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1. Introduction

In the type of statistical models considered here, a fixed underlying graph carries
a random realization of a structure, consisting of values (boolean, in a finite
alphabet or scalar) carried by bonds (edges) or sites (vertices), and usually
interacting via local rules. We will focus on the Ising and Potts models (and
more generally cyclic and abelian spin models), where each site carries a random
“spin”; the discrete Gaussian free field, where a scalar height function is defined
on sites; the random cluster model, where realizations are random subgraphs;
and the six-vertex model, where each edge has a random orientation.

The key question is to understand the large scale random structures generated
by these local interactions. For instance, one may study the correlations between
local configurations observed at large distance on the underlying graph. We will
generically refer to (functions of) these local inputs as order variables.

Historically, a fundamental tool, introduced by Kramers and Wannier in
the context of the Ising model, is duality, which maps the model defined on
a (weighted) graph to the same model on another (weighted) graph. Of partic-
ular interest are the “fixed points” of these duality transformations; they often
coincide with a critical point of the model, at which one can observe large scale
random structures. This type of duality is observed in a variety of models, and
for abelian models can be phrased in terms of the Fourier-Pontryagin transform
and the Poisson summation formula.

Again in the context of the Ising model, Kadanoff and Ceva showed that under
duality, order variables are mapped to “disorder” variables, which represent a
modification of the state space by the introduction of local “defects”; moreover,
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the field-theoretic concept of fermion finds a combinatorial incarnation as the
combination of an order and a disorder variable at microscopic distance. Such
combinations are referred to as parafermionic or spinor variables.

In these notes, we will describe duality, order, disorder, and spinor variables
for abelian spin models and the discrete free field. We then discuss combinatorial
mappings between the Potts model, the random cluster model, the six-vertex
model, and the dimer model.

For focus and (relative) self-containedness, we do not discuss here a number
of major contiguous subjects. These include: phase transition, transfer matrices
and Bethe ansatz [2, 38], Yang-Baxter solvability [2], infinite volume measures
[15, 18] and limit shapes [3, 27, 38], scaling limits and Schramm-Loewner Evo-
lution [47, 43].

2. Spin models

2.1. Ising model

Definition

In the Ising model [32, 36, 19], a configuration on an underlying finite graph
Γ = (V,E) consists of an assignment of a spin value σ(v) ∈ {1,−1} to each
vertex v ∈ V . The weight of a configuration is:

w(σ) =
∏

e=(vv′)∈E

exp (βJeσ(v)σ(v
′))

where Je 6= 0 is a coupling constant attached to the edge e ∈ E and β > 0 is
the inverse temperature. Plainly the model (up to normalization) depends only
on the edge weights:

w(e) = exp(−2βJe)

It is occasionally convenient to allow w(e) = 0, i.e. Je = +∞. Note that these
weights are invariant under spin flip: w(−σ) = w(σ). One may also consider
± boundary conditions, that is, fixing the values of spins to ±1 on some pre-
scribed subsets V ± of V (the configuration space then consists of spin collections
(σ(v))v∈V s.t. σ(v) = ±1 for v ∈ V ±). One may also consider some segments
on the boundary to be wired, viz. connected by edges with zero weight, so that
the only contributing configurations are constant on these segments (a wired
arc may be equivalently represented as an extended vertex).

The partition function is

Z = Z(Γ, (Je)e∈E) =
∑

σ:V →{±1}
w(σ)

We denote the expectation under the probability measure given by P(σ = σ0) =
w(σ0)/Z by 〈·〉.
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Fig 1. Left: a portion of a planar graph Γ. Right: its dual Γ†.

A classical object of interest is the spin correlation

〈σ(v1) · · ·σ(vn)〉

for v1, . . . , vn graph vertices (in particular when they are at large distance) and
the spin variables σ(v)’s are fundamental examples of order variables.

The spin correlations depend on the boundary conditions. A wired arc may
be seen as a boundary arc along which couplings are infinite (vanishing edge
weights); in turn, ± boundary arcs may be represented in terms of wired arcs
and spin variables. For example, if γ+, γ− are two disjoint boundary arcs, we
have

〈X〉+,− =

〈
X · 1+σ(x)

2 · 1−σ(y)
2

〉
w,w〈 1+σ(x)

2 · 1−σ(y)
2

〉
w,w

where X is a generic random variable, the expectation on the LHS is for ±
boundary conditions on γ±, and the expectations on the RHS are for γ+, γ−

(separately) wired arcs. This shows that, allowing for general couplings, it is
enough to treat free boundary conditions.

From now on we will consider the planar case; Γ† = (V †, E†) denotes the
planar dual of Γ, so that faces of Γ correspond to vertices of Γ†, and vice-versa
(Figure 1).

More precisely, it is rather convenient to think of vertices on a wired arc
of the boundary as a single extended vertex; and to connect vertices on a free
boundary or extended vertices to a vertex at infinity by edges with weight 1
(i.e. with no interaction). If e ∈ E, we denote e† the corresponding edge of Γ†;
for oriented edges, e† crosses e from right to left.

Graphical expansions

In the low-temperature regime (β ≫ 1), disagreements between neighboring
spins are severely penalized. The low temperature expansion of the Ising model
consists in mapping a spin configuration (σv)v∈V to a subgraph P = (V †, EP )
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of Γ†, where EP = {e = (vv′)† ∈ E† : σ(v)σ(v′) = −1}. At low temperature
this graph is typically sparse. The spins (σv) may be recovered from P up to
an overall spin flip (in the case of free boundary conditions). It is easily checked
that P is an even degree subgraph of P ; such subgraphs are called polygons.

The (unnormalized) Ising measure on spins (σv) projects to a measure on
polygons:

w(P ) = 1{P admissible}
∏

e∈EP

w(e†)

omitting a multiplicative factor 2 (for overall spin flip).
Let us turn to the high temperature expansion. Since σ(v)σ(v′) = ±1, we may

write
exp(βJeσ(v)σ(v

′)) = cosh(βJe) (1 + tanh(βJe)σ(v)σ(v
′))

Let us define a dual edge weight:

w′(e) = tanh(βJe)

In the high temperature regime (β ≪ 1), these dual edge weights are close to 1.
Starting from the partition function, we obtain

Z(Γ, (Je)e) =
∑

σ:V →{±1}

∏

e=(vv′)∈E

exp(−2βJe1{σ(v)σ(v′)=−1})

=
∏

e∈E

cosh(βJe)
∑

σ:V →{±1}

∏

e=(vv′)∈E

(1 + w′(e)σ(v)σ(v′))

=
∏

e∈E

cosh(βJe)
∑

σ:V →{±1}

∑

E0⊂E

∏

e∈E0

w′(e)σ(v)σ(v′)

by fulling expanding the product. Then exchanging summations leads to

Z(Γ, (we)e) = 2|V |
∏

e∈E

cosh(βJe)
∑

P polygon

∏

e∈EP

w′(e)

Then comparing high and low temperature expansions, we have the Kramers-
Wannier duality [29, 30] for partition functions:

Z(Γ, (Je)e) = 2|V |
(∏

e∈E

cosh(βJe)

)
Z(Γ†, (J†

e ))

where
e−2βJ†

e = tanh(βJe)

or w′(e) = 1−w(e)
1+w(e) . Note that w 7→ 1−w

1+w is involutive. It exchanges 0 and 1,

so that wired boundary components are exchanged with free boundary compo-
nents. To retain positive weights after the duality transformation, we need to
start from ferromagnetic couplings, i.e. Je ≥ 0.

If Γ is (a portion of) the square lattice, Γ† is identical to Γ, up to boundary
modifications. For instance, one can consider Γ to be a rectangle with half-wired
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and half-free boundary conditions, in which case Γ† is exactly isomorphic (as a
weighted graph) to Γ. Thus for the square lattice the fixed point wsd =

√
2− 1

of the duality mapping w 7→ 1−w
1+w is self-dual, in the sense that it is fixed for

Kramers-Wannier duality (at least “in the bulk”). The low-temperature regime
w < wsd and the high-temperature regime w > wsd are exchanged by duality.

