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Abstract: The Smoluchowski coagulation-diffusion PDE is a system of
partial differential equations modelling the evolution in time of mass-bearing
Brownian particles which are subject to short-range pairwise coagulation.
This survey presents a fairly detailed exposition of the kinetic limit deriva-
tion of the Smoluchowski PDE from a microscopic model of many coagulat-
ing Brownian particles that was undertaken in [11]. It presents heuristic ex-
planations of the form of the main theorem before discussing the proof, and
presents key estimates in that proof using a novel probabilistic technique.
The survey’s principal aim is an exposition of this kinetic limit derivation,
but it also contains an overview of several topics which either motivate or
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1. Introduction

1.1. Microscopic particles and macroscopic descriptions

An important aim in statistical mechanics is to explain how the huge amount
of information available in a microscopic description of a physical object, such
as the positions and momenta of all the molecules comprising the air in a room,
may be accurately summarised by first specifying a small number of physical
parameters which are functions of macroscopic location, such as the density,
temperature and pressure of this body of air at different points in the room,
and then determining how these parameters evolve in space and time.

1.1.1. The elastic billiards model and the heat equation

The microscopic system may begin out of equilbrium: for example, a still body
of warm air in one room may be separated by a partition from another still
body of cooler air in another, and then the partition instantaneously removed,
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so that air molecules from one side and the other intermingle over time, and an
equilibrium is eventually approached in which the body of air in the whole room
is again close to still, at a temperature which is some average of those of the two
isolated systems at the original time. In such a case as this, it is a natural task to
seek to summarise the evolution of a few suitable macroscopic physical quantities
as the solution of partial differential equations. In the example, our object of
study might be the temperature of the gas, and our aim to show that it is the
heat equation, ∂

∂tT (x, t) = ΔT (x, t), which models the macroscopic evolution
T (x, t) (with x varying over the whole room, [−1, 1]3, say) of the temperature
from the moment of the removal of the partition at time t = 0 until a late
time, t → ∞, at which a new equilibrium is approached. In an idealized and
very classical choice of microscopic description of the gas, we might model the
ensemble of air molecules as a system of tiny spheres of equal radius and mass,
each moving according to some velocity, and each pair of which undergoes a
perfectly elastic collision on contact, in the same manner that a pair of billiards
would. On each of the walls that comprise the boundary ∂[−1, 1]3 of the room,
each sphere bounces elastically. The partition is modelled by the immobile sheet
{0}× [−1, 1]2 on which spheres on either side also bounce elastically before time
zero; the partition is removed instantaneously at that time. The initial instant
of time may be taken to be zero, or some negative time. At that moment, we
may scatter the spheres in an independent Poissonian manner throughout the
room [−1, 1]3 (the reader may notice that in fact some extra rule is needed
here to ensure the spheres’ disjointness); and on one side and the other of the
partition, choose their velocities independently, those to the right of the partition
according to a non-degenerate law of zero mean, and those on the left according
to another such law of lower variance than the first; in this way, we model two
bodies of still air, a warm one in the right chamber [0, 1]× [−1, 1]2, and a cooler
one in the left [−1, 0]× [−1, 1]2: see Figure 1.

In the microscopic model, there are huge numbers of tiny spheres in the
system. Indeed, we may seek to understand the macroscopic evolution of tem-
perature by in fact considering a whole sequence of microscopic models indexed
by total particle number N , in a limit of high N . In the N th model, spheres
are initially scattered as we described, with a Poissonian intensity N thoughout
[−1, 1]3. To carry out this task of understanding the large-scale evolution, we
would wish to specify a microscopic definition of the notion of temperature, and
then explain how it is in the high N limit that the microscopic temperature data
may be meaningfully reduced to a macroscopic description, and that this latter
description indeed evolves according to the heat equation. Microscopically, tem-
perature is interpreted [31, Section 1.1] as the average kinetic energy of particles,
where here the velocity of particles is measured relative to the average velocity
of nearby particles. Since our particle systems are large microscopically, consid-
ering as we do a high N limit, we may specify in our N th microscopic model a
definition of temperature at any given location x ∈ [−1, 1]3 as follows: first we
may compute the mean velocity vN,δ(x) of the set of spheres whose centres lie
within some small distance δ of a given location x in the room, and then we
are able to define the microscopic temperature TN,δ(x) to be the average of the
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Fig 1. This schematic figure depicts the left chamber [−1, 0]× [−1, 1]2 and the right chamber
[0, 1] × [−1, 1]2 and the particles they contain at a negative moment at time at which the
separating partition remains in place. The arrows indicate present velocities. The greater
average magnitude of these velocities in the right chamber reflects the higher temperature of
the body of air enclosed in that chamber.

square of the particle velocity minus vN,δ(x), where the average is taken over
the same set of spheres. Of course, the value TN,δ(x) will change in time. As
N approaches infinity with δ being fixed but small, huge numbers of particles
are involved in the empirical counts used for averaging. Our aim is to consider
the space-time evolution of the microscopically specified temperatures after the
high N limit is taken, at which point, the weak law of large numbers might sug-
gest that these empirical counts behave non-randomly to first order, so that our
description becomes deterministic: the limit TN,δ(x) will be some non-random
function Tδ(x). In fact, since δ is fixed, we should not yet expect our system to
approximate the heat equation, since there is an effect of macroscopic smearing
in our calculation of microscopic temperature. Rather, one might expect the
heat equation description to emerge if we take a δ ↘ 0 limit of Tδ(x), after the
first high N limit has been taken. Moreover, to hope to obtain this description,
we will also need to scale time appropriately in the N th microscopic model, as
we take the first, high N , limit. In the scaled time coordinates, the microscopic
models should make their approach to the new thermal equilibrium at the same
rate, as N → ∞. What rate this is in fact depends on another important con-
sideration concerning the microscopic models which our brief description left
unspecified: the radius rN of each sphere in the N th model must certainly be
chosen to satisfy r3N ≤ cN−1 for some constant c > 0, if only to permit all of the
spheres to inhabit the room disjointly; our choice of decay rate for rN as a func-
tion of N , subject to this constraint, will determine the factor by which we scale
time in the N th model in order to seek a heat equation description in the large.

To implement the programme proposed in the preceding paragraph is an
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open problem, and in all likelihood, an extremely difficult one. There is no
randomness in the model except in the initial selection of particle locations and
velocities: from that time on, the deterministic laws of Newtonian mechanics
govern the evolution of the microscopic models. Moreover, some choices for
density admissible in the above description – such as when Nr3N converges in
high N , to a suitably small constant – lead to rather dense systems of particles.
The derivation may be less inordinately hard were more dilute choices of limit
considered, where rN converges to zero more, and perhaps much more, quickly
than does N−1/3.

It is important to note, however, that, if a choice of rN as a function of
N is made which is too rapidly decaying, we may leave the realm in which
the heat equation is the appropriate macroscopic description. For example, if
rN = o(N−1/2), it is a simple matter to check that a typical sphere after time
zero will traverse the entire room on many occasions before meeting any other
particle. The system will reach equilibrium after the removal of the partition
simply by the free motion of the particles. The heat equation is only a suitable
description when a typical particle experiences the thermal agitation caused by
its collision with many other particles in short periods of macroscopic time.

1.1.2. The elastic billiards model and Boltzmann’s equation

Moreover, the elastic billiards model crosses at least one interesting regime as it
is diluted from the dense rn = Θ

(
N−1/3

)
phase towards the trivial free motion

phase rN = o
(
N−1/2

)
. Consider the choice rN = N−1/2. A moment’s thought

shows that, in this regime, a typical sphere will travel (at unit-order velocity) for
a duration before its first collision with another particle which on average neither
tends to zero nor to infinity as N → ∞. This is the regime of constant mean free
path. The heat equation will not offer a suitable description for the evolution
of temperature in this regime, because the mechanism providing for thermal
agitation of particles – manifest only when a typical particle has suffered many
collisions – occurs on a time scale which is marginally too slow. However, the
programme of deriving a macroscopic description by means of a PDE does make
sense, and in this case, offers a powerful model of gas dynamics. Suppose that,
instead of using the microscopic data to form a description of temperature,
we use it to describe the density of particles having a given velocity v ∈ R

d

nearby a given location x ∈ [−1, 1]3. Particles may be scattered in a Poissonian
fashion as before at the initial time, but with inhomogeneities in the intensity
of this scattering permitted in both the space and velocity variables. With the
macroscopic smearing parameter now being used to approximate velocity v ∈ R

d

as well as location x ∈ [−1, 1]3, we may record a microscopic description fδ
N (x, v)

for the δ-smeared density of spheres at space-velocity location (x, v). Taking a
high N and then low δ limit as above, our macroscopic evolution is modelled by
the fundamental system of equations in gas dynamics, Boltzmann’s equation,
valid for t ≥ 0, x ∈ R

d and v ∈ R
d:

∂
∂tf(x, v) = −v · ∇xf(x, v) +Q(f, f) . (1.1)
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Here, −v ·∇x is the free motion operator associated to particles of velocity v,
while Q(f, f) is a binary collision operator that reflects the microscopic elastic
collision and whose form we will specify when we return to Boltzmann’s equation
in a brief discussion in Section 2. For now, note that the time evolution of the
macroscopic densities is governed both by the free motion and by the collision
operator. This is what is to be expected in the regime of constant mean free
path, where the typical particle experiences unit-order durations free of collision
and other such periods where several collisions occur.

Boltzmann carried out a derivation of (1.1) as a model of gas dynamics in
1872, based on several assumptions, including one of molecule chaos that he
called the Stosszahlansatz and which we will later discuss. (See [5] for an En-
glish translation of his 1872 article.) The validity of his derivation was a matter
of controversy, not least due to Loschmidt’s paradox concerning precollisional
particle independence (see Subsection 2.3.2), and it was a fundamental advance
made in 1975 by Lanford [16] when the programme of rigorously deriving Boltz-
mann’s equation from the elastic billiards model in the regime of mean free path
was successfully implemented, for a short initial duration of time. By the latter
condition, we mean that the validity of the description was established for some
non-zero finite period, whose value depends on the form of the initial density
profile of particles in space-velocity.

Lanford derived Boltzmann’s equation by establishing that the correlation
functions concerning several particles in the model satisfy a hierarchy of equa-
tions called the BBGKY hierarchy, where the index of an equation in the hi-
erarchy is the number of particles whose correlation is being considered, and
by showing that when the correlation functions adhere to the BBGKY hier-
archy, the density profile follows Boltzmann’s equation. Illner and Pulvirenti
implemented this approach in [13] in order to derive Boltzmann’s equation in a
similar sense, but now globally in time, although with a comparable smallness
condition, now on sparseness of the initial particle distribution; the cited deriva-
tion concerns a two dimensional gas, but this restriction on dimension was later
lifted by the same authors.

1.1.3. Our main goal: coagulating Brownian particles and the Smoluchowski
PDE

This survey is intended to offer a detailed overview of a programme for deriving
the macroscopic description of a gas of particles in the same vein as the de-
scriptions above propose. However, our microscopic particles will diffuse, each
following a Brownian trajectory, and as such their evolution is random, not
deterministic; the mechanism of interaction will be pairwise as above, but a
coagulation in which only one particle survives rather than a collision in which
both do. On the other hand, in an effort to provide some generality in the micro-
scopic description and richness in the macroscopic one, each of the particles will
bear a mass, which the pairwise coagulation will conserve; and, moreover, we
will permit the diffusivity of the Brownian trajectory of each particle to depend
on the particle’s mass.
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The partial differential equation which the programme seeks to obtain in
this case – the analogue of the heat equation or Boltzmann’s equation in our
opening examples – is, like Boltzmann’s equation, in fact a system of PDE, in our
case coupled in the mass parameter, known as the Smoluchowski coagulation-
diffusion PDE. The choice made for diluteness in the high particle number limit
will be that of the regime of constant mean free path. The programme of deriving
the PDE in the case of constant mean free path is sometimes called a kinetic
limit derivation.

In the special case of mass-independent diffusion rates, the kinetic limit
derivation was carried out in 1980 by Lang and Nguyen [17], who followed the
method of showing that the correlation functions between several particles are
described by the BBGKY hierarchy which Lanford had employed.

Introduced to the problem of generalizing Lang and Nguyen’s derivation of
the Smoluchowski PDE by James Norris, the author collaborated on it with
Fraydoun Rezakhanlou. The principal aim of these notes is to give an informal
but fairly detailed exposition of the kinetic limit derivation of the Smoluchowski
PDE that was undertaken for dimension d ≥ 3 in [11]. The treatment also first
presents heuristic arguments with the aim that the reader may understand why
the main theorem should be true before beginning a presentation of the proof of
the theorem, and it also uses some novel probabilistic techniques to obtain key
estimates used in the proof. The survey also touches on some related topics.

1.1.4. Acknowledgments

The author is very grateful to James Norris for introducing him to the topic of
diffusive coagulating systems and for valuable discussions. He thanks Fraydoun
Rezakhanlou for comments and guidance regarding the article’s structure and
approach; he further thanks Omer Angel, Nathanaël Berestycki, Pierre Ger-
main and Alain-Sol Sznitman for useful discussions, Dan Erdmann-Pham and
Soumendu Mukherjee for comments on a draft version of the article, and the
participants of the graduate class in Geneva for their interest and enthusiasm.

1.2. The Smoluchowski coagulation-diffusion PDE

We begin by recording the form of these equations and offering a brief explana-
tion of the phenomenon that they may be expected to describe.

Let the dimension d ≥ 2 be given. A collection of functions fn : Rd×[0,∞) →
[0,∞), n ∈ N, is a strong solution of the discrete Smoluchowski coagulation-
diffusion PDE with initial data hn : Rd → [0,∞), n ∈ N, if, for each n ∈ N and
x ∈ R

d, fn(x, 0) = hn(x); and, for each n ∈ N and (x, t) ∈ R
d × [0,∞),

∂fn
∂t

(x, t) = d(n)Δfn(x, t) +Qn
1 (f)(x, t)−Qn

2 (f)(x, t) , (1.2)

where the Laplacian acts on the spatial variable x ∈ R
d. The final two terms

are interaction terms, a gain term given by
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Qn
1 (f)(x, t) =

1
2

n−1∑
m=1

β(m,n−m)fm(x, t)fn−m(x, t) , (1.3)

and a loss term by

Qn
2 (f) = fn(x, t)

∞∑
m=1

β(m,n)fm(x, t) . (1.4)

(When t = 0, the partial time derivative on the left-hand side in (1.2) is inter-
preted as a right derivative.)

Note that the equations have two sets of parameters: the diffusion rates d :
N → (0,∞) and the coagulation propensities β : N2 → [0,∞). The equations
have a continuous counterpart, where the mass variable is now a positive real,
and the above sums are replaced in an evident way by integrals, which we will
not consider in this survey except in passing.

To interpret the solution, consider a large number of minute particles in space
R

d, each carrying an integer mass. In a similar manner to our opening discussion,
the quantity fn(x, t) is interpreted as the density of particles of mass n ∈ N in
the immediate vicinity of location x ∈ R

d at time t ≥ 0. The form of the right-
hand side (1.2) reflects the two dynamics for the particles: diffusive transport
and binary coagulation. Particles of mass m diffuse at rate 2d(m), so that such a
particle’s displacement is given by B(2d(m)t), t ≥ 0, where B : [0,∞) → R

d is a
standard Brownian motion. (The factor of two appears because the infinitesimal
generator of standard Brownian motion is a one-half multiple of the Laplacian;
when we call d(n) the diffusion rate, this is thus strictly speaking a misnomer.)
When a pair of particles aremicroscopically close, they may collide, disappearing
from the model, to be replaced by a newcomer, whose mass is the sum of the
two exiting particles’. The coagulation gain term (1.3) expresses the possible
means by which a new particle of mass n may appear in the immediate vicinity
of location x at time t: by the coagulation of some pair of particles of masses
(1, n− 1), or (2, n− 2) ... or (n− 1, 1). The product form fm(x, t)fn−m(x, t) in
the interaction term reflects an assumption that the particles in the immediate
vicinity of x are well mixed, and the coefficient β(m,n−m) models the tendency
of particles at close range of pair-type (m,n−m) to coagulate in the immediate
future. In the loss term (1.4), we see the means by which the density fn(x, t)
may fall due to coagulation: a particle of mass n may drop out of the count for
this density due to coagulation with another particle, and that other particle
may have any mass m ∈ N.

Our aim in this survey is to explain how the system (1.2) may be derived
in a kinetic limit from a collection of microscopic random models of diffusing
mass-bearing particles that are liable to coagulate in pairs at close range. We
now describe in precise terms the elements for this programme; for the case at
hand, we are thus presenting an instance of the type of programme which we
hazily sketched in our two opening examples. First, we specify the sequence of
microscopic models, including their initial particle distributions, as well as their
dynamics: the free motion of individual particles, and the mechanism of pairwise
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coagulation at close range. In the main body of the article, we discuss only the
derivation made in dimension d ≥ 3, which was undertaken in [11]. Thus d ≥ 3
may be assumed, except on one occasion when we make a short comment about
the case when d = 2.

1.3. The microscopic models

The sequence of microscopic random models will be indexed by the total num-
ber N of particles intially present, at time zero. The N -indexed model will be
specified by a probability measure PN . It is a measure not only on initial particle
locations and masses but also on particle dynamics throughout [0,∞).

Initial particle distribution under PN . The quantity fn(x, 0) = hn(x)
may be interpreted as the density of particles of mass n in a tiny neighbourhood
of x ∈ R

d at time zero. Thus,
∫
Rd hn(x) dx is interpreted as being proportional

to the total number of particles of mass n and the constant Z ∈ (0,∞), which
we define by Z =

∑
n∈N

∫
Rd hn(x) dx, as being proportional to the total number

of initial particles.

We will index the time-zero particle set under PN by [N ] := {1, · · · , N}; the
initial mass and location of particle i will be denoted by

(
xi(0),mi(0)

)
. Reflect-

ing the above density interpretation, we choose
(
xi(0),mi(0)

)
independently, so

that
(
xi(0),mi(0)

)
has density Z−1hn(x) at (x, n) ∈ R

d × N.

Notation for particle trajectories under PN . We wish to describe the
subsequent evolution of each of the initial particles under PN . The trajectory of
the ith particle will be described by

(
xi,mi

)
: [0,∞) →

(
R

d × N
)
∪ {c}, where

here c is an element called a cemetery state whose role, which we will shortly
describe in precise terms, is to house particles that have disappeared from the
model due to being on the wrong side of a pairwise collision.

As such, at any given time t ≥ 0, the particle configuration under PN is
described by a map [N ] →

(
R

d ×N
)
∪{c}, where i ∈ [N ] maps to

(
xi(t),mi(t)

)
(or to c).

To define the Markov process PN precisely, we will specify its Markov gen-

erator, which acts on test functions F :
((

R
d × N
)
∪ {c}
)[N ]

→ R. The action

will be comprised of two parts: free motion of individual particles, and pairwise
collision. We discuss our choice of each of these in words before providing the
definition of the Markov generator.

Free motion. A particle of mass n ∈ N follows, independently of other
particles, the trajectory t → B

(
2d(n)t

)
relative to its starting point, where B

is a standard Brownian motion on R
d.

Pairwise collision. Any two particles will be liable to collide when their
locations differ by order ε. Here, ε = εN , the interaction range, is determined by
N in a manner that we explain shortly. We introduce a compactly supported
smooth interaction kernel V : Rd → [0,∞) and a collection of microscopic in-
teraction strengths α : N2 → (0,∞), and declare that, at time t, particles i and
j collide at infinitesimal rate α(mi,mj)Vε(·), where we adopt the convention
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that Vε(·) = ε−2V
(
· /ε
)
. The argument ·/ε for V indeed entails that collision

may occur only between particles whose locations differ by order ε; the prefac-
tor of ε−2 is introduced because, in dimension d ≥ 3, once a pair of particles
have approached to distance of order ε, they are liable to remain at such a dis-
placement for order ε2 of time, since their relative displacement evolves as a
Brownian motion of rate 2

(
d(n) + d(m)

)
; thus, the role of this prefactor is to

ensure that the proportion of instances of particle pairs approaching into the
interaction range that result in collision is of unit order, uniformly in N . The
role of the factor α(mi,mj) is to control whether this proportion is close to one
for a given particle mass pair (which would be ensured by choosing the value of
α in question to be high) or closer to zero.

The precise mechanism of collision. On collision of (xi,mi) and (xj ,mj)
at time t, each of the pair of particles disappears, to be replaced by a new
particle of mass mi + mj in the vicinity. As a matter of convenience for the
ensuing proofs, the precise rule we pick for the appearance of the new particle
is to choose its location to be xi or xj , with probabilities mi

mi+mj
and

mj

mi+mj
.

This rule permits the interpretation that, when two particles collide, one survives
the collision and the other perishes; the probability of survival is proportional to
incoming particle mass; the particle surviving collects the mass of the perishing
particle, and the perishing particle vanishes from space.

In a formal device, the perishing particle’s location and mass are each sent to
the cemetery state c, where they remain forever. As such, for each i ∈ [N ], the ith

particle’s trajectory is described by setting the vanishing time vi ∈ [0,∞] equal
to the first time at which particle i experiences a collision in which it perishes.
The trajectory is then given by

(
xi,mi

)
→ R

d × N on [0, vi) and
(
xi,mi

)
= c

on [vi,∞).

The Markov generator of the dynamics. For any configuration q ∈((
R

d ×N
)
∪ {c}
)[N ]

, write Iq, the surviving particle set, for those i ∈ [N ] such

that (xi,mi) lies in R
d × N (rather than equalling c). Let F :

((
R

d × N
)
∪

{c}
)[N ]

→ R be smooth (in each hyperplane given by specifying the c-valued

coordinates of the argument of F ). Then the Markov generatorM for PN is given

as follows. For each q ∈
((

R
d×N
)
∪{c}
)[N ]

, MF (q) = AFF (q)+ACF (q), with

the free-motion operator being given by

AFF (q) =
∑
i∈Iq

d(mi)ΔxiF (q) ,

where Δxi is the d-dimensional Laplacian acting on F viewed as a function of
xi ∈ R

d; and, recalling that Vε(·) = ε−2V
(
·/ε
)
, with the collision operator being

given by

ACF (q) = 1
2

∑
i,j∈Iq

α(mi,mj)Vε

(
xi − xj

)
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×
[

mi

mi+mj
F
(
S1
i,jq
)
+

mj

mi+mj
F
(
S2
i,jq
)
− F (q)

]
. (1.5)

Here, S1
i,j(q), the configuration adopted in the event that particle i survives

collision with particle j, is given by

S1
i,j(q)(k) =

⎧⎪⎨
⎪⎩

q(k) for k ∈ [N ] \ {i, j},(
xi,mi +mj

)
for k = i,

c for k = j,

(1.6)

while S2
i,j(q) is given by the same formula with the roles of i and j being reversed.

(A point of notation deserves mention. When we write
∑

i,j∈Iq
in specifying

ACF (q) in (1.5), we are using a slightly imprecise notation which refers to a sum
over distinct pairs of indices (i, j) lying in I2q . Since the pairs are ordered, each
is counted twice. The factor of one-half outside the sum is introduced to cancel
this double counting. Thus the (i, j)-indexed pair of particles is coagulating at
the desired rate α(mi,mj)Vε(xi − xj) that we specified in the pairwise collision
description. We will use such abusive notation for double or triple sums later,
but will comment at potential moments of confusion.)

1.4. The regime of constant mean free path and the choice of
interaction range

It remains to specify how the interaction range ε is determined by total initial
particle number N . This choice is made to be in the regime of constant mean
free path: for dimension d ≥ 3, ε = εN will be chosen to satisfy

N = Zε2−d . (1.7)

(This formula breaks down when d = 2, and this is the basic reason why the
two-dimensional case differs. Recall that we are focussing on the case d ≥ 3.)
To explain why the regime for the length of the free path given by (1.7) is
suitable, note that, since diffusion and coagulation terms are each present in
the Smoluchowski PDE (1.2), we expect that the evolution of a typical particle
will be determined both by its free motion and its collision with other particles.
It will neither diffuse without collision nor collide repeatedly before diffusing a
macroscopic distance.

The consideration that this regime be adopted forces the choice of scaling of
ε as a function of N : picking a uniformly random particle index i ∈ [N ] at the
outset, ε should be chosen so that the mean time to first collision of particle i
converges as N → ∞ to some strictly positive and finite constant.

A heuristic argument explains why (1.7) produces this outcome. We antici-
pate that, at any given time t ≥ 0, a positive (although t-dependent) proportion
of particles are surviving (rather than in the cemetery state). Assume that the
surviving particles at time t are distributed so that the location and mass of
each is chosen independently; the law of the location-mass statistic (x, n) of any
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Fig 2. The tracer particle is indicated by a bold circle in each sketch. Left: at a generic unit-
order time, the order of distance r of the nearest particle to the tracer particle may be expected
to equal r = ε2/d−1, since a ball of radius r will contain Nrd particles, and this choice of r
dictates a unit-order size for this quantity. Right: at a unit-order of special moments during
a unit interval of time, this nearest distance drops to be less than ε, heralding a very short
interaction window of duration Θ(ε2) in which coagulation has a unit-order probability.

given particle is equal to fn(x, t) (normalized to make the integral of this density
equal to one). In other words, we are assuming in a very strong sense that the
density profile of particles under PN mimics the solution of (1.2).

Pick a particle uniformly at random at the initial time and call the selected
particle the tracer particle. We would like to estimate the mean number of
collisions suffered by the tracer particle during [0, 1] in terms of N and ε. As
we briefly discussed in the paragraph under the heading “pairwise collision”
in the preceding section, this quantity is expected to have the same order as
the number of other particles which enter the ε-neighbourhood of the given
particle during [0, 1]. At any given time, our assumption on the distribution of
other particles means that the probability that there is some other particle at
distance less than ε from the tracer particle is of order Nεd. Thus, the mean
total amount of time during [0, 1] that some other particle is at distance less
than ε from the tracer particle is also of order Nεd. Whenever another particle
approaches the tracer particle to distance ε, it remains at the order of that
distance for time of order ε2 (since d ≥ 3). Thus, the mean number of different
particles which during [0, 1] approach to within distance ε the tracer particle is
of order Nεd · ε−2 = Nεd−2. See Figure 2.

