.5) is zero. Thus E|N −M | quantifies the proximity of the distribution of
N to a geometric distribution. We formalize this more precisely when we cover
Stein’s method for geometric approximation below.

The first term of the error in (5.5) can be interpreted as a term measuring
the regularity of the Xi. The heuristic is that the law of large numbers needs
to kick in so that

∑N
i=1 Xi ≈ N , and the theorem shows that in order for this

to occur, it is enough that the Xi’s have uniformly bounded second moments.
Moreover, the first term of the error (5.4) shows that the approximation also
benefits from having the Xi be close to exponentially distributed. In particular,
if all of the Xi are exponential and N is geometric, then the theorem shows
dW(W,Z) = 0 which can also be easily verified using Laplace transforms.

Remark 5.13. A more general theorem can be proved with a little added
technicality which allows for the Xi to have different means and for the Xi to
have a certain dependence - see [43].
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Proof. We show that

W e = p

[

M−1
∑

i=1

Xi +Xe
M

]

(5.6)

is an equilibrium coupling of W . From this point Theorem 5.6 implies that

dW(W,Z) ≤ 2E|W e −W |

= 2pE ∣∣∣∣
∣

Xe
M −XM + sgn(M −N)

M∨N
∑

i=M∧N+1

Xi

∣

∣

∣

∣

∣

≤ 2pE [|Xe
M −XM |+ |N −M |] ,

which proves (5.4). The second bound (5.5) follows from (5.4) after noting thatE[|Xe
M −XM |

∣

∣M ] ≤ E[Xe
M |M ] +E[XM |M ]

=
1

2
E[X2

M |M ] + 1 ≤ µ2

2
+ 1,

where the equality follows from the definition of the equilibrium coupling.
It only remains to show (5.6). Let f be Lipschitz with f(0) = 0 and define

g(m) = f

(

p
m
∑

i=1

Xi

)

.

On one hand, using independence and the defining relation of Xe
m, we obtainE[f ′

(

p

M−1
∑

i=1

Xi + pXe
M

)

∣

∣

∣

∣

M

]

= p−1E[g(M)− g(M − 1)|M ],

and on the other, the definition of M implies that

p−1E[g(M)− g(M − 1)|(Xi)i≥1] = E[g(N)|(Xi)i≥1],

so that altogether we obtain E[f ′(W e)] = E[g(N)] = E[f(W )], as desired.

5.3. Application: Critical branching process

In this section we obtain an error in a classical theorem of Yaglom pertaining to
the generation size of a critical Galton-Watson branching process conditioned
on non-extinction. Although we attempt to have this section be self-contained,
it is useful to have some exposure to the elementary properties and definitions
of branching processes, found for example in the first chapter of [7].

Let Z0 = 1, and Z1 be a non-negative integer valued random variable with
finite mean. For i, j ≥ 1, let Zi,j be i.i.d. copies of Z1 and define for n ≥ 1

Zn+1 =

Zn
∑

i=1

Zn,i.
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We think of Zn as the generation size of a population that initially has one indi-
vidual and where each individual in a generation has a Z1 distributed number of
offspring (or children) independently of the other individuals in the generation.
We also assume that all individuals in a generation have offspring at the same
time (creating the next generation) and die immediately after reproducing.

It is a basic fact (see Theorem 1 on page 7 of [7]) that if E[Z1] ≤ 1 andP(Z1 = 1 < 1) then the population almost surely dies out, whereas if E[Z1] > 1,
then the probability that the population lives forever is strictly positive. Thus
the case where E[Z1] = 1 is referred to as the critical case and a fundamental
result of the behavior in this case is the following.

Theorem 5.14 (Yaglom’s Theorem). Let 1 = Z0, Z1, . . . be the generation sizes
of a Galton-Watson branching process where E[Z1] = 1 and Var(Z1) = σ2 < ∞.

If Yn
d
= (Zn|Zn > 0) and Z ∼ Exp(1), then

lim
n→∞

dK

(

2Yn

nσ2
, Z

)

= 0.

We provide a rate of convergence in this theorem under a stricter moment
assumption.

Theorem 5.15. Let Z0, Z1, . . . as in Yaglom’s Theorem above and assume also

that E|Z1|3 < ∞. If Yn
d
= (Zn|Zn > 0) and Z ∼ Exp(1), then for some con-

stant C,

dW

(

2Yn

nσ2
, Z

)

≤ C
log(n)

n
.

Proof. On the same probability space, we construct copies of Yn and of Y e
n ,

where the latter has the equilibrium distribution, and then show that E|Yn −
Y e
n | ≤ C log(n). Once this is established, the result is proved by Theorem 5.6

and the fact that (cYn)
e d
= cY e

n for any constant c.
In order to couple Yn and Y e

n , we construct a “size-bias” tree and then find
copies of the variables we need in it. The clever construction we use is due
to [40], and implicit in their work is the fact that E|Yn − Y e

n |/n → 0 (used to
show that nP(Zn > 0) → 2/σ2), but we extract a rate from their analysis.