Disorder variables

Let us now consider the effect of Kramers-Wannier on spin correlations 〈σ(v1)
· · ·σ(vn)〉. In the high temperature expansion (and periodic boundary conditions
for simplicity), we can write:

Z(Γ, (Je)e)〈σ(v1) · · ·σ(vn)〉 =
∑

σ∈{±1}V \V ±

σ(v1) · · ·σ(vn)
∏

e=(vv′)∈E

eβJeσ(v)σ(v
′)

and then

Z(Γ, (Je)e)∏
e∈E cosh(βJe)

〈σv1 · · ·σvn〉 =
∑

σ∈{±1}V \V ±

∑

E0⊂E

σv1 · · ·σvn
∏

e∈E0

w′(e)σvσv′

= 2|V |
∑

P⊂Γ

∏

e∈EP

w′(e)

where the sum bears on subgraphs P ⊂ Γ which have odd degree at {v1, . . . , vn}
and even degree elsewhere (by σ ↔ −σ invariance, the correlator is zero if n
is odd, in which case the sum is empty). For periodic boundary conditions
(i.e. when Γ is embedded on a torus), one requires additionally that any non-
contractible (with respect to the torus) path on Γ† crosses an even number of
edges of P .

Such a polygon with defects at {v1, . . . , vn} does not correspond to a spin
configuration on Γ†. Following Kadanoff and Ceva [23], this motivates the in-
troduction of disorder variables, which encode a modification of the state space.

The data of (σv)v∈V is equivalent, up to global spin flip, to the data (dσ(e))e∈E ,
where dσ(vv′) = σ(v′)σ(v)−1. If ω : E → {±1}, we define:

dω(f) =
∏

e∈∂f

ω(e)

where f is a face of Γ and ∂f is its (counterclockwise oriented) boundary. Up to
spin flip, spin configurations (σv)v∈V correspond to closed currents: {(ωe)e∈E :
dω ≡ 1}. (In the periodic case, there is an additional condition:

∏
e∈γ ω(e) = 1

if γ is a non-contractible path). Plainly the Gibbs weights can be written as
functions of these currents.

Introducing disorder variables µ(f1), . . . , . . . µ(fn) (f1, . . . , fn faces of Γ) con-
sists in modifying the state space to:

{(ωe)e∈E : dω = (−1)1{f1,...,fn}}
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with weights

w(ω) =
∏

e∈E:ωe=−1

w(e)

We assume that n is even (otherwise the state space is empty, as
∏

f∈Γ† dω(f) =
1 for all ω). If v, v′ ∈ V , one can define σ(v′)σ(v) =

∏
e∈γv→v′

ω(e) where γv→v′

is a path from v to v′ on Γ. Notice however that this definition depends on
the choice of γ. Indeed, if γ′ is another such path,

∏
e∈γ ω(e) = ±∏e∈γ ω(e)

depending on the parity of the number of fi’s enclosed by the loop γ′γ−1.
One can trivialize this data by choosing n

2 “defect lines” (paths on Γ†) joining
the fi’s pairwise. Then one can find σ : V → {±1} such that ω(e) = dσ(e) if
e does not cross one the defect lines. In terms of this trivialization, we have an
Ising model with antiferromagnetic (negative) couplings −Je for e ∈ E crossing
a defect line.

We can now define mixed order-disorder correlators:

〈
∏

i

σ(vi)
∏

j

µ(fj)〉Z(Γ) = 2
∑

ω:E→{±1}

dω=(−1)1F

∏

e∈γ

ω(e)
∏

e∈E:ω(e)=−1

w(e)

where {v1, . . . , v2m} ∈ Γ, F = {f1, . . . , f2n} ⊂ Γ†, γ is a union of m paths on Γ
with endpoints v1, . . . , v2m. The sign of the correlator depends on this implicit
choice of paths (or alternatively of defect lines, in which case one simply requires
that γ does not intersect defect lines).

In this case the Kramers-Wannier duality [29, 30, 23] yields:

〈
∏

i

σ(vi)
∏

j

µ(fj)〉Γ = 〈
∏

i

µ(vi)
∏

j

σ(fj)〉Γ†

where the couplings on Γ† are in duality with those on Γ.
Kadanoff and Ceva [23] identified the combination of an order variable σ and

a disorder variable µ at microscopic distance as a discrete version of the field-
theoretic notion of fermion. In particular one denotes ψvf = σvµf where v ∈ V
is on the boundary of the face f .

2.2. Abelian spin models

The Ising model may be generalized in several directions; the first we consider
here is that of abelian spin models, in which the spin variable at each vertex
takes values in a fixed finite abelian groupG. In the case G = {±1}, one recovers
the Ising model.

Given a graph Γ = (V,E) and a finite abelian group G, a configuration is a
mapping σ : V → G. For each e ∈ E, we have a weight function we : G→ [0,∞),
which is symmetric, i.e. we(g

−1) = we(g) (relaxing this condition leads to chiral
models and requires the underlying graph Γ to be oriented). Then

w(σ) =
∏

e=(vv′)∈E

w(σ(v′)σ(v)−1)
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is the weight of a general configuration. For free boundary conditions, we have
w(ρσ) = w(σ) for any ρ ∈ G.

If G = Z/qZ, we have a clock model. If furthermore we = a+b1{1}, we get the
q-state Potts model. If q = 4 and we is a general symmetric weight, we obtain
the Ashkin-Teller model ([2], as phrased by Fan).

Let Ĝ = Hom(G,C∗) be the dual of G (Ĝ and G are isomorphic, though
not canonically). The basic order variables are of type χ(σ(v)), χ ∈ Ĝ, with
associated correlators:

〈
∏

i

χi(σ(vi))〉

where vi ∈ V , χi ∈ Ĝ. For free boundary conditions, this is zero unless
∏

i χi=1.
Kramers-Wannier duality has been extended successively to various models,

see in particular [48, 41]. By Fourier-Pontryagin duality [40], one can write:

we =
1

|G|1/2
∑

χ∈Ĝ

ŵe(χ)χ

where ŵe is the Fourier-Pontryagin transform

ŵe(χ) =
1

|G|1/2
∑

g∈G

we(g)χ̄(g)

At the level of partition functions, we have the summation:

Z(Γ, G, (we)e) =
∑

σ:V →G

∏

e=(vv′)∈E

we(σ(v
′)σ(v)−1)

= |G|− 1
2 |E|

∑

σ:V →G

∏

e=(vv′)∈E

∑

χe∈Ĝ

ŵe(χe)χe(σ(v
′)σ(v)−1)

= |G|− 1
2 |E|

∑

σ:V →G

χ:E→Ĝ

∏

e=(vv′)

ŵe(χe)χe(σ(v
′)σ(v)−1)

= |G||V |− 1
2 |E|

∑

χ:E→Ĝ:d∗χ≡1

∏

e=(vv′)

∑

σv∈G

ŵe(χe)

where d ∗ χ(v) =
∏

v′∼v χe. Let us identify χ : E → Ĝ with χ : E† → Ĝ via
χ(e†) = χ(e) for e ∈ E. Then d ∗ χ ≡ 1 is equivalent (in the simply connected
case) to the existence of σ̂ : V † → Ĝ such that χ(ff ′) = ĝ(f ′)ĝ(f)−1. (Implicitly,
we fixed a reference orientation for edges of Γ†; by symmetry of the weight, one
can write each term we(σ(v

′)σ(v)−1) so that v (resp. v′) is the left (resp. right)
vertex wrt the oriented edge of Γ† separating them). We conclude that:

Z(Γ, G, (we)e) = |G||V |− 1
2 |E|+1Z(Γ†, Ĝ, (ŵe)e)

Disorder variables are indexed by a face f ∈ V † and an element g ∈ G, and
denoted µg(f). The corresponding modified state space consists of G-valued 1-

forms ω :
−→
E → G defined on oriented edges and antisymmetric in the sense
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that ω(−→xy) = ω(−→yx)−1. We define dω(f) =
∏

−→e ∈∂f ω(
−→e ), where ∂f is the coun-

terclockwise oriented boundary of f . Then the state space corresponding to a
disorder