We thus see that imposing the relation (1.7) may indeed be expected to
ensure that the mean number of collisions suffered by the tracer particle in unit
time is bounded away from zero and infinity uniformly in N .

1.5. The recipe for the macroscopic coagulation propensities

The macroscopic coagulation propensities β : N2 → (0,∞) that appear in the
limiting system (1.2) depend in a non-trivial fashion on the microscopic parame-
ters V : Rd → [0,∞), α : N2 → (0,∞) and d : N → (0,∞). Here is the recipe for
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obtaining β(n,m) from these ingredients. As we will later explain, there exists
a unique solution u = un,m : Rd → (0,∞) of the equation

− Δun,m(x) =
α(n,m)

d(n) + d(m)
V (x)
[
1− un,m(x)

]
(1.8)

that satisfies un,m(x) → 0 as x → ∞. In fact, 0 ≤ un,m(x) ≤ 1 for all x ∈ R
d,

and un,m(x) = O
(
||x||2−d

)
as x → ∞. (Here, as we will later, we write || · || for

the Euclidean norm on R
d.)

The quantities β : N2 → (0,∞) in (1.2) are then specified by the formula

β(n,m) = α(n,m)

∫
Rd

V (x)
(
1− un,m(x)

)
dx . (1.9)

We mention that the minus sign appearing on the left-hand side of (1.8) was
not used in the original treatment in [11]. A positive choice for un,m permits an
attractive probabilistic interpretation of this quantity. We wish to continue as-
sembling the elements needed to state the main theorem concerning the kinetic
derivation; when this is done, however, we will return to discuss the probabili-
tistic interpretation of un,m: see Sections 1.10 and 1.11. It is tempting however
before we continue to give a brief spoiler explaining the form of (1.9): a fuller
heuristic explanation will appear in Section 3. In an instant of time beginning
at a given moment t, the macroscopic rate of coagulation of pairs of parti-
cles of masses n and m near a given macroscopic location z ∈ R

d is equal to
β(n,m)fn(z, t)fm(z, t). To find a form for β(n,m), note that this macroscopic
rate should be computed as the integral over unit-order x ∈ R

d of an inte-
grand given by the product of the coagulation rate associated to each pair of
particles of such masses at negligible macroscopic distance from z that enjoy
a relative displacement εx, and the density of presence of pairs of particles of
these masses near z and at such relative displacement. In this ‘rate times den-
sity’ description of the integrand, the rate should equal α(n,m)V (x) (up to a
power of ε that we neglect to mention here and in discussing the density term).
Naively one might use a product structure ansatz to describe the density term,
in which the role of x would be irrelevant, and on this basis one would conclude
that the density equals fn(z, t)fm(z, t). However, x is of unit order, and in this
case, particle pair presence is depleted due to the consideration that particles
within the ε-radius interaction range may not be present because of the possib-
lity that they already coagulated in the last few instances of time (of duration
of order ε2) leading up to time t. In its accurate form, the density, which is(
1 − un,m(x)

)
fn(z, t)fm(z, t), contains an additional factor of 1 − un,m(x). As

we will see in Sections 1.10 and 1.11, un,m has an interpretation as a collision
probability for a pair of Brownian particles. As such, the term 1 − un,m(x) is
interpreted as a survival probability for such particles: it is included to reflect
the event that our nearby, εx-displaced, particles survived their close encounter
in the moments of time leading to the time t at which we consider the prospects
of their imminent coagulation.
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1.6. The weak formulation of the Smoluchowski PDE

Pursuing the route to stating our main theorem, we now recast the Smolu-
chowski PDE (1.2) in weak form, since it is to this form of the equations that
we will prove convergence. To do so, let J be the space of sequences J =

{
Jn :

n ∈ N
}
of smooth compactly supported functions Jn : Rd × [0,∞) → [0,∞).

Then we say that f =
{
fn : n ∈ N

}
, with fn : Rd × [0,∞) → [0,∞) measurable

for each n ∈ N, is a weak solution of (1.2) if, for each J ∈ J, it satisfies the
formula obtained from (1.2) by multiplication by Jn, integration in space-time,
and integration by parts. Namely, such an f solves (1.2) weakly if, for each J ∈ J

and T ∈ (0,∞),∫
Rd

(
Jn(x, T )fn(x, T )− Jn(x, 0)fn(x, 0)

)
dx (1.10)

=

∫
Rd×[0,T )

∂Jn(x, t)

∂t
fn(x, t) dxdt

+

∫
Rd×[0,T )

(
d(n)fn(x, t)ΔJn(x, t)

+
(
Qn

1 (f)(x, t)−Qn
2 (f)(x, t)

)
Jn(x, t)

)
dxdt .

1.7. Empirical densities

In our opening discussion of the programme for deriving a macroscopic limiting
PDE, we suggested the use of δ-macroscopically smeared particle counts as
candidates to approximate the limiting evolution. Such counts play an important
role in our derivation, and we will introduce them under the name microscopic
candidate densities when we give an overview of the derivation of our main
theorem, Theorem 1.1, in Section 4.

However, to state this theorem, we will not use them. Rather, we will use a
close cousin, empirical density measures defined under the microscopic models
PN . We now define these.

Under the law PN , let μN denote the PN -random variable, valued in measures
on space-mass-time Rd×N× [0,∞) such that, for each t ≥ 0, its time-t marginal
μn(·, t) is given by

μN (·, t) = εd−2
∑

i∈Iq(t)

δ(
xi(t),mi(t)

) .
For given n ∈ N, let μN,n denote the PN -random variable, valued in measures

on space-time Rd× [0,∞) such that, for each t ≥ 0, its time-t marginal μN,n(·, t)
is given by

μN,n(·, t) = εd−2
∑

i∈Iq(t)

δxi(t)1xi(t)=n .

Let M denote the space of measures μ on R
d × N × [0,∞) such that 0 ≤

μ
(
R

d × N× [0, T ]
)
≤ TZ, and note that μN is PN -a.s. valued in M. (Recall
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that the constant Z ∈ (0,∞) was specified in Section 1.3.) We equip M with
the topology of vague convergence, under which a sequence {χn : n ∈ N} of
measures converges to a limit χ precisely when

∫
fdχn converges to

∫
fdχ for

all continuous f : Rd × N × [0,∞) → R of compact support. We make use of
this topology because it makes M metrizable and compact.

1.8. Hypotheses on microscopic parameters

Our microscopic parameters are d : N → (0,∞), α : N2 → [0,∞) and V : Rd →
[0,∞). In the original paper [11] and in the detailed overview of proof that we
give in this survey, some hypotheses on these parameters must be imposed to en-
able the derivation to be made. We make some comments about the hypotheses
made in [11] and then specify and discuss those we make here. The two sets of
assumptions will be called the original and the survey assumptions throughout.

1.8.1. Original assumptions

The hypotheses governing the derivation in [11] are now stated or at least
roughly described. We will not follow the original derivation at a fine enough
level of detail that the reasons for the form of these assumptions will be appar-
ent; the survey assumptions deputise for the original ones in this regard. We
do however summarise the original assumptions because they are significantly
weaker than the survey ones.

On the diffusion rate and the microscopic interaction strengths.
Suppose that there exists a function γ : N

2 → (0,∞) such that α(n,m) ≤
γ(n,m) for all (n,m) ∈ N

2, with γ satisfying

n2 ·γ
(
n1, n2+n3

)
·max

{
1 ,
[d(n2 + n3)

d(n2)

]2d−1
}

≤
(
n2+n3

)
·γ(n1, n2) . (1.11)

(This condition is the same as that stated in equation (1.9) of [11], but it has
been simplified from its form in [11].)

On the initial condition. A technical-to-state but fairly weak assumption
is needed, of the membership in local L∞ space of some sums over n of certain
averages of hn: see [11, Section 1]. The assumption is certainly satisfied if hn

is non-zero for only finitely many n, and each hn is compactly supported with
bounded supremum.

It is physically reasonable to think that the Brownian motion that is the free
trajectory of the constituent particles in the models PN arises due to thermal
agitation caused by many collisions with the constituents of an ambient envi-
ronment of much smaller air molecules. Viewed in these terms, it is very natural
to suppose that the diffusion rate d(·) will decrease as a function of the mass.
Accepting this, the assumption (1.11) is rather weak. If the diffusion rate is
indeed decreasing, then (1.11) is satisfied provided that there exists a function
C : N → ∞ for which α(n,m) ≤ C(n)m for all (n,m) ∈ N. Also, if the micro-
scopic interaction strength α is identically constant, then we may choose γ equal
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to that constant in (1.11); if we then consider pure-power diffusion-rate choices
d(n) = nφ, we find (1.11) to be satisfied whenever φ ∈ R satisfies φ ≤ (2d−1)−1.
When d = 3, then, we are permitted choices of d(n) that grow as quickly as n1/5.

1.8.2. Survey assumptions

These assumptions are the following set of conditions.
On V . The function V : Rd → [0,∞) is smooth and compactly supported.
On hn : Rd → [0,∞). Setting �n = ||hn||L∞(Rd) for n ≥ 1, each �n is finite,

and the functions hn are all supported in a common given compact region of
R

d.
On d : N → (0,∞). The function d : N → (0,∞) is non-increasing and

supm∈N m−1d(m)−d/2 < ∞.
On α : N2 → (0,∞). The supremum sup(n,m)∈N2 α(n,m) is finite.

A further condition, on (hn, d). The sum
∑∞

n=1 �nnd(n)
d/2 is finite.

Among these, the assumptions on the diffusion rates are genuinely restric-
tive: we must suppose that d(m) grows less slowly than m−2/d, which is not a
particularly fast decay in any dimension d ≥ 3. No such imposition was made in
the original assumptions. It must also be admitted that the uniform bound de-
manded on α(·, ·), is another significant restriction. The final assumption limits
the possibility for a heavy tail of high mass particles at the initial time, partic-
ularly since d(n) must be supposed to decrease none too rapidly. Despite these
limitations, the survey assumptions will permit us to offer a method of proof
of key estimates needed for the main result which is largely self-contained, as
well as being novel and very probabilistic in nature; since it serves our expos-
itory purpose, we have decided to accept the more limited domain of validity
demanded by these assumptions.

1.9. Statement of main theorem

Here is our main result.

Theorem 1.1. Let d ≥ 3 and suppose that either of the above set of assumptions
is in force. Let PN denote the law on M given by the law of the random measure
μN under PN ; recall that ε is related to N by means of the formula Nεd−2 = Z,
with the constant Z ∈ (0,∞) being given by the expression Z =

∑
n∈N

∫
Rd hn.

Recall that the space of measures M has been given the topology of vague
convergence. The sequence {PN : N ∈ N} is tight in M. Moreover, any law P on
M that is a weak limit point of the sequence {PN} is concentrated on the space
of measures taking the form

∑∞
n=0 fn(x, t) dx×δn×dt where {fn : n ∈ N} is P-

almost surely a weak solution of (1.2) that satisfies the initial condition fn(·, 0) =
hn(·); recall that the collection of constants β : N2 → [0,∞) is given by (1.9).

The first assertion made by the theorem is trivial: since M is compact when
equipped with the vague topology, any sequence of probability measures on M
is tight.
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The reader may wonder what the meaning of the theorem is if it is not
known that (1.2) has a weak (global in time) solution for the relevant parameter
choices of d(·) and β(·, ·). In fact, the method of proof furnishes the existence
of at least one weak solution. In any case, Laurençot and Mischler [18] have
established the existence of a global in time weak solution of (1.2) whenever
limm m−1β(n,m) = 0, and d(n) > 0, for each n ∈ N, conditions which are
significantly weaker than those demanded by the theorem.

Theorem 1.1 describes the evolution of the density profiles of particles of var-
ious masses in the limit of large particle number by means of the Smoluchowski
PDE, and in this way it realizes the derivation programme that we began this
article by outlining, for the diffusive coagulating system in question. The deriva-
tion has the merit of being global in time. However, note that, in general, there
are limitations in the description offered of the large-scale behaviour of the sys-
tem. If the weak solution of this system of PDE is not known to be unique,
we merely demonstrate convergence in a subsequential sense to the space of
solutions. For example, admitting the possibility that the system (1.2) has two

distinct weak solutions
{
f ′
n : n ∈ N

}
and
{
f̂n : n ∈ N

}
with initial condition

fn(·, 0) = hn(·), each of the following behaviours is consistent with Theorem 1.1:

• the empirical densities under the microscopic models PN may converge
weakly to the solution

{
f ′
n : n ∈ N

}
as N → ∞ along the subsequence of

even integers, and to
{
f̂n : n ∈ N

}
as N → ∞ along the subsequence of

odd integers;
• it may be that evolution of these densities is accurately approximated by

flipping a fair coin, with the densities converging weakly to
{
f ′
n : n ∈ N

}
as N → ∞ should the outcome be heads, and to

{
f̂n : n ∈ N

}
as N → ∞

should the outcome be tails.

These peculiar scenarios are excluded if uniqueness of solutions to (1.2) is
known. Some conditions for uniqueness are furnished by [33, Proposition 2.6];
after deriving the kinetic limit of the PDE in [11], Fraydoun Rezakhanlou and
the author in [12] provided uniqueness under rather weaker hypotheses. Indeed,
as [12, Remark 1.2] discusses, the next proposition is a consequence of Theorems
1.1, 1.2, 1.3 and 1.4 of [12].

Proposition 1.2. Let the dimension satisfy d ≥ 1. For a, b > 0 such that
a+ b < 1, and for positive constants c1 and c2, assume that β(n,m) ≤ c1(n

a +
ma) and d(n) ≥ c2n

−b for all n,m ∈ N. Also assume that d : N → (0,∞)
is non-increasing. There exists e > 0 such that

∑
n n

e‖hn‖L∞(Rd) < ∞ and
‖
∑

n n
ehn‖L1(Rd) < ∞ imply that (1.2) has a unique weak solution.

Note that the survey assumptions in fact imply the hypotheses of Proposi-
tion 1.2. This means that, in working with these assumptions, we automatically
obtain the simpler statement of convergence available when uniqueness of the
PDE system is known (and which we are about to state).

It is a simple corollary of Theorem 1.1 and Proposition 1.2 that convergence
to (1.2) in fact holds in the following stronger sense.
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Corollary 1.3. Let d ≥ 3 and suppose that the original assumptions, and the
assumptions of Proposition 1.2, are in force. Let J : R

d × [0,∞) → R be a
bounded and continuous test function. Then, for each n ∈ N and T ∈ (0,∞),

lim sup
N→∞

EN

∣∣∣∣
∫
[0,T )

∫
Rd

J(x, t)
(
μN,n(dx, t)− fn(x, t)dx

)
dt

∣∣∣∣ = 0, (1.12)

where again Nεd−2 = Z, with Z =
∑

n∈N

∫
Rd hn. In (1.12), {fn : Rd× [0,∞) →

[0,∞), n ∈ N} denotes the unique weak solution to the system of partial differ-
ential equations (1.2), with β : N2 → [0,∞) again given by (1.9).

1.10. A simple computation about the collision of two particles

The basic mechanism of interaction in our model concerns a pair of particles.
Here, we explain a brief computation concerning such a pair, which offers a prob-
abilistic interpretation of the function un,m : Rd → [0, 1] used in the recipe (1.9)
for the macroscopic coagulation propensity β.

Suppose at a certain time, a particle of mass n is located at 0 and another,
of mass m, is located at xε, where x ∈ R

d. The pair are thus prone to interact
shortly, in the next order ε2 of time. Note also that, assuming uniform and
independent placement of other particles in a compact region (in order to make
an inference which we may find plausible for the actual model PN at any given
time), the typical distance from a particle to the set of other particles is of
order N−1/d = ε1−2/d, which is far greater than the ε distance between the
two particles in question. This means that in discussing the possible upcoming
collision of this particle pair, we may harmlessly remove all other particles from
the model.

Left with a two particle problem, we set uε
n,m(x) equal to the probability of

subsequent collision of the pair. We may now use Brownian scaling, zooming
in by a factor of ε−1 and slowing down time by a factor of ε−2, to obtain a
particle of mass n at the origin, one of mass m at x, with the trajectories
X1, X2 : [0,∞) → R

d being Brownian motions of speeds d(n) and d(m), and
collision occurring at rate α(n,m)V (X1 −X2). That is, u

ε
n,m(x) is independent

of ε > 0, and we may take ε = 1.
As our notation suggests, u1

n,m is nothing other than un,m from (1.8):

Lemma 1.4. If d ≥ 3, then u1
n,m is the unique solution un,m : Rd → [0, 1] of

(1.8).

For occasional later use, we further define u
[t]
n,m : Rd → [0, 1] for each t > 0 to

be the probability that the two particles specified in the definition of u1
n,m(x)

collide during [0, t). Thus, u
[∞]
n,m = u1

n,m. In the expository discussion in Section 3
(though not for the proof of Theorem 1.1), we will need the next result.

Lemma 1.5. Suppose that d ≥ 3. Then ||u[t]
n,m − u1

n,m||∞ → 0 as t → ∞.

We present the proofs of these two lemmas by using a more general notation
which we now present.
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1.11. Killed Brownian motion and the Feynman-Kac formula

In our two particle problem after scaling, the displacement of the particles per-
forms a Brownian motion at rate 2

(
d(n) + d(m)

)
until a random collision time.

Slowing time by a factor of d(n) + d(m), this process is rate two Brownian

motion killed at rate α(n,m)
d(n)+d(m)V in a sense we now explain.

Let W : Rd → [0,∞) denote a smooth and compactly supported function.
Let x ∈ R

d. Rate two Brownian motion in R
d begun at x and killed at rate

W is the stochastic process X that we now specify. The process X maps [0,∞)
into R

d ∪ {c} where, as before, c is a formal cemetery state. To define X, let
B : [0,∞) → R

d denote rate two Brownian motion with B(0) = x. (Thus,
B(t/2) − B(0) is standard Brownian motion.) Define its interaction until time

t, It, to be equal to
∫ t
0
W
(
B(s)
)
ds. Let E denote an independent exponential

random variable of rate one, and set the killing time Kx ∈ [0,∞] equal to
inf
{
t ≥ 0 : It ≥ E

}
, with the convention that inf ∅ = ∞. Then

X(s) =

{
B(s) for s < Kx ,

c for s ≥ Kx .

We say that killing occurs if Kx < ∞ and let uW : Rd → [0,∞) be such that
uW (x) is the probability that killing occurs.

Lemma 1.6. For d ≥ 3, u = uW is a solution of the modified Poisson equation

−Δu(x) = W (x)(1− u)(x) . (1.13)

satisfying u → 0 as x → ∞.

Remark. The solution is unique subject to u → 0 as x → ∞. In a formal
sense, this is verified by observing that the difference v of two solutions solves
Δv = Wv on R

d and then noting that∫
Rd

||∇v||2 dx = −
∫
Rd

vΔv dx , (1.14)

whose right-hand side is −
∫
Rd Wv2dx and is thus at most zero. Hence,∫

Rd ||∇v||2dx = 0 and so ∇v is identically zero on R
d. We thus see that v

is a constant function, and, since v → 0 as ||x|| → ∞, v is identically equal to 0.
This would prove uniqueness, except that (1.14) is a formal identity; if we inte-
grate instead over the Euclidean ball BR and take R → ∞, then the boundary
term in Green’s theorem vanishes in the limit provided a decay condition such
as ||x||d−1v(x)∇v(x) → 0 uniformly as x → ∞ obtains. It is easy enough to
confirm that this is the case: indeed, from the form of the fundamental solution
of Laplace’s equation in [8, Subsection 2.2.1.a], we find that

v(x) = − c0

∫
Rd

v(y) ||x− y||2−dW (y) dy ,
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where c0 = c0(d) equals d−1(d − 2)−1ω−1
d , with ωd being the volume of the

Euclidean unit ball in R
d. We see then that, since W has compact support, v has

a decay at infinity at least as fast as ||x||2−d. Differentiating this formula for v,
we similarly learn that ∇v decays as quickly as ||x||1−d. Thus, ||x||d−1v(x)∇v(x)
has decay as fast as ||x||2−d. The reader may also consult [11, Section 6] for a
proof of existence and uniqueness of the solution of (1.13) (subject to u → 0 as
x → ∞) that uses Fredholm theory and compactness arguments.

Proof of Lemma 1.6. Let v : R
d × [0,∞) → [0, 1] given by v(x, t) =

E e−
∫ t
0
W
(
x+B(s)

)
ds, where the mean is taken over trajectories of rate two Brow-

nian motion B : [0,∞) → R
d begun at zero. The Feynman-Kac formula [27,

Section III.19] shows that v satisfies the partial differential equation

∂
∂tv(x, t) = Δv(x, t)−W (x)v(x, t) (1.15)

for x ∈ R
d and t > 0. Note that for any s > 0,

∣∣v(x, t+ s)− v(x, t)
∣∣ ≤ s ||W ||∞ sup

r∈[t,t+s]

P

(
x+B(r) ∈ supp(W )

)
;

as t → ∞, this probability tends to zero uniformly in x, so that we find that
∂
∂tv(x, t) → 0 as t → ∞, uniformly in x ∈ R

d.
Note then that 1−uW (x), which is the probability that Brownian motion X

begun at x and killed at rate W is never killed, is equal to v(x,∞). That uW

solves −Δu(x) = W (x)
(
1 − u(x)

)
in a distributional sense follows by taking a

high t limit of (1.15), since vt converges to 0 locally in L1. Since W is smooth, u
being in local L2 implies that Δu is also in this space; thus, u is locally in H2.
Iterating, we find that in fact u ∈ C∞, and so u solves (1.13) in strong sense.

The reader may consult Section 5.2 of the graduate PDE text [8] for a dis-
cussion of Sobolev spaces including H2.

Proof of Lemma 1.4. Note that, by the spatial-temporal scaling satisfied by

Brownian motion, u1
n,m equals uW where W = α(n,m)V

d(n)+d(m) . Hence Lemma 1.6

and the remark that follows it yield the result.

Proof of Lemma 1.5. We have that u
[t]
n,m(x) equals 1 − v(x, t), and u1

n,m(x)

equals 1 − v(x,∞). Note that
∣∣v(x,∞) − v(x, t)

∣∣ is at most the probability
that Brownian motion begun at x visits the support of W after time t. With μ
denoting d-dimensional Lebesgue measure, this probability is at most a constant
multiple of μ

(
suppW

)
· t−d/2, independently of x ∈ R

d.

In summary of this section and the preceding one, we have exhibited un,m :
R

d → [0,∞) from (1.8) as a collision probability for a pair of Brownian particles.
As we mentioned after stating the macroscopic coagulation propensity (1.9), we
are thus able to interpret the factor 1− un,m in the integrand in (1.9) in a way
that offers a heuristical explanation of the form of (1.9). As the ensuing guide
makes clear, we will explain these heuristics more carefully in Section 3.
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1.12. A guide to the rest of the survey

We have now set up the microscopic models PN and laid out the programme for
deriving their macroscopic evolution, including our main result, Theorem 1.1.
Our principal goal is to explain at a rather high, though not complete, level of
detail, the proof of this theorem. We pause from pursuing this goal to explore
two other directions first, however. First, in Section 2, we offer a glimpse of
several topics which are tangentially related to this principal goal; this discus-
sion is intended only to whet the reader’s appetite for perhaps some of these
topics and problems, and, for this reason as well as owing to limitations in the
author’s knowledge, it is brief and very inexhaustive. Second, in Section 3, we
offer a leisurely heuristic overview of our kinetic limit derivation in a very sim-
plified special case, of annihilating constant diffusivity Brownian particles on a
torus with a translation invariant initial condition. The argument is not rigor-
ous at each step here, and in its method it does not provide a template for the
derivation of Theorem 1.1; rather, its main goal is to provide an intuitive ex-
planation for the form (1.9) of the recipe for the macroscopic coagulation rates
β : N2 → (0,∞); (the explanation elaborates that offered after the statement of
this equation). We thus hope that, at the end of Section 3, the reader will have
a fuller understanding of why the statement of Theorem 1.1 is true, if not yet
of how it may be proved.

We then return to the survey’s principal goal. Section 4 explains how Theo-
rem 1.1 will be proved, and the reader whose main interest is to see this proof
explained may turn directly to this section. Therein, we introduce δ-smeared
approximations to the particle densities defined in the microscopic models PN ,
called microscopic candidate densities. We state a fundamental estimate, the
Stosszahlansatz, which expresses total coagulation propensity in PN approxi-
mately in terms of integrated products of microscopic candidate densities.

The next Section 5 describes the method of proof of the Stosszahlansatz.
While so doing, it gives an alternative explanation to that of Section 3 for the
form (1.9) of β : N2 → (0,∞).

The actual proof of the Stosszahlansatz is given in Section 6. The proof relies
on several estimates concerning various integrated sums of test functions over
pairs and triples of particle indices. These bounds in turn are reduced to two key
estimates (or more accurately two sets of such estimates). The first of the two
are particle concentration bounds, which state that if we have L∞-control at the
initial time for the joint behaviour of k-tuples of particles in the models PN (with
k ∈ N fixed, such as k equal to two or three), then this control propagates to all
later times; it is here that the more restrictive aspect of the survey assumptions,
on the decay rate of the diffusion rates d : N → (0,∞), is invoked. The second
key estimate takes the form of bounds on killing probabilities uW (that we intro-
duced in Section 1.11), which are uniform over W : Rd → [0,∞) with given com-
pact support. The proofs for this second key estimate also appear in this section.