We view the size-bias tree as labeled and ordered, in the sense that, if w and
v are vertices in the tree from the same generation and w is to the left of v, then
the offspring of w is to the left of the offspring of v. Start in generation 0 with
one vertex v0 and let it have a number of offspring distributed according to the
size-bias distribution of Z1. Pick one of the offspring of v0 uniformly at random
and call it v1. To each of the siblings of v1 attach an independent Galton-Watson
branching process having the offspring distribution of Z1. For v1 proceed as for
v0, i.e., give it a size-bias number of offspring, pick one uniformly at random,
call it v2, attach independent Galton-Watson branching process to the siblings
of v2 and so on. It is clear that this process always yields an infinite tree as the
“spine” v0, v1, v2, . . . is infinite. See Figure 1 of [40] for an illustration of this
tree.
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Now, for a fixed tree t, let Gn(t) be the chance that the original branching
process driven by Z1 agrees with t up to generation n, let Gs

n(t) be the chance
that the size-bias tree just described agrees with t up to generation n, and for v
an individual of t in generation n, let Gs

n(t, v) be the chance that the size-bias
tree agrees with t up to generation n and has the vertex v as the distinguished
vertex vn in generation n. We claim that

Gs
n(t, v) = Gn(t). (5.7)

Before proving this claim, we note some immediate consequences which imply
that our size-bias tree naturally contains a copy of Y e

n . Let Sn be the size of
generation n in the size-bias tree.

1. Sn has the size-bias distribution of Zn.

2. If Y s
n has the size-bias distribution of Yn, then Sn

d
= Y s

n .
3. Given Sn, vn is uniformly distributed among the individuals of genera-

tion n.
4. If Rn is the number of individuals to the right (inclusive) of vn and U

is uniform on (0, 1), independent of all else, then Y e
n := Rn − U has the

equilibrium distribution of Yn.

To show the first item, note that (5.7) implies

Gs
n(t) = tnGn(t), (5.8)

where tn is the number of individuals in the nth generation of t. Now, P(Sn = k)
is obtained by integrating the left hand side of (5.8) over trees t with tn = k, and
performing the same integral on the right hand side of (5.8) yields kP(Zn = k).
The second item follows from the more general fact that conditioning a non-
negative random variable to be positive does not change the size-bias distri-
bution. Item 3 can be read from the right hand side of (5.7), since it does not
depend on v. For Item 4, Item 3 implies that Rn is uniform on {1, . . . , Sn} so that
Rn −U

d
= USn, from which the result follows from Item 2 and Proposition 5.7.

At this point, we would like to find a copy of Yn in the size-bias tree, but before
proceeding further we prove (5.7). Since trees formed below distinct vertices in
a given generation are independent, we prove the formula by writing down a
recursion. To this end, for a given planar tree t with k individuals in the first
generation, label the subtrees with these k individuals as a root from left to
right by t1, t2, . . . , tk. Now, a vertex v in generation n+1 of t lies in exactly one
of the subtrees t1, . . . , tk, say ti. With this setup, we have

Gs
n+1(t, v) = Gn(ti, v)

∏

j 6=i

Gn(tj)[kP(Z1 = k)]
1

k
.

The first factor corresponds to the chance of seeing the tree ti up to generation
n+1 below the distinguished vertex v1 and choosing v as the distinguished vertex
in generation n + 1. The second factor is the chance of seeing the remaining
subtrees up to generation n+1, and the remaining factors correspond to having
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k offspring initially (with the size-bias distribution of Z1) and choosing vertex
v1 (the root of ti) as the distinguished vertex initially. With this formula in
hand, it is enough to verify that (5.7) follows this recursion.

We must now find a copy of Yn in our size-bias tree. If Ln is the number of
individuals to the left of vn (exclusive, so Sn = Ln +Rn), then we claim that

Sn

∣

∣{Ln = 0} d
= Yn. (5.9)

Indeed, we haveP(Sn = k|Ln = 0) =
P(Ln = 0|Sn = k)P(Sn = k)P(Ln = 0)

=
P(Sn = k)

kP(Ln = 0)
=
P(Zn = k)P(Ln = 0)

,

where we have used Items 2 and 3 above and the claim now follows sinceP(Ln = 0) =
∑

k≥1

P(Ln = 0|Sn = k)P(Sn = k) =
∑

k≥1

P(Sn = k)

k
= P(Zn > 0).

We are only part of the way to finding a copy of Yn in the size-bias tree since
we still need to realize Sn given the event Ln = 0. Denote by Sn,j the number
of particles in generation n that stem from any of the siblings of vj (but not
vj itself). Clearly, Sn = 1 +

∑n
j=1 Sn,j, where the summands are independent.

Likewise, let Ln,j and Rn,j , be the number of particles in generation n that
stem from the siblings to the left and right of vj (exclusive) and note that Ln,n

and Rn,n are just the number of siblings of vn to the left and to the right,
respectively. We have the relations Ln =

∑n
j=1 Ln,j and Rn = 1 +

∑n
j=1 Rn,j .

Note that for fixed j, Ln,j and Rn,j are in general not independent, as they are
linked through the offspring size of vj−1.

Let now R′
n,j be independent random variables such that

R′
n,j

d
= Rn,j

∣

∣{Ln,j = 0}.

and

R∗
n,j = Rn,jI[Ln,j = 0] +R′

n,jI[Ln,j > 0] = Rn,j + (R′
n,j −Rn,j)I[Ln,j > 0].

Finally, if R∗
n = 1 +

∑n
j=1 R

∗
n,j , then (5.9) implies that we can take Yn := R∗

n.
Having coupled Yn and Y e

n , we can now proceed to show E|Y e
n − Yn| =

O(log(n)). By Item 4 above,

|Yn − Y e
n | =

∣

∣

∣

∣

∣

∣

1− U +

n
∑

j=1

(R′
n,j −Rn,j)I[Ln,j > 0]

∣

∣

∣

∣

∣

∣

≤ |1− U |+
n
∑

j=1

R′
n,jI[Ln,j > 0] +

n
∑

j=1

Rn,jI[Ln,j > 0].
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Taking expectation in the inequality above, our result follows after we show that

(i) E [R′
n,jI[Ln,j > 0]

]

≤ σ2P(Ln,j > 0),

(ii) E [Rn,jI[Ln,j > 0]] ≤ E[Z3
1 ]P(Zn−j > 0),

(iii) P(Ln,j > 0) ≤ σ2P(Zn−j > 0) ≤ C(n− j + 1)−1 for some C > 0.