∏
i µgi(fi) is: {

ω : dω =
∏

i

g
1fi

i

}

with weight w(ω) =
∏

e∈E we(ω(e)) (there is an overall factor |G| compared
with the earlier normalization). Again this may be trivialized by fixing a defect
line going through all fi’s and modifying couplings along this line. Remark that∏

i fi = 1 (otherwise the state space is empty). For simplicity let us consider a
pair χ(σ(v2)), χ

−1(σ(v1) of spin variables, and a pair µg(f2), µg−1(f1) of disorder
variables. Let us fix non intersecting paths γ (resp. γ†) on Γ (resp. Γ†) from v1
to v2 (resp. from f1 to f2). We can write a mixed correlator:

Z〈χ(σ(v2))χ−1(σ(v1))µg(f2)µg−1(f1)〉

=
∑

σ:V →G

∏

(vv′)∈γ

χ(σ(v′)σ(v)−1)
∏

(vv′)∈E

w′
e(σ(v

′)σ(v)−1)

where w′
e = we if e does not cross γ† and w′

e(.) = we(g.) otherwise (in which
case we orient e from right to left of γ†). Repeating the argument above leads
to

〈χ0(σ(v2))χ
−1
0 (σ(v1))µg(f2)µg−1(f1)〉Γ = 〈µχ0(v2)µχ−1

0
(v1)χf2(g)χf1(g

−1)〉Γ†

where the χf ’s are the dual order variables; weights on Γ† are Fourier coefficients
of those on Γ. This extends to any number of insertions.

By analogy with the Ising model, on the square lattice we are particularly
interested in self-dual weights, viz. weights such that ŵ ∝ w ◦ φ for some iso-
morphism φ : Ĝ → G. If we assume weights are nonnegative, by Parseval we
have ŵ = w ◦ φ.

Cyclic models

Let us specialize to the cyclic case: G = Z/qZ. Uq = {z ∈ C : zq = 1}. Let
ξ0 = exp(2iπ/q). Identifying G with Ĝ in the usual way, the Fourier transform
is written:

(Ff)(j) = 1√
q

q−1∑

i=0

f(i)ξ−ij
0

Finding a self-dual weight consists in finding eigenvectors for F . This operator
is the discrete Fourier transform (DFT), involved in fast Fourier transform al-
gorithm. The question of its diagonalization is classical, if rather delicate. By
Fourier inversion, the Fourier transform F : CG → CG is of order 4: F4 = Id,
and consequently the eigenvalues of F are {±1,±i}. It is known that the mul-
tiplicity of the eigenvalue 1 is ⌊ q

4⌋+ 1.
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First we look for self-dual Potts model weights. In this case: w ∝ 1 + aδ0.
Plainly Fw = a√

q +
√
qδ0. The fixed point equation Fw = w is thus solved

for a =
√
q. For Ising (q = 2), we recover the self-dual weight function (up to

multiplicative constant).
As soon as q ≥ 4, the multiplicity of 1 is ≥ 2. Similarly to [20], one can look

for a nice operator D ∈ End(CG) (almost) commuting with F . An educated
guess gives:

D = (a+ bχ−1)R + (c+ dχ−1)

where R is the right shift: (Rf)(k) = f(k + 1), and χ ∈ CG is the character:
χ(k) = ξk0 . Classically, FR = χF (χ acting by pointwise multiplication) and
Fχ−1 = RF . Besides Rχ = ξ0χR. Then

FD = (aχ+ bξ0χR + c+ dR)F
Consequently, FD = λχDF (λ ∈ C) iff:

(a, b, c, d) = λ(bξ0, d, a, c)

that is: λ4 = ξ−1
0 , (a, b, c, d) ∝ (1, λ3, λ, λ2). An element w of KerD satisfies a

trivial recursion:

w(k + 1)(1 + λ3ξ−k
0 ) + w(k)(λ + λ2ξ−k

0 ) = 0

To ensure positivity, we choose λ = − exp(−iπ/2q); then we find

w(k) =

k−1∏

j=0

sin(πkq + π
4q )

sin(π(k+1)
q − π

4q )

and check that w(q) = w(0) = 1. Then KerD is a line which is invariant under
F , and thus w = Fw is an invariant weight. This is the Fateev-Zamolodchikov
point [11] for the Z/qZ model (identified in [11] as part of a family of weights
satisfying the Yang-Baxter relations).

Ashkin-Teller model

In the Ashkin-Teller model ([2], as phrased by Fan), each vertex v ∈ V carries
a pair of spins (σv, ρv) ∈ {±1}2; the interaction weight on the edge e = (vv′) is:

exp(β(Jeσvσv′ + J ′
eρvρv′ + J ′′

e σvσv′ρvρv′))

We then recognize the abelian spin model with G = {±1}2 (the simplest non
cyclic finite abelian group). Identifying G with Ĝ we get (here (ε1, ε2) ∈ G)

(Ff)(ε1, ε2) =
1

2
(f(1, 1) + ε1f(−1, 1) + ε2f(1,−1) + ε1ε2f(−1,−1))

leading to the following simple self-duality condition for the weight w : G → R

(i.e. satisfying w = Fw):
w(1, 1) = w(−1, 1) + w(−1, 1) + w(−1,−1)
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The basic order variables are σ, ρ, σρ and there are naturally corresponding
disorder variables µ, ν, µν. Remark that in the isotropic case J = J ′, the model
becomes a Z/4Z model.

Parafermions

Let us go back to the general case of an abelian model with spin group G. Order
(resp. disorder) variables are indexed by Ĝ (resp. G). By analogy with the Ising
model, one can consider a parafermion (or spinor)

ψχ0,g0
vf = χ0(σv)µg0 (f)

where (χ0, g0) ∈ Ĝ×G (and are fixed and omitted from now on), v ∈ Γ, f ∈ Γ†

adjacent. When tracking an order variable χ0(σ) along a cycle around a disorder
variable µg0(f) (or vice versa), one picks a phase χ0(g0)

±1. In particular, when
the spinor rotates unto itself (eg fix f and follow v along ∂f), it is multiplied by
χ0(g0)

±1. This may be formalized as follows. Consider a graph Γ′ with vertices at
midpoints of segments [vf ], v ∈ Γ, f ∈ Γ†, v on the boundary of f (denote such
a vertex (vf)); edges of Γ′ are such that (vf) ∼ (v′f) if v, v′ are consecutive
vertices on ∂f and dually (vf) ∼ (vf ′) if v ∈ ∂f ∩ ∂f ′. The “line bundle”⊕

(vf)∈Γ′ C(vf) is equipped with a connection (in the terminology of [25] eg),

i.e. a collection of isomorphisms φu,u′ : Cu → Cu′ for adjacent vertices u, u′ in
Γ′. These are defined by:

φ(vf),(v′f)(z) = exp

(
is arg

f ′ − v

f − v

)
z, φ(vf),(vf ′)(z) = exp

(
is arg

v′ − f

v − f

)
z

where s is the spin, and arguments are chosen in (−π, π) (so that φu,u′ = φ−1
u′,u).

Let us consider a general correlator:

F (v0, f0) = 〈ψv0f0

n∏

i=1

χi(vi)

m∏

j=1

µgj (fj)〉

We regard all insertions as fixed except v, f , which are adjacent. In order for
this correlator to be non-trivial, we need χ0

∏
i≥1 χi = 1Ĝ, g0

∏
j≥1 gj = 1G.

To assign an actual value to the correlator, we also have to fix a defect line (or
defect tree) connecting all disorder operators on Γ†. Alternatively, one can think
of F as being multivalued (with a phase ambiguity) or as a section of the line
bundle described above (with the necessary modifications around vi, fj).

Consider the local situation around an edge e = (vv′) ∈ E and its dual edge
(ff ′) = (vv′)† ∈ E†; this gives four possible locations for the parafermion. We
assume that the defect line γ chosen for f is the concatenation of (ff ′) and the
defect line γ′ for f ′ (which has f ′ as an endpoint).