Section 7 provides a proof of the first key estimate, the particle concentration
bounds. The proof occupies several pages, but we hope that it is probabilistically
interesting and intuitive.
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Finally, in Section 8, we provide a summary of those points in our derivation
where some steps were skipped, and mention where these omissions are treated
in the original derivation in [11]. We also take this opportunity to explain how
the proof in [11] is obscure at a certain moment, and highlight how in the
present paper we have endeavoured to structure the arguments to shed light on
this obscurity.

2. A short foray into some neighbouring topics

2.1. The Smoluchowski coagulation ordinary differential equation

The spatially homogeneous analogue of the PDE we study, the Smoluchowski
coagulation equation, was, to the author’s best knowledge, originally formulated
in Smoulchowski’s seminal work [28, equation (67)], and has been an object of
attention for theoretical probabilists for a long time. The equation is now an
ODE; it has a discrete and continuous mass version, as does the PDE. The
solution f : N × [0,∞) → [0,∞) of the discrete form of this ODE may be
written

d
dtf(n, t) =

1
2

n−1∑
m=1

K(m,n−m)f(m, t)f(n−m, t) − f(n, t)
∞∑

m=1

K(m,n)f(m, t) .

(2.1)
In the continuous counterpart, the space of masses is now [0,∞) rather than N,
and the two sums are replaced by integrals with the natural ranges of integration.
Existence and uniqueness results were obtained by McLeod [19], White [32]
and Ball and Carr [3] in the discrete case, the latter also addressing the mass
conservation of solutions. For such results in the continuous case, see McLeod
[20], and Norris [21] who also shows an example of non-uniquneness.

Aldous’ 1999 survey [1] discusses how special choices of the interaction kernel
K have interesting probabilistic interpretations, in terms of point processes and
related constructions on the complete graph (with K(x, y) = xy, discrete), the
uniform measure on large trees (K(x, y) = x+y, discrete), and on the continuum
random tree (K(x, y) = x+ y, continuous).

It is natural to pose the question of whether the ODE may be derived from
a sequence of random models with diverging initial particle number. In such a
model, the analogue of the microscopic law PN in the programme we discuss
would consist of a probability measure under which N particles carry integer
or non-negative real valued masses, and any pair coalesces at infinitesimal rate
K(·, ·), where the arguments are the masses of the concerned pair; at the mo-
ment of their coalescence, the two particles leave the system, to be replaced by
a newcomer whose mass is the sum of the departing pair’s. In [21, 22], Nor-
ris derives the Smoluchowski ODE from this model, considers more general
mechanisms for coalescence and carries out corresponding derivations for them.
Rezakhanlou in [26] presents sufficient conditions for gelation (a concept that
we will shortly discuss in the spatial setting) in such models.
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In the case where K is identically constant, this random system of coalescing
particles is called Kingman’s coalescent [14, 15]. Although we have defined it
only with an initial condition with a finite number of particles, the system comes
down from infinity, in the sense that there is a well defined stochastic process
S that maps (0,∞) to N with the property that, for any t > 0, the process
[0,∞) → N : s → S(t+ s) has the distribution of the process of the number of
surviving particles in Kingman’s coalescent given that the initial number is S(t).

See [4] for a recent survey of coalescence theory, including a treatment of
Kingman’s coalescents, a more general class of coalescents, Λ-coalescents, in
which several particles may combine simultaneously, spatial models and their
applications to population genetics.

2.2. Coalescing random walkers on Z
d

Suppose that at time zero, a finite collection of walkers are located, each at
some site in Z

d; there may be several walkers at any given site. Each walker
performs a continuous time simple random walk, staying at her present site for a
duration which is exponentially distributed, of mean one, independently of other
decisions, and then jumping with equal probability to one of her 2d neighbours.
For any instance of a pair of walkers occupying the same site at any given
moment of time, one walker in the pair is annihilated at exponential rate one.
The description is informal and we do not provide a precise formulation here.

Many walkers initially: coming down from infinity
Naturally enough, these models have much in common with coagulating dif-

fusive systems. Defining this model on a singleton set, where all walkers must oc-
cupy the same site, note that the model reduces to Kingman’s coalescent, which,
begun with infinitely many particles, has at any positive time only finitely many.
Does this phenomenon also take place in Z

d? A natural starting condition for the
model on Z

d is to begin with N walkers, all located at the origin, and consider
high N behaviour. In [2], it is shown that, in contrast to the non-spatial case,
infinitely many walkers survive asymptotically: if there are N initially, there are
of the order of (log∗ N)d at any given positive time, where the function log∗ N
in essence denotes the number of iterations of the logarithm which reduces the
value of N to below zero. At constant time, the surviving particles roughly fill
up a ball of radius log∗ N with a tight number of particles present at each site
in this ball. Since the model asymptotically manufactures an arbitrarily large
number of surviving particles, however slowly it does so in the high N limit, it
is a natural extension of the derivation of Theorem 1.1 to enquire as to whether
a counterpart result holds for this model. We may expect to squeeze space by a
factor of log∗ N and slow time by the square of this quantity to reach the regime
described by the PDE. The recipe (1.9) for the macroscopic coagulation rates
will presumably be altered so that a discrete Laplacian appears instead.

The model on a discrete torus: Smoluchowski and Kingman
Similarly to the model on Z

d, we may consider the model of annihilating ran-
dom walkers on the discrete torus Td

N , formed by quotienting Z
d by NZ

d. Imag-
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ine for the sake of simplicity that, at time zero, the walkers sit one apiece at each
of the Nd sites of Td

N . In the first few units of time, a positive fraction of walkers
are annihilated, and the system becomes sparser. Writing sN : [0,∞) → [0, 1] for
the proportion of surviving particles in T

d
N , we may define s : [0,∞) → [0, 1],

s = limN sN , (an almost sure limit which clearly exists and is non-random),
and ask questions about the rate at which s(t) ↘ 0 as unscaled time t tends to
infinity.

On the other hand, by scaling space and time, we may find a regime analogous
to that identified in the principal aim of this survey. Scaling T

d
N to the unit torus

by squeezing space by a factor of N , Brownian scaling dictates that time be sped
up by a factor of N2. In the new coordinates, there is a rapid obliteration of
walkers that reduces their number from Nd to an order of Nd−2 (by any given
positive time). Note that the relation (1.7), that nεd−2 is of unit order, with n the
survivng particle number, is satisfied in the sense that n is order Nd−2 and ε, the
interaction range, is N−1. In scaled coordinates then, the system crashes down
from infinity, and naturally slows down into the regime of constant mean free
path. Our translation invariant choice of initial condition should manifest itself
in this regime by convergence of the surviving particle number to a solution of
the Smoluchowski coagulation ODE (2.1); since particles are indistinguishable,
the kernel K is identically equal to one.

At time scales beyond the N2 rescaling, surviving particles cross the torus
many times between collisions. If we choose a speeding up of time by a factor of
Nd, then we enter a regime where only finitely many particles survive. Indeed,
Cox [6] proved that, when dimension d ≥ 3, the rescaled process of surviving
particle number, [0,∞) → N, t → sN (2Ndt/G), converges in law to the process
of surviving particle number in Kingman’s coaelscent. The constant factor G
is the mean total amount of time that a continuous-time simple random walk
in Z

d begun at the origin spends at the origin in all positive time. This regime
is one where a finite population of walkers each mixes spatially at an infinite
rate, thus becoming indistinguishable; the presence of the factor G is explained
by noting that the time of any pair of such particles to meet should be gauged
in a clock which advances at a speed which is double (since a displacement
between two walks is considered) that at which the unit-rate walker on Z

d at
late time encounters previously unvisited vertices. Cox also studied the problem
in dimension two, and noted the implications of the solution for voter model
consensus times.

2.3. The elastic billiards model and Boltzmann’s equation

Our discussion draws heavily on Chapter 1 of Villani’s review [31] of collisional
kinetic theory.

2.3.1. The form of the equations

In Subsection 1.1.2, we mentioned Lanford’s 1975 derivation for short times
of Boltzmann’s equation (1.1) in a kinetic limit from a system of elastically
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colliding billiards. In the form of the equation suitable for such a billiard model
in dimension d = 3, the collision operator in (1.1) is given by

Q(f, f)(t, x, v) (2.2)

= C

∫
Rd

dv∗

∫
Sd−1

dσ ||v − v∗||
(
f(t, x, v′)f(t, x, v′∗)− f(t, x, v)f(t, x, v∗)

)
,

where C ∈ (0,∞) is a constant. To explain the notation, consider a collision that
a sphere of velocity v ∈ R

d may undergo. The particle with which it collides has
some velocity v∗ ∈ R

d. Impact may occur over a hemisphere in a surface of the
velocity v sphere. Denoting the outgoing velocities of the two spheres by v′ and
v′∗, conservation of momentum and kinetic energy imply that{

v′ + v′∗ = v + v∗

||v′||2 + ||v′∗||2 = ||v||2 + ||v∗||2 .

The form of the outgoing velocities is determined by the angle of impact. The
possibilities may be parameterized as follows:{

v′ = v+v∗
2 + ||v+v∗||

2 σ

v′∗ = v+v∗
2 − ||v+v∗||

2 σ ,

as σ varies over Sd−1.
We mention in passing one notable feature of (2.2): the term ||v− v∗||, which

is the Boltzmann collision kernel, and which in a more general setting may
depend non-trivially on σ, has no such dependence in the present case of elastic
collisions and dimension d = 3.

The collision operator Q(f, f) may be written as a difference of non-negative
gain and loss terms, Q+(f, f) − Q−(f, f), by splitting (2.2) across the minus
sign in the big bracket. We obtain a phenomenological description of (1.1) akin
to that offered for the Smoluchowski PDE appearing after the equations in
Section 1.2. Particles of velocity v near location x are subject to collision, and
contribute to the loss term Q−(f, f); collisions of particles with other velocity
pairs may occur which produce new velocity v particles near x, as the gain term
Q+(f, f) records.

2.3.2. Loschmidt’s paradox and the Stosszahlansatz

A system of elastically colliding billiards in a box is at equilibrium a reversible
continuous-time Markov chain. However, Boltzmann’s equation begun from
generic initial data do not share this reversibility. Indeed, Boltzmann’s H theo-
rem shows that the Boltzmann H functional,

H(f) =

∫
(x,v)∈Rd×Rd

f log f ,
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satisfies d
dtH
(
f(t, ·, ·)

)
≤ 0. The quantity H may be viewed as a measure of in-

formation; information dissipates monotonically as time evolves, in accordance
with the second law of thermodynamics. At some late time, this rate of dissipa-
tion may slow as the system approaches equilibrium. However, for generic initial
data for Boltzmann’s equation, H may decrease in a strictly monotonic fashion
as time advances. This irreversible property of the macroscopic evolution seems
to be in tension with the reversible nature of the basic collision event that two
billiards may undergo revealed by reversing in time a viewing of the collision.
Concerns such as these caused Boltzmann’s claim that the equation offered an
accurate macroscopic description of classical many body systems such as elastic
billiards to be treated with much scepticism. Loschmidt found a paradox which
brought these concerns into a sharper relief. Accepting that a large system of
elastic billiards is accurately modelled by Boltzmann’s equation for all typical
choices of initial data, begin with some such data and run the deterministic
dynamical rules for the billiard system for some fixed time t. The density pro-
files will approximately follow the solution of Boltzmann’s equation, and the H
functional will drop from its initial value. Stop the evolution at time t and then
reverse the velocity of each particle, leaving each particle’s location unchanged.
Then run the system for a further t units of time. Clearly the resulting evolution
will be a rerun of the dynamics we just witnessed in the sense of reversed time.
At the end of this second dynamics, the collection of billiards has its original set
of locations, with reversed velocities. Note however that during this second dy-
namics, the H functional was rising, not falling. However, this is impossible for
a system which is accurately approximating a solution of Boltzmann’s equation.

Loschmidt’s paradox indicates that not all microscopic data consistent with
a given macroscopic density profile may result in an evolution for which Boltz-
mann’s equation is an accurate model. The velocity-reversed time-t particle data
is a counterexample to the hypothesis that Boltzmann’s equation may be so de-
rived from all such microscopic data. However, there is no contradiction to the
hypothesis that all but a tiny fraction of particle configurations approximating
a given density profile begin a dynamics whose evolution is accurately described
by Boltzmann’s equation.

The paradox also has implications for methods of proof that may be proposed
for deriving Boltzmann’s equation from microscopic models. In Boltzmann’s own
derivation, he invoked an assumption of independence on the part of colliding
particles, which he called the Stosszahlansatz, or the collision number hypothesis.
This asserts roughly that, in the neighbourhood of a location x at any time t, the
distribution of the numbers of collisions of particles of two given velocities, v and
v∗, in a many body system of elastic billiards, is accurately specified by knowing
the densities (macroscopically denoted by f(x, v, t) and f(x, v∗, t)) of velocity
v and v∗ particles near x at time t; the particles’ histories until this time does
not significantly bias the local structure of these families of particles away from
that of a Poissonian system of such particles at these two densities; so that, for
example, the rate of collision of a randomly picked particle of velocity v near x at
time t with a particle of velocity v∗, and the distribution of the impact parameter
on collision, are accurately modelled by the Poisson systems at these densities.
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Loschmidt’s paradox indicates a subtlety about the Stosszahlansatz. It may be
valid for precollisional particle velocities, but in cannot be for postcollisional
ones; for the latter, the history of the concerned particles has a great deal that
biases their distribution from a Poissonian cloud model for the two velocity
types. In other words, the mechanism of elastic collision may propagate chaos,
taking independent randomness present at an initial time and preserving it
at given later times, but the chaos propagated is one-sided, not double-sided,
referring to statistical inferences about the particles’ future, and not their past.

In our more humble setting of coagulating Brownian particles, a key role
is played by a result, Proposition 4.1, concerning collision propensity for the
microscopic models, which we interpret as the Stosszahlansatz, as we will see
in Section 4. However, the random and reversible nature of the free motion of
the individual particles means that there is no analogue of Loschmidt’s paradox
and no need to formulate the Stosszahlansatz as a statement concerning merely
one-sided, rather than double-sided, chaos.

2.4. Gelation and mass conservation

2.4.1. Mass conservation for the Smoluchowski PDE

The collision event in the microscopic models PN conserves mass. How does
mass conservation manifest itself macroscopically, in a solution of the Smolu-
choski PDE? For a solution

{
fn : n ∈ R

d
}
of (1.2), we may intepret Mn(t) :=

n
∫
Rd fn(x, t)dt as the total mass among particles of mass n ∈ N at time

t ∈ [0,∞), and thus M(t) :=
∑

n∈N
Mn(t) to be the cumulative mass of particles

at this time. For any T > 0, a solution of (1.2) is said to conserve mass during
[0, T ] if M(s) = M(0) for all s ∈ [0, T ]. The passage from the microscopic to
the macroscopic might lead one to expect solutions to be mass conserving on
all such intervals. In fact, only the inference that M : [0,∞) → [0,∞) is non-
increasing is readily available. We may define then the gelation time tgel ∈ [0,∞],
tgel = inf

{
t ≥ 0 : M(t) < M(0)

}
, with inf ∅ = ∞. It is shown in [12] that the

unique weak solution of the PDE which Proposition 1.2 provides is mass con-
serving in the sense that tgel = ∞. Certainly under the survey assumptions, the
resulting solution of the PDE satisfies the hypotheses of Proposition 1.2, and
so is mass conserving. Indeed, this is true in every circumstance under which a
kinetic limit derivation of the Smoluchowski PDE has been carried out.

2.4.2. The meaning of gelation for the microscopic models

Nonetheless, it is natural to ask what behaviour we would expect to see under
the laws PN in a system which converges to a solution of the Smoluchowski
PDE with gelation. After the gelation time tgel, a positive fraction of the initial
particle mass in a high-N indexed model PN will be present in particles above
any given K ∈ N; this fraction is independent of the value of K, although, for
high values of K, we will have to increase N in order to witness this effect. A
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gel, composed of super-heavy particles, is forming microscopically beyond the
gelation time.

Does this phenomenon actually take place in a model PN for some choice of
parameters V , d(·) and α(·, ·), or in some variant of this model?

To prepare to answer this, we first discuss a natural extension to our definition
of microscopic model. Under PN , all particles have an equal interaction range
ε = εN , irrespective of their mass. It is natural to introduce a mass-dependent
interaction range, of the form rnε for particles of mass n; presumably rn would
be increasing, and the choice rn = n1/d would correspond to solid ball particles
composed of a common material which instantaneously merge to form a larger
such ball on collision. Other choices rn = nχ, for χ ∈ [1/d, 1], may be possible,
corresponding to fractal geometries for the internal particle structure (as we
will discuss in Section 2.6). Without the assumption of additional and non-local
attractive inter-particle forces, it is hard to see, however, how a choice of the
form χ > 1 would be physically meaningful. The choice χ = 1 is already a little
beyond the border of the plausible realm: in a farfetched effort to justify this
choice, we may model each particle as a long and very thin bar, and imagine
that each bar rotates rapidly and chaotically about its centre of mass, while
diffusing on a slower time-scale; when two bars touch, they instantaneously and
rigidly join. Because of their rapid rotation, this will tend to happen when they
are closely aligned, so that the new particle also resembles a long thin bar.

Whatever the physically reasonable range of choices for radial parameters{
rn : n ∈ N

}
may be, the natural adaptation of particle dynamics when

they are introduced is a change in the pairwise collision rule discussed in Sec-
tion 1.3. Where before particles xi and xj of mass n and m coagulate at rate
α(n,m)ε−2V

(
(xi − xj)/ε

)
, we now stipulate that this rate is α(n,m)ε−2(rn +

rm)−2V
( xi−xj

(rn+rm)ε

)
; the presence of the term (rn+rm)−2 allows the microscopic

coagulation propensity α(n,m) to retain its interpretation of determining the
proportion of particle pair overlaps that lead to coagulation (uniformly as the
masses of the pair vary).

The kinetic limit derivation of Theorem 1.1 is undertaken after these changes
are made by Rezakhanlou [25]. When d ≥ 3 and the relation rn = nχ is imposed,
the derivation is made when χ ∈

[
0, 1/(d − 2)

)
. The macroscopic coagulation

rates β : N2 → (0,∞) are then found to satisfy

β(n,m) ≤ C
(
d(n) + d(m)

)(
rn + rm

)d−2 · Cap
(
supp(V )

)
,

where the latter term denotes the Newtonian capacity of the support of V .

When dimension d equals three, and we suppose, very reasonably, that
supn∈N d(n) < ∞, we see that β(n,m) = O(n + m) whenever rn = O(n).
In such a regime for β, it is reasonable to believe that the Smoluchowski PDE
is mass conserving for all time; indeed, Proposition 1.2 comes close to showing
this if d(·) decreases gradually enough.

We may tentatively conclude then that the perturbation of our model which
includes radial dependence of particles without making more profound changes
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to inter-particle interaction is not a suitable physical context to study the phe-
nomenon of gelation.

2.4.3. A weaker notion of gelation: an analogue of weak turbulence

A weaker notion of solution blowup than finite gelation time is the condition
that ∫ ∞

0

∫
Rd

mrfm(x, t) dxdm → ∞ as t → ∞, (2.3)

for some r > 1. In [34, Appendix], an analogy is drawn between the non-linear
Schrödinger equation and the Smoluchowski PDE under which, in the case of
the cubic defocussing NLS, the criterion above corresponds to weak turbulence.
The condition (2.3) corresponds to ongoing coagulation under which a positive
fraction of mass reaches arbitrarily high mass nodes at sufficiently late time.
It is argued non-rigorously in [34] on the basis of scaling considerations for the
PDE that, modelling β(n,m) = nη +mη and d(n) = n−φ, the behaviour (2.3)
is not expected to occur provided that η + φ < 1.

2.5. The kinetic limit derivation when d = 2 and with other variants

In [10], the kinetic limit derivation of the PDE from the models PN was un-
dertaken in dimension d = 2. We mention here the key changes needed in the
models PN , and the changes in the recipe for determining β : N2 → (0,∞) from
the microscopic parameters. We will also return to the discussion of case d = 2
in Section 8, in order to discuss how the proofs in this case differ from when
d ≥ 3.

Interaction range. The relation (1.7) becomes N
∣∣ log ε∣∣−1

= Z, for a given
constant Z ∈ (0,∞). The interaction range is now exponentially small in N ,
far smaller than it was in the case d ≥ 3. It is the same regime of constant
mean free path that dictates the scale, but now particles are readily available
to each other due to Brownian recurrence; small interaction range acts as a
countervailing effect.

Pairwise collision rule. The infinitesimal rate of coagulation between two
particles of mass n and m located at xi and xj is now taken to be α(n,m)ε−2×∣∣ log ε∣∣−1

V
(xi−xj

ε

)
, for a collection of microscopic interaction strengths α : N2 →

(0,∞). The change from the case d ≥ 3 is the appearance of the factor
∣∣ log ε∣∣−1

.
Its role is to preserve the interpretation of α(·, ·) as specifying the proportion
of particle overlaps leading to coagulation: were it absent, Brownian recurrence
would offer overlapping particles endless opportunities to coagulate, and the
proportion of coagulation would be one, for any positive value of α.

The recipe for the macroscopic coagulation rates. With a choice of
compactly supported interaction kernel V : R2 → [0,∞) for which

∫
R2 V = 1,

the formula (1.9) becomes

β(n,m) =
2π ·
(
d(n) + d(m)

)
· α(n,m)

2π ·
(
d(n) + d(m)

)
+ α(n,m)

. (2.4)
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Thus, the nature of V is manifest in the macroscopic evolution only through the
value of its L1 norm. The reason for this is that, having accepted the presence

of a new factor of
∣∣ log ε∣∣−1

into the formula for α(·, ·), any overlapping pair of
particles is now not likely to coagulate in any particular excursion into each
other’s interaction range of duration of order ε2. Rather, many such opportu-
nities to visit occur for the particles before they move to a large distance from
one another, and one among these many visits may cause collision. During all
the visits, the details of the form of V no longer really matter, except in a weak
law of large numbers’ sense, where the average rate of interaction is determined
by the L1 norm of V .

2.6. Diffusion and coagulation: two effects from one random
dynamics

In our microscopic models, the Brownian motion that is the free motion of indi-
vidual particles is simply a definition, as is the binary coalescence mechanism.
Might it be possible to find a microscopic model in which these two phenomena
emerge from one microscopic description? Here are two possible answers.

2.6.1. Physical Brownian motion

Physically, Brownian motion arises by the thermal agitation of a particle caused
by many random collisions with its neighbours, in a similar vein to the way
that the heat equation is expected to arise as a macroscopic evolution equation
which we discussed in this survey’s opening paragraphs. A physically natural
but mathematically presumably intractable microscopic model might suspend
comparatively large spheres in an ambient environment of much smaller parti-
cles, with a dynamic of elastic collision, and a mechanism of sticking of the large
particles on mutual contact. In this sense, the Smoluchowski PDE is sometimes
called a model of a colloid. Regarding the important question of the physical
derivation of Brownian motion, we mention the recent advance [9], concerning
the long time behaviour of a tracer billiard in a system of elastic billiards, in a
dilute, constant mean free path limit.

2.6.2. Random walker clusters

A less classical but probabilistically interesting model is the following. Consider
a Markov chain whose state space consists of a finite collection of occupied sites
in Z

d. Think that each site is occupied by one walker. Each walker decides to
make a transition at the ring times of independent Poisson rate one clocks. Any
given walker’s transition takes place instantaneously. If a walker is selected to
make a transition, he may not move – his transition is in place – if his removal
from the lattice disconnects a connected component of occupied sites in the
nearest neighbour structure. Otherwise, the walker considers making a uniformly
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random move to one of the nearest-neighbour or diagonally adjacent sites. He
does so if the move is to an unoccupied site and the move does not disconnect
any two occupied sites that were connected before the move. Otherwise, he stays
in place.

Suppose for a moment that initially the occupied sites are nearest-neighbour
connected. The rules are rigged so that this remains so at later times. The
ergodicity of the system indicates that the centre of mass of the connected
component diffuses in the long term. It is natural to pose the question as to
how the diffusivity depends on the mass. Anyway, we obtain a collection of
mass-dependent diffusion rates d : N → (0,∞), where now mass means the
number of occupied sites in the cluster.

Suppose instead that we begin with a collection of comparatively well sepa-
rated pairs of nearest neighbours. Each pair begins a random journey which in
the large is Brownian. When two clusters meet, they combine, and never break
apart subsequently.

All in all, then, it would seem that with a suitable initial condition and
a parabolic scaling of space-time, the model may converge to a solution of the
Smoluchowski PDE for some choice of its parameters. Note that the appropriate
form of the equation may include the mass-dependent interacting range which
we discussed in Subsection 2.4.2. One may speculate that rn should be chosen
to scale as n → ∞ according to the scaling satisfied by the typical diameter of
an isolated cluster with n occupied sites at equilibrium. Presumably, the cluster
has a fractal structure that contributes an exponent of the form rn = nχ(1+o(1)).

This microscopic model could be altered so that variants of the Smoluchowski
PDE emerge where mass conservation is replaced by conservation of several
quantities. Suppose instead that sites are instead occupied either by red or blue
particles (but not both), and that the rules are as before, except that blue
particles are selected at a rate which is double that for red ones. The diffusion
rate of a cluster is now specified by the pair of natural numbers given by the
number of constituent red, and blue, particles. This pair replaces the mass as
the natural conserved quantity for cluster collision. Convergence to a variant
of the Smoluchowski PDE may be expected, and indeed a framework, which
may be expected to include the limiting PDE for this example, that specifies
variants of the Smoluchowski PDE in which the notion of mass conservation is
generalized to conservation of possibly more complex particle characteristics is
introduced and analysed in [23].