For part (i), independence implies thatE [R′
n,jI[Ln,j > 0]

]

= E[R′
n,j ]P(Ln,j > 0),

and using that Sn,j and I[Ln,j = 0] are negatively correlated (in the second
inequality) below, we findE[R′

n,j] = E[Rn,j |Ln,j = 0]

≤ E[Sn,j − 1|Ln,j = 0]

≤ E[Sn,j ]− 1

≤ E[Sn]− 1 = σ2.

For part (ii), if Xj denotes the number of siblings of vj , having the size-bias
distribution of Z1 minus 1, we haveE [Rn,jI[Ln,j > 0]] ≤ E[XjI[Ln,j > 0]]

≤
∑

k

kP(Xj = k, Ln,j > 0)

≤
∑

k

kP(Xj = k)P(Ln,j > 0|Xj = k)

≤
∑

k

k2P(Xj = k)P(Zn−j > 0)

≤ E[Z3
1 ]P(Zn−j > 0),

where we have used that E[Rn,jI[Ln,j > 0]|Xj] ≤ XjI[Ln,j > 0] in the first
inequality and that P(Ln,j > 0|Xj = k) ≤ kP(Zn−j > 0) in the penultimate
inequality.

Finally, we have P(Ln,j > 0) = E [P(Ln,j > 0|Xj)]

≤ E [XjP(Zn−j > 0]

≤ σ2P(Zn−j > 0).

Using Kolmogorov’s estimate (see Chapter 1, Section 9 of [7]), we have

lim
n→∞

nP(Zn > 0) = 2/σ2,

which implies the final statement of (iii).
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6. Geometric approximation

Due to Example 5.9, if W > 0 is integer-valued such that W/E[W ] is approxi-
mately exponential and E[W ] is large, then we expect W to be approximately
geometrically distributed. In fact, if we write E[W ] = 1/p, and let X ∼ Ge(p)
and Z ∼ Exp(1), then the triangle inequality implies that

|dW(pW,Z)− dW(X,W )| ≤ p.

However, if we want to bound dTV(W,X), then the inequality above is not

useful. For example, if W
d
= kX for some positive integer k, then dTV(W,X) ≈

(k − 1)/k since the support of W and X do not match. This issue of support
mismatch is typical in bounding the total variation distance between integer-
valued random variables and can be handled by introducing a term into the
bound that quantifies the “smoothness” of the random variable of interest.

The version of Stein’s method for geometric approximation which we discuss
below can be used to handle these types of technicalities [42], but the arguments
can be a bit technical. Thus, we develop a simplified version of the method
and apply it to an example where these technicalities do not arise and where
exponential approximation is not useful.

We parallel the development of Stein’s method for exponential approximation
above, so we move quickly through the initial theoretical framework; our work
below follows [42].

6.1. Main theorem

A typical issue when discussing the geometric distribution is whether to have
the support begin at zero or one. In our work below we focus on the geometric
distribution which puts mass at zero; that is N ∼ Ge0(p) if for k = 0, 1, . . .,
we have P(N = k) = (1− p)kp. Developing the theory below for the geometric
distribution with positive support is similar in flavor, but different in detail;
see [42].

As usual we begin by defining the characterizing operator that we use.

Lemma 6.1. Define the functional operator A by

Af(k) = (1 − p)∆f(k)− pf(k) + pf(0).

1. If Z ∼ Ge0(p), then EAf(Z) = 0 for all bounded f .
2. If for some non-negative random variable W , EAf(W ) = 0 for all bounded

f , then W ∼ Ge0(p).

The operator A is referred to as a characterizing operator of the geometric dis-
tribution.

We now state the properties of the solution to the Stein equation that we
need.
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Lemma 6.2. If Z ∼ Ge0(p), A ⊆ N ∪ {0}, and fA is the unique solution with
fA(0) = 0 of

(1 − p)∆fA(k)− pfA(k) = I[k ∈ A]−P(Z ∈ A),

then −1 ≤ ∆f(k) ≤ 1.

These two lemmas lead easily to the following result.

Theorem 6.3. Let F be the set of functions with f(0) = 0 and ‖∆f‖ ≤ 1 and
let W ≥ 0 be an integer-valued random variable with E[W ] = (1−p)/p for some
0 < p ≤ 1. If N ∼ Ge0(p), then

dTV(W,N) ≤ sup
f∈F

|E[(1− p)∆f(W )− pf(W )]| .

Before proceeding further, we briefly indicate the proofs of Lemmas 6.1
and 6.2.

Proof of Lemma 6.1. The first assertion is a simple computation while the sec-
ond can be verified by choosing f(k) = I[k = j] for each j = 0, 1, . . . which
yields a recursion for the point probabilities for W .

Proof of Lemma 6.2. After noting that

fA(k) =
∑

i∈A

(1 − p)i −
∑

i∈A,i≥k

(1− p)i−k,

we easily see that

∆fA(k) = I[k ∈ A]− p
∑

i∈A,i≥k+1

(1 − p)i−k−1,

which is the difference of two non-negative terms, each of which is bounded
above by one.

It is clear from the form of the error of Theorem 6.3 that it may be fruitful to
attempt to define a discrete version of the equilibrium distribution used in the
exponential approximation formulation above, which is the program we follow.
An alternative coupling is used in [41].

6.2. Discrete equilibrium coupling

We begin with a definition.