For g ∈ G, let us consider the partial (modified) partition function:

Zg =
∑

σ:V →G

1σ(v)=1,σ(v′)=g

∏

i≥1

χi(σ(vi))
∏

e=(xy)∈E,e6=(vv′)

w′
e(yx

−1)
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where w′ is the weight function modified along γ′ in order to encode the disorder
µg0(f

′)
∏

j≥1 µgj (fj). Then up to a factor |G|

F (v, f) =
∑

g∈G

we(gg0)Zg F (v, f ′) =
∑

g∈G

we(g)Zg

F (v′, f) =
∑

g∈G

χ0(g)we(gg0)Zg F (v′, f ′) =
∑

g∈G

χ0(g)we(g)Zg

Let us assume that the weight w = we satisfies the following equation on CG:

((a− bχ0)θ0 − (c− dχ0))w = 0 (1)

where θ0 is the shift: (θ0w)(g) = w(gg0). Then

− aF (v, f) + bF (v′, f) + cF (v, f ′)− dF (v′, f ′) = 0, (2)

the local parafermionic equation [43, 44, 39, 21]. Equation 1 implies

w(ggk0 ) = w(g)

k∏

j=1

c− dχ0(g)z
j

a− bχ0(g)zj

where z = χ0(g0). In particular, if r is the order of g0

r−1∏

n=0

(a− bzn) =
r−1∏

n=0

(c− dzn)

If r′ is the order of z = χ0(g0) in U, we have:
∏r′−1

j=0 (x − zj) = xr
′ − 1. Conse-

quently we need: (
ar

′ − br
′
)r/r′

=
(
cr

′ − dr
′
)r/r′

Symmetry of the weight w(g−1) = w(g) yields further conditions, such as:

k∏

j=0

c− dzj

a− bzj
· c− dz−j−1

a− bz−j−1
= 1

coming from w(gk0 ) = w(g−k
0 ) (assuming weights are nonzero). Hence

c− dzk

a− bzk
=
bz−1 − azk

dz−1 − czk

Two homographies that agree on three points are equal. Thus if r′ ≥ 3, we have
(a, b, c, d) ∝ (dz−1, c, bz−1, a), ie (a, b, c, d) ∝ (uλ−1, u−1λ, u−1λ−1, uλ) where
u ∈ C∗, λ4 = z. In order for weights to be positive, we take u unitary and
recover the FZ weights [11]:

w(gk0 ) =

k−1∏

j=0

sin(πjr′ + θ
r′ )

sin(π(j+1)
r′ − θ

r′ )

with an additional “anisotropy” parameter θ compared to the self-dual case. (In
the cyclic case, arguing as before we find that Fwθ ∝ wπ

2 −θ).



Topics on abelian spin models and related problems 385

3. Discrete Gaussian free field

We have considered abelian spin models with values in a finite abelian group.
More generally one may consider a locally compact abelian group (the natural
set-up for Fourier-Pontryagin duality). Let us consider scalar fields, i.e. fields
taking values in R.

As before, we consider a finite connected planar graph Γ = (V,E). It is
somewhat convenient to designate a non-empty subset ∂ of V as the boundary.
We consider discrete scalar fields, i.e. functions φ : V → R. The values of φ on ∂
are fixed to some prescribed φ|δ. This defines an affine state space. Let us also
fix positive conductances (ce)e∈E .

The Discrete Gaussian Free Field (DGFF) on (Γ, (ce)) with Dirichlet bound-
ary condition φ|δ on ∂ is the Gaussian variable with measure proportional to

∏

e=(vv′)∈E

exp(−ce
2
(φ(v′)− φ(v))2)

∏

v∈V \∂

dφ(v)√
2π

For f : V → R, its Dirichlet energy can be written:

1

2

∑

e=(vv′)

ce(f(v
′)− f(v))2 =

1

2

∑

v∈V

f(v)(∆Γf)(v)

by a discrete Green’s formula argument, where ∆Γ is the weighted graph (posi-
tive) Laplacian:

(∆Γf)(v) =
∑

v′∼v

c(vv′)(f(v)− f(v′))

Under our assumptions,

∆Γ : {f : V → R, f|∂ = 0} → {f : V → R, f|∂ = 0}

is indeed invertible and the Dirichlet energy is a positive definite form on {f ∈
RV , f|∂ = 0}. Consequently the above Gaussian measure is finite. The mean field
φ0 is the one minimizing the Dirichlet energy in the affine space {f ∈ RV , f|∂ =
φ∂}, i.e. the solution of the Dirichlet problem: (∆Γf)V \∂ = 0, f|∂ = φ∂ .

The covariance kernel C(v, v′) = Cov(φ(v)φ(v′)) is the Green kernel G for
∆Γ, viz. is characterized by ∆ΓG(., v

′) = δv′ in V \ ∂, G(v, v′) = 0 for v ∈ ∂. We
deduce the characteristic function:

E(exp(i
∑

j

αjφ(vj))) = exp(i
∑

j

αjφ0(vj)) exp(−
1

2

∑

j,k

αjαkG(vj , vk))

The local variables exp(iαφ(v)) are called electric operators, where α is the
charge; these are the main order variables.

In order to introduce disorder variables, it is convenient to rephrase the prob-
lem in terms of the current J(vv′) = φ(v′) − φ(v), a graph 1-form (in Ω1(Γ)).
Let us also assume that there is no boundary. Then the Dirichlet energy is well-
defined in terms of J : 1

2

∑
e ce(J(e))

2. As a state space, we consider the space
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of 1-forms such that dJ = m where m =
∑

j mj1fj ∈ RV †

is a fixed magnetic
charge distribution (mj is the magnetic charge positioned at the face fj); here
dJ(f) =

∑
~e∈∂f J(~e). The Gaussian variable J induced on this affine space by

the Dirichlet energy can be written J = Jh + J0 where Jh, the mean, is the
current of minimal energy with given magnetic charge distribution and J0 is a
centered field with covariance kernel:

Cov(J(v1v2), J(v3v4)) = G(v2, v4) +G(v1, v3)−G(v2, v3)−G(v1, v4)

(In the absence of a boundary, G(., v) is well defined only modulo an additive
constant, which is enough to define the RHS).

If J = dφ is an exact 1-form, we have

∑

e∈E

ceJeωe =
∑

v∈V

φ(v)
∑

v′∼v

cvv′ω(vv′)

which shows that the orthorgonal in L2(E,
∑
ceδe) of exact 1-form are har-

monic 1-forms, i.e. those satisfying
∑

v′∼v cvv′ω(vv′) = 0 for all v. It is con-
venient to define a discrete Hodge star operator ∗ : Ω1(Γ) → Ω1(Γ†) defined
by (∗ω)((vv′)†) = cvv′ω(vv′) [33]. We regard Γ† as a weighted graph with
ce† = (ce)

−1, so that ∗2 = − Id and ∗ is isometric. Clearly, ∗ maps harmonic
forms on Γ to closed forms on Γ†, and vice-versa. Thus J ∈ Ω1(E) can be de-
composed uniquely as J = dφ+ ∗dψ where dφ ∈ Ω1(Γ) and dψ ∈ Ω1(Γ†) closed;
this Hodge decomposition is orthogonal in L2(E,

∑
ceδe). By analogy with the

continuous case, we write 〈J, J ′〉L2(E) =
∫
J∧∗J ′ (see [33]). Moreover, ∆Γ = d∗d

(as usual identifying vertices of Γ with faces of Γ†). Consequently, the form Jh
with minimal Dirichlet energy among those such that dJ = m is:

Jm = ∗d
(∑

f∈V †

mfG
†(.,mf )

)

where G† is the Green kernel on Γ†.

Duality

Let us consider abelian duality for the centered DGFF. At this point we could
write mixed electric-magnetic correlators in terms of G,G† and see duality ap-
pear in these explicit formulae. For ease of comparison with the finite case, we
phrase duality in terms of Fourier transform.

In general one can fix an electric charge distribution (αv)v∈V and a magnetic
charge distribution (mf )f∈F , such that

∑
v αv = 0,

∑
f mf = 0. For simplicity,

let us consider two pairs of charges: electric charges ±α at v±, and magnetic
charges ±m at f±. If v± circles counterclockwise around f+, the correlator picks
up a factor exp(±iαm); assuming αm ∈ 2πZ removes multivaluedness issues. In
the general case, let us fix paths γ, γ† on Γ,Γ† with endpoints v±, f±. We are
interested in 〈exp(iα

∫
γ J)〉, where 〈.〉 is the unnormalized expectation for the
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free field current J on Γ with mean Jm. We have the representation:

∫

γ

dφ =

∫
dφ ∧ ∗dJ†

α

where J†
α =

∑
v∈V αvG(., v).