3. Homogeneously distributed particles in the torus

We now study the convergence of the microscopic models PN to the limiting
system (1.2) in a very particular special case. The choice is made so that, while
most of the technical subtleties of definition and proof in the convergence are
eliminated, the recipe (1.9) for the macroscopic coagulation propensities will be
maintained. The main aim of our study of the special case is to explain why
the relation (1.9) holds; intimately tied to this is a certain microscopic repulsion
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experienced by the particles at positive macroscopic times, which we also take
the opportunity to discuss. Despite these various simplifications, our discussion
here is heuristic, with the derivation of several intuitively plausible steps only
sketched or omitted entirely; the model in this section is a special case of the
annihilating system studied by Sznitman [29], and the reader may wish to refer
there for a rigorous treatment.

In the special case, under the microscopic models PN , there will initially only
be particles of unit mass, and each will diffuse at rate two. Moreover, as time
evolves and particles collide in pairs, the concerned particles will disappear,
without the appearance of any new particle. Thus we discuss an interaction of
annihilation rather than coagulation. The particles will initially be placed not
in R

d but rather in the unit d-dimensional torus, each placed independently
and uniformly with respect to Lebesgue measure. This choice forces the whole
dynamics of PN to be invariant under any given spatial translation.

Let T
d denote the d-dimensional unit torus, namely the quotient of Rd by

Z
d, or the unit cube in R

d with periodic boundary conditions. In this section,
PN refers to the annihilating particle dynamics described in the preceding para-
graph; we write α = α(1, 1) for the microscopic interaction strength of the single
particle mass pair in question. In the formal language specifying the Markov
generator that we saw for our main object of study in Section 1.3, we are in-
stead setting the free-motion operator equal to AFF (q) =

∑
i∈Iq

ΔxiF (q), and

the collision operator is equal to ACF (q) = −α
2

∑
i,j∈Iq

ε−2V
(xi−xj

ε

)
F (q); note

that the absence of a collision gain term is due to our working with annihilation
rather than coagulation.

We also make a further minor simplification, choosing the constant Z in (1.7)
to equal one.

The task of making the kinetic limit derivation in this case is to explain how
it is that statistics summarising the densities of particles in the microscopic
model converge to the appropriate macroscopic evolution, which in this case is
given by a function f : Td × [0,∞) → [0,∞) satisfying the PDE

∂

∂t
f(x, t) = Δf(x, t)− βf(x, t)2 (3.1)

with initial condition f(x, 0) = 1 for all x ∈ T
d. One simplification in our

analysis is readily apparent: the initial condition has no dependence on the
spatial parameter, and this property will be maintained in time. So we may
define h : [0,∞) → [0,∞) by setting h(t) = f(x, t) for any choice of x ∈ T

d and
thereby recast (3.1) as an ordinary differential equation

d

dt
h(t) = −βh(t)2, (3.2)

with h(0) = 1.
In what sense is the evolution of the microscopic models PN approximately

summarised by the ODE (3.2)?
The spatial homogeneity present in the special case in question offers a simple

form for the answer to this question. We introduce a microscopic candidate
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density hN : [0,∞) → [0,∞), a quantity which summarises the density of
particles in the microscopic model PN and which we hope to show approximates
h : [0,∞) → [0,∞) when N is high. We set hN (t) = N−1

EsN (t), where sN (t)
is the number of surviving particles at time t, namely, the mean number of
particles which have not been annihilated before time t. (In the general, spatially
inhomogeneous, setting, we will also define a microscopic candidate density,
but its definition will be a little more involved, it will be random rather than
deterministic, and it will depend not only on the time variable but also on the
macroscopic location.)

In the special case, our kinetic limit derivation amounts to explaining how
it is that hN : [0,∞) → [0,∞) converges as N → ∞ to the unique solution
h : [0,∞) → [0,∞) of (3.2). The principal aim of this section is to justify
heuristically the relation (1.9) between the quantity β appearing in (3.2) and
the microscopic parameters. In the present case, this relation takes the following
form.

Proposition 3.1. Assume that V : Rd → [0,∞) is continuous and compactly
supported. Then the functions hN : [0,∞) → [0,∞) converge pointwise as N →
∞ to the unique solution of (3.2), where β is specified by

β = α

∫
Rd

(
1− u(x)

)
V (x)dx , (3.3)

with u : Rd → [0, 1] being the unique solution (provided by Lemma 1.6) subject
to u(x) → 0 as x → ∞ of the modified Poisson equation

−2Δu(x) = αV (x)(1− u)(x) .

As we prepare to justify the proposition, it is convenient to recast the def-
inition of hN in terms of the evolution of a particle, which we will call the
tracer particle, picked uniformly at random at time zero. Since the distribution
of particles at the initial time is invariant under particle reindexing, the next
definition is suitable.

Definition 3.2. The tracer particle is the particle whose time zero index is 1.

The relationship between hN and tracer particle survival probability is
straightforward.

Lemma 3.3. Let N ∈ N and t ≥ 0. Then the microscopic candidate density
hN (t) is equal to the PN -probability that the tracer particle has survived until
time t.

Proof. Note that

hN (t) = N−1
N∑
i=1

PN

(
the ith indexed particle survives until time t

)
.

However, the summand is independent of i ∈ [1, N ] due to the symmetry in
both the initial placement of particles and in their dynamics.
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In seeking to argue that hN converges to the unique solution h of (3.2) in
some appropriate sense, it is natural to try to find an expression for d

dthN (t).
We may hope to show that in fact this derivative equals −βhN (t)2 up to some
error term which in some way tends to zero in the high N limit. Since the initial
conditions hN (0) (for N ∈ N), and h(0), all coincide (with 1), we might then
argue that hN → h in some sense as N → ∞.

With this aim in mind, we find an expression for the derivative of hN in terms
of the behaviour of the tracer particle in the microscopic model PN :

Lemma 3.4. Let N ∈ N and t ≥ 0. Let St denote the event that the tracer
particle under PN survives until time t. Then

d

dt
hN (t) = − lim

δ↘0
δ−1

PN

(
St
)
PN

(
Sct+δ

∣∣St) , (3.4)

should the limit on the right-hand side exist.

Proof. By Lemma 3.3, hN (t) = PN (St), and thus hN (t+ δ)− hN (t) = PN

(
St ∩

Sct+δ

)
.

The expression (3.4) gives us a probabilistic means of thinking about the
derivative of hN . We should consider

• the PN -probability that the tracer particle survives until time t; and
• given that it does so, the conditional probability that it is instantaneously

annihilated in a collision.

There is a particular value of t for which the probability of this event is easier
to evaluate: t = 0. In this case, the survival probability PN (S0) is trivially equal
to one. What then is the PN -probability that the tracer particle is annihilated
before a very short time δ has passed? As our discussion will now tend to be
heuristic rather than rigorous, we write subsequent statements as claims rather
than lemmas.

Claim 3.5. Let t = tN satisfy t = o(ε2) as N → ∞; equivalently, by (1.7),
t = o(N2(2−d)). Then PN

(
Sct
)
= tα
∫
Rd V (x)dx

(
1 + o(1)

)
as N → ∞.

Sketch of proof. We begin by estimating the probability that the tracer particle
collides with a given other particle in a very short interval [0, t]. In the case of
the particle with index two, this probability is by definition given by

1− exp
{
− α

∫ t

0

Vε

(
X2(s)−X1(s)

)
1{1,2}⊆Iq(s) ds

}
, (3.5)

since the exponential term here is the probability that the Poisson process for
collision of particles indexed by 1 and 2 has yet to ring by time t. Note the
presence of the indicator function for the event {1, 2} ⊆ Iq(s) that two particles
have yet to be annihilated by time s. (The notation Iq(s), in which we now
explicitly refer to the time parameter s, was introduced back in Section 1.3: it is
the set of particles that are surviving at time s.) In fact, this indicator function
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may be dropped from the expression (3.5) at the expense of a lower order term
as t ↘ 0 because, as we explained in Section 1.4, there is asymptotically zero
probability that either of the two particles are annihilated during [0, s] as s ↘ 0.
Recalling that Vε(·) = ε−2V (·/ε) and that V : Rd → [0,∞) is supposed to be
continuous, and noting that the difference X2 − X1 is a rate four Brownian
motion, we see that∫ t

0

Vε

(
X2(s)−X1(s)

)
ds =

∫ t

0

Vε

(
X2(0)−X1(0)

)(
1 + o(1)

)
ds

provided that t = tN is chosen so that tε−2 ↘ 0 as N → ∞. That is to say,
as the total particle number N tends to infinity, the collision probability (3.5)

on [0, t] is accurately approximated by 1 − e−tαVε

(
X2(0)−X1(0)

)
provided that t

tends to zero more quickly than ε2, because, in this limiting regime, the loca-
tions X1 and X2 are asymptotically static on scale ε. Since tVε(x) converges to
zero uniformly in x ∈ R

d in this regime, our asympotic expression for (3.5) is
tαVε

(
X2(0) − X1(0)

)
. Since X2(0) − X1(0) is simply uniformly distributed in

T
d, this quantity, after averaging over X1(0) and X2(0), equals tα

∫
Rd Vε(s)ds,

which is tαεd−2
∫
Rd V (x)dx.

By symmetry of the particle indices, this estimate applies equally to the
probability of collision between particles with any two given indices in [1, N ].
Since the probability that the tracer particle experiences two collisions during

[0, t) (with t = o(ε2)) behaves as
(
N
2

)(
tαεd−2

∫
Rd V (x)dx

)2
= o(ε4), which is

much smaller than the ε2-order probability of a single such collision, the prob-
ability that the tracer particle experiences some collision during [0, t) is well
approximated by the mean number of collisions that it experiences, which is

(N − 1)tαεd−2

∫
Rd

V (x)dx .

Recalling that N = ε2−d, we obtain the claim.

We are ready to return to (3.4) and record a limiting expression in high N
for the time zero derivative of the microscopic candidate density:

Claim 3.6. Let N ∈ N. Then

lim
N

dhN

dt
(0) = −α

∫
Rd

V (x)dx . (3.6)

Proof. Since the expression limN
d
dthN (0) equals limN→∞ limδ↘0 δ

−1
PN (Scδ),

the claim follows from Claim 3.5.

Recall that our aim is to show that, in some appropriate sense, hN converges
to the solution h of (3.2) as N → ∞. Claim 3.6 gives us a guess for the derivative
at time zero of h: if it is the limit of the derivatives of its anticipated approx-
imants, then h′(0) = −α

∫
Rd V (x)dx. However, by its definition (3.2), h′(0) is

also −βh(0)2, which is simply −β. In other words, the preceding argument has
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given us a guess for the recipe by which the macroscopic coagulation propensity
β is to be computed from the parameters in the underlying microscopic models.
Namely, the argument points to the conclusion that

β = α

∫
Rd

V (x)dx . (3.7)

3.1. Surviving and ghost particles

However, this guess is wrong. The formula (3.7) is not the correct relation be-
tween the microscopic and macroscopic coagulation propensities. To see why
this is so, it is useful to introduce a coupling of our annihilating Brownian dy-
namics PN with a system of independent non-interacting Brownian particles
P
′
N .

Definition 3.7. Let C denote a coupling of the law PN with a further law P
′
N .

Under P
′
N , N particles are scattered in T

d at time zero with the same law as in
PN , and under C the two initial conditions are always equal. In both marginals
under C, each particle pursues a given rate two Brownian motion, independently
of the others. In the PN marginal, particles disappear on collision according to
the rule for that dynamics; in the P

′
N marginal, the collision has no effect on

either particle, and each continues its Brownian trajectory undisturbed.

We say that under C each particle is initially surviving. When a collision event
occurs between two surviving particles, each becomes a ghost. In this way, the
collection of all particles has the law P

′
N while the collection of surviving particles

has the law PN .
For now, we need only one consequence of the coupling, namely that, for any

t ≥ 0, the time-t marginal of PN is stochastically dominated by its time zero
marginal. To see this, note that this time-t marginal is dominated by the time-t
marginal of all particles which has the law of the time-0 marginal of PN .

3.2. The naive guess is wrong

We now give an intuitive explnation of why (3.7) is the wrong relation between
β, α and V . Suppose for convenience that

∫
Rd V (x)dx = 1. Now choose α to be

fixed but very high. We are left with the formula β = α, so that the solution
h : [0,∞) → [0,∞) of (3.2) with h(0) = 1 equals h(t) = 1

1+αt .
Our high choice of α means that h drops towards zero quickly after time

zero: specifically, h(α−1/2) ≤ α−1/2. Here, however, we encounter a difficulty
when we think of h as a limit of its approximants hN . Expecting that hN (t) →
h(t) pointwise, recall from Lemma 3.3 that hN (t) = PN (St) is the survival
probability of the tracer particle until time t under PN . If the annihilation event
Sct is to occur, then it is necessary that at some time before t, some other
particle enters the interaction range of the tracer particle. By the coupling C
with an independent system of Brownian particles, to find an upper bound on
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PN (Sct), it is enough to bound the probability that, amongN uniformly scattered
particles in T

d each performing Brownian motion (of rate two), a given particle
comes at some time in [0, t] to distance ε of some other. Since the probability
of such an approach at any given time is Nεd = ε2, and such an approach
occurs for a mean duration of order ε2, this probability is bounded above by a
constant multiple of t for small t. (An explicit bound on this mean time is that
the time spent overlapping during [0,∞) by two rate-two radius-ε Brownian
spheres in R

d, with d ≥ 3, which are tangent at time zero is in expectation at

most
(
1 + 21−d

(d−2)Γ(d/2+1)

)
ε2/2.) Thus, PN

(
St
)
≥ 1 − Ct, where C > 0 may be

chosen uniformly in both N ∈ N and α ∈ (0,∞). For all α > 0, the pointwise
convergence of hN to h forces h(t) ≥ 1 − Ct. However, this is inconsistent
with h(α−1/2) ≤ α−1/2 for α > (C + 1)2. We conclude then that the guessed
formula (3.7) is in fact wrong.

What is wrong with the derivation of (3.7) is that, in fact, the initial Poisso-
nian distribution of particles is in a certain sense unstable, making an inference
based on an analysis at time zero misleading. Although at later times the parti-
cle distribution is Poissonian in the large, there is a microscopic repulsion effect
which modifies this: in the order ε vicinity of the tracer particle at some positive
time, there is a diminished probability for presence of another particle. Indeed,
this other particle may have already collided with the tracer particle, in which
case, the tracer particle and the other particle would not in fact be located close
to each other because each would have vanished. We now turn to quantifying
the effect of this mechanism of curtailment of interaction due to collision and so
derive the correction needed to (3.7). To make sense of the notion of a particle in
the vicinity of the tracer particle which may already have vanished at a certain
time, we will make use of our coupling of surviving and ghost particles.

3.3. Quantifying the correction

The discussion in the preceding section reveals that our computation of dhN (t)
dt

for t = 0 may have exceptional features which change as t increases. In fact, as
we will see, this change will be apparent already when t reaches the order of
ε2. To understand the change quantitatively, we want to return to Lemma 3.4

and use the right-hand side of (3.4) to compute dhN (t)
dt for t > 0. This involves

computing the terms PN (St) and PN

(
Sct+δ

∣∣St) appearing on the right-hand side
of (3.4), when t > 0 is fixed, and δ > 0 is infinitesimally small. Reexpressing
the events in terms of the coupling C, St is the event that the tracer particle
survives until time t, and St ∩ Sct+δ is the event that the tracer particle changes
its status from surviving to ghost during the short time interval [t, t+ δ].

Claim 3.8. Suppose that δε−2 ↘ 0 as N → ∞. Then

PN

(
Sct+δ ∩ St

)
= δαh(t)2

∫
Rd

(
1− u(x)

)
V (x)dx

(
1 + o(1)

)
,

as N → ∞, where u : Rd → [0, 1] is specified in Proposition 3.1.
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Seeking to justify this claim, we let Ci,j(t, δ) denote the event that

• |Xi(t)−Xj(t)| ≤ ε,
• and these two particles collide during [t, t+ δ].

As we now record, the event St ∩ Sct+δ is characterized up to a probability of
smaller order by the intersection of the following events:

• the survival of the tracer particle until time t;
• the presence at time t of some other surviving particle in X1(t) + Bε, (a

set that contains the interaction range of the tracer particle);
• and the collision of that other particle with the tracer particle during

[t, t+ δ].

(Here, Bε denotes the Euclidean ball of radius ε about the origin, so that, since
the support of V is contained in the Euclidean unit ball, the set X1(t) + Bε

indeed contains the interaction range of the tracer particle.)

Claim 3.9. For each t > 0, there exists Ct > 0 such that

C
((

St∩Sct+δ

)
Δ
( N⋃

j=2

{
{1, j} ∈ Iq(t)

}
∩C1,j(t, δ)

))
≤CtC

(
St∩Sct+δ

)(
δ+αεδ1/2

)
.

Sketch of proof. The claim will emerge from two assertions. First,

C
((

St ∩ Sct+δ

)
Δ
( N⋃

j=2

{
{1, j} ∈ Iq(t)

}
∩ C1,j(t, δ)

))
≤ Cδ2 + Cαεδ3/2 , (3.8)

and, second, for some t-dependent constant c > 0,

C
(
St ∩ Sct+δ

)
≥ cδ . (3.9)

The second bound holds because, as we described in Section 1.4, the tracer
particle will survive to any time t with some positive, t-dependent probability,
and it is then liable to collide with some other particle at a rate of order one.

Regarding the symmetric difference in (3.8), note that, if one event occurs
without the other, the cause must be one of the following:

• although {1, j} ∈ Iq(t) and C1,j occur for some j ∈ [2, N ], there is a third
particle which collides with particle j after time t but before the collision
of j with 1 that happens before time t+ δ;

• or, St ∩ Sct+δ occurs due to some particle j ∈ [2, N ], which is not in the
interaction range X1 + Bε(t) at time t, entering this range and colliding
with 1 during [t, t+ δ].

Regarding the first possibility, for given j ∈ [2, N ], the probability of C1,j is at
most Cεdδε−2, while, given this event, the conditional probability of some third
particle behaving as described is at most Cδ. Summing over j, the probability
is at most CNδ2εd−2 = Cδ2.
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For given j ∈ [2, N ], the probability of the second occurrence is at most a
constant multiple of εδ3/2. We only sketch how this bound is obtained. Should
particle j at time t lie within a distance of order δ1/2 of the boundary of the
interaction range X1+Bε of the tracer particle, there is positive probability that
particle j enters this range during the ensuing δ units of time, and should this
happen, there is conditional probability at most 1−exp{−α|V |∞δ} ≤ α|V |∞δ ≤
Cαδ of collision between the two particles. The probability of this turn of events
is thus

∣∣Bε+δ1/2 \ Bε

∣∣Cαδ ≤ Cεd−1δ3/2. On the other hand, it is easily checked
that there is negligible probability of such a collision should particle j at time t
lie at much greater distance than δ1/2 from the boundary of X1 +Bε. Summing
over the N − 1 ∼ ε2−d choices of j ∈ [2, N ], we see that the probability of the
second listed event is at most Cεδ3/2.

The next two claims estimate the probability of
{
{1, j} ∈ Iq(t)

}
∩ C1,j(t, δ)

for j ∈ [2, N ] and will lead to Claim 3.8.

Claim 3.10. Suppose that δε−2 ↘ 0 as N → ∞. Then, for each x ∈ Bε,

C
(
C1,2(t, δ)

∣∣∣X1(t)−X2(t) = x
)
= ε−2δαV (x/ε)

(
1 + o(1)

)
.

Claim 3.11. For each x ∈ Bε, we have that

C
(
{1, 2} ⊆ Iq(t)

∣∣∣X1(t)−X2(t) = x
)
=
(
1− u(x/ε)

)
h(t)2 .

Proof of Claim 3.8. Note that, conditionally on X2(t) − X1(t) ∈ Bε, X2(t) −
X1(t) is uniform on Bε. In light of this, and Claims 3.10 and 3.11, we see that,
in the limit in question,

C
(
C1,2(t, δ), {1, 2} ⊆ Iq(t)

)
= ε−2δαh(t)2

∫
Bε

V (x/ε)
(
1− u(x/ε)

)
dx
(
1 + o(1)

)
,

whose integral term may be also written as εd
∫
Rd V (x)

(
1−u(x)

)
dx. By particle

symmetry and N − 1 ∼ ε2−d, we obtain

N∑
j=2

C
(
C1,j(t, δ), {1, j} ⊆ Iq(t)

)
= δαh(t)2

∫
Rd

V (x)
(
1− u(x)

)
dx
(
1 + o(1)

)
.

It is easy to convince oneself that typically the occurrence of ∪N
j=2C1,j(t, δ) ∩{

{1, j} ⊆ Iq(t)
}
entails the occurrence of exactly one of the constituent events.

For this reason, the preceding equality holds equally for the probability of
∪N
j=2C1,j(t, δ) ∩

{
{1, j} ⊆ Iq(t)

}
. Thus, Claim 3.8 follows from Claim 3.9.

Proof of Claim 3.10. Conditionally on X1(t)−X2(t) being a given x ∈ Bε, the
probability of collision between 1 and 2 during [t, t + δ] is δαVε(x)

(
1 + o(1)

)
,

since V : Rd → [0,∞) is assumed continuous, and X1 − X2 is asymptotically
static as ε ↘ 0 on scale ε during this duration of length δ = o(ε2).
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Proof of Claim 3.11. To reiterate the problem, given that at time t particles 1
and 2 have displacement x ∈ Bε, what is the probability that both survive to
this time? There are two reasons why one or other may be a ghost particle at
time t:

• it may be that, during [0, t], at a moment when each of X1 and X2 are
surviving, a collision between this pair occurs;

• it may be that one or other of X1 and X2, at a moment when this particle
is surviving, collides with some other surviving particle.

Calling these two events Et
1 and Et

2, we want to gauge the probability of
(
Et

1

)c∩(
Et

2

)c
.

In considering these possibilities, it is convenient to reverse time, running
time backwards from t to 0. We will now use these time coordinates, where the
forward time evolution from 0 to t corresponds to the usual evolution backwards
from t to 0. Note that, because we do not condition on X1 or X2 surviving until
time t, the conditional distribution of the trajectories X1, X2 : [0, t] → T

d in
the new time coordinates is a pair of independent rate two Brownian motions,
where X1(0) is uniformly distributed on T

d and X2(0) = X1(0) + x. Phrased in
these terms, Et

1 is the event of collision between X1 and X2 during [0, t].
In light of Lemma 1.5, we learn that

Claim 3.12. If t = tN satisfies t/ε2 → ∞ as N → ∞, then

C
((

Et
1

)c)
=
(
1− u(x/ε)

)(
1 + o(1)

)
,

where u : Rd → [0, 1] is specified in Proposition 3.1.

We also need to estimate the conditional probability that Et
2 occurs given

that Et
1 does not.

Claim 3.13. If t = tN satisfies t/ε2 → ∞ as N → ∞, then

C
((

Et
2

)c ∣∣∣ (Et
1

)c)
= h(t)2

(
1 + o(1)

)
.

Sketch of proof. Should Et
1 not occur, the two particle trajectories X1, X2 :

[0, t] → T
d, begun at the points 0 and x at distance of order ε, will not experience

collision, and will separate to a distance much greater than ε in a time whose
order is large compared to ε2; by our assumption on the time t, this separation
occurs on a time scale (called s) much shorter than t, and, after it has done
so, it is reasonable to think that the collision behaviour of the two trajectories
will become effectively independent of one another. Any given one of these
trajectories experiences collision with some other particle with probability 1 −
h(t − s), by the definition of h; assuming this independence, both particles
survive collision during [0, t] with probability h(t − s)2. However, since s � t,
h(t− s) = h(t)

(
1 + o(1)

)
as N → ∞.

Claim 3.11 follows from Claims 3.12 and 3.13.
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We are now able to complete our sketch proof of the formula for β for the
model in question.

Sketch proof of Proposition 3.1. Applying Lemma 3.4 and Claim 3.8, we find
that

dhN (t)

dt
= −αh(t)2

∫
Rd

(
1− u(x)

)
V (x)dx

(
1 + o(1)

)
,

provided that t/ε2 → ∞ as N → ∞. This estimate does not control the be-

haviour of dhN (t)
dt on the small time scale where t is of order ε2. Here, however,

arguments in the style of those leading to Claim 3.6 justify that this derivative
is non-positive and bounded below by −α

∫
Rd V (x)dx. Recalling that h is the

unique solution of (3.2), we see that, since hN (0) = h(0) = 1 for all N ∈ N, hN

converges to h pointwise as N → ∞.

3.4. Bose-Einstein condensates, and a parallel macroscopic
interaction

Our computation of the macroscopic interaction rate finds a parallel in the quan-
tum mechanical problem of the dynamics of a collection of N bosons in three
dimensions that interact via a short-range pair potential, that was investigated
during Erdös, Schlein and Yau’s derivation [7] of the macroscopic evolution of
the system. We briefly discuss this now. The dynamics of the system is governed
by the Schrödinger equation

i∂tψN,t = HNψN,t ,

for the wave function ψN,t ∈ L2
s(R

3N ), the subspace of L2(R3N ) consisting
of all functions symmetric under permutations of the N particles. Short-range
repulsive interaction is modelled by the choice of Hamiltonian HN = Hβ,N ,

Hβ,N = −
N∑
j=1

Δj + 1
N

∑
1≤i<j≤N

N3βV
(
Nβ(xi − xj)

)
,

where V : R3 → [0,∞) is a compactly supported interaction potential, and β > 0
is a parameter. (Note that this notation is in conflict with our use of β(·, ·).)
The choice of β = 1 provides the closest parallel with the main discussion in
this survey and is the principal object of study in [7]. The macroscopic evolution
of the system may be summarized by a decoupling property enjoyed by the k-
particle reduced density matrices; these matrices in [7] are shown by an analysis
of the BBGKY hierarchy to factorize asymptotically in the high N limit, with
the factor governed by the non-linear Gross-Pitaevskii equation

i∂tψt = Δψt + σ|ψt|2ψt ,

where the coupling constant σ is given by

σ =

{
b0 if 0 < β < 1 ,

8πa0 if β = 1 .
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Here, b0 =
∫
R3 V (x)dx, while a0 satisfies

a0 = 1
8π

∫
R3

V (x)
(
1− ω0(x)

)
dx ,

with ω0 being the unique solution to[
−Δ+ 1

2V (x)
](
1− ω0(x)

)
= 0

that satisfies limx→∞ ω0(x) = 0. (Note that ω0 is nothing other than the solution

of (1.8) if we take α(n,m)
d(n)+d(m) equal to 1/2.)