Definition 6.4. Let W ≥ 0 be a random variable such that E[W ] = (1− p)/p
for some 0 < p ≤ 1. We say that W e has the discrete equilibrium distribution
with respect to W if for all functions f with ‖∆f‖ < ∞,

pE[f(W )]− pf(0) = (1− p)E[∆f(W e)]. (6.1)
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The following result provides a constructive definition of the discrete equi-
librium distribution, so that the right hand side of (6.1) defines a probability
distribution.

Proposition 6.5. Let W ≥ 0 be an integer-valued random variable such thatE[W ] = (1− p)/p for some 0 < p ≤ 1 and let W s have the size-bias distribution
of W . If conditional on W s, W e is uniform on {0, 1, . . . ,W s− 1}, then W e has
the discrete equilibrium distribution with respect to W .

Proof. Let f be such that ‖∆f‖ < ∞ and f(0) = 0. If W e is uniform on
{0, 1, . . . ,W s − 1} as dictated by the proposition, thenE[∆f(W e)] = E[ 1

W s

W s−1
∑

i=0

∆f(i)

]

= E [f(W s)

W s

]

=
p

1− p
E[f(W )],

where in the final equality we use the definition of the size-bias distribution.

Remark 6.6. This proposition shows that the equilibrium distribution is the
same as that from renewal theory - see Remark 5.8.

Theorem 6.7. Let N ∼ Ge0(p) and W ≥ 0 be an integer-valued random vari-
able with E[W ] = (1 − p)/p for some 0 < p ≤ 1 such that E[W 2] < ∞. If W e

has the equilibrium distribution with respect to W and is coupled to W , then

dTV(W,N) ≤ 2(1− p)E|W e −W |.

Proof. If f(0) = 0 and ‖∆f‖ ≤ 1, then
∣

∣E[(1− p)∆f(W )− pf(W )]
∣

∣ = (1− p)|E[∆f(W )−∆f(W e)]|
≤ 2(1− p)E|W e −W |,

where the inequality follows after noting that ∆f(W )−∆f(W e) can be written
as a sum of |W e −W | terms each of size at most

|∆f(W + i+ 1)−∆f(W + i)| ≤ 2‖∆f‖.

Applying Theorem 6.3 now proves the desired conclusion.

6.3. Application: Uniform attachment graph model

Let Gn be a directed random graph on n nodes defined by the following recursive
construction. Initially the graph starts with one node with a single loop where
one end of the loop contributes to the “in-degree” and the other to the “out-
degree.” Now, for 2 ≤ m ≤ n, given the graph with m− 1 nodes, add node m
along with an edge directed fromm to a node chosen uniformly at random among
the m nodes present. Note that this model allows edges connecting a node with
itself. This random graph model is referred to as uniform attachment. We prove
the following geometric approximation result (convergence was shown without
rate in [15]), which is weaker than the result of [42] but has a slightly simpler
proof.
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Theorem 6.8. If W is the in-degree of a node chosen uniformly at random
from the random graph Gn which is generated according to uniform attachment
and N ∼ Ge0(1/2), then

dTV(W,N) ≤ log(n) + 1

n
. (6.2)

Proof. For j = 1, . . . , n, let Xj have a Bernoulli distribution, independent of all
else, with parameter µj := (n− j + 1)−1, and let I be an independent random
variable that is uniform on the integers 1, 2, . . . , n. If we imagine that node
n+1− I is the randomly selected node, then it is easy to see that we can write
W :=

∑I
j=1 Xj .

We show that

W e =

I−1
∑

j=1

Xj (6.3)

is an equilibrium coupling of W . From this point Theorem 6.7 implies that

dTV(W,N) ≤ E|W e −W | = E |XI |

=
1

n

n
∑

i=1

E|Xi| =
1

n

n
∑

j=1

1

j
≤ log(n) + 1

n
,

which is (6.2).
It only remains to show (6.3) has the equilibrium distribution with respect

to W . Let f be bounded with f(0) = 0 and define

g(i) = f





i
∑

j=1

Xj



 .

On one hand, using independence and the fact that Xe
i ≡ 0 for 1 ≤ i ≤ n,E∆f





I−1
∑

j=1

Xj





∣

∣

∣

∣

I



 =
1

µI
E[g(I)− g(I − 1)|I],

and on the other, the definition of I implies thatE [g(I)− g(I − 1)

µI

∣

∣

∣

∣

(Xj)j≥1

]

= E[g(I)|(Xj)j≥1],

so that altogether we obtain E[∆f(W e)] = E[g(I)] = E[f(W )], as desired.

7. Concentration of measure inequalities

The techniques we have developed for estimating expectations of characterizing
operators (e.g. exchangeable pairs) can also be used to prove concentration of
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measure inequalities (or large deviations). By concentration of measure inequal-
ities, we mean estimates of P(W ≥ t) and P(W ≤ −t), for t > 0 and some
centered random variable W . Of course our previous work was concerned with
such estimates, but here we are after the rate that these quantities tend to zero
as t tends to infinity - in the tails of the distribution. Distributional error terms
are maximized in the body of the distribution and so typically do not provide
information about the tails.

The study of concentration of measure inequalities has a long history and has
also found recent use in machine learning and analysis of algorithms - see [16]
and references therein for a flavor of the modern considerations of these types
of problems. Our results hinge on the following fundamental observation.

Proposition 7.1. If W is random variable and there is a δ > 0 such thatE[eθW ] < ∞ for all θ ∈ (−δ, δ), then for all t > 0 and 0 < θ < δ,P(W ≥ t) ≤ E[eθW ]

eθt
and P(W ≤ −t) ≤ E[e−θW ]

eθt
.

Proof. Using first that ex is an increasing function, and then Markov’s inequal-
ity, P(W > t) = P (eθW > eθt

)

≤ E[eθW ]

eθt
,

which proves the first assertion. The second assertion follows similarly.