It is technically convenient to temporarily mollify the hard constraint dJ = m
and dampen the electric correlator by considering the Gaussian integral:

∫

RE

exp

(
iα

∫

γ

dφ− ε

2
||dφ||2

)
exp

(
−ε

−1

2
|| ∗ dψ − Jm||2

)∏

e∈E

e−
ce
2 (Je)

2

√
2πc−1

e

dJe

where ε is a small positive parameter, J = dφ + ∗dψ (‖.‖ is the weighted L2

norm, for which the Hodge decomposition is orthogonal). By Fourier inversion,
this is written as

∫

RE

exp

(
−ε

−1

2
||dφ̃− dJ†

α||2
)
exp

(
i

∫
dψ̃ ∧ dJm − ε

2
||dψ̃||2

)∏

e∈E

e−
c−1
e
2 (J̃e)

2

√
2πce

dJ̃e

where J̃ = dφ̃+ ∗dψ̃ is the Hodge decomposition on Γ†.
Letting ε ց 0, we conclude that the discrete free fields on Γ,Γ† (with recip-

rocal conductances) are in duality, in which magnetic and electric charges are
exchanged.

Compactification

In the case where the underlying graph Γ is embedded on a torus Σ = C/L,
if we consider the Gaussian measure on closed currents J : dJ = 0 induced by
the Dirichlet energy, we gain two “topological” marginals: (

∫
A
J,
∫
B
J), where

A,B are two standard cycles generating the homology of Σ. Given α, β, there
is a unique closed, harmonic form dωα,β (dωαβ

= 0, d ∗ ωα,β = 0) such that
(
∫
A
ωα,β,

∫
B
ωα,β) = (α, β). The space of 1-forms decomposes as an orthogonal

sum of exact, coexact, and closed and harmonic forms: this is (a discrete version
of) the Hodge decomposition. Thus an instance of a free field current J can be
decomposed as J = dφ + ω, where φ is a scalar field (on V , defined modulo
additive constant) and ω, the instanton component, is a closed harmonic form;
these two summands are independent.

It is classical [14, 4] to consider a compactified version of the field, in which
in the periods (

∫
A
J,
∫
B
J) are constrained to take values in a prescribed lat-

tice 2πrZ (r is the compactification radius). This has no effect on the scalar
component of the field; the instanton becomes a discrete variable supported on
{ω2πmr,2πnr}, with weights proportional to the Dirichlet energy of these forms
(a “discrete Gaussian” variable).

If Λ is a lattice in a Euclidean space (V, 〈., .〉), its dual lattice Λ′ (y ∈ Λ′ iff
〈x, y〉 ∈ Z for all x ∈ Λ), we have the following version of the Poisson summation
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formula: ∑

x∈Λ

f(x) = Vol(V/Λ)−1
∑

y∈Λ′

f̂(y)

in the normalization f̂(y)=
∫
V
e−2iπ〈y,x〉f(x)dx. In particular for f(x)= e−πt‖x‖2

,
we get ∑

x∈Λ

e−πt‖x‖2

= t− dimV/2Vol(V/Λ)−1
∑

y∈Λ′

e−πt−1‖y‖2

.

Let us specialize this to V the two-dimensional space of closed harmonic forms
(which represents H1(Σ)) with norm given by 2π times the Dirichlet energy;
Λ = {ω :

∫
A,B

ω ∈ 2πrZ}. In order to identify Λ′, we introduce the closed

harmonic 1-forms ω†
c,d on Γ† such that

∫
A,B ω

†
c,d = c, d and recall the bilinear

relation:

〈ωa,b, ∗ω†
c,d〉 =

∫

Σ

ωa,b ∧ ω†
c,d =

∮

∂F

ha,bω
†
c,d = ad− bc

where F is a fundamental domain bounded by the cycles a, b and dha,b = ωa,b in
F . We conclude ∗Λ′ = {ω† :

∫
A,B ω

† ∈ 2πr−1Z}. Thus if we write the instanton
partition function

Zinst(r) =
∑

ω∈Λ

e−
1
2

∫
ω∧∗ω

which represents the (multiplicative, by independence) contribution of the in-
stanton component to the partition of the compactified free field at radius r, we
have

Zinst(r) = Z†
inst(r

−1)

up to an elementary multiplicative factor. Thus duality on compactified free
fields has the effect of inverting the compactification radius [14]. This is a simple
example of T -duality.

Gaussian free field

The continuous Gaussian (or massless) free field on, say, a torus Σ is the Gaus-
sian field with action

S(φ) =
g

4π

∫

Σ

|∇φ|2

(g > 0 the coupling constant), i.e. the centered Gaussian field with covariance
kernel 2π

g (−∆)−1 where we consider (−∆) as an invertible operator on zero-mean

functions on Σ [42, 16]. In the abstract Wiener space approach, one thinks of
the free field as a random element of a large enough Banach space, typically a
negative index Sobolev space. Plainly it may also be considered on the plane,
finite domains, Euclidean spaces of other dimensions and Riemannian manifold.
The compactified free field with values in R/2πrZ is defined as above as the
sum of a scalar free field and an instanton component, which is supported on a
lattice of harmonic 1-forms.
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Let us briefly discuss magnetic and electric charges in the plane [5, 14]. In
this case, the covariance kernel is C(z, w) = g−1 log |z −w| (with a slight abuse
of terminology, as we have to quotient by constant functions). The electric op-
erators are written formally Oe(z) = exp(ieφ(z)) (e is the electric charge); this
is somewhat problematic, as a realization of the field φ is only a distribution. In
the standard regularization, one disregards the diverging self-energy and write:

〈: Oe(z)O−e(w) :〉 = |z − w|− e2

g

where the colons denote the regularization procedure. Alternatively, one may
replace φ(z) with its average on D(z, δ) and define

〈: Oe(z)O−e(w) :〉 = lim
δ→0

δ−
e2

g

〈
exp(ie

(
1

πδ2

∫

D(z,δ)

φ− 1

πδ2

∫

D(w,δ)

φ

)〉

In the presence of a magnetic charge m at z (represented by Om(z)), the field
increases by 2mπ when tracked along a counterclockwise around z. For a pair
of insertions Om(z)O−m(w), the average field is m(arg(. − z) − arg(. − w)),
the harmonic conjugate of m(log |.− z| − log |.−w|). Its Dirichlet energy has a
logarithmic blow-up at singularities; a standard finite part regularization gives
the expression

〈: Oe(z)O−e(w) :〉 = |z − w|−m2g

Combining these two elements, we obtain:

〈: Oe(z2)O−e(z1)Om(w2)O−m(w1) :〉 =

|z1 − z2|−
e2

g |w1 − w2|−m2geime(arg(z2−w2)−arg(z2−w1)−arg(z1−w2)+arg(z1−w1))

To obtain “spinor” variables Oem, we coalesce electric and magnetic charges:
“Oem(z) = limz→w Oe(z)Om(w)”. Specifically take zi = wi + δui, |ui| = 1,
δ ց 0. Then

〈: Oem(w2)O−e,−m(w1) :〉= |w2−w1|−
e2

g
−m2ge−2iem arg(w2−w1)eiem(arg(u1)+arg(u2)

The last part is a manifestation of the spinor nature of these variables. Fixing
a reference direction for u1, u2, this may be rewritten as:

〈: Oem(w2)O−e,−m(w1) :〉 = (w2 − w1)
− e2

2g−
m2g

2 −em(w2 − w1)
− e2

2g−
m2g

2 +em

In this context, one recovers the duality between (properly renormalized)
electric and magnetic operators Oem ↔ O2m,e/2 (and g ↔ 4

g for couplings), and

pairs of reciprocal radii in the compactified case [14, 4].