That is, the macroscopic interaction coefficient undergoes a transition as
β ∈ (0, 1) changes to β = 1 in precise correspondence to the modification from
the naive guess β =

∫
Rd V (x)dx to β given by (1.9) which we have devoted this

section to discussing.
Indeed, we may specify a collection of random models PN,β , with β > 0, in

such a way that our models PN coincide with PN,1, while PN,β , β ∈ (0, 1), form
counterparts to the interacting bosonic systems at such values of β. Maintaining
the relation (1.7) between ε and N , we modify the pairwise collision rule from
Section 1.3 from one under which the particles indexed by i, j ∈ [1, N ] collide at
rate α(mi,mj)ε

−2V
(xi−xj

ε

)
to one whose rate is α(mi,mj)ε

−2+d(1−β)V
(xi−xj

εβ

)
.

The rule for PN,β is determined in order that a typical particle maintain a unit-
order interaction with all the others per unit time, so that the new models
remain in the regime of constant mean free path. The derivation of Theorem 1.1
may be reprised for choices of β ∈ (0, 1), with the formula for the macroscopic
interaction rates β(n,m) now given by β(n,m) = α(n,m)

∫
Rd V (x)dx. The new

formula holds in essence because microscopic pairwise repulsion is absent asymp-
totically in high N in these models.

See [30] for a blog post by Terry Tao, written after a talk by Natasa Pavlovic,
which provides a more informative summary of this quantum problem, including
at its end, and in the ensuing comments, mention of the dichotomy between
interaction coefficient in the cases β ∈ (0, 1) and β = 1.

4. The route to Theorem 1.1

In this section, we explain the overall plan for proving the main theorem, and
reduce it to a fundamental proposition, the Stosszahlansatz, which concerns the
total particle coagulation propensity in the microscopic models.

4.1. Approximating the PDE using microscopic candidate densities

4.1.1. A microscopic counterpart to the PDE in weak form

Recall the weak formulation (1.10) of the Smoluchowksi PDE. Our aim is to
show that the particle densities in the microscopic model PN converge in a



248 A. Hammond

suitable sense to this weak solution. To do so, we find a microscopic counterpart
to the equation (1.10), namely an equation expressed in terms of the law PN .
Note that (1.10) expresses the change in the quantity

∫
Rd Jn(x, t)fn(t)dx that

occurs between times 0 and T as an integral over the intervening duration
[0, T ] of the differential changes caused by variation in the test function Jn, and
by the diffusion and coagulation of the particles being modelled. The quantity∫
Rd Jn(x, t)fn(t)dx is an expression for the total number of particles of mass n at
time t, where each particle is weighted by Jn. As such, it has a clear microscopic
analogue: under the law PN , the random variable

∑
i∈Iq(t)

Jn
(
xi,mi

)
1mi(t)=n,

which is the sum over mass-n particles at time t where each particle carries
a weight given by Jn. The form of the Markov generator for the dynamics of
PN now provides us with an analogue of the weak formulation (1.10) of the
Smoluchowski PDE:

εd−2
∑

i∈Iq(T )

Jn
(
xi, T
)
1mi(T )=n − εd−2

∑
i∈Iq(0)

Jn
(
xi, 0
)
1mi(0)=n (4.1)

= εd−2

∫ T

0

( ∑
i∈Iq(t)

∂Jn
∂t

(
xi, t
)
1mi(t)=n +

∑
i∈Iq(t)

d(n)ΔJn
(
xi, t
)
1mi(t)=n

+
∑

i,j∈Iq(t)

α(mi,mj)Vε

(
xi − xj

)
Ci,j,t,nJn

)
dt + MT .

In the integrands on the right-hand side, we see the infinitesimal mean changes
caused by the time-variation of J , by the diffusion of the individual particles,
and by their collision in pairs; the final term is a martingale (which we will argue
to be suitably small). In the collision term, the real-valued quantity Ci,j,t,nJn is
the instantaneous change in the value of∑

i∈Iq(t)

Jn
(
xi, t
)
1mi(t)=n

that is caused by the collision of particles (xi,mi) and (xj ,mj) at time t. As
such, it has the expression

Cxi,xj ,t,nJn = mi

mi+mj
Jn(xi, t)1mi(t)+mj(t)=n +

mj

mi+mj
Jn(xj , t)1mi(t)+mj(t)=n

− Jn(xi, t)1mi(t)=n − Jn(xj , t)1mj(t)=n :

two gain terms arise from the appearance of a new particle at one or other of
the locations of the disappearing pair, and two loss terms correspond to the
disappearance of each element of this pair.

4.1.2. Introducing microscopic candidate densities

Our plan for the kinetic limit derivation of the Smulochowski PDE is to argue
that (1.10) emerges in a suitable sense when we take the high N limit, with
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the martingale term MT vanishing in this limit. To implement this plan, we
introduce microscopic candidate densities f ε,δ

n,t : R
d → [0,∞) of mass n particles

at time t under the law PN . Here, δ > 0 is a fixed positive quantity, while
the interaction radius ε is determined from N as usual by Nεd−2 = Z. The
candidate density is given by

f ε,δ
n,t(u) = εd−2

∑
i∈Iq(t)

δ−dη
(
xi−u

δ

)
1mi(t)=n , u ∈ R

d , (4.2)

where η : Rd → [0,∞) is a smooth compactly supported function for which∫
Rd η(x)dx = 1. That is, f ε,δ

n,t(u) is a statistic reporting a smoothed count of the

number of particles in a small macroscopic region about the point u ∈ R
d at

time t in the model PN ; note that the time zero microscopic candidate density
f ε,δ
n,0(u) has a high N pointwise limit which as a function of u is given by the

convolution of the initial condition hn of (1.2) and ηδ(·) = δ−dη
(
· /δ
)
. Taking

a δ ↘ 0 limit after this limit, we see that, at time zero at least, the appropriate
initial condition hn(u) is obtained at all u ∈ R

d.

Our aim is to argue that something similar happens at all later times t > 0.
To do so, we will replace the various terms appearing in the expectation value of
equation (4.1) with approximating terms expressed in terms of the microscopic
candidate densities, and then take the high N and then the low δ limit. If we
are to reach (1.10) as a result, we will need to understand that the new terms
approximate the old ones appropriately.

4.1.3. Replacing old terms by new: simple cases

The first term εd−2
∑

i∈Iq(T )
Jn
(
xi, T
)
1mi(T )=n has a simple counterpart ex-

pressed in the fashion we seek:
∫
Rd Jn(x, T )f

ε,δ
n,T (x)dx. Nor is any nontrivial

estimate needed to find a suitable bound on the difference of the terms in this
case. Indeed, the two expressions differ by

εd−2
∑

i∈Iq(T )

(
Jn(xi, T )−

∫
Rd

Jn(y, T )δ
−dη
(
xi−y

δ

)
dy
)
1mi(T )=n,

which in absolute value is at most Zδ||∇Jn||∞ ≤ Cδ, since total particle number
at time T is less than the initial total N = Zε2−d.

The first and second terms on the right-hand side of (4.1) similarly have
counterparts∫
Rd×[0,T )

∂Jn

∂t (x, t) · f ε,δ
n,t(x)dxdt and

∫
Rd×[0,T )

d(n)ΔJn(x, t) · f ε,δ
n,t(x)dxdt .

Each pair of term and counterpart likewise has a difference which in absolute
value is deterministically bounded above by some constant multiple of δ.
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4.1.4. Replacing the coagulation term by using the Stosszahlansatz

Given the form of the coagulation term present in (1.10), there is a clear candi-
date for the form of the term which will form a counterpart to the interaction
term appearing in the third line of (4.1): namely,

∫
Rd×[0,T )

Jn(x, t)
(
Qn

1

(
f ε,δ
n (x)
)
−

Qn
2

(
f ε,δ
n (x)
))
dxdt. In stark contrast to the other cases, proving that the re-

placement of the collision term with this counterpart involves a suitably small
error is a major undertaking. We now state the key estimate in this regard, a
proposition which we will sometimes call the Stosszahlansatz. Recall that the
coefficients β : N2 → (0,∞) are specified in (1.9).

Proposition 4.1. For each n,m ∈ N, we have that

εd−2
EN

∫ T

0

∑
i,j∈Iq(t)

α(mi,mj)Vε(xi − xj)Jn
(
xi, t
)
1mi(t)=n,mj(t)=m

= β(n,m)

∫ T

0

∫
Rd

Jn(x, t)f
ε,δ
n (x, t)f ε,δ

m (x, t) dxdt + Errn,m(ε, δ) ,

where the error Errn,m satisfies

lim
δ↘0

lim sup
ε↘0

∑
m∈N

EN

∣∣Errn,m(ε, δ)
∣∣ = 0 .

Setting Jn = 1 for ease of description, note that the integral on the left-hand
side is the cumulative rate at which particle pairs of masses n and m are liable to
coagulate during all of [0, T ]; by the relation (1.7) and the anticipated survival
of a positive fraction of particles at any given positive time, we see that the
normalization εd−2 on the left-hand side is chosen so that the overall expression
is of unit order in the high N limit. Proposition 4.1 asserts that this expression
is closely approximated by the integral over space-time of the product of the
microscopic candidate densities multiplied by the constant coefficient β(n,m).
As such, this β(n,m) is a macroscopic coagulation propensity of pairs of particles
of these masses.

Proposition 4.1 is an expression of the type of precollisional particle inde-
pendence that we discussed for elastic billiards in Subsection 2.3.2; here, this
independence is manifested by the presence of the product f ε,δ

n (x, t)f ε,δ
m (x, t).

We now explain how Proposition 4.1 may be invoked to show that the coag-
ulation term in (4.1) is suitably approximated by its counterpart. Recall that
the instantaneous change Cxi,xj ,t,nJn is comprised of four terms: two gain terms
and two loss terms. Consider the third of these terms, which is the first loss
term. This term expresses the instantaneous loss of terms Jn(xi, t) due to the
collision at time t of xi with some other particle xj . This other particle may
have any mass mi ∈ N. Writing this term as a sum over that mass, we obtain
that the term equals

− εd−2
EN

∫ T

0

∞∑
m=1

∑
i,j∈Iq(t)

α(mi,mj)Vε

(
xi − xj

)
Jn(xi, t)1mi(t)=n,mj(t)=m dt .
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Applying Proposition 4.1, we find that the term equals

−
∞∑

m=1

β(n,m)

∫ T

0

∫
Rd

Jn(x, t)f
ε,δ
n,t(x)f

ε,δ
m,t(x) dxdt + Errn(ε, δ) ,

where this error term, after the sum over m ∈ N, is known to satisfy

lim
δ↘0

lim sup
ε↘0

EN

∣∣Errn(ε, δ)∣∣ = 0 . (4.3)

Exactly the same considerations apply to the second of the loss terms because
the two terms are equal due to the symmetry of the interaction kernel V .

The comparable estimate for each of the gain terms is slightly easier to handle,
because a particle of mass n may be produced by only finitely many mass pairs
– (1, n−1), (2, n−2), . . . , (n−1, 1) – rather than the infinite number of choices
– (n, 1),(n, 2),. . . – which may cause such a particle to disappear. Regarding the
first term, an application of Proposition 4.1 yields that

εd−2
EN

∫ T

0

n−1∑
m=1

∑
i,j∈Iq(t)

α(mi,mj)Vε

(
xi − xj

)
m
n Jn(xi, t)1mi(t)=m,mj(t)=n−m dt

equals

n∑
m=1

β(m,n−m)

∫
Rd×[0,T )

Jn(x, t)
m
n f ε,δ

n,t(x)f
ε,δ
m,t(x) dxdt + Errn(ε, δ) ,

where likewise the error satisfies (4.3). The second gain term differs only in that
n−m
n replaces m

n ; thus, the total gain term satisfies the same statement with
this term omitted.

4.1.5. The martingale term is replaced by zero

The martingale term MT in (4.1) is treated by arguing that it is typically small
in absolute value:

Proposition 4.2. There exists C > 0 such that, for each N ∈ N,
supT∈(0,∞) ENM(T )2 ≤ Cεd−2.

The martingale term is in a sense much smaller than the collision term treated
by the Stosszahlansatz: it vanishes before the low δ limit is even taken. The ideas
in the proof of Proposition 4.2 are already in large part seen in the proof of the
more substantial Proposition 4.1 and we will not explain their specifics; it is in
Section 5 that the martingale term is treated in [11].

4.1.6. The counterpart to the PDE using microscopic candidate densities

By using Propositions 4.1 and 4.2 and the other, easier, estimates, we are able
to replace each term in (4.1) with its counterpart, expressed in terms of the
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microscopic candidate densities, and obtain the following bound on the error in
the resulting near identity:∫

Rd

Jn(x, T )f
ε,δ
n,T (x) dx−

∫
Rd

Jn(x, 0)f
ε,δ
n,0(x) dx (4.4)

=

∫
Rd×[0,T )

∂Jn

∂t (x, t)f ε,δ
n,t(x) dxdt +

∫
Rd×[0,T )

d(n)ΔJn(x, t)f
ε,δ
n,t(x) dxdt

+

n∑
m=1

β(m,n−m)

∫
Rd×[0,T )

Jn(x, t)f
ε,δ
n,t(x)f

ε,δ
m,t(x) dxdt

− 2

∞∑
m=1

β(n,m)

∫
Rd×[0,T )

Jn(x, t)f
ε,δ
n,t(x)f

ε,δ
m,t(x) dxdt + Errn(ε, δ) .

where the error satisfies (4.3) because each of the errors used in the five estimates
which we applied does.

4.2. Taking the limit to obtain the Smoluchowski PDE

Our approximate identity (4.4) closely resembles the equation (1.10) satisfied
by a weak solution of the Smoluchowski PDE: we simply replace the solution of
the latter with the microscopic candidate densities, and add in the error term,
to obtain the former. However, to pass to (1.10) from (4.4) in the limit of low
ε followed by low δ, we must carry out a short further analysis that will make
use of some additional information about the microscopic models PN .

4.2.1. The approximate identity rewritten using empirical measures

Recall from Theorem 1.1 that in fact we express approximation by PN for high
N of the Smoluchowski PDE by using the empirical measures μN valued in
space-mass-time R

d ×N× [0,∞). In Section 1.7, we let μN,n denote the mass n
marginal of μ, the empirical measure in space-time for particles of mass n, for
each n ∈ N. That is,

μN,n = εd−2
∑

i∈Iq(t)

δ(xi,t)1mi=n dt .

On PN , the microscopic candidate densities are expressed in terms of the
empirical measures by f ε,δ

n,t(x) =
(
μN,n ∗ ηδ

)
(x, t) for all (x, t) ∈ R

d × [0,∞),
where the convolution is in the space variable.

Recall further that in Theorem 1.1, M is the space of measures μ on R
d×N×

[0,∞) such that μ
(
R

d × N× [0, T ]
)
∈ [0, TZ] for each T ≥ 0; and that μN is a

random measure taking values in the space M whose law we denote by PN . By
equipping M with the topology of vague convergence, we give meaning to the
notion of weak convergence of a sequence of measures such as

{
PN : N ∈ N

}
.

Now, in the theorem, P is supposed to be a weak limit point of this sequence
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(the existence of which is assured by the tightness of this sequence of measures).
Thus, there is a subsequence

{
Ni : i ∈ N

}
of natural numbers for which PNi

converges weakly to P .
Now since under PN , we have that f ε,δ

n,t(x) =
(
μN,n ∗ ηδ

)
(x, t) for all (x, t) ∈

R
d × [0,∞), we see that (4.4) asserts that∫

Rd

Jn(x, T )
(
μn ∗ ηδ

)
(x, T ) dx−

∫
Rd

Jn(x, 0)
(
μn ∗ ηδ

)
(x, 0) dx (4.5)

=

∫
Rd×[0,T )

∂Jn

∂t (x, t)
(
μn ∗ ηδ

)
(x, t) dxdt

+

∫
Rd×[0,T )

d(n)ΔJn(x, t)
(
μn ∗ ηδ

)
(x, t) dxdt

+

n∑
m=1

β(m,n−m)

∫
Rd×[0,T )

Jn(x, t)
(
μn ∗ ηδ

)
(x, t)
(
μm ∗ ηδ

)
(x, t) dxdt

− 2

∞∑
m=1

β(n,m)

∫
Rd×[0,T )

Jn(x, t)
(
μn ∗ ηδ

)
(x, t)
(
μm ∗ ηδ

)
(x, t) dxdt

+ Errn(ε, δ) .

Here,
{
μn : n ∈ N

}
be a sequence of random measures, with μn supported on

R
d × {n} × [0,∞) for each n ∈ N, such that the M-valued random measure∑∞
n=1 μn is PN -distributed. The error is now a real-valued function defined on

the space M which in view of (4.3) is seen to satisfy limδ↘0 lim supε↘0 EPN
×∣∣Errn(ε, δ)∣∣ = 0, where here we write EPN

for expectation with respect to the
law PN . We may now take a high N limit of this identity along the subsequence{
Ni : i ∈ N

}
. We learn that the identity continues to hold, but where now the

M-valued random measure
∑∞

n=1 μn has the distribution of P . What estimate
does the error term satisfy when this limit is taken? Note that in (4.5) the error
Errn(ε, δ) may be viewed as a function of

∑∞
n=1 μn ∈ M. Indeed, this formula

for the error is a continuous function of
∑∞

n=1 μn given that M carries the vague
topology. As such, in the Ni → ∞ limit (in which ε ↘ 0), the error term loses
its ε-dependence and now satisfies limδ↘0 EP

∣∣Errn(δ)∣∣ = 0. Here, EP denotes
expectation with respect to the law P .

4.2.2. Preparing for the final step towards the PDE: uniform integrability

In order to conclude the proof of Theorem 1.1, two steps are needed. First,

Proposition 4.3. Let
{
μn : n ∈ N

}
be a sequence of random measures, with

μn supported on R
d × {n} × [0,∞) for each n ∈ N, such that

∑∞
n=1 μn is P-

distributed. Then, almost surely, we may express each μn in the form fn dx ×
δn × dt, where fn : Rd × [0,∞) → [0,∞).

Second, we must argue that the collection {fn : n ∈ N} solves (1.10). Given
the first step, it is the taking of the low δ limit in (4.5) which will yield the second.
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However, to successfully carry out this limit, an extra piece of information will
be needed, namely, for each fixed n ∈ N, the uniform integrability of the family
fn ∗ ηδ as δ ranges over (0, 1). The next proposition is sufficient in this regard.

Proposition 4.4. There exists a sequence
{
kn : n ∈ N

}
of positive constants

such that the collection of random functions provided by Proposition 4.3 satisfies
||fn||L∞(Rd×[0,∞)) ≤ kn for each n ∈ N almost surely.

We now confirm that these two elements applied to (4.5) are enough to yield
Theorem 1.1.

4.2.3. Taking the final step: Proof of Theorem 1.1.

By Proposition 4.3, (4.5) after the ε ↘ 0 limit is taken holds with fn in place
of μn for each n ∈ N. The uniform boundedness provided by Proposition 4.4
and the Lebesgue differentiation theorem imply that fn ∗ηδ converges pointwise
to fn almost everywhere on R

d × [0,∞) for each n ∈ N. Recall that our test
functions Jn are compactly supported in space-time. Using this alongside the
same uniform boundedness as above, we may apply the dominated convergence
theorem to find that each integral appearing in the identity converges to its
counterpart where fn∗ηδ is replaced by fn. Recall that limδ↘0 EP

∣∣Errn(δ)∣∣ = 0.
Thus the error term converges to zero in probability in the low δ limit. It thus
converges to zero almost surely along a subsequence of δ ↘ 0. In this way, we
see that (1.10) holds P-almost surely.

Our remaining task then is to prove Propositions 4.i for integer i satisfying
1 ≤ i ≤ 4. Figure 3 depicts how the derivations will be presented.

5. An outline of the proof of the Stosszahlansatz

Here we explain in outline how we will prove Proposition 4.1.

5.1. Coagulation propensity, and particle pairs at small
macroscopic distance

For z ∈ R
d and n,m ∈ N, define under the law PN the stochastic process

Qz = Qz,n,m : [0,∞) → R whose value at time t ∈ [0,∞) is given by

1
2ε

d−2
∑

i,j∈Iq(t)

α(mi,mj)Vε(xi − xj + z)Jn
(
xi, t
)
1mi(t)=n,mj(t)=m . (5.1)

In seeking to prove the Stosszahlansatz, then, it is our aim to show that

EN

∫ T
0
Q0(t)dt is close to a β(n,m) multiple of the time-integrated product

of microscopic candidate densities for particles of mass n and m. Since the
microscopic coagulation density is binary in nature, it is unsurprising that

EN

∫ T
0
Q0(t)dt, the cumulative rate of coagulation between pairs of particles
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Fig 3. The road ahead: the structure of the proof of the main elements of the main theorem.
T = Theorem, P = Proposition, L = Lemma, and S = Section (or Subsection). An arrow
indicates that one result is used to prove the other; a dashed arrow indicates that some details
are omitted in the proof. The S-labellings of arrows indicate the section where the derivation
takes place.

of such masses (at least if Jn = 1), should be approximated by the time integral
of such a product of empirically defined densities. We have already explained
heuristically in Section 3 why we might expect the macroscopic coagulation
propensity β(n,m) to have the form (1.9). The challenge now is to find a rig-

orous means of approximating EN

∫ T
0
Q0(t)dt; as we outline this approach, we

will see an alternative explanation for the formula (1.9) emerge.

Consider for a moment the expression Qz, where z ∈ R
d is a small macro-

scopic quantity; which is to say, z is fixed at a given small value as we take

a high N (or low ε) limit. We see that the quantity EN

∫ T
0
Qz(t)dt is a time-

averaged count of all instances of pairs of particles, of mass n and mass m,
for which the mass m particle lies in the tiny ε-ball whose centre is displaced
from the mass n particle by the small quantity z. Such instances at any given
moment of time are weighted by the factor α(mi,mj)Vε(xi − xj + z); for later

convenience, it is useful to also define Q̂z, where in the formula for Qz, we
replace Vε(xi − xj + z) by V̂ε(xi − xj + z). Here, V̂ε(·) = ε−2V̂ (·/ε), where

V̂ : Rd → [0,∞) is a smooth and compactly supported function. (In fact, we
will use two such variants, also writing Qz when V ε replaces Vε.) The quantity
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EN

∫ T
0
Q̂z(t)dt qualitatively meets the same description as does EN

∫ T
0
Qz(t)dt,

a time-averaged count of instances of z-displacements of particle pairs. The next

assertion shows that EN

∫ T
0
Q0(t)dt is well approximated by an appropriately

weighted count of particle pairs at small macroscopic distance z:

Proposition 5.1. For n,m ∈ N, recall that un,m : R
d → [0, 1] is specified

in (1.8), and let V = V
(
1− un,m

)
. Then

∫ T

0

Q0(t) dt =

∫ T

0

Qz(t) dt + Errn,m(ε, z) . (5.2)

Regarding the error term: defining Errδ to be the supremum over z ∈ R
d for

which |z| = δ of

lim sup
ε↘0

∑
m∈N

EN

∣∣Errn,m(ε, z)
∣∣ ,

we have that Errδ → 0 as δ → 0.

This result may be called the pointwise Stosszahlansatz, because the small
vector z may be treated as fixed rather than used as a variable for averaging.
Indeed, we easily deduce the Stosszahlansatz Proposition 4.1 from this pointwise
version by averaging over z:

Sketch of proof of Proposition 4.1. We verify the statement only in the case
Jn = 1; the general case invokes a simple additional estimate.

To derive Proposition 4.1, we begin by averaging the information in Propo-
sition 5.1 over small macroscopic δ. In what follows, the relation f �n g asserts
that f(n,m, δ) and g(n,m, δ) are random variables on PN such that, for each
n ∈ N,

lim
δ↘0

lim sup
ε↘0

∑
m∈N

EN |fn,m,δ − gn,m,δ| = 0 .

For δ > 0, write ηδ : Rd → [0,∞) for ηδ = δ−dη(·/δ). Proposition 5.1, the
definition of Q and substitutions xi− z1 = ω1 and xj − z2 = ω2 imply then that

∫ T

0

Q0(t) dt

�n

∫ T

0

∫
Rd×Rd

Qz2−z1(t)η
δ(z1)η

δ(z2) dz1dz2dt

= εd−2α(n,m)

∫ T

0

∫
Rd×Rd

∑
i,j∈Iq(t)

V ε

(
(xi − z1)− (xj − z2)

)
×1mi(t)=n,mj(t)=mηδ(z1)η

δ(z2) dz1dz2dt

= εd−2α(n,m)

∫ T

0

∫
Rd×Rd

∑
i,j∈Iq(t)

V ε

(
ω1 − ω2

)
×1mi(t)=n,mj(t)=mηδ(xi − ω1)η

δ(xj − ω2) dω1dω2dt .
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The virtue of this last expression is that the two particle sums may be passed
inside to yield the microscopic candidate densities. Indeed, the expression equals

εd−2α(n,m)

∫ T

0

∫
Rd×Rd

V ε

(
ω1 − ω2

)
f ε,δ
n (ω1, t)f

ε,δ
m (ω2, t) dω1dω2dt . (5.3)

Note that the double integral in (ω1, ω2) is almost on the diagonal, because V ε

is supported in the ε-ball. When ω1, ω2 ∈ R
d satisfy ||ω1 − ω2|| ≤ ε, we have

that
∣∣η(xi−ω2

δ

)
− η
(
xi−ω1

δ

)∣∣ ≤ εδ−1||∇η||∞, so that
∣∣f ε,δ

n (ω2, t) − f ε,δ
n (ω1, t)

∣∣ ≤
εd−1δ−d−1||∇η||∞.