Before discussing the use of Proposition 7.1 in Stein’s method, we first work
out a couple of easy examples.

Example 7.2 (Normal distribution). Let Z have the standard normal distri-
bution and recall that for t > 0 we have the Mills ratio boundP(Z ≥ t) ≤ e−t2/2

t
√
2π

. (7.1)

A simple calculation implies E[eθZ] = eθ
2/2 for all θ ∈ R, so that for θ, t > 0

Proposition 7.1 implies P(Z ≥ t) ≤ eθ
2/2−θt,

and choosing the minimizer θ = t yieldsP(Z ≥ t) ≤ e−t2/2, (7.2)

which implies that this is the best behavior we can hope for using Proposition 7.1
in examples where the random variable is approximately normal (such as sums
of independent variables). Comparing (7.2) to the Mills ratio rate given by (7.1),
we expect that our rates obtained using Proposition 7.1 in such applications will
be suboptimal (by a factor of t) for large t.
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Example 7.3 (Poisson distribution). Let Z have the Poisson distribution with
mean λ. A simple calculation implies E[eθZ ] = exp{λ(eθ − 1)} for all θ ∈ R, so
that for θ, t > 0 Proposition 7.1 impliesP(Z − λ ≥ t) ≤ exp{λ(eθ − 1)− θ(t+ λ)},

and choosing the minimizer θ = log(1 + t/λ) yieldsP(Z − λ ≥ t) ≤ exp

{

−t

(

log

(

1 +
t

λ

)

− 1

)

− λ log

(

1 +
t

λ

)}

,

which is of smaller order than e−ct for t large and fixed c > 0, but of bigger order
than e−t log(t). This is the best behavior we can hope for using Proposition 7.1
in examples where the random variable is approximately Poisson (such as sums
of independent indicators, each with a small probability of being one).

How does Proposition 7.1 help us to use the techniques from Stein’s method
to obtain concentration of measure inequalities? If W is random variable and
there is a δ > 0 such that E[eθW ] < ∞ for all θ ∈ (−δ, δ), then we can define
m(θ) = E[eθW ] for 0 < θ < δ, and we also have that m′(θ) = E[WeθW ].
Thus m′(θ) is of the form E[Wf(W )], where f(W ) = eθW so that we can use
the techniques that we developed to bound the characterizing operator for the
normal and Poisson distribution to obtain a differential inequality form(θ). Such
an inequality leads to bounds on m(θ) so that we can apply Proposition 7.1 to
obtain bounds on the tail probabilities of W . This observation was first made
in [17].

7.1. Concentration of measure using exchangeable pairs

Our first formulation using the couplings of Sections 3 and 4 for concentration of
measure inequalities uses exchangeable pairs. We follow the development of [18].

Theorem 7.4. Let (W,W ′) an a-Stein pair with Var(W ) = σ2 < ∞. IfE[eθW |W ′ − W |] < ∞ for all θ ∈ R and for some sigma-algebra F ⊇ σ(W )
there are non-negative constants B and C such thatE[(W ′ −W )2|F ]

2a
≤ BW + C, (7.3)

then for all t > 0,P(W ≥ t) ≤ exp

{ −t2

2C + 2Bt

}

and P(W ≤ −t) ≤ exp

{−t2

2C

}

.

Remark 7.5. The reason the left tail has a better bound stems from condition
(7.3) which implies that BW + C ≥ 0. Thus, the condition essentially forces
the centered variable W to be bounded from below whereas there is no such
requirement for large positive values. As can be understood from the proof of
the theorem, conditions other than (7.3) may be substituted to yield different
bounds; see [19].
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Before proving the theorem, we apply it in a simple example.

Example 7.6 (Sum of independent variables). Let X1, . . . , Xn be indepen-
dent random variables with µi := E[Xi], σ2

i := Var(Xi) < ∞ and define
W =

∑

iXi − µi. Let X ′
1, . . . , X

′
n be an independent copy of the Xi and for

I independent of all else and uniform on {1, . . . , n}, let W ′ = W −XI +X ′
I so

that as usual, (W,W ′) is a 1/n-Stein pair. We consider two special cases of this
setup.

1. For i = 1, . . . , n, assume |Xi − µi| ≤ Ci. Then clearly the moment gener-
ating function condition of Theorem 7.4 is satisfied and we also haveE[(W ′ −W )2|(Xj)j≥1] =

1

n

n
∑

i=1

E[(X ′
i −Xi)

2|(Xj)j≥1]

=
1

n

n
∑

i=1

E[(X ′
i − µi)

2] +
1

n

n
∑

i=1

(Xi − µi)
2

≤ 1

n

n
∑

i=1

(σ2
i + C2

i ),

so that we can apply Theorem 7.4 with B = 0 and 2C =
∑n

i=1(σ
2
i +C2

i ).
We have shown that for t > 0,P (|W −E[W ]| ≥ t) ≤ 2 exp

{

− t2
∑n

i=1(σ
2
i + C2

i )

}

,

which is some version of Hoeffding’s inequality [36].
2. For i = 1, . . . , n, assume 0 ≤ Xi ≤ 1. Then the moment generating func-

tion condition of the theorem is satisfied andE[(W ′ −W )2|(Xj)j≥1] =
1

n

n
∑

i=1

E[(X ′
i −Xi)

2|(Xj)j≥1]

=
1

n

n
∑

i=1

(E[(X ′
i)

2]− 2µiXi +X2
i

)

≤ 1

n

n
∑

i=1

(µi +Xi) =
1

n
(2µ+W ),

where µ := E[W ] and we have used that −2µiXi ≤ 0 and X2
i ≤ Xi. We

can now apply Theorem 7.4 with B = 1/2 and C = µ to find that for
t > 0, P (|W − µ| ≥ t) ≤ 2 exp

{

− t2

2µ+ t

}

. (7.4)

Note that if µ is constant in n, then (7.4) is of the order e−t for large t,
which according to Example 7.3 is similar to the order of Poisson tails.
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However, if µ and σ2 := Var(W ) both tend to infinity at the same rate,
then (7.4) impliesP( |W − µ|

σ
≥ t

)

≤ 2 exp

{

− t2

2 µ
σ2 + t

σ

}

,

so that for σ2 large, the tails are of order e−ct2 , which according to Ex-
ample 7.2 is similar to the order of Gaussian tails.