4. Random-cluster model

Let us consider the Ising model on a graph Γ = (V,E). The weight associated
to the edge e and the spin configuration (σv)v∈V is exp(βJeσvσv′). As we have
seen, writing this weight as

exp(βJeσvσv′) = cosh(βJe) (1 + σvσv′ tanh(βJe))
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leads to the high-temperature graphical representation of the Ising model. It
may also be written as

exp(βJeσvσv′) = e−βJe
(
1 + δσv ,σv′

(e2βJe − 1)
)

which leads to the random-cluster representation [18], as we now explain. Set
w(e) = e2βJe − 1. The partition function reads:

Z =
∑

σ:V→{±1}
exp(βJeσvσv′) =

∏

e∈V

e−βJe

∑

σ:V→{±1}

(
1 + δσv ,σv′

w(e)
)

=
∏

e∈V

e−βJe

∑

σ:V →{±1}

∑

E0⊂E

∏

e=(vv′)∈E0

δσv ,σv′
w(e)

We notice that
∑

σ:V →{±1}
∏

(vv′)∈E0
δσ(v),σ(v′) = 2C(E0), where C(E0) is the

number of connected components of the subgraph Γ0 = (V,E0). Hence

Z =
∏

e−βJe

∑

E0⊂E

2C(E0)
∏

e∈E0

w(e)

More generally, one may consider a q-state Potts model with edge weight
e2βJeδσv,σ

v′ , which leads to the following random cluster representation of the
partition function:

Z =
∑

E0⊂E

qC(E0)
∏

e∈E0

w(e)

with w(e) = e2βJe − 1. Plainly, the RHS may be interpreted as the partition
function of a model where the configuration space consists of subgraphs Γ0 =
(V,E0) of Γ and the configuration weight of Γ0 is proportional to

qC(E0)
∏

e∈E0

w(e)

This is the random-cluster model or Fortuin-Kasteleyn (FK) percolation [18],
and is defined for any q > 0 (whereas the Potts model is restricted to q ∈ N∗).

One may also track natural correlators, such as spin correlators, through the
random-cluster representation. We see that in the q-state Potts model,

〈σ(v2)σ(v1)−1〉Potts = PFK(v1 ↔ v2)

where v1 ↔ v2 means that v1, v2 belong to the same connected component
(cluster) in the random subgraph induced by FK-percolation, and Potts spins
are regarded as elements of Uq = {z ∈ U : zq = 1}. By the Sq symmetry of
the Potts model, we have 〈δσ(v),1〉Potts = 1

q and 〈σ(v2)σ(v1)−1〉Potts = p + 1−p
1−q

where p = 〈δσ(v1),σ(v2)〉; then

Cov(δσ(v1),1, δσ(v2),1)=
p

q
− 1

q2
=
q − 1

q2
〈σ(v2)σ(v1)−1〉Potts =

q − 1

q2
PFK(v1 ↔ v2)
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Higher order spin correlations are easiest to understand with the Edwards-
Sokal coupling [7] between the q-Potts model and the corresponding FK per-
colation. Starting from an FK configuration, one chooses a spin uniformly at
random for each cluster and assign it to each vertex in this cluster. Then the
resulting spin configuration is q-Potts distributed. Consequently, a general spin
correlator 〈∏j χj(σ(vj))〉Potts may be expressed in terms of the connectivity of
v1, . . . , vn in the FK percolation subgraph (which induces a random partition
of {v1, . . . , vn}).

Duality

In order to discuss duality, we need to specialize to planar graphs. In percolation
and related models [17], it is standard to introduce a dual configuration E†

0 ⊂ E†

defined by e† ∈ E†
0 iff e /∈ E0, so that |E0| + |E†

0 | = |E|. Euler’s formula for
Γ0 = (V,E0) reads:

|V | − |E0|+ |F0| = 1 + C(E0)

where F0 designates the faces of Γ0 (on the Riemann sphere) and is easily seen

to be in bijection with the connected components of Γ†
0 = (V †, E†

0). Hence

qC(E0)
∏

e∈E0

w(e) =

(
q|V |−|E|−1

∏

e∈E

w(e)

)
qC(E†

0)
∏

e†∈E†
0

q

w(e)

Hence by defining a dual edge weight w(e†) = q
w(e) , we see that E0 ↔ E†

0 is a

measure preserving correspondence between FK percolation on (Γ, (w(e))e∈E)
and (Γ, (w(e†))e†∈E†).

In the case q ∈ {2, 3, . . .}, this is consistent with the abelian duality for
the Potts model, seen as a Z/qZ model. Indeed, if the edge weight function
we : G→ R+ is:

we ∝ 1 + weδ1

its Fourier transform is:
Fwe ∝

we√
q
+
√
qδ1

yielding back w(e†) = q
w(e) .

Loop representation

In turn, the random cluster representation (in the planar case) may be mapped
to a dense loop (or fully-packed loop) representation (in the standard case of the
square lattice with self-dual weights, this is the dense O(n) model at n =

√
q),

which we now describe. Attached to the pair (Γ,Γ†) of graphs on the Riemann
sphere, one constructs the quadrangulation ♦ (the “diamond graph”, [33]) with
vertices V♦ = V ⊔ V † and edges E♦ defined by (vf) ∈ ♦ is v is a vertex of V
on the boundary of f ∈ V † (identified with faces of Γ). Then D♦, the derived
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(or medial) graph of ♦, is specified by VD♦ = E♦ and (e1e2) ∈ E♦ if e1, e2 are
two consecutive edges on a face of ♦. (This is a planar version of the derived
graph). Note that exchanging the roles of Γ,Γ† leads to the same ♦, D♦.

To a pair of dual configurations E0 ⊂ E, E†
0 ⊂ E†, one associates E′

0 ⊂ ED♦,

the set of all edges in D♦ that do not intersect edges in E0, E
†
0 . Specifically,

if (v1v2) ∈ E, (f1f2) ∈ E†, then either (v1v2) ∈ E0 and thus ((f1v1), (f1v2)),

((f2v1), (f2v2)) ∈ E′
0; or (f1f2) ∈ E†

0 and thus ((f1v1), (f2v1)), ((f1v2), (f2v2)) ∈
E′

0. By construction E′
0 is 2-regular, hence consists in a set of disjoint closed

loops that cover VD♦ (a loop gas; note that not all spanning collections of loops
on D♦ are obtained in this way). These loops separate clusters in Γ0 from

clusters in Γ†
0, and it is easily seen that the number of loops is C(E′

0) = C(E0)+

C(E†
0)−1. As V−|E0| = C(E0)−C(E†

0)+1, we have 2C(E0) = |V |−|E0|+C(E′
0).

Hence the FK weight of the configuration E0 may be written as:

qC(E0)
∏

e∈E0

w(e) ∝ √
q
C(E′

0)
∏

e∈E0

w(e)q−
1
2

Consequently, up to normalization, an FK configuration on Γ (or the dual con-
figuration on Γ†) maps to a loop gas E′

0 on D♦ with weight

√
q
C(E′

0)
∏

e′∈E′
0

w′(e′)

with w′(e′) =
(w(vv′)√

q

) 1
4 if e′ = ((vf), (v′f)); and w′(e′) =

(w(ff ′)√
q

) 1
4 if e′ =

((vf), (vf ′)) (recall that w(ff ′)w(vv′) = q if (ff ′) = (vv′)†).

Parafermions

In the q-Potts case, Nienhuis and Knops [35] showed that parafermion corre-
lators could be computed in terms of the loop gas configuration. Consider vi
a vertex of Γ on the the boundary of the face fi, i = 1, 2. One may introduce
disorder operators µ−k(f1), µk(f2), with k ∈ Z/qZ 6= 0 fixed. The new config-
uration space consists of Z/qZ valued 1-forms ω on Γ with dω = kδf2 − kδf1 .
One may apply the random cluster representation to this state space: if e ∈ E
is such that ω(e) = 1, then e ∈ E0 with probability pe, where

pe

1−pe
= w(e).