Thus, at the expense of an error that is small in the sense of the �n relation,
f ε,δ
m (ω2, t) may be replaced by f ε,δ

m (ω1, t) in (5.3); this done, the ω2 integral may
be detached, so that we see that (5.3) satisfies

�n εd−2α(n,m)

∫
Rd

V ε

(
x
)
dx

∫ T

0

∫
Rd

f ε,δ
n (ω, t)f ε,δ

m (ω, t) dωdt ,

which since V ε(·) = ε−2V (·/ε) equals

ε2(d−2)α(n,m)

∫
Rd

V
(
x
)
dx

∫ T

0

∫
Rd

f ε,δ
n (ω, t)f ε,δ

m (ω, t) dωdt ,

Combining the above estimates, we confirm that Proposition 4.1 holds with

β(n,m) = α(n,m)

∫
Rd

V (x) dx .

5.2. An outline of the proof of Proposition 5.1

In an attempt to find a convenient representation of the quantity
∫ T
0
Qz(t) dt,

both when z ∈ R
d is zero and when it is non-zero and small, we define a

z-dependent random variable Sz under PN for which the action of the free
motion operator AF on Sz produces, among others, the term Qz. For each pair
(n,m) ∈ N

2, we define φε
n,m : Rd → (0,∞) so that

−Δφε
n,m(x) = α(n,m)

d(n)+d(m)ε
−dV (x/ε) ,

subject to limx→∞ φε
n,m(x) = 0. We then define a non-negative stochastic pro-

cess Sz : [0,∞) → [0,∞) on PN : for each t ≥ 0, we set

Sz(t)(q) = ε2(d−2)
∑

i,j∈Iq(t)

φε
n,m(xi − xj + z)Jn(xi, t)1mi=n,mj=m . (5.4)

The action AF (Sz − S0) of the free motion operator on Sz − S0 is itself a
random variable on PN which maps non-negative time t ∈ [0,∞) to R. The
term Qz(t) − Q0(t) appears in the expression −AF (Sz − S0)(t), in the case
where each of the derivatives in the Laplacian operator falls on φε

n,m rather
than on the test function Jn. (Note the minus sign attached to AF (Sz − S0)(t);
it arises from our choice that the functional Sz be positive rather than negative.)
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For T > 0, consider the PN -almost sure identity

(
Sz − S0

)(
T
)

=
(
Sz − S0

)(
0
)
+

∫ T

0

(
∂
∂t + AF

)
(Sz − S0)(t) dt (5.5)

+

∫ T

0

AC(Sz − S0)(t) dt + MT ,

and note that the process
{
MT : T ≥ 0

}
is a PN -martingale. As we have

noted, each of the terms −
∫ T
0
Qz(t)dt and

∫ T
0
Q0(t)dt appears in the free motion

term on the right-hand side. The quantity
∫ T
0
Q0(t)dt remains of unit order

in the low ε limit, as we discussed after the statement of the Stosszahlansatz

Proposition 4.1. For similar reasons,
∫ T
0
Qz(t)dt may be expected to have this

property for any given z ∈ R
d. Suppose for a moment that it were the case that

all the other terms appearing in (5.5) were of smaller order, as a low ε and then
low z limit is taken. More precisely, suppose that, after the removal of the two
terms mentioned above, the remainder satisfies the estimate on the error Errn,m
given in Proposition 5.1. Then in fact Proposition 5.1 would hold, but with the
term V on the right-hand side of (5.2) replaced by V . Reviewing the proof of
Proposition 4.1 from Proposition 5.1, we would find that the Stosszahlansatz
indeed holds, but with the formula β = α

∫
Rd V (x)dx rather than (1.9). In

other words, the reasoning that there are no further unit-order terms appearing
in (5.5) – which the authors of [11] believed when first studying this approach
– leads to the fallacious guess β = α

∫
Rd V (x)dx.

The formula’s incorrectness means that we should expect some further term
in (5.5) to remain of unit order as ε → 0 and then z → 0. In Section 3.2, it was
explained that this guess is wrong because of an effect of the curtailment of the
interaction clock associated with a particle pair at the moment of the concerned
particles’ collision.

The further unit-order term in (5.5) does indeed exist, and its form reflects
this mechanism of curtailment of the interaction clock on particle collision. The
term arises from the action of the collision operator AC on S0. In the expression∫ T
0
ACS0(t)dt, when the form of the collision operator AC and of the functional

S0 is substituted, a sum is obtained. For each summand, four particles are
concerned, in two pairs: two particles in the first pair arise from AC , and it is this
pair whose infinitesimal interaction rate is being integrated over the time period
[0, T ], while the difference of the locations of the particles in the second pair form
the argument of φε

n,m arising from S0. Although each of the two pairs is formed
of distinct particles, there may be one or two coincidences between members of
the first and of the second pair. When both of these coincidences occur, and the

second pair equals the first, the contribution made to −
∫ T
0
ACS0(t)dt by such

terms is given by

ε2(d−2)α(n,m)

∫ T

0

∑
k,l∈Iq(t)

Vε

(
xk − xl

)
φε
n,m(xk − xl)Jn(xk, t) dt . (5.6)
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This term witnesses the abrupt curtailment of the propensity to coagulate of
a pair of particles at that moment when the particles do coagulate. That it is this
term which remains of unit order reflects the role of the microscopic repulsion
about a given particle in determining the relation (1.9) which is discussed in
Section 3.

(We mention a possible confusion relating to our convention regarding double
sums. It might seem that a factor of one-half should multiply (5.6) because such
a factor is present in the definition of the collision operator (1.5). Recall however
that double sums are really over ordered pairs of distinct indices. The two pairs
at stake in arriving at (5.6) may be labelled {i, j} and {k, l}. Ordering the
first pair (i, j), there are two ways, (i, j) = (k, l) and (i, j) = (l, k), that the
coincidence of both terms of the first pair with those of the second may occur.
This factor of two cancels the one-half from (1.5), yielding the expression (5.6).)

It turns out that the sum of the remaining terms in (5.5) is indeed negligible
in that it satisfies the estimate that Errn,m(ε, z) does in Proposition 4.1. Only
the three unit-order terms identified above remain in the limit of low ε and then
z. That is, we have found that

∫ T
0
Qz(t)dt differs from

ε2(d−2)α(n,m)

∫ T

0

∑
i,j∈Iq(t)

Vε(xi − xj) (5.7)

×
[
1 + φε

n,m

(
xi − xj

)]
Jn(xi, t)1mi=n,mj=m dt .

by an error of the form Errn,m(ε, z) in Proposition 4.1. Note that the ‘1’ that
appears in the square bracket corresponds to Q0, and the other term to the
unit-order term (5.6). In the language of Proposition 5.1, we have learnt that∫ T

0

Q̂0(t) dt =

∫ T

0

Qz(t) dt + Errn,m(ε, z) , (5.8)

where V̂ = V
(
1 + φn,m

)
and Q̂0 is defined by the formula (5.1) that specifies

Q0 with V̂ replacing V . As a check of working, note that, since φn,m ≥ 0, we

are asserting that the positive
∫ T
0
Qz(t)dt exceeds the positive

∫ T
0
Q0(t) dt by a

further positive term of the same order. This is consistent with the explanation

offered in Section 3.2: we expect
∫ T
0
Qz(t)dt to exceed

∫ T
0
Q0(t)dt, because the

size of the latter term (measuring the cumulative interaction clock of ε-displaced
particles) is limited by the disappearance of particles on collision, while the
former (measuring a comparable quantity for the much more distant z-displayed
particles) experiences no such limitation.

Of course, (5.8) is not quite the conclusion we sought: to prove Proposi-

tion 5.1, we want to approximate
∫ T
0
Q0(t) by

∫ T
0
Qz(t), so that the modification

Q → Q falls in the z-displaced term; but so far we have obtained such a result
where the modification is made to the z = 0 term.

In light of this analysis, we may however revisit the approach. Consider a
variant Xz of the process Sz: for each z ∈ R

d, under PN , Xz : [0,∞) → R is
given by
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Xz(t)(q) = ε2(d−2)
∑

i,j∈Iq(t)

uε
n,m(xi−xj +z)Jn(xi, t)1

{
mi = n,mj = m

}
, (5.9)

where here, for each pair (n,m) ∈ N
2, we define uε

n,m : Rd → (0,∞) so that, for

z ∈ R
d,

− Δuε
n,m(z) = α(n,m)

d(n)+d(m)ε
−dU(z/ε) , (5.10)

subject to limx→∞ uε
n,m(x) = 0. The function U : Rd → (0,∞) is at yet un-

specified; of course the choice U = V would specify the earlier functional Sz.
Our aim now is to make a different choice of U , for which the solution of the
problem (5.10) exists uniquely, and for which the earlier analysis may be carried
out in such a way that its conclusion is not (5.8) but rather the desired

∫ T

0

Q0(t) dt =

∫ T

0

Qz(t) dt + Errn,m(ε, z) , (5.11)

for some Q : Rd → [0,∞). Regarding scaling, note that, whenever U : Rd →
(0,∞) is such that (5.10) has a unique solution for some ε > 0, then this holds
in fact for all ε > 0; indeed, writing un,m : Rd → (0,∞) for un,m = u1

n,m, we

have that, for each ε > 0, and for all z ∈ R
d,

uε
n,m(z) = ε2−dun,m

(
z/ε
)
. (5.12)

In order to find a candidate for U that may make this plan work, we may
hope that, for some suitable class of U , the earlier discussion continues to apply
to the extent that the unit-order terms that survive in the passage of low ε and
then low z are the natural counterparts to the three terms identified there.

We want the analogue of the term
∫ T
0
Q̂0(t) to be

∫ T
0
Q0(t) in the new cal-

culation. Recall that Q̂0(t) equals (5.7). When we reprise the earlier discussion
with Xz −X0 in place of Sz − S0, the counterpart of the expression (5.7) is

ε2(d−2)
∑

i,j∈Iq(t)

[
−
(
d(n) + d(m)

)
Δuε

n,m

(
xi − xj

)

+ α
(
n,m
)
Vε

(
xi − xj

)
uε
n,m

(
xi − xj)

]
× Jn(xi, t)1mi=n,mj=m . (5.13)

By (5.10), Vε(·) = ε−2V (·/ε) and (5.12), the quantity in the square brackets
above equals

ε−dα(n,m)
(
U
(xi−xj

ε

)
+ V
(xi−xj

ε

)
un,m

(xi−xj

ε

))
.

Our aim is that (5.13) will equal Q0(t); we see that this demand is equivalent
to the identity U + V un,m = V . That is, the function U must be specified by
U = V

(
1− un,m

)
. Assuming for now that such a choice may be made, consider
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the term which is analogous to
∫ T
0
Qz(t)dt in (5.8) when the earlier analysis is

replayed with Xz in place of Sz. This new term equals

− ε2(d−2)

∫ T

0

∑
i,j∈Iq(t)

(
d(n)+d(m)

)
Δuε

n,m

(
xi−xj+z

)
Jn(xi, t)1mi(t)=n,mj(t)=m dt .

(5.14)

Recalling the definition of Q from the statement of Proposition 5.1, and
noting that

−
(
d(n) + d(m)

)
Δuε

n,m(z) = α(n,m)V
(
z/ε
)(
1− uε

n,m(z)
)

for z ∈ R
d, we see that (5.14) is precisely

∫ T
0
Qz(t)dt.

That is, setting U as described above, our reprisal of the method yields

∫ T

0

Q0(t) dt =

∫ T

0

Qz(t) dt + Errn,m(ε, z) , (5.15)

in place of (5.8), which is precisely the form of the statement asserted by Propo-
sition 5.1.

To turn these ideas into a proof of Proposition 5.1, note first that making use
of our desired choice of U entails that we argue that the PDE

−Δun,m = α(n,m)
d(n)+d(m)V

(
1− un,m

)
has a unique solution un,m : Rd → [0, 1) satisfying un,m(z) → 0 as z → ∞. This
we have already taken care of: see Lemma 1.4.

Our more substantial remaining task is the following. Defining the functional
Xz with this choice of un,m, we must argue that the dominant terms in the

identity (5.5) (with Xz in place of Sz) are indeed −
∫ T
0

(
Qz(t)−Q0(t)

)
dt; more

precisely, we must show that both the left-hand side of (5.5), and the difference

of its right-hand side with −
∫ T
0

(
Qz(t)−Q0(t)

)
dt, satisfy the demand made of

the error Errn,m(ε, z) in the statement of Proposition 5.1.

6. Proof of Proposition 5.1

We now present the proof of the pointwise Stosszahlansatz, or rather, reduce it
to certain key estimates (and we do so making some simplifications which in no
way diminish the essentials of the argument). These estimates are gathered at
the end of the Section 6.1, in Proposition 6.1. To make this reduction, the job
at hand is to carry out the task mentioned in the preceding paragraph. In order
to analyse the various error terms, we begin by providing formulas for them.
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6.1. The action of the free motion and collision operators on the
functional

Recall that, for each z ∈ R
d, under PN , we are defining Xz : [0,∞) → R by

means of

Xz(t)(q) = ε2(d−2)
∑

i,j∈Iq(t)

uε
n,m(xi − xj + z)Jn(xi, t)1mi=n,mj=m , (6.1)

where, for each pair (n,m) ∈ N
2, we define uε

n,m : Rd → (0,∞) so that, for

z ∈ R
d,

− Δuε
n,m(z) = ε−d α(n,m)

d(n)+d(m)V (z/ε)
(
1− un,m(z/ε)

)
(6.2)

subject to limx→∞ uε
n,m(x) = 0; moreover, uε

n,m and un,m enjoy the scaling
relationship (5.12).

Our aim is to analyse the high-N behaviour of the terms in the PN -almost
sure identity

(
Xz −X0

)(
T
)

=
(
Xz −X0

)(
0
)
+

∫ T

0

(
∂
∂t + AF

)
(Xz −X0)(t) dt (6.3)

+

∫ T

0

AC(Xz −X0)(t) dt + MT ,

where the process
{
MT : T ≥ 0

}
is a PN -martingale.

To simplify our presentation, we will consider only the case that the test
function J : Rd × N × [0,∞) → [0,∞) takes the form J(x,m′, t) = Jn1m′=n,
where Jn ∈ (0,∞) is a constant; in the general case, Jn : Rd × [0,∞) → [0,∞)
is a map on space-time. (Technically, this simplication is not a special case.
After all, the test functions Jn in (1.10) are compactly supported. However,
the transition back to valid choices of Jn from constant functions is a minor
technical point, because it entails only the analysis of some extra terms which
are better behaved than terms we will anyway have to treat.) We also write
J : Rd × N× [0,∞) → [0,∞) for the function J(x,m′, t) = 1m′=m. In this way,
we may write

Xz(t)(q) = ε2(d−2)
∑

i,j∈Iq(t)

uε
n,m(xi − xj + z)J(xi,mi, t)J(xj ,mj , t) . (6.4)

We are about to label terms arising from the action of the free motion op-
erator on the functional Xz −X0. For this purpose, an extra piece of notation
is useful. Recalling that we write Vε(·) = ε−2V (·/ε), we now set V ε(·) equal
to ε−dV (·/ε). Recalling (6.2) as well the identity (5.12), we see then that we
may write (

∂
∂t + AF

)
(Xz −X0)(t) = H1 +H2 +H3 , (6.5)

where

H1 = − ε2(d−2)
∑

i,j∈Iq

α(mi,mj)
[
V ε(xi − xj + z)− V ε(xi − xj)

]
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× J(xi,mi, t)J(xj ,mj , t) ,

H2 = − ε2(d−2)
∑

i,j∈Iq

α(mi,mj)Vε(xi − xj)u
ε
mi,mj

(xi − xj)

× J(xi,mi, t)J(xj ,mj , t) ,

and

H3 = ε2(d−2)
∑

i,j∈Iq

α(mi,mj)Vε(xi − xj + z)uε
mi,mj

(xi − xj + z)

× J(xi,mi, t)J(xj ,mj , t) .

The terms arising from the collision operator may be labelled

AC(Xz −X0)(t) = Gz(1) +Gz(2)−G0(1)−G0(2) ,

where Gz(1) equals

1
2

∑
k,l∈Iq

α(mk,ml)Vε(xk − xl)ε
2(d−2)

∑
i∈Iq

(6.6)

{
mk

mk +ml

[
uε
mk,mi

(xk − xi + z)J(xk,mk +ml, t)J(xi,mi, t)

+uε
mi,mk

(xi − xk + z)J(xi,mi, t)J(xk,mk +ml, t)
]

+
ml

mk +ml

[
uε
ml,mi

(xl − xi + z)J(xl,mk +ml, t)J(xi,mi, t)

+uε
mi,ml

(xi − xl + z)J(xi,mi, t)J(xl,mk +ml, t)
]

−
[
uε
mk,mi

(xk − xi + z)J(xk,mk, t)J(xi,mi, t)

+uε
mi,mk

(xi − xk + z)J(xi,mi, t)J(xk,mk, t)
]

−
[
uε
ml,mi

(xl − xi + z)J(xl,ml, t)J(xi,mi, t)

+uε
mi,ml

(xi − xl + z)J(xi,mi, t)J(xl,ml, t)
]}

,

and where

Gz(2) = −ε2(d−2)
∑

k,l∈Iq

α(mk,ml)Vε(xk − xl)u
ε
mk,ml

(xk − xl + z)

× J(xk,mk, t)J(xl,ml, t). (6.7)

In the triple sum over distinct particle indices (k, l, i) appearing in Gz(1),
the particles indexed by k and l are interacting at rate α(mk,ml)Vε(xk − xl);
when this pair collides, there is an instantaneous change in the value of those
terms in Xz(q) that include the location xi of a given third particle indexed by
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i and not involved in the collision. There are two gain terms, associated to the
appearance of a new particle at one or other of xk and xl, and two loss terms,
associated to the disappearance of the particles indexed by k and l.

The term Gz(2) is a double sum over distinct particle indices (k, l) that
records the instantaneous change caused by collision of such a particle pair in
the value of those terms in Xz(q) expressed in terms only of the elements of that
pair. That is, the collision occurs at infinitesimal rate α(mk,ml)Vε(xk−xl); when
collision happens, the particles with indices k and l disappear, so that the term
ε2(d−2)uε

mk,ml
(xk − xl + z)Jn1mj=m no longer appears in Xz(q).

Note that
H2 = G0(2) .

We find then that∣∣∣∣
∫ T

0

H1

(
t
)
dt+

∫ T

0

H3

(
t
)
dt

∣∣∣∣ (6.8)

≤
∣∣Xz −X0

∣∣(q(T ))+ ∣∣Xz −X0

∣∣(q(0))
+

∫ T

0

∣∣Gz(1)−G0(1)
∣∣(t) dt+ ∫ T

0

∣∣Gz(2)
∣∣(t) dt +

∣∣M(T )
∣∣ .

We will now state bounds on these error terms which are sufficient for the
purpose of proving Proposition 5.1 (and thus Proposition 4.1 and Theorem 1.1).

Proposition 6.1. Suppose that the survey assumptions are in force. There
exists a constant C > 0 such that

1. for all N ∈ N,
∑

m∈N

∫ T
0
EN

∣∣Gz(1)−G0(1)
∣∣(t) dt ≤ CT 3d/2|z|

(
log 1/

|z|
)3d/2

;

2. for any t ≥ 0,
∑

m∈N
EN

∣∣Xz(t)−Xz(0)
∣∣ ≤ C|z|;

3. for all N ∈ N,
∑

m∈N

∫ T
0
EN

∣∣Gz(2)
∣∣(t) dt ≤ C

(
ε
z

)d−2
;

4. and, for each t ≥ 0,
∑

m∈N
EN

[
M(t)2

]
≤ Cεd−2.

6.2. Proving the error bounds

Two important tools are needed to prove the above bounds. Here, we present
these two tools (but do not yet prove the assertions we state about them), and
use them to give a proof of Proposition 6.1(1); the three other estimates in this
proposition follow in a roughly similar way, and we do not give the proofs of
these estimates here.

6.2.1. Particle concentration bounds

The first tool is an assertion that, at any given time, the joint density of any given
number of particles is uniformly bounded above. Recall that

{
hn : n ∈ N

}
is the

initial density profile of particles under PN , and that �n denotes ||hn||L∞(Rd).



Coagulation and diffusion: A probabilistic perspective on the Smoluchowski PDE 265

Proposition 6.2. Suppose that d : N → (0,∞) is non-increasing. For k ∈ N,
let gk : Rdk × [0,∞) → [0,∞) be such that gk(y1, . . . , yk, t) is the density at
(y1, . . . , yk) ∈ (Rd)k for the ordered presence of the lowest-k indexed particles in
PN at time t. Then

||gk||L∞(Rdk×[0,∞)) ≤
(
Z−1Ls

)k
,

where L =
∑∞

n=1 �nnd(n)
d/2 and s = supm≥1 m

−1d(m)−d/2.

Recall that the quantities L and s are both supposed to be finite under the
survey assumptions.

6.2.2. Uniform control on pairwise collision probabilities

Recall from Section 1.11 the notion of Brownian motion on R
d killed at rate W ,

where W : Rd → [0,∞) is a smooth and compactly supported function; recall
from there that uW : Rd → [0, 1] is such that uW (x) is the probability that
rate-two Brownian motion killed at rate W and begun at x is killed at some
time, and also that we set uε

W (·) = ε2−duW

(
· /ε
)
.

Lemma 6.3. For each d ≥ 3, there exist a constant Cd > 0 such that, for all
continuous W : Rd → [0,∞) with support in the Euclidean unit ball,

• for x ∈ R
d, uW (x) ≤ ||x||2−d and ||∇uW (x)|| ≤ Cd ||x||1−d;

• for x, z ∈ R
d and ε > 0 such that ||x|| ≥ max

{
2||z||+ ε, 2ε

}
,

∣∣∣uε
W

(
x+ z
)
− uε

W

(
x
)∣∣∣ ≤ 23d−6 ||z||

||x||d−1
(6.9)

and ∣∣∣∇uε
W

(
x+ z
)
−∇uε

W

(
x
)∣∣∣ ≤ 4d

(
2d−1d+ 1

) ||z||
||x||d . (6.10)

6.2.3. Applying the tools

For the proof of Proposition 6.1(1), we need one further simple estimate, on
long-range particle displacement. Note that the survey assumptions assure that
the initial data is supported in a shared compact set as demanded by the next
lemma.

Lemma 6.4. Suppose that each element of the initial data hn : Rd → [0,∞),
n ∈ N, is supported in a given compact region B, and that d := supn∈N d(n) <
∞. Then, for some constant C > 0 and for all r > 0,

PN

(
|x1(T )| ≥ r

)
≤ C exp

{
− r2

2dT

}
.
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Proof. If R > 0 is an upper bound on the radius of the region B, then note that
x1(T ) under PN is stochastically dominated by the maximum modulus during
[0, T ] of a rate-d Brownian motion begun at distance R from the origin. From
this and the reflection principle the result follows.

Proof of Proposition 6.1(1). Note that

∫ T

0

EN

∣∣Gz(1)−G0(1)
∣∣(t) dt ≤ 8∑

i=1

Di ,

where

D1 = 1
2 EN

∫ T

0

dt
∑

k,l∈Iq

α(mk,ml)Vε(xk − xl)
∣∣J(xk,mk)

∣∣ (6.11)

ε2(d−2)
∑
i∈Iq

∣∣J(xi,mi)
∣∣ · ∣∣∣uε

mk,mi
(xk − xi + z)− uε

mk,mi
(xk − xi)

∣∣∣ ,
and the later Di terms differ from D1 only in inessential ways. Note that D1

depends implicitly on n and m, in that the test functions J and J have been
chosen to charge only particles of mass n and m. The above sum over particle
index triples (k, l, i) has at most N3 = Z3ε3(2−d) summands; recalling that
Vε = ε−2V (·/ε) is supported in the ε-ball about the origin, we see that

∑
m∈N

D1

is at most

ε3(2−d) · ε−2 · ε2(d−2)Z3C1

∫ ∫ T

0

1|x1−x2|≤ε

· sup
m∈N

∣∣∣uε
n,m

(
x3 − x2 + z

)
− uε

n,m

(
x3 − x2

)∣∣∣ · μt

(
dx1, dx2, dx3

)
, (6.12)

where we set C1 = ||V ||∞ · supn,m α(n,m) · supn Jn · supm Jm, and where the
law μt is the joint distribution at time t of the first three indexed particles under
PN (so that the outer integral in (6.12) is an EN -expectation over this triple
of locations). By Lemma 6.4, and the uniform bound uε ≤ 1, the contribution
to the right-hand side made by the integral over (x1, x2, x3) ∈ R

3d \ [−R,R]3d

is at most C exp
{
− R2

2dT

}
, which equals |z| if we choose R2 = 2dT log

(
C/|z|
)
.

We bound the integrand on [−R,R]3 by noting that the support of Vε has
volume εd and using Lemma 6.3 to bound the functions

∣∣uε
n,m(x+ z)−uε

n,m(x)
∣∣

simultaneously. Thus,∑
m∈N

D1 ≤ Z3C1

(
Z−1Ls

)3
×
∫
[−R,R]3d

sup
m∈N

∣∣uε
n,m

(
x3 − x2 + z

)
− uε

n,m

(
x3 − x2

)∣∣ dx + |z|

≤
(
Ls
)3||V ||∞ · sup

n,m
α(n,m) · sup

n
Jn · sup

m
Jm ·
(
2dT log

(
C/|z|
))3d/2

· C|z| + |z| ,
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where Proposition 6.2 was applied in the first inequality in order to replace
the measure μt

(
dx1, dx2, dx3

)
by Lebesgue measure dx on (Rd)3. (Recall that

the survey assumptions imply the finiteness of L and s.) Note also that it is
(6.9) that determines the value of the constant C > 0. This completes the proof
of Proposition 6.1(1).