Proof of Theorem 7.4. Let m(θ) = E[eθW ] and note that m′(θ) = E[WeθW ].
Since (W,W ′) is an a-Stein pair, we can use (3.17) to find that for all f such
that E|Wf(W )| < ∞,E[(W ′ −W )(f(W ′)− f(W ))] = 2aE[Wf(W )].

In particular,

m′(θ) =
E[(W ′ −W )(eθW

′ − eθW )]

2a
. (7.5)

In order to bound this term, we use the convexity of the exponential function
to obtain for x > y

ex − ey

x− y
=

∫ 1

0

exp{tx+ (1− t)y}dt ≤
∫ 1

0

[tex + (1− t)ey]dt =
ex + ey

2
. (7.6)

Combining (7.5) and (7.6), we find that for all θ ∈ R,

|m′(θ)| ≤ |θ|E[(W ′ −W )2(eθW
′

+ eθW )]

4a

= |θ|E[(W ′ −W )2eθW ]

2a

≤ |θ|E[(BW + C)eθW ]

≤ B|θ|m′(θ) + C|θ|m(θ), (7.7)

where the equality is by exchangeability and the penultimate inequality follow
from the hypothesis (7.3). Now, since m is convex and m′(0) = 0, we find that
m′(θ)/θ > 0 for θ 6= 0. We now break the proof into two cases, corresponding
to the positive and negative tails of the distribution of W .

θ > 0. In this case, our calculation above implies that for 0 < θ < 1/B,

d

dθ
log(m(θ)) =

m′(θ)

m(θ)
≤ Cθ

1−Bθ
,

which yields that

log(m(θ)) ≤
∫ θ

0

Cu

1−Bu
du ≤ Cθ2

2(1−Bθ)
,
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and from this point we easily find

m(θ) ≤ exp

{

Cθ2

2(1−Bθ)

}

.

According to Proposition 7.1 we now have for t > 0 and 0 < θ < 1/B,P(W ≥ t) ≤ exp

{

Cθ2

2(1− Bθ)
− θt

}

,

and choosing θ = t/(C +Bt) proves the first assertion of the theorem.
θ < 0. In this case, since m′(θ) < 0, (7.7) is bounded above by −Cθm(θ) which

implies

Cθ ≤ d

dθ
log(m(θ)) < 0.

From this equation, some minor consideration shows that

log(m(θ)) ≤ Cθ2

2

According to Proposition 7.1 we now have for t > 0 and θ < 0,P(W ≤ −t) ≤ exp

{

Cθ2

2
+ θt

}

,

and choosing θ = −t/C proves the second assertion of the theorem.

Example 7.7 (Hoeffding’s combinatorial CLT). Let (aij)1≤i,j≤n be an array of
real numbers and let σ be a uniformly chosen random permutation of {1, . . . , n}.
Let

W =

n
∑

i=1

aiσi
− 1

n

∑

i,j

aij ,

and define σ′ = στ , where τ is a uniformly chosen transposition and

W ′ =

n
∑

i=1

aiσ′

i
− 1

n

∑

i,j

aij .

It is a straightforward exercise to show that that E[W ] = 0 and (W,W ′) is a
2/(n− 1)-Stein pair so that it may be possible to apply Theorem 7.4. In fact,
we have the following result.

Proposition 7.8. If W is defined as above with 0 ≤ aij ≤ 1, then for all t > 0,P(|W | ≥ t) ≤ 2 exp

{

−t2

4
n

∑

i,j aij + 2t

}

.
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Proof. Let (W,W ′) be the 2/(n − 1)-Stein pair as defined in the remarks pre-
ceding the statement of the proposition. We now haveE[(W ′ −W )2|σ] = 1

n(n− 1)

∑

i,j

(

aiσi
+ ajσj

− aiσj
− ajσi

)2

≤ 2

n(n− 1)

∑

i,j

(

aiσi
+ ajσj

+ aiσj
+ ajσi

)

=
4

n− 1
W +

8

n(n− 1)

∑

i,j

aij , (7.8)

where in the final equality we use that

∑

i,j

aiσj
=
∑

i,j

ajσi
=
∑

i,j

aij

and

W =
1

n

∑

i,j

aiσi
− 1

n

∑

i,j

aiσj
=

1

n

∑

i,j

ajσj
− 1

n

∑

i,j

ajσi
.

Using the expression (7.8), the result is proved by applying Theorem 7.4 with
B = 1 and C = (2/n)

∑

i,j aij .

7.2. Application: Magnetization in the Curie-Weiss model

Let β > 0, h ∈ R and for σ ∈ {−1, 1}n define the Gibbs measureP(σ) = Z−1 exp







β

n

∑

i<j

σiσj + βh
∑

i

σi







, (7.9)

where Z is the appropriate normalizing constant (the so-called “partition func-
tion” of statistical physics).