The resulting random clusters may not wrap around f1, f2. In this case, one
also obtains a modified (less canonical) Edwards-Sokal coupling. For instance,
one may consider a reduced graph the vertices of which are the random clus-
ters, with edges corresponding to edges of E s.t. ω(e) 6= 1. Then the number
of assignments compatible with the disorder condition q|C|−1. One then assigns
a spin uniformly at random on each cluster, and set a defect line from f1 to
f2 which does not cross any cluster (i.e. is drawn on a dual cluster). There is
an overall factor q depending on whether one quotients the state space by the
global Z/qZ symmetry.
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We now wish to evaluate 〈σ(v2)ℓσ(v1)−ℓµk(f2)µ−k(f1)〉, where σ(v) ∈ Uq =

{1, e 2iπ
q , . . . , e

2iπ(q−1)
q } is the spin variable, and ℓ ∈ Z/qZ, k, ℓ 6= 0. Plainly, the

only contributing RC configurations are those in which v1, v2 are connected by a
cluster and f1, f2 are connected by a dual cluster. Equivalently, in the loop rep-
resentation, there is a loop L passing through (v1f1) and (v2f2). Configurations
containing L will be counted with a phase depending of the isotopy type of L in
C\{v1, f1, v2, f2}. We now explain how to compute this phase. For definiteness,
let us fix a defect line γ from f1 to f2.

Consider the half-loop L+ (resp. L−) of L starting from (v1f1) and ending
at (v2f2) with v1, v2 on its LHS (resp. RHS). Let us orient both half-loops from
(v1f1) to (v2f2). One may also orient all other loops arbitrarily. If all loops have
an orientation, one may define a height function h : V♦ → π

2Z as follows: if
v, f are adjacent vertices in V♦, h(f) − h(v) = ±π

2 according to whether the

loop crossing
−→
vf crosses it from left to right or right to left; then the loops may

be seen as level sets of h. In the present case, the definition is ambiguous due
to the conflicting orientations of L+, L−. Then h may be seen as an additively
multivalued function, picking a constant ±π when circling around (v1f1), (v2f2);
this is closely analogous to the notion of magnetic charge we discussed for the
DGFF.

Take a path from v1 to v2 on the cluster that contains them. It crosses γ
n times (algebraically: crossing γ from left to right counts +1, from right to
left counts -1); and σ(v2)σ(v1)

−1 = exp(2iπknq ). Specifically, we can look at the

leftmost (resp. rightmost) such path, that tracks L+ (resp. L−) on its RHS
(resp. LHS). Each time one of these crosses γ, it corresponds to L± crossing γ,
which contributes to

∫
γ dh (the height variation h(f2) − h(f1) evaluated along

γ). Hence πn =
∫
γ dh, and:

〈σ(v2)ℓσ(v1)−ℓµk(f2)µ−k(f1)〉Potts = u

〈
1(v1f1)↔(v2f2) exp

(
2ikℓ

q

∫

γ

dh

)〉

O(n)

where |u| = 1 can be made explicit in terms of γ, arg
−−→
f1v1, arg

−−→
f2v2. In the

case where k or ℓ generates Z/qZ, it is clear that the LHS depends on k, ℓ only
through kℓ.

Notice that the expression
〈
1(v1f1)↔(v2f2) exp

(
2is

∫

γ

dh)

)〉

O(n)

is defined for any s ∈ R/Z, q > 0, and may thus be used to define parafermionic
correlators for general FK percolation [43, 44, 39].

5. The 6-vertex model

The 6-vertex (6V model for short) can be phrased for any finite 4-regular graph
Γ = (V,E), such as the square lattice (or some portion of it) or the Kagomé
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Fig 2. 6V configurations.

lattice. Its free energy per site was evaluated by Lieb, based on a Bethe ansatz
analysis [31, 2, 38]. A configuration consists in an assignment of orientation
(“arrow”) to each edge, in such a way that every vertex is the origin and the
endpoint of two oriented edges. Thus there are

(
4
2

)
= 6 possible local configura-

tions around a given vertex (Figure 2). Graphs with higher (even) valencies may
be considered: for a 6-regular graph (eg the triangular lattice), one may consider
an orientation such that each vertex has 3 ingoing and 3 outgoing edges. This
defines the (configuration space of) the 20-vertex model (as

(
6
3

)
= 20). Note

that reverting all orientations preserves the 6V condition.
In the 6V model, one associates a Gibbs weight to each configuration, which is

a product of local factors, read from the local configuration around each vertex.
In the planar case (or oriented case), one may order edges cyclically around a
vertex; then there are four (in-in-out-out) configurations (up to rotation: types
1-4) and two (in-out-in-out) configurations (types 5-6). Types are also numbered
so that 1-2,3-4,5-6 are exchanged by reversal of all orientations.

Let us denote w1(v), . . . , w6(v) the local Gibbs weights around the vertex v
and Iv = Iv(ω) ∈ {1, 6} the type at v of the configuration ω; then the Gibbs
weight of ω is:

w(ω) =
∏

v∈V

wIv(ω)(v)

Let us denote ω̄ the configuration obtained by reversing all arrows in ω. One
usually requests:

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c

so that w(ω̄) = w(ω). On the square lattice, the rotationally invariant weights
(w1 = · · · = w4, w5 = w6) give the F -model.

Remark that replacing the weights (wi(v)) with (λvwi(v)) has the effect of
multiplying weights of all configurations by a constant

∏
v∈V λv, a trivial mod-

ification. Thus there are essentially two free parameters for the weights at v: an
anisotropy parameter a/b, and another parameter:

∆ =
a2 + b2 − c2

2ab

We see the underlying graph Γ as embedded on an oriented surface Σ. Then
there is a dual (embedded) graph Γ†, such that each vertex of Γ† corresponds
to a face (assumed contractible) of Γ, and vice versa; edges of Γ and Γ† are
in bijection. Associated to a 6V configuration ω on Γ is a (possibly additively
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multivalued) function h = h(ω) on Γ†, defined as follows. If f, f ′ are faces of Γ
(vertices of Γ†) and (vv′) is the edge of Γ between f, f ′ with orientation given
by ω, then

h(f ′)− h(f) =
π

2
if
−→
vv′ crosses

−→
ff ′ from left to right

h(f ′)− h(f) = −π
2

if
−→
vv′ crosses

−→
ff ′ from right to left

The 6V rule ensures that
∑3

i=0 h(fi+1) − h(fi) = 0 if f0, . . . , f3 are the four
faces around v ∈ V , cyclically indexed. This identifies the 6V model as a body-
centered solid-on-solid (BCSOS) model (see [46]). If Σ is contractible, h is well
defined, up to an additive constant. Otherwise, for instance when Σ is a torus, h
is additively multivalued, i.e. picks an additive constant (an integer multiple of
π) when traced along a non-contractible cycle on Σ. More precisely, the graph
1-form J = dh : E† → R given by

J((ff ′)) = h(f ′)− h(f) = −J((f ′f))

is well-defined and closed:

dJ(v) =
∑

e∈∂v

J(e) = 0

where v is a vertex of Γ (a face of Γ†) and ∂v are the edges bounding v in Γ†,
oriented counterclockwise. If γ is a closed loop on Γ†,

∫
γ
J =

∑
e∈γ J(e) depends

on γ only through its homology class in H1(Σ).
We may then define several natural order and disorder variables, by analogy

with free field observables. First we have the current variables J(e†) ∈ ±π
2

(which are sometimes thought of as ±1 spin variables). Then one can define
natural electric correlators of type:

〈exp(iα(h(f ′)− h(f)))〉

(for definiteness, one needs to fix a path from f to f ′), with ±α electric charge
at f, f ′.

A convenient way to introduce disorder (magnetic) operators is to introduce
edge defects. An edge e split into two half-edges with outward orientation rep-
resents a magnetic charge 1

2 (i.e. the height field picks up 1
2 (2π) when cycling

counterclockwise around this charge); symmetrically, an edge e split into two
half-edges with inward orientation represents a magnetic charge − 1

2 .
Let us now restrict to the standard case of the square lattice with periodic

conditions ( 1nZ
2/L, where L is a sublattice, L ∼ Z+ τZ where n≫ 1 is a scale

parameter and τ ∈ H = {z : ℑ(z) > 0} fixed), and isotropic weights, so that we

may set a = b = 1, and ∆ = 1− c2

2 . We also assume that noncontractible cycles
have even length.