6.3. Uniform control on pairwise collision probabilities: proofs

Proof of Lemma 6.3. By the uniqueness element of Lemma 1.6, we have that,
for x ∈ R

d,

uW (x) = c0

∫
Rd

W (y)
(
1− uW (y)

)
||x− y||2−d dy , (6.13)

where we recall from the proof of Lemma 1.6 that, for each d ≥ 3, c−1
0 = d(d−

2)ωd, with ωd equal to the volume of the Euclidean unit ball in d dimensions.
Write u∞ : Rd → [0, 1] so that for x ∈ R

d, u∞(x) is the probability that
Brownian motion begun at x ∈ R

d visits the Euclidean unit ball; our notation
is used because formally this object coincides with uW for W = ∞1||x||≤1.
From the interpretation of uW and u∞ as killing probabilities, it is evident that
uW (x) ≤ u∞(x) for all x ∈ R

d and for any continuous W supported in the unit
ball. However, for x ∈ R

d,

u∞(x) = min
{
1, ||x||2−d

}
; (6.14)

thus, uW (x) ≤ ||x||2−d for all x ∈ R
d and W as above, as Lemma 6.3 firstly

asserts.
By using this monotonicity to compare the formulas (6.13) and (6.14) along

a sequence of x ∈ R
d for which x → ∞, we obtain that, for all such potentials

W , ∫
Rd

W (y)
(
1− uW (y)

)
dy ≤ c−1

0 . (6.15)

Note that

∇uW (x) = c0(2− d)

∫
Rd

W (y)
x− y

||x− y||d
(
1− uW (y)

)
dy .

From (6.15), we see that ||∇uW (x)|| ≤ (d−2)
∫
||y||≤1

||x−y||1−ddy≤Cd||x||1−d

whenever ||x|| ≥ 2, as we also asserted. On the other hand, that ||∇uW (x)|| ≤
Cd when ||x|| ≤ 2 is straightforward. We have obtained Lemma 6.3’s second
assertion.

As we turn to derive (6.9), we mention that, for the rest of the proof, we will
denote the Euclidean norm on R

d by | · | rather than by || · ||. Note that, for
x, z ∈ R

d, ∣∣uε
W (x+ z)− uε

W (x)
∣∣ = ε2−d

∣∣uW

(
x+z
ε

)
− uW

(
x
ε

)∣∣



268 A. Hammond

≤ c0

∫
Rd

W
(
y
)(
1− uW (y)

)∣∣∣∣∣x+ z − εy
∣∣2−d −

∣∣x− εy
∣∣2−d
∣∣∣dy

≤ sup
|y|≤ε

∣∣∣∣∣x+ z − y
∣∣2−d −

∣∣x− y
∣∣2−d
∣∣∣

= sup
|y|≤ε

∣∣|x− y|d−2 − |x+ z − y|d−2
∣∣

|x+ z − y|d−2|x− y|d−2
,

the second inequality by (6.15).
Note that

∣∣x+ z − y
∣∣d−2 −

∣∣x− y
∣∣d−2 ≤

(∣∣x− y
∣∣+ |z|

)d−2

− |x− y|d−2 (6.16)

and that

∣∣x− y
∣∣d−2 −

∣∣x+ z − y
∣∣d−2 ≤ |x− y|d−2 −

(∣∣x− y
∣∣− |z|

)d−2

. (6.17)

The right-hand sides of (6.16) and (6.17) each take the form αd−3|z|, for some
α ∈
[
|x− y| − |z|, |x− y|+ |z|

]
. Note that if |y| ≤ ε, then

|x− y| − |z| ≥ |x| − ε− |z| ≥ 0,

since |x| ≥ |z|+ ε. As a result, we have that |x− y|+ |z| ≤ 2|x− y|, so that∣∣∣∣∣x− y
∣∣d−2 −

∣∣x+ z − y
∣∣d−2
∣∣∣ ≤ 2d−3|z| |x− y|d−3.

Hence, ∣∣∣uε
W

(
x+ z
)
− uε

W

(
x
)∣∣∣ ≤ 2d−3|z| sup

|y|≤ε

|x− y|−1|x+ z − y|2−d .

From |x| ≥ max
{
2|z| + ε, 2ε

}
and |y| ≤ ε follows

∣∣x + z − y
∣∣ ≥ |x − y|/2 and

|x − y| ≥ |x|/2; thus, the above supremum is at most 22d−3|x|1−d. We obtain
(6.9).

In seeking to prove (6.10), note that

x+ z − y∣∣x+ z − y
∣∣d − x− y∣∣x− y

∣∣d =

(
x+ z − y

)∣∣x− y
∣∣d − (x− y

)∣∣x+ z − y
∣∣d∣∣x+ z − y

∣∣d∣∣x− y
∣∣d .

Note that, for any a ∈ R
d,∣∣∣(a+z

)
|a|d−|a+z|da

∣∣∣ ≤ |a|
∣∣∣|a+z|d−|a|d

∣∣∣+|z||a|d ≤
(
2d−1d+1

)
|z||a|d , (6.18)

as long as |z| ≤ |a|. Given that

∇uε
W (x) = −(d− 2)c0

∫
Rd

W (y)
(
1− uW (y)

) x− y∣∣x− εy
∣∣d dy ,
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we may apply (6.18) with the choice a = x− εy and then use (6.15) to obtain∣∣∣∇uε
W (x+ z)−∇uε

W (x)
∣∣∣

≤
(
2d−1d+ 1

)
|z|c0
∫
Rd

W (y)
(
1− uW (y)

)∣∣x+ z − εy
∣∣−d

dy

≤
(
2d−1d+ 1

)
|z| sup

|y|≤ε

∣∣x+ z − y
∣∣−d

.

From |x| ≥ max
{
2|z|+ ε, 2ε

}
and |y| ≤ ε, we see that

∣∣x+ z− y
∣∣ ≥ |x− y|/2

and |x− y| ≥ |x|/2. We conclude that

∣∣∣∇uε
W (x+ z)−∇uε

W (x)
∣∣∣ ≤ 4d

(
2d−1d+ 1

) |z|
|x|d ,

as required.

7. Particle concentration bounds and uniform integrability

The principal aim of this section is to prove the particle concentration upper
bound, Proposition 6.2, and the closely related uniform integrability assertions,
Propositions 4.3 and 4.4; though the section also includes, at its end, an analytic
derivation of mass conservation under certain assumptions.

Proposition 6.2 asserts that, if d : N → (0,∞) decreases, but not too rapidly,
then supremum norm bounds enjoyed initially by the particle profile propagate
to all later times up to factors determined by the diffusion rates d. Such particle
concentration results play an essential role in our derivation of the Smoluchowski
PDE; unlike in our preceding work, here we present a proof of these results using
probabilistic techniques. The derivation will occupy several pages and invokes
moderately restrictive hypotheses on d(·). We make use of this approach because
of the attractive probabilistic perspective that it offers one of the more technical
aspects of our kinetic limit derivation of the Smoluchowski PDE; and because
the uniform integrability Proposition 4.4 is an immediate corollary.

It is much quicker to describe the supremum norm propagation effect in
terms of solutions to the PDE. In order to illustrate the effect succinctly to
begin with, and perhaps also for the benefit of analytically minded readers who
may wish to skip some details in the upcoming proof of Proposition 6.2, we first
present the statement and proof of [12, Lemma 4.1]. Such a reader may also
wish to consult [34], where an analogous particle distribution result, Theorem
3.1, is proved by means not unlike, but more analytic than, our approach to
establishing Proposition 6.2.

7.1. An analytic bound on particle concentration

Our analytic lemma concerns a weak solution
{
fn : n ∈ N

}
, one that solves the

system (1.10).
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Lemma 7.1. Assume d(·) is non-increasing. Then, for all x ∈ R
d and t ≥ 0,

∞∑
n=1

nd(n)d/2fn(x, t) ≤ d(1)d/2u(x, t) , (7.1)

where u is the unique solution to ut = d(1)Δu subject to the initial condition
u(x, 0) =

∑∞
n=1 nfn(x, 0).

Proof. For D > 0, let
{
SD
t : t ≥ 0

}
denote the diffusion rate D heat semigroup.

That is, for any continuous function f : Rd → R, SD
t f : Rd → R is given by

SD
t f(x) =

∫
Rd

f(x− y) ·
(
2πDt
)−d/2

exp
{
− y2

2Dt

}
dy .

The heat semigroup satisfies the property that, if D1 ≥ D2 and g ≥ 0, then

D
d/2
1 SD1

t g ≥ D
d/2
2 SD2

t g ; (7.2)

this is a consequence of an elementary bound on the normal density, which in
fact we will shortly state as (7.10).

Using the shorthand Qn(x, s) = Qn(f)(x, s), s ∈ [0,∞), note that, for the
collision operator in (1.2), Duhamel’s principle implies the basic relation that,
for each n ∈ N, and for all (x, t) ∈ R

d × [0,∞),

fn(x, t) = S
d(n)
t hn(x) +

∫ t

0

S
d(n)
t−s Qn(x, s) ds , (7.3)

where recall that hn = fn(·, 0) denotes the initial condition.
We will argue that, for each � ∈ N, and for all (x, t) ∈ R

d × [0,∞),

∑
1

nd(n)d/2fn(x, t)

≤ d(1)d/2S
d(1)
t

(
∑
1

nhn

)
(x) + d(�)d/2

∫ t

0

S
d()
t−s

(
∑
1

nQn(x, s)

)
ds ;

(7.4)

first, let us show that this claim proves the lemma.
Consider the expression

∑
1 nQn(x, t) for any (x, t) ∈ R

d × [0,∞). Coagula-
tions at (x, t) between pairs of particles whose combined mass is at most �, or
each of whose masses are at least �+1, do not contribute to the expression, while
the remaining coagulations contribute negatively. Thus,

∑
1 nQn(x, t) ≤ 0. We

find then from (7.4) that

∑
1

nd(n)d/2fn ≤ d(1)d/2S
d(1)
t

(
∑
1

nf0
n

)
. (7.5)

In this way, we see that, to prove the lemma, it suffices to derive (7.4).



Coagulation and diffusion: A probabilistic perspective on the Smoluchowski PDE 271

We will establish this bound by induction on � ∈ N. When � = 1, the bound
holds as an equality due to (7.3).

Supposing that (7.4) is valid at index �, we now derive it at index �+ 1. By
(7.2) and (7.4), we learn that, for all (x, t) ∈ R

d × [0,∞),

∑
1

nd(n)d/2fn(x, t)

≤ d(1)d/2S
d(1)
t

(
∑
1

nhn

)
(x) + d(�+ 1)d/2

∫ t

0

S
d(+1)
t−s

(
∑
1

nQn(x, s)

)
ds

(7.6)

because d(�) ≥ d(�+ 1) and
∑

1 nQn(x, t) ≤ 0.
Applying (7.2) to (7.3) with n = �+ 1 yields

f+1(x, t) ≤
(

d(1)

d(�+ 1)

)d/2
S
d(1)
t h+1(x) +

∫ t

0

S
d(+1)
t−s Q+1(x, s)ds. (7.7)

We multiply both sides of (7.7) by (�+1)d(�+1)d/2 and add the result to (7.6).
The outcome is

+1∑
1

nd(n)d/2fn(x, t)

≤ d(1)d/2S
d(1)
t

(
+1∑
1

nhn

)
(x) + d(�+ 1)d/2

∫ t

0

S
d(+1)
t−s

(
+1∑
1

nQn(x, s)

)
ds.

This completes the proof.

7.2. Proof of Proposition 6.2

We begin the proof by reformulating the proposition as Proposition 7.2 and
proving this. Recall that μ denotes Lebesgue measure on R

d.

Proposition 7.2. Suppose that d : N → (0,∞) is non-increasing. For any
N, k ∈ N with N ≥ k and T ≥ 0,

PN

( k⋂
i=1

{
xi(T ) ∈ Ai

})
≤ Kk

k∏
i=1

μ(Ai) ,

where
{
Ai : 1 ≤ i ≤ k

}
is any collection of open sets in R

d. The positive con-

stant K equals Z−1
∑

n≥1 nd(n)
d/2�n supm≥n m

−1d(m)−d/2, where recall that
�n denotes ||hn||L∞(Rd) for n ∈ N.

Proof of Proposition 6.2. Using Proposition 7.2, note that gk
(
(y1, · · · , yk),

t
)
≤ Kk for any (y1, · · · , yk) ∈ (Rd)k and t ≥ 0. Recalling from Proposition 6.2’s

statement that we set L =
∑∞

n=1 �nnd(n)
d/2 and s = supm≥1 m

−1d(m)−d/2, we
see that K ≤ Z−1Ls.
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The proof of Proposition 7.2 relies on the specific details of pairwise collision
seen in the dynamics under PN which we defined in Section 1.3; the reader may
wish to recall these now by consulting the paragraphs in Section 1.3 under the
heading “the precise mechanism of collision”.

7.2.1. The method of proof: the tracer particle

We will first prove Proposition 7.2 with k = 1. To do so, it is convenient to inter-
pret the lowest indexed particle, with index one, as the tracer particle. (In fact,
we used this term already, in treating the translation invariant model on a torus
seen in Section 3.) By symmetry of the initial particle placements under PN , the
tracer particle is indistinguishable from a particle selected uniformly at random
at time zero.

7.2.2. A stronger inductive hypothesis

We will prove Proposition 7.2 with k = 1 by formulating a stronger inductive
hypothesis where the parameter for the induction is the initial total particle
number N . As a shorthand, we write

νx,s(dy) =
(
2πs
)−d/2

exp
{
− ||x−y||2

2s

}
dy (7.8)

for the law of a normal random variable of mean x ∈ R
d and variance s ≥ 0.

Lemma 7.3. Let N ≥ 1. For given x ∈ R
d, n0 ∈ N and χ ∈

(
R

d × N
)N−1

,
let Px,n0,χ

N denote the law PN conditionally on x1(0) = x, m1(0) = n0 and on
the other N − 1 particles at time zero having locations and masses given by χ.
Then, for all such (x, n0, χ), and for any T ≥ 0 and A ⊆ R

d open,

P
x,n0,χ
N

(
x1(T ) ∈ A

)
≤ sup

m≥n0

n0

m

(d(n0)
d(m)

)d/2 · νx,2d(n0)T (A) . (7.9)

Before beginning this lemma’s proof, we give an overview of the argument,
which is an induction on N ≥ 1. The case N = 1 may seem to be a triviality.
Collision being impossible for a single particle, x1(T ) is normally distributed
with mean x and variance 2d(n0)T , while m1(T ) equals n0 almost surely; from
which (7.9) follows. One might object however that conditioning on non-collision
on the part of the tracer particle will bias the law of its trajectory; formally, we
will treat the case N = 1 as an instance of the generic step of the induction.

In the case of several particles, a key role is played by the following uniform
bound on normal densities: for all x, y ∈ R

d and s ≥ 0, and for all m,m′ ∈ N

such that m′ > m,

dνx,2d(m′)s

dνx,2d(m)s
(y) ≤

(
d(m)

d(m′)

)d/2
. (7.10)

This bound is a consequence of d : N → (0,∞) being non-increasing.
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We make some informal comments about the case N = 2 in order to illus-
trate the idea of the proof of Lemma 7.3. The tracer particle may make only
one collision in this case. Consider the tracer particle dynamics until the first
collision time for this particle at some time t, which we may assume to be less
than T (for the other case is in effect the N = 1 case). Suppose that the tracer
particle has mass n0 just before time t and collides with a mass n1 particle at
that time. Compare the subsequent dynamics to an altered one in which the two
particles in the model do not interact. In the ordinary dynamics, the tracer par-
ticle survives the collision with probability n0

n0+n1
, and then pursues a Brownian

trajectory of diffusion rate 2d(n0 + n1); thus, the conditional probability given
the tracer particle trajectory until first collision at time t that x1(T ) ∈ A equals

n0

n0+n1
νx1(t),2d(n0+n1)(T−t)(A). On the other hand, in the altered dynamics, the

tracer particle remains of mass n0 at time t, and thus has conditional probabil-
ity νx1(t),2d(n0)(T−t)(A) of achieving x1(T ) ∈ A. The uniform bound (7.10) on
normal densities implies that the conditional probability of x1(T ) ∈ A for the
ordinary dynamics exceeds that for the altered dynamics by a factor of at most

n0

n0+n1

( d(n0)
d(n0+n1)

)d/2
. Noting that the tracer particle in the altered dynamics is

simply a Brownian particle of diffusion rate 2d(n0) for all time, we may average
over the tracer particle trajectory until first collision, and, in doing so, we see

that PN

(
x1(T ) ∈ A

)
is at most a n0

n0+n1

( d(n0)
d(n0+n1)

)d/2
-multiple of the probabil-

ity μx,2d(n0)T (A) that the altered dynamics tracer particle reaches A at time
T . Taking a supremum in n1 heuristically explains (7.9) when N = 2. When
N > 2, the tracer particle may collide several times, with particles of successive
masses n1, n2, · · · , nk, say. In essence, the same line of argument works, with

a comparison factor of
∑ i−1

j=0 nj∑ i
j=0 nj

(
d(
∑ i−1

j=0 nj)

d(
∑ i

j=0 nj)

)d/2
being associated to the ith colli-

sion. The product of these telescoping factors, m0∑k
j=0 nj

(
d(n0)

d(
∑k

j=0 nj)

)d/2
, is then

an upper bound on the ratio of the probabilities of x1(T ) ∈ A in the interacting
model PN and in the model formed from PN by the suppression of all collisions
on the part of the tracer particle. Heuristically this also explains the form (7.9)
when N ≥ 2.

7.2.3. Deriving Proposition 7.2 when k = 1

Proof of Lemma 7.3. We turn to the rigorous argument establishing the gen-
eral inductive step. Let N ≥ 1 be given. Assume then that the statement of
Lemma 7.3 is known for values of the inductive parameter strictly less than N .
We will analyse Px,n0,χ

N

(
x1(T ) ∈ A

)
as an average of the conditional probability

of x1(T ) ∈ A given the tracer particle trajectory until immediately before the
first collision. To this end, for t ≥ 0, we write Ft for the σ-algebra generated
by the PN -random variables x1 : [0, t] → R

d ∪ {c} and m1 : [0, t] → N ∪ {c},
so that the information available in Ft is the data given by monitoring the
tracer particle during [0, t]. We also write F−

t for the σ-algebra generated by{
Fs : 0 ≤ s < t

}
, representing the information concerning the tracer particle’s
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history which is available immediately before time t. Let σ1 ≥ 0 denote the time
of the tracer particle’s first collision. We also set σT

1 = σ1 ∧ T .
Note then that we may express

P
x,n0,χ
N

(
x1(T ) ∈ A

)
= EP

x,n0,χ
N

(
x1(T ) ∈ A

∣∣∣F−
σT
1

)
.

Note that in the right-hand side, we are writing the probability that x1(T ) ∈ A
as an average over tracer particle histories up to, but not including, the first
collision time. We consider separately the cases where the first tracer particle
occurs before, or after, time T (and certainly the first case will be the more
demanding). That is, we work with the identity

P
x,n0,χ
N

(
x1(T ) ∈ A

)
= E

x,n0,χ
N

[
E

[(
1σ1<T + 1σ1≥T

)
1x1(T )∈A

∣∣F−
σT
1

]]
. (7.11)

To begin treating the more difficult, ‘before’, case, we note that, given any
instance of data in F−

σT
1
for which σ1 < T , it is known that the tracer particle is

about to experience a collision at time σ1, even though the mass of the second
particle participating in the collision and the collision’s outcome – the survival
or perishing of the tracer particle – remain random events. Consider the instan-
taneous future of the tracer particle trajectory under the law P

x,n0,χ
N

(
·
∣∣F−

σT
1

)
.

We may denote by n1 the mass of the particle with which the tracer particle
collides at time σ1; note that under the conditional law, n1 is a random variable.
Let S denote the event that the tracer particle survives this collision, so that
the conditional probability of S under P

x,n0,χ
N

(
·
∣∣F−

σT
1
, n1

)
equals n0

n0+n1
. If Sc

occurs, then x1 immediately arrives in the cemetery state c, so that, if σ1 < T ,
there is no possibility that x1(T ) ∈ A in this event. On the other hand, should
S occur, m1(σ1) = n0 + n1, so that we are able to note that

E

[
1σ1<T1x1(T )∈A

∣∣F−
σT
1

]
(7.12)

= 1σ1<T · E
[
1x1(T )∈A1S

∣∣F−
σT
1

]
= 1σ1<T

∫
n0

n0+n1
P
x1(σ1),n0+n1,φ
n

(
x1(T − σ1) ∈ A

)
dμ(n,n1,φ) .

Here, the triple (n, n1, φ) records the following random data:

• n, the number of surviving particles immediately after the collision at time
σ1;

• n1, the mass of the particle with which x1 collides at time σ1;
• and φ ∈ (Rd × N)n−1, the vector of locations and masses of the particles

other than the tracer particle at this time;

while μ(n,n1,φ) denotes the F−
σT
1
-measurable random measure that specifies the

conditional distribution of (n, n1, φ) under the law P
x,n0,χ
N

(
·
∣∣F−

σT
1

)
.

Since a collision occurs at time σ1, n is necessarily at most N −1, so that the
inductive hypothesis may be applied to bound above the term
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P
x1(σ1),n0+n1,φ
n

(
x1(T − σ1) ∈ A

)
appearing in the integrand above. We find

that, for each n ≥ 1,

sup

1≤k≤N−1,φ∈
(
Rd×N

)k−1

P
x1(σ1),n0+n,φ
k

(
x1(T − σ1) ∈ A

)

≤ sup
n′≥n0+n

n0+n
n′

(d(n0+n)
d(n′)

)d/2 · νx1(σ1),2d(n0+n)(T−σ1)(A) .

The right-hand side is at most

sup
n′≥n0+n

n0+n
n′

(d(n0)
d(n′)

)d/2 · νx1(σ1),2d(n0)(T−σ1)(A)

due to the uniform bound (7.10) in the guise
dνx,2d(n0+n)s

dνx,2d(n0)s
(y) ≤

( d(n0)
d(n0+n)

)d/2
with s = T − σ1 (and for any x, y ∈ R

d).
Equipped with this information, we may return to the second line of (7.12),

and note the cancellation arising from the product of the terms n0

n0+n1
and

n0+n1

n′ . Thus, we obtain an upper bound on the ‘before’ case term in (7.11):

E

[
1σ1<T1x1(T )∈A

∣∣F−
σT
1

]
≤ 1σ1<T · sup

n′≥n0+1

n0

n′

(d(n0)
d(n′)

)d/2 ·νx1(σ1),2d(n0)(T−σ1)(A) .

For the ‘after’ case, we merely note that

E

[
1σ1≥T1x1(T )∈A

∣∣F−
σT
1

]
= 1σ1≥T1x1(T )∈A .

We may now rejoin (7.11) to learn that

P
x,n0,χ
N

(
x1(T ) ∈ A

)
(7.13)

≤ E
x,n0,χ
N

[
1σ1<T · sup

n′≥n0+1

n0

n′

(d(n0)
d(n′)

)d/2
·νx1(σ1),2d(n0)(T−σ1)(A) + 1σ1≥T1x1(T )∈A

]
.

To bound above the right-hand side, note first that

E
x,n0,χ
N

[
1σ1<T · νx1(σ1),2d(n0)(T−σ1)(A)

]
≤ νx,2d(n0)T (A) .

To see this, recall that, when σ1 < T , νx1(σT
1 ),2d(n0)(T−σ1)(A) is the probability

that an independent Brownian motion of diffusion rate 2d(n0) beginning from
x1(σ1) at time σ1 visits A at time T ; in the above left-hand side, the mean
is taken over trajectories of a Brownian motion x1 : [0, σ1] → R

d of diffusion
rate 2d(n0) with initial condition x1(0) = x. That is, the value of this left-hand
side is given by the probability that a Brownian motion of diffusion rate 2d(n0)
which at time zero is at x visits A at time T (and that an auxiliary stopping
time, σ1, occurs before T ).
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Similarly, we have that

E
x,n0,χ
N

[
1σ1≥T1x1(T )∈A

]
≤ νx,2d(n0)T (A) .

Indeed, the subprobability measure Px,n0,χ
N

(
· ∩{σ1 ≥ T}

)
is stochastically dom-

inated by Brownian motion begun at x of diffusion rate 2d(n0), since the tra-
jectory of x1 suffers no collision on [0, T ] under this defective law.

The last inferences when allied with (7.13) yield

P
x,n0,χ
N

(
x1(T ) ∈ A

)
≤ sup

n′≥n0

n0

n′

(d(n0)
d(n′)

)d/2 · νx,2d(n0)T (A) ;

this is (7.9) for index N , so that the inductive proof of Lemma 7.3 is complete.

Proof of Proposition 7.2 with k = 1. Using the fact that the tracer particle has
mass n0 ∈ N at time zero with probability Z−1||hn0 ||L1(Rd), Lemma 7.3 yields
the deduction that

PN

(
x1(T ) ∈ A

)
≤ Z−1

∑
n0≥1

||hn0 ||L1(Rd) · n0d(n0)
d/2

× sup
n≥n0

n−1d(n)−d/2 · E
(
νXn0 ,2d(n0)T (A)

)
.