We think of σ as a configuration of “spins” (±1) on a system with n sites.
The spin of a site depends on those at all other sites since for all i 6= j, each of
the terms σiσj appears in the first sum. Thus, the most likely configurations are
those that have many of the spins the same spin (+1 if h > 0 and −1 if h < 0).
This probability model is referred to as the Curie-Weiss model and a quantity
of interest is m = 1

n

∑n
i=1 σi, the “magnetization” of the system. We show the

following result found in [18].

Proposition 7.9. If m = 1
n

∑n
i=1 σi, then for all β > 0, h ∈ R, and t ≥ 0,P(|m− tanh(βm+ βh)| ≥ β

n
+

t√
n

)

≤ 2 exp

{

− t2

4(1 + β)

}

,

where tanh(x) := (ex − e−x)/(ex + e−x).
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In order to the prove the proposition, we need a more general result than
that of Theorem 7.4; the proofs of the two results are very similar.

Theorem 7.10. Let (X,X ′) an exchangeable pair of random elements on a
Polish space. Let F an antisymmetric function and define

f(X) := E[F (X,X ′)|X ].

If E[eθf(X)|F (X,X ′)|] < ∞ for all θ ∈ R and there are constants B,C ≥ 0 such
that

1

2
E [|(f(X)− f(X ′))F (X,X ′)|

∣

∣X
]

≤ Bf(X) + C,

then for all t > 0,P(f(X) > t) ≤ exp

{ −t2

2C + 2Bt

}

and P(f(X) ≤ −t) ≤ exp

{−t2

2C

}

.

In order to recover Theorem 7.4 from the result above, note that if (W,W ′)
is an a-Stein pair, then we can take F (W,W ′) = (W − W ′)/a, which implies
f(W ) := E[F (W,W ′)|W ] = W .

Proof of Proposition 7.9. In the notation of Theorem 7.10, we set X = σ and
X ′ = σ′, where σ is chosen according to the Gibbs measure given by (7.9) and
σ′ is a step from σ in the following reversible Markov chain: at each step of the
chain a site from the n possible sites is chosen uniformly at random and then the
spin at that site is resampled according to the Gibbs measure (7.9) conditional
on the value of the spins at all other sites. This chain is most commonly known
as the Gibbs sampler. We take F (σ, σ′) =

∑n
i=1(σi − σ′

i) apply Theorem 7.10 to
study f(σ) = E[F (σ, σ′)|σ].

The first thing we need to do is compute the transition probabilities for the
Gibbs sampler chain. Suppose the chosen site is site i, thenP(σ′

i = 1|(σj)j 6=i) =
P(σi = 1, (σj)j 6=i)P((σj)j 6=i)

,P(σ′
i = −1|(σj)j 6=i) =

P(σi = −1, (σj)j 6=i)P((σj)j 6=i)
.

Note that P((σj)j 6=i) = P(σi = 1, (σj)j 6=i) +P(σi = −1, (σj)j 6=i), and thatP(σ′
i = 1, (σj)j 6=i)

=
1

Z
exp







β

n





∑

k<j,j 6=i

σjσk +
∑

j 6=i

σj



+ βh
∑

j 6=i

σj + βh







,P(σ′
i = −1, (σj)j 6=i)

=
1

Z
exp







β

n





∑

k<j,j 6=i

σjσk −
∑

j 6=i

σj



+ βh
∑

j 6=i

σj − βh







.
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ThusP(σ′
i = 1|(σj)j 6=i) =

exp
{

β
n

∑

j 6=i σj + βh
}

exp
{

β
n

∑

j 6=i σj + βh
}

+ exp
{

−β
n

∑

j 6=i σj − βh
} ,P(σ′

i = −1|(σj)j 6=i) =
exp
{

−β
n

∑

j 6=i σj − βh
}

exp
{

β
n

∑

j 6=i σj + βh
}

+ exp
{

−β
n

∑

j 6=i σj − βh
} ,

and henceE[F (σ, σ′)|σ] = 1

n

n
∑

i=1

σi −
1

n

n
∑

i=1

tanh





β

n

∑

j 6=i

σj + βh



 , (7.10)

where the summation over i and the factor of 1/n is due to the fact that the
resampled site is chosen uniformly at random (note also that for j 6= i, we haveE[σj − σ′

j |σ and chose site i] = 0).
We give a concentration of measure inequality for (7.10) using Theorem 7.10,

and then show that the difference between (7.10) and the quantity of interest in
the proposition is almost surely bounded by a small quantity, from which the
result follows.

If we denote mi :=
1
n

∑

j 6=i σj , then

f(σ) := E[F (σ, σ′)|σ] = m− 1

n

n
∑

i=1

tanh{βmi + βh},

and we need to check the conditions of Theorem 7.10 for f(σ). The condition
involving the moment generating function is obvious since all quantities involved
are finite, so we only need to find constants B,C > 0 such that

1

2
E [|(f(σ)− f(σ′))F (σ, σ′)|

∣

∣σ
]

≤ Bf(σ) + C. (7.11)

Since F (σ, σ′) is the difference of the sum of the spins in one step of the Gibbs
sampler and only one spin can change in a step of the chain, we find that
|F (σ, σ′)| ≤ 2.

Also, if we denote m′ := 1
n

∑n
i=1 σ

′, then using that

| tanh(x)− tanh(y)| ≤ |x− y|,

we find

|f(σ)− f(σ′)| ≤ |m−m′|+ β

n

n
∑

i=1

|mi −m′
i| ≤

2(1 + β)

n
,

Hence, (7.11) is satisfied with B = 0 and C = 2(1+β)
n and Theorem 7.10 now

yields P(∣∣∣∣
∣

m− 1

n

n
∑

i=1

tanh(βmi + βh)

∣

∣

∣

∣

∣

>
t√
n

)

≤ 2 exp

{

− t2

4(1 + β)

}

.
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To complete the proof we note that

∣

∣

∣

∣

1

n

n
∑

i=1

[tanh(βmi + βh)− tanh(βm+ βh)]

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

|βmi − βm| ≤ β

n
,

and thus an application of the triangle inequality yields the bound in the propo-
sition.