The main conjecture on the fluctuations of the six-vertex model, based on a
Coulomb gas representation [34], is that in the small mesh limit (n → ∞), the
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height field converges to a compactified free field with compactification radius
1
2 and coupling constant

g =
8

π
arcsin

( c
2

)

i.e. with action:

S(φ) =
g

4π

∫

Σ

|∇φ|2

where Σ = C/τZ is the limiting torus. This is expected to hold in the “regime
III” phase, i.e. when −1 < ∆ < 1 or 0 < c < 2.

Relation with FK percolation

For clarity we stick to the square lattice with periodic boundary conditions
(and even periods). There is a close relation between FK percolation and the
six-vertex model, which is best expressed in terms of the Baxter measure, which
we now describe.

Starting from Γ modelled on the square lattice, we consider its dual graph
Γ† and the diamond graph ♦, which is itself locally a (scaled, rotated) square
lattice. Associated to an FK configuration on Γ and its dual configuration, we
have constructed a dense O(n) configuration (loop gas) on D♦. It is convenient
to represent its segments as quarter circles: in each face of♦, two nonintersecting
quarter circles connect the four edge midpoints. Starting from the self-dual FK
weights, the weight of the O(n) is simply (up to normalization) nℓ where ℓ is
the number of loops and n =

√
q. See Figure 3.

The O(n) state space may be enriched by looking at configurations of oriented
loops. The winding of each loop if ±2π for contractible loops (which are simple)

Fig 3. First row: graph Γ (with periodic boundary conditions); its dual Γ† (dashed); ♦. Second
row: a primal FK configuration; dual configuration; dense O(n) configuration.



Topics on abelian spin models and related problems 397

and 0 for non-contractible loops (on the torus). Each quarter circle is either a
left or right turn and the weight of a oriented loop configuration is set to

exp
(
is
π

2
(|right turns| − |left turns|)

)

where s is real. Collecting all weights along a given loop L gives e2iπs.wind(L) ∈
{χ−1, 1, χ}, where χ = e2iπs.

Remarkably, this complex measure on oriented loops has two real projections:
one is a six-vertex model and the other is a weighted FK percolation measure.

Let us start with the latter: by forgetting orientations, oriented loop config-
uration configurations map to dense O(n) configurations, with weight per loop:
n = χ+ χ−1 for contractible loops and n = 1 for non-contractible loops. In the
thermodynamic limit, one expects the number of these non-contractible loops
(or, for that matter, the cardinality of any class of macroscopic loops) to stay
tight. If 0 < q < 4, one chooses s so that 2 cos(2πs) =

√
q; then the image of

the Baxter measure projected on dense O(n) loop configurations has a density

proportional to
√
q−|{non−contractible loops}| wrt the random-cluster measure (in

its loop representation).
On the other hand, if one retains orientations (at each edge midpoint of ♦)

and forget loops, one obtains a six-vertex configuration on ♦† (see Figure 4),
with weights:

ω1 = · · · = ω4 = 1, ω5 = ω6 = eiπs + e−iπs

so that a = b = 1, c2 = 2 +
√
q.

It is worth pointing out that in this mapping, the parafermionic FK observ-
ables are mapped to magnetic-electric six-vertex observables. More generally, it
is interesting to try to understand which natural observables may be expressed
in both representations. Let us discuss topological observables [5, 37, 1].

Fig 4. 6V configurations and corresponding plaquette configurations for oriented loops (on
each column).
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Fix ω = αdx + βdy (thinking of the graph Γ as having small mesh δ and
being embedded on a macroscopic torus Σ = C/(Z + τZ), α, β fixed, and τ ∈
i(0,∞) for simplicity; A,B are the standard cycles on Σ). Let us modify the
local Baxter weights as follows: the weight of an oriented quarter circle QT is
exp(isπ2 ) exp(i

∫
QT

ω). The weight of an oriented loop is now exp(±2iπs) for a

contractible loop and exp(i
∫
L
ω) for a non-contractible loop. The possibilities

for non-contractible loops are: no such loops (in which case either a cluster or
a dual cluster contains paths homotopic to A and B); 2k loops homotopic to
mA + nB, gcd(m,n) = 1 (in which case there are k clusters homotopic to a
simple path representing mA+nB separated by k dual clusters). Let us denote
pk,m,n the probability of this event under the random cluster measure. In this
case, summing over orientations yields a relative weight (2 cos(mα+ nβ))2k.

On the six-vertex side, each north (resp. west, south, east) pointing edge gets
a relative weight eiβδ (resp. e−iαδ, e−iβδ, eiαδ). Collecting the weights of edges
along an horizontal (resp. vertical) path on Γ† yields exp(−i 2βδπ

∫
A J) (resp.

exp(i 2αδπ
∫
B J)).

Summarizing, setting

f(α, β) = p0 +
1

2

∑

k≥1

∑

gcd(m,n)=1

pk,m,n(2 cos(mα+ nβ)q−1/2)2k

we have the exact identity:

f(α, β)

f(0, 0)
= E6V

(
exp

(
2i
α

π

∫

B

J − 2i
βℑτ
π

∫

A

J

))

Admitting that the 6V height function converges to a compactified free field
expresses the RHS as a theta function.

The free fermion point

For c2 = a2 + b2, the (square) six-vertex model may be mapped exactly on a
(weighted) dimer model on its medial graph. Fan and Wu [10] first showed the
existence of a such a dimer representation in the more general context of the
eight-vertex model. The mapping presented here is in particular apparent in the
study of the six-vertex model with “domain wall boundary conditions” [22] and
its relation with alternating sign matrices and the “aztec diamond” problem for
dimers [8, 9, 12]. The correspondence between dimer and 6V configurations is
represented in Figure 5. Specifically, we start from Γ which is modelled on the
square lattice and carries a 6V configuration. Its (planar) derived graph DΓ is
also modelled on the square lattice; it has a 2-coloring, with black vertices cor-
responding to horizontal edges of Γ and white vertices corresponding to vertical
edges of Γ. A dimer configuration (or perfect matching) on DΓ is a subset m of
edges of DΓ such that each vertex of DΓ is an endpoint of exactly one edge in m.

In the 6V↔ dimer correspondence, if (bw) ∈ m, with b (resp. w) the midpoint

of an horizontal (resp. vertical) edge of Γ, then:
−→
bw points in the direction of the
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Fig 5. 6V configurations and corresponding local dimer configuration (bold edge: dimer).

edge through b (with its 6V orientation) ±π
4 ;

−→
wb points in the opposite direction

of the edge through w (with its 6V orientation) ±π
4 . It is easy to see that this

prescription maps dimer tilings to 6V configuration, and that the tiling may be
reconstructed from the 6V configuration up to local ambiguities (see type 5 in
Figure 5). One may also introduce defects: for instance, inserting edge defects at
b, w (with respective magnetic charges− 1

2 ,
1
2 ) corresponds exactly to considering

dimer configurations with monomer defects at b, w [13].
In the dimer model [27], each dimer configuration receives a weight

w(m) =
∏

e∈m

we

where the we’s are fixed edge weights. Here, set we = cos(θ) for SW − NE
edges and we = sin(θ) for SE − NW edges. Plainly, the corresponding 6V
configuration has vertex weights:

(a : b : c) = (cos(θ) : sin(θ) : 1)

i.e. we recover the free fermion point of the six-vertex model: a2 + b2 = c2 or
∆ = 0.

In this case, we see that, up to normalization, the dimer height function (as
defined in [45, 27] for the dimer model on a bipartite planar graph, taken here on
every other face) is the height function of the corresponding 6V configurations.
In this case, building on Kasteleyn’s determinantal solution of the dimer model
[24], one can verify that the thermodynamic limit is described in some details
by a (compactified) free field with coupling constant g = 2. In particular, one
can handle infinite volume Gibbs measures [3, 28]; current correlations and
scalar field limit ([26]; for current correlations, it is convenient to consider height
variations on the even sublattice of Γ†); compactified free field limit (for an
underlying periodic graph, [6]); magnetic and electric correlators [6].
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