We need to explain some notation on this right-hand side. First we mention
that the summand indexed by n0 corresponds to the tracer particle beginning
with mass n0. As such, the quantity Xn0 is intepreted as the initial location of
the tracer particle given that it has this initial mass; that is, Xn0 is a random
variable having the law of x1(0) given that m1(0) = n0, so that Xn0 has density

hn0 (·)
||hn0 ||L1(Rd)

on R
d. The mean in the final term in the summand is taken over

Xn0 .
Now, the heat equation decreases the L∞-norm, so that E

(
νXn0 ,2d(n0)T (A)

)
≤

1
||hn0 ||L1(Rd)

�n0 ·μ(A), where recall that �n0 = ||hn0 ||L∞(Rd). In this way, we obtain

Proposition 7.2 with k = 1.

7.2.4. Monitoring several tracer particles at once

The proof of Proposition 7.2 when k > 1 extends the argument for the case that
has already been proved. In asking about the distribution at time T of collections
of particles of size k, rather than about single particles, we generalize the concept
of the tracer particle. Where before the tracer particle was the particle of lowest
index, we now consider an ordered list of k tracer particles (for given k ∈ N),
these being the particles with indices 1, 2, · · · , k. The symmetry of the initial
particle placement means that the joint law of the tracer particles is that of a
k-sized collection of particles chosen uniformly at time zero independently of
other randomness.

As did the special case when k = 1, Proposition 7.2 will follow from a stronger
assertion which will be established by induction on N .
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Lemma 7.4. Given y = (y1, . . . , yk) ∈ R
d, n = (n1, . . . , nk) ∈ N

k and χ ∈(
R

d×N
)N−k

, we denote by P
y,n,χ
N the law PN , conditionally on the tracer particle

initial data taking the form xi(0) = yi, mi(0) = ni for 1 ≤ i ≤ k, and on the
other N−k particles at time zero having locations and masses given by χ. Then,
for all such data, and for any T ≥ 0 and open Ai ⊆ R

d, 1 ≤ i ≤ k,

P
y,n,χ
N

( ⋂
1≤i≤k

{
xi(T ) ∈ Ai

})
≤

k∏
i=1

sup
m≥ni

ni

m

(d(ni)
d(m)

)d/2
νyi,2d(ni)T (Ai) . (7.14)

Proof. The proof of the lemma is in essence the same as that of Lemma 7.3.
It works by induction on N , beginning with N = k. Under the law PN , let
σ ≥ 0 denote the time of the earliest collision experienced by any one of the k
tracer particles. Set σ′ = min{σ, T}. If σ′ < T then either two tracer particles
collide at time σ′, rendering the event that each such particle reaches its target
set Ai at time T impossible, or one of the tracer particles collides with one of
the N − k non-tracer particles. The latter case is the non-trivial one, and it
may be analysed exactly as in the proof of Lemma 7.3: if the tracer particle in
question perishes on collision, it is assigned to the state c and there is nothing to
prove; otherwise, it survives, assumes some added mass, among at most N − 1
other particles. The inductive hypothesis is applied to the new post-collision
scenario.

Proof of Propositon 7.2. First note that we may find an upper bound on the PN -
probability that the tracer particles respectively arrive in the sets Ai, 1 ≤ i ≤ k,
at time T by using Lemma 7.4 and averaging the provided bound over the initial
data of the k tracer particles. We find that

PN

( ⋂
1≤i≤k

{
xi(T )∈Ai

})
≤
∑
n̄∈Nk

∫ k∏
i=1

sup
m≥ni

ni

m

(d(ni)
d(m)

)d/2
νxi,2d(ni)T (Ai) dμn̄(ȳ) .

(7.15)
A few words of explanation concerning notation and reasoning are necessary.
First, we are here writing n for the k-vector (n1, · · · , nk) and y for (y1, · · · , yk).
The right-hand summand is an upper bound for the probability of the intersec-
tion of the events that

• for each i ∈ {1, · · · , k}, the ith tracer particle is in Ai at time T ,
• and the initial mass vector of the tracer particles equals n.

The law μn denotes the sub-probability measure given by the initial distribution
of tracer particle locations when the initial tracer particle k-vector equals n. Note
that the density at (y1, · · · , yk) of μn equals Z−k

∏k
i=1 hni(yi).

To bound above the right-hand side of (7.15), we begin by noting that, for
given n ∈ N

k, the expression

∫ k∏
i=1

νyi,2d(ni)T (Ai) dμn(y)
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may be represented as the product of k terms. The ith of these terms is the
probability that a certain particle is present in Ai at time T . This particle may
or may not be born at time zero; it must be born if it is to appear in Ai at
time T . The density of the particle’s time zero location equals Z−1hni , so that
its probability of birth equals the single tracer particle’s probability of being
assigned mass ni initially. The particle then follows a Brownian trajectory at
rate 2d(ni). The ith term is at most Z−1�niμ(Ai), where recall that �ni is the
supremum of hni (this due to a short argument that depends principally on
the result that the heat equation decreases the supremum norm). Returning
to (7.15), we find then that

PN

( ⋂
1≤i≤k

{
xi(T ) ∈ Ai

})
≤
∑
n̄∈Nk

k∏
i=1

sup
m≥ni

ni

m

(d(ni)
d(m)

)d/2 · k∏
i=1

Z−1�niμ(Ai)

whose right-hand side equals

Z−k
k∏

i=1

μ(Ai) ·
( ∞∑

n=1

sup
m≥n

n
m

( d(n)
d(m)

)d/2
�n

)k

= Z−k
( ∞∑

n=1

nd(n)d/2�n sup
m≥n

m−1d(m)−d/2
)k k∏

i=1

μ(Ai) .

That is, the PN -probability of respective tracer particle occupation of the sets
Ai, 1 ≤ i ≤ k, is at most Kk

∏k
i=1 μ(Ai), as we sought to show.

7.3. Uniform integrability

We now use Proposition 7.2 to prove Propositions 4.3 and 4.4.

Proof of Propositions 4.3 and 4.4. We prove the results together, seeking a con-
tradiction to the assumption that one or other proposition is false. We are thus
supposing that, for somem ∈ N, the density fm either fails to exist, or that it ex-
ists but has no finite supremum bound. Either way, we find that, for all C > 0,
there exist ε > 0, T > 0 and A ⊆ R

d open such that, for some subsequence{
Ni : i ∈ N

}
⊆ N,

PNi

(
|χm

T ∩A| ≥ CNiμ(A)
)
≥ ε , (7.16)

where here we write χm
T for the set of locations of mass m particles at time T .

In other words, if we call a particle in the Ni-indexed system that remains alive
at time T , and then has mass m and is located in A, a target particle, then
there is probability at least ε that the proportion of the original particles that
are target particles is at least Cμ(A). We may express this event in terms of
the k-vector of tracer particles from Proposition 7.2. If |χm

T ∩A| equals a given
� ∈ N, then the proportion of ordered k-vectors of initial particles all of whose

elements are target particles is
(

k

)(
Ni

k

)−1
. When � equals rμ(A)Ni for r bounded
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away from zero as i → ∞, this last expression is asymptotic to rkμ(A)k. We
infer from (7.16) that, for any given k ∈ N and all sufficiently high i ∈ N,

PNi

( k⋂
i=1

{
xi(T ) ∈ A

})
≥ 1

2ε · C
kμ(A)k ,

where here we also used symmetry of the initial particle locations in the form
that this probability is the same for the special k-sized set {1, · · · , k} as it is
any given k-sized subset of {1, · · · , Ni}.

Of course, Proposition 7.2 with each set Ai set equal to A provides an upper
bound on the above probability, of Kkμ(A)k, where K’s value is specified in the
proposition. Thus, ε/2 · Ck is at most Kk for each k ∈ N. The constant C is
seen to be at most K, contradicting our assumption.

7.4. Deriving mass conservation

Recall from Subsection 2.4.1 the notion that a solution of the Smoluchowski PDE
conserves mass on [0, T ) for some T ∈ [0,∞]. In this short auxiliary section, we
employ the analytic Lemma 7.1 concerning absence of particle concentration
alongside a short futher analytic argument in order to show that, under certain
conditions, there exists a weak solution of (1.10) that conserves mass.

Proposition 7.5. Suppose that d : N → (0,∞) is non-increasing, and that
either

1. there exists α ∈ (0, 1) and α0 ∈ (0, α) such that β(n,m) ≤ nα0 +mα0 for
n,m ∈ N, and d(m) ≥ m−(1−α) for m ∈ N;

2. or there exists c > 0 such that β(n,m) ≤ c(n + m) for n,m ∈ N, and
infn∈N d(n) > 0.

Then there exists a weak solution of (1.10) that conserves mass on [0,∞).

We will attempt the proof under for the second set of hypotheses and will
omit some details.

Sketch of proof. Since we assume that the second set of hypotheses hold, note
that, by Lemma 7.1, any weak solution

{
fn : n ∈ N

}
is such that

∑∞
n=1 nfn(x, t)

is bounded uniformly in space and time.

Lemma 7.6. Let R(t, ·) : Rd → [0,∞) be given by R(t, ·) =
∑∞

n=1 n
2fn(·, t).

Then, for each t ≥ 0, R(t) ∈ L1(Rd).

Proof. Set X : [0,∞) → [0,∞], X(t) =
∫
Rd R(t, x) dx. Then

dX

dt
(t) = 2

∫
Rd

∑
n,m≥1

nmβ(n,m)fn(x, t)fm(x, t) dx ; (7.17)

one may interpret this equality by noting that (n,m) → n+m coagulation occurs
at a rate equal to β(n,m)fn(x, t)fm(x, t) at the space-time location (x, t), and
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the X functional registers a change of (n+m)2 − n2 −m2 = 2nm as a result of
any such collision. The right-hand side of (7.17) is at most

4

∫
Rd

(∑
n

cn2fn(x, t)
)(∑

m

mfm(x, t)
)
dx

≤ 4cX(t) · sup
x∈Rd

∑
m

mfm(x, t) ≤ CX(t) ,

where the first inequality (‘is at most’) employed β(n,m) ≤ c(n+m), and the
third, uniform boundedness in space and time of

∑
n nfn.

By Gronwall’s lemma, X(t) ≤ c1 exp
{
c2t
}
for all t ≥ 0 and for some c1, c2 >

0, whence the result.

To establish Proposition 7.5, it is enough to show that

lim
N→∞

d

dt

∫
Rd

( N∑
n=1

nfn(x, t)
)
dx = 0 . (7.18)

To derive this, note that

d

dt

∫
Rd

N∑
n=1

nfn(x, t)

= − 2
∑

n,m∈N

1n≤N<n+mnβ(n,m)fn(x, t)fm(x, t)

≥ − 2c
∑

n,m∈N

1n≤N<n+mn(n+m)fn(x, t)fm(x, t) ≥ ΩN
1 (x, t) + ΩN

2 (x, t) ,

where

ΩN
1 (x, t) = − 2c

∑
n,m∈N

1n≤N/2,m>N/2 · n(n+m)fn(x, t)fm(x, t)

and
ΩN

2 (x, t) = − 2c
∑

n,m∈N

1n>N/2 · n(n+m)fn(x, t)fm(x, t) .

We will derive (7.18) by showing that
∫
Rd

∣∣ΩN
i (x, t)

∣∣ dx → 0 as N → ∞, for
i ∈ {1, 2}.

To this end, note that∣∣ΩN
2 (x, t)

∣∣ ≤ ∑
n≥N/2

n2fn(x, t) ·
∑
m≥1

fm(x, t) +
∑

n≥N/2

nfn(x, t) ·
∑
m≥1

mfm(x, t) .

Of the four sums on the right-hand side, the first (and thus the third) has L1
Rd -

norm tending to zero by Lemma 7.6 and the dominated convergence theorem,
while, as we have noted, the fourth (and thus the second) is uniformly bounded
in space and time.
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Turning to Ω1, we have that∣∣ΩN
1 (x, t)

∣∣ ≤ ∑
n≥1

n2fn(x, t) ·
∑

m≥N/2

fm(x, t) +
∑
n≥1

nfn(x, t) ·
∑

m≥N/2

mfm(x, t) .

The first and third sums are in L1
Rd ; the second and fourth converge to zero

uniformly as N → ∞. This establishes (7.18) and completes our derivation of
Proposition 7.5.

8. Review and summary

In this section, we list those instances where our derivation of Theorem 1.1 was
incomplete, explaining where the proof is furnished in [11]; discuss an impre-
cision in the proof of [11] which we have sought to clarify by our presentation
in this survey; and make a limited comparison between our present method
of proof of key estimates by means of particle concentration bounds with the
approach adopted in [11].

8.1. The list of shortcuts in the survey’s proofs

In our proof of Theorem 1.1, several steps are omitted. Beyond the absence
of a proof of the classical Feynman-Kac formula, in the guise that v(x, t) in
Lemma 1.6 satisfies the PDE (1.15), the missing steps are:

• In the reduction of Proposition 4.1 to Proposition 5.1 undertaken in Sec-
tion 5.1, the test function Jn(x, t) was chosen to be equal to be identically
one. The more general case requires only a few further lines of argument:
see [11, Section 3.5].

• Proposition 4.2, showing smallness of the martingale M(T ) in (4.1), is not
proved. See [11, Section 5].

• In the proof of Proposition 5.1 in Section 6, the form of the test functions
J(x, n, t) and J(x,m, t) was simplified so that they have no space-time
dependence. When this simplification is omitted, the action of the free
motion operator in (6.5) generates some extra terms, where one or both
of the derivatives in the Laplacian fall on the test functions. The resulting
terms tend to be smoother than the existing terms, and the methods of
treating them are the same as for their rougher counterparts. See the start
of [11, Section 3] for the full scale version of (6.5) and [11, Section 3.3] for
bounds on the terms appearing in that version.

• We have offered no proof of Proposition 6.1(2), (3) and (4). Similarly to
the previous point, this omission is a simplification of the presentation of
the proof of the Stosszahlansatz. The key tools – uniform killing proba-
bility bounds and particle concentration results – apply equally to prove
these statements as we saw that they did to prove Proposition 6.1(1). See
Sections 3.3 and 3.4 of [11] for the relevant bounds, valid under the original
assumptions.
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8.2. A momentary spotlight on an obscurity

In the opening paragraph of [11, Section 4], the step counterpart to that of the
present Section 4.2 is discussed: the low ε limit is taken of the approximate
identity that is (4.1) in this survey. However, in the replacement of the collision
term by its counterpart expressed using microscopic candidate densities, which
happens by means of the Stosszahlansatz, [11] neglects to clarify that this re-
placement must be made simultaneously over the infinitely many mass pairs{
(n,m) : m ∈ N

}
, rather than merely being made for one such mass pair. What

permits this simultaneous replacement is that the bound satisfied by the error
Errn,m in Proposition 4.1 contains a sum over m ∈ N. As we have seen, the rea-
son why we are able to prove the Stosszahlansatz with such an error bound is the
uniform control on the killing probabilities uW that we saw in Subsection 6.2.2,
specifically that Lemma 6.3 is valid as the kernel W varies over choices having
given compact support. Of course, in the present survey, we have not presented
a proof of all of the required estimates for Theorem 1.1. A complete proof of
the result, under the original assumptions made in [11], is formed by rendering
[11, Lemma 3.2] uniform over (n,m) ∈ N

2; the changes needed to do this are
contained in the proof of the present Lemma 6.3.

8.3. Comparison with later kinetic limit derivations of the
Smoluchowski PDE

Several ramifications of the statement and technique of proof of [11] have been
explored by Fraydoun Rezakhanlou, sometimes in collaboration with the author
and others. We end by summarising the results so obtained and comparing the
approaches to proof in these further articles, both with the original one in [11]
and with that expounded here.

8.3.1. The particle concentration bound: its robustness and limitations

The principal technical novelty presented in this survey is the use of the parti-
cle concentration bound Proposition 6.2 to yield the key error bounds Proposi-
tion 6.1: the technique used in [11] was quite different. Our present technique
requires stronger hypotheses, but when it may be applied, it yields strong conclu-
sions about diverse aspects of particle dynamics. We now explain this summary
by drawing a contrast with the method used in [11].

First, to expand, Proposition 6.2 offers strong conclusions about the lack of
build-up in particle concentration at positives times in the models PN . However,
it has content only under the fairly restrictive hypothesis that d(m) decays no
faster than m−2/d, and, regarded as a tool to prove Proposition 6.1, its use must
be accompanied by the assumption that α(·, ·) is bounded above uniformly. Here
we make a comment about the one simple aspect of the quite different approach
that was adopted in [11] to prove the key estimates that correspond to the
present Proposition 6.1. We now state a result giving an upper bound on the
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duration [0, T ] total mean collision rate in the models PN . It is [11, Lemma 3.1],
which we call the “bound on the collision”.

Lemma 8.1. For any N ∈ N, and for T > 0,

εd−2
EN

∫ T

0

ds
∑

i,j∈Iq

α(mi,mj)Vε(xi − xj) ≤ Z .

Proof. Let X(T ) denote the number of surviving particles in PN at time t.
Consider the variant of (4.1) in which the term Jn is replaced by 1 and the
result summed over n ∈ N, so that, for example, the first sum is a total particle
count at time T . Taking expectations, we find that, for any T > 0,

ENX(T ) = ENX(0) +

∫ t

0

ENAFX(t)dt+

∫ t

0

ENACX(t)dt . (8.1)

Particle count is conserved by free motion, so that ENAFX(t) = 0. On the other

hand, the integrated mean collision rate
∫ t
0
ENACX(t)dt is equal to EN

∫ T
0
ds×∑

i,j∈Iq
α(mi,mj)Vε(xi−xj). By (8.1), this quantity equals ENX(0)−ENX(T )

which is at most ENX(0) = N . Since N = Zε2−d by (1.7), we obtain the
result.

Of course, the proof is almost a triviality. However, it already highlights dif-
ferences with, and the limitations of, the particle concentration bound Proposi-
tion 6.2. Let us try to emulate this unprepossessing lemma’s conclusion by using
Proposition 6.2. By merely applying this result without using further tricks, the
best we can do is the following.

Claim 8.2. For any N ∈ N, K > 0 and T > 0, we have that

εd−2
EN

∫ T

0

ds
∑

i,j∈Iq

α(mi,mj)Vε(xi − xj)1||xi(t)||≤K

≤ T · (2K)d · ||V ||∞ · sup
n,m

α(n,m)

·
(
sup
m≥1

m−1d(m)−d/2

)2
·
( ∞∑

n=1

nd(n)d/2||hn||∞

)2

.

Proof. The relation N = Zε2−d and Proposition 6.2 applied with k = 2 show
that, for any time t ∈ (0,∞),∑

i,j∈[1,N ]

PN

(
||xj(t)− xi(t)||1||xi(t)||≤K ≤ ε

)
≤ N2

PN

(
||x2(t)− x1(t)|| ≤ ε , ||xi(t)|| ≤ K

)
≤ Z2ε2(2−d) · (2K)dεd · Z−2

(
sup
m≥1

m−1d(m)−d/2

)2
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·
( ∞∑

n=1

nd(n)d/2||hn||∞

)2

.

Note also that∑
i,j∈[1,N ]

EN

[
α
(
mi(t),mj(t)

)
V
(xi(t)−xj(t)

ε

)]

≤ sup
n,m

α(n,m) · ||V ||∞ ·
∑

i,j∈[1,N ]

PN

(
||xj − xi|| ≤ ε

)
.

If we multiply the above left-hand side by εd−2, and then further by ε−2 –
which we do because Vε(·) = ε−2V

(
· /ε
)
– and integrate over [0, T ], then we

obtain the left-hand side in the statement of the claim. Thus, the claim follows
from the above two inequalities.

Claim 8.2 falls short of Lemma 8.1 in a number of ways. One of these is
a minor point: the use of the localization event ||xi(t)|| ≤ K, employed to
permit the application of Proposition 6.2. Lemma 6.4 can easily be used to
dispense with this detail, at the expense of an increase in the constant on the
right-hand side in the claimed inequality. A more important shortcoming is the
appearance of the factor supn,m α(n,m) on this right-hand side. The reason that
such a factor appears is because particle pair presence at distance of order ε at
positive times is penalized due to the microscopic repulsion phenomenon which
has been central to this survey, and which in particular we discussed in Section 3.
Crudely, if α(n,m) is high, then the density for such presence is not of order
εd−2 but of order α(n,m)−1εd−2. Proposition 6.2 is not built to acknowledge
this microscopic repulsion effect and the unwanted α goes uncancelled when the
proposition is applied.

Lemma 8.1 experiences no such limitation. But of course its description of
positive time particle distribution is limited to a very specific aspect of the
overall dynamics; in comparison, Proposition 6.2 is a robust tool, that will say
something meaningful about any such aspect, when its hypotheses are satisfied.

Lemmas 3.2 and 3.3 of [11] form the counterpart to the present Proposi-
tion 6.2 in the sense that they are tools used to prove the present Proposi-
tion 6.1. The two lemmas treat several aspects of particle dynamics other than
the bound on the collision given in Lemma 8.1. The proofs of these results gen-
eralize that of Lemma 8.1 in the sense that the mean value of variants of (4.1)
are considered and their terms bounded. In the case of [11, Lemma 3.3], some of
these terms involve sums over triples of particle indices, with one of the indices
having no restriction on the mass parameter. In such cases, (1.11) in the origi-
nal assumptions is invoked during a proof by induction in order to find suitable
bounds.

8.3.2. The planar case: the route to the PDE

In Section 2.5, we mentioned that, in [10], the kinetic limit derivation counter-
part to that of [11] was undertaken for dimension d = 2; we also reviewed the
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main changes to Theorem 1.1’s statement in this case. The technique of proof
is the same as in the original work, with the principal technical change con-
cerning the particle distribution result [11, Lemma 3.2], where the proof may
not be directly utilized because the non-negativity of the solution H of Pois-
son’s equation −ΔH = J (for a given non-negative J) is enjoyed in dimension
d ≥ 3 but not d = 2. We refer the reader to [10] for further discussion of this
technicality. However, we note that the robustness of the particle concentration
bound Proposition 6.2 has the virtue of permitting the extension of the proof
of Theorem 1.1 developed in this survey to the case d = 2, under the survey
assumptions, without any comparable technical difficulty arising.

The kinetic limit derivations of [11] and [10] were extended to cases of variable
radial dependence for particles in [25]; see the present Subsection 2.4.2. The
technique of proof, including the treatment of particle distribution bounds, is
similar to that of the earlier works.

8.3.3. The case of continuous mass and a different approach to particle
concentration

As we mentioned after the equations in Section 1.2, the Smoluchowski coagula-
tion-diffusion PDE has a continuous counterpart, where the mass parameter is
now a non-negative real. The kinetic limit derivation of the PDE is revisited
in [34] in the case that d ≥ 3 for the PDE with continuous mass parameter.
The principal innovation of the article is [34, Theorem 3.1], a tool for proving
particle concentration which is novel in comparison with that of [11] and [10].
This technique has distinct similarities with our tracer particle proof of Propo-
sition 6.2: the comparison of diffusion rate dependent terms in [34, (3.6)] is a
rough counterpart to (7.10).

8.3.4. The planar case with fragmentation: equilibrium fluctuations

The Smoluchowski PDE may be modified to include interaction terms corre-
sponding to pairwise particle fragmentation. In the models PN , we may model
this fragmentation effect by declaring that a particle of given mass is subject
to fragment at the ring times of a Poisson clock that ticks at a mass-dependent
rate. On fragmenting, the particle splits in two. The detailed rule for this split-
ting may be chosen to be a “dual” of the rule specified for coagulation under the
heading “the precise mechanism for collision” in Section 1.3: the fragmenting
particle retains its location, and some random proportion of its precollisional
mass, while a new particle, bearing the residue of that mass, appears in a ran-
domly selected microscopic vicinity of the fragmenting particle’s location.

Of course, one may attempt to carry out a kinetic limit derivation of the
Smoluchowski coagulation-fragmentation-diffusion PDE from microscopic mod-
els PN that have been altered in this manner. Such results have yet to be proved,
though important elements for proofs are suggested in [24]. In this article, Ran-
jbar and Rezakhanlou studied a different aspect of particle dynamics in the case
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that dimension d equals two. The assertion that macroscopic particle densities
adhere to a solution of the Smoluchowski PDE is in a sense a weak law of large
numbers. What of the analogue of the central limit theorem, a result describing
the typical fluctuation of particle density statistics in high indexed PN from the
density profile offered by the PDE solution? In [24], the authors define empirical
fluctuation fields under PN , modelling the discrepancy as a function of space-
time of the empirical density of particles from the prediction made by the PDE
solution, normalized by a square root of total particle number, in the style of
the central limit theorem. In [24, Conjecture 2.1], it is conjectured that, in a
high N limit, the fluctuation field converges to a random limit that solves an
Ornstein-Uhlenbeck equation under which the density profile diffuses freely and
is subject to coagulative and fragmentative forces specified by a linearization
of those present in the PDE, as well as to a space-time dependent white noise
stimulus determined by the PDE solution.

Proving this conjecture is likely to be a demanding task, probably much more
difficult than that of adapting existing techniques to carry out the kinetic limit
derivation of an analogue of Theorem 1.1. (The reason for the added difficulty
is essentially that the rate of decay to zero of the various error terms in the
microscopic counterpart to the weak PDE solution must be shown to converge
to zero at a sufficiently fast rate.) Despite this degree of difficulty, the authors
of [24] advance a case for the conjecture by rigorously analysing the system at
equilibrium. The modified microscopic models PN have mechanisms for both
coagulation of pairs of particles, and fragmentation of particles into pairs; and
these mechanisms have been chosen so that the film of the coagulation event
when played in reverse shows the fragmentation event. Thus, the equilibrium
measures of the laws PN may be explicitly identified: under them, the distribu-
tion of particles of any given mass is simply a Poisson process (of some constant
intensity determined by the mass), with the clouds of particles of distinct masses
being independent. In [24, Theorem 3.1], the conjecture of convergence to the
Ornstein-Uhlenbeck process mentioned above is proved for the system at these
equilibria. The proof requires an understanding of the relation between micro-
scopic and macroscopic interaction propensities which extends (2.4) to treat
fragmentation but also involves an unexpected interaction with the free motion
dynamics.
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