7.3. Concentration of measure using size-bias couplings

As previously mentioned, the key step in the proof of Theorem 7.4 was to
rewritem′(θ) := E[WeθW ] using exchangeable pairs in order to get a differential
inequality for m(θ). We can follow this same program, but with a size-bias
coupling in place of the exchangeable pair. We follow the development of [29].

Theorem 7.11. Let X ≥ 0 with E[X ] = µ and 0 < Var(X) = σ2 < ∞ and let
Xs be a size-biased coupling of X such that |X −Xs| ≤ C < ∞.

1. If Xs ≥ X, then P(X − µ

σ
≤ −t

)

≤ exp







−t2

2
(

Cµ
σ2

)







.

2. If m(θ) = E[eθX ] < ∞ for θ = 2/C, thenP(X − µ

σ
≥ t

)

≤ exp







−t2

2
(

Cµ
σ2 + C

2σ t
)







.

Proof. To prove the first item, let θ ≤ 0 so that m(θ) := E[eθX ] < ∞ since
X ≥ 0. As in the proof of Theorem 7.4, we need the inequality (7.6): for all
x, y ∈ R,

∣

∣

∣

∣

ex − ey

x− y

∣

∣

∣

∣

≤ ex + ey

2
.

Using this fact and that Xs ≥ X , we findE[eθX − eθX
s

] ≤ C|θ|
2

(E[eθX ] +E[eθXs

]
)

≤ C|θ|E[eθX ]. (7.12)

The definition of the size-bias distribution implies that m′(θ) = µE[eθXs

]
so that (7.12) yields the differential inequality m′(θ) ≥ µ(1 + Cθ)m(θ), or put
otherwise

d

dθ
[log(m(θ)) − µθ] ≥ µCθ. (7.13)
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Setting m̃(θ) = log(m(θ)) − µθ, (7.13) implies m̃(θ) ≤ µCθ2/2, and it follows
that E [exp{θ(X − µ

σ

)}]

= m

(

θ

σ

)

exp

{

−µθ

σ

}

= exp

{

m̃

(

θ

σ

)}

≤ exp

(

µCθ2

2σ2

)

.

We can now apply Proposition 7.1 to find thatP(X − µ

σ
< −t

)

≤ exp

(

µCθ2

2σ2
+ θt

)

. (7.14)

The right hand side of this (7.14) is minimized at θ = −σ2t/µC, and substituting
this value into (7.14) yields the first item of the theorem.

For the second assertion of the theorem, suppose that 0 ≤ θ < 2/C. A
calculation similar to (7.12) above shows that

m′(θ)

µ
−m(θ) ≤ Cθ

2

(

m′(θ)

µ
+m(θ)

)

,

so that we can write

m′(θ) ≤ µ
(

1 + Cθ
2

)

1− Cθ
2

m(θ).

Again defining m̃(θ) = log(m(θ)) − µθ, we have m̃′(θ) ≤ Cµθ/(1− Cθ
2 ) so that

m̃

(

θ

σ

)

≤ Cµθ2

σ2
(

2− Cθ
σ

) for 0 ≤ θ < min{2/C, 2σ/C}.

We can now apply Proposition 7.1 to find thatP(X − µ

σ
≥ t

)

≤ exp

(

µCθ2

σ2
(

2− Cθ
σ

) − θt

)

. (7.15)

The right hand side of this (7.15) is minimized at

θ = t

(

Cµ

σ2
+

Ct

2σ

)−1

,

and substituting this value into (7.15) yields the second item of the theorem.

Theorem 7.11 can be applied in many of the examples we have discussed in
the context of the size-bias transform for normal and Poisson approximation and
others. We content ourselves with a short example and refer to [28] for many
more applications.
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Example 7.12 (Head runs). We apply Theorem 7.11 to a variation of the
random variable studied in the application of Section 4.2.1. Let Y1, . . . , Yn be
i.i.d. indicator variables with P(Yi = 1) = p and for i = 1, . . . , n and k < n/2, let

Xi =

k
∏

j=1

Yj ,

where we interpret the bounds in the product “modularly,” for example Xn =
YnY1 · · ·Yk−1. We say that Xi is the indicator that there is a head run of length
k at position i and we set X =

∑n
i=1 Xi, the number of head runs of length k.

In order to apply Theorem 7.11, we must find a size-bias coupling of X that
satisfies the hypotheses of the theorem. Since X is a sum of identically dis-
tributed indicators, we can apply the size-bias construction of Corollary 4.14.
For this construction, we first realize the variables Y1, . . . , Yn as above. We then
choose an index I uniformly from the set {1, . . . , n} and “condition” XI to be

one by setting YI = YI+1 = · · · = YI+k−1 = 1. By defining X
(I)
j to be the

indicator that there is a head run of length k at position j after this procedure,
Corollary 4.14 implies that

Xs = 1 +
∑

j 6=I

X
(I)
j

is a size-bias coupling of X .
It is easy to see that Xs ≥ X and |Xs −X | ≤ 2k − 1 so that an application

of Theorem 7.11 yieldsP(∣∣∣
∣

X − µ

σ

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−t2

2(2k − 1)
(

µ
σ2 + t

2σ

)

)

,

where µ = npk and σ2 = µ
(

1− pk +
∑k−1

i=1 (p
i − pk)

)

.
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[41] E. Peköz. Stein’s method for geometric approximation. J. Appl. Probab.,
33(3):707–713, 1996. MR1401468
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