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Abstract: The trace approximation problem for Toeplitz matrices and
its applications to stationary processes dates back to the classic book by
Grenander and Szegö, Toeplitz forms and their applications (University of
California Press, Berkeley, 1958). It has then been extensively studied in
the literature.

In this paper we provide a survey and unified treatment of the trace
approximation problem both for Toeplitz matrices and for operators and
describe applications to discrete- and continuous-time stationary processes.

The trace approximation problem serves indeed as a tool to study many
probabilistic and statistical topics for stationary models. These include cen-
tral and non-central limit theorems and large deviations of Toeplitz type
random quadratic functionals, parametric and nonparametric estimation,
prediction of the future value based on the observed past of the process,
hypotheses testing about the spectrum, etc.

We review and summarize the known results concerning the trace ap-
proximation problem, prove some new results, and provide a number of
applications to discrete- and continuous-time stationary time series mod-
els with various types of memory structures, such as long memory, anti-
persistent and short memory.
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1. Introduction

Toeplitz matrices and operators, which have great independent interest and a
wide range of applications in different fields of science (economics, engineering,
finance, hydrology, physics, signal processing, etc.), arise naturally in the context
of stationary processes. This is because the covariance matrix of a discrete-time
stationary process is a truncated Toeplitz matrix generated by the spectral den-
sity of that process. Conversely, any non-negative summable function generates a
Toeplitz matrix, which can be considered as a spectral density of some discrete-
time stationary process, and therefore the corresponding truncated Toeplitz
matrix will be the covariance matrix of that process. In the continuous-time
case, Toeplitz matrix is replaced by a Toeplitz operator.

Truncated Toeplitz matrices and operators are of particular importance, and
serve as tools, to study many topics in the spectral and statistical analysis of
discrete- and continuous-time stationary processes, such as central and non-
central limit theorems and large deviations of Toeplitz type random quadratic
forms and functionals, estimation of the spectral parameters and functionals,
asymptotic expansions of the estimators, hypotheses testing about the spectrum,
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prediction of the future value based on the observed past of the process, etc.
(see, e.g., [1]–[7], [10, 12, 13, 15, 17], [20]–[70], and references therein).

The present work is devoted to the problem of approximation of the traces
of products of truncated Toeplitz matrices and operators generated by inte-
grable real symmetric functions defined on the unit circle (resp. on the real
line). We discuss estimation of the corresponding errors, and describe applica-
tions to discrete- and continuous-time stationary time series models with various
types of memory structures (long-memory, anti-persistent and short-memory).

The paper is organized as follows. In the remainder of this section we state
the trace approximation problem and describe the statistical model. In Section 2
we discuss the trace problem for Toeplitz matrices. Section 3 considers the same
problem for Toeplitz operators. Section 4 is devoted to some applications of the
trace problem to discrete- and continuous-time stationary processes and also
contains some new results. These are proved within the section. Also, the paper
contains a number of new theorems both for Toeplitz matrices and operators,
which are stated in Sections 2 and 3, respectively. Those in Section 3 involving
Toeplitz operators (Theorems 3.1–3.4) are proved in Section 5. The correspond-
ing theorems of Section 2 involving Toeplitz matrices can be proved in a similar
way and hence their proofs are omitted. An Appendix contains the proofs of
technical lemmas.

1.1. The trace approximation problem

We first define the main objects to be studied in this work, namely the trun-
cated Toeplitz matrices and operators, generated by integrable real symmetric
functions.

Let h(λ) be an integrable real symmetric function defined on T := (−π, π].
For T = 1, 2, . . . , the (T × T )-truncated Toeplitz matrix generated by h(λ),
denoted by BT (h), is defined by the following equation (see, e.g., [33]):

BT (f) := ‖ĥ(s− t)‖s,t=1,2,...,T , (1.1)

where ĥ(t) =
∫
T
eiλt h(λ) dλ (t ∈ Z) are the Fourier coefficients of h.

Given a number T > 0 and an integrable real symmetric function h(λ) defined
on R := (−∞,∞), the T -truncated Toeplitz operator generated by h(λ), denoted
by WT (h), is defined by the following equation (see, e.g., [33, 40, 45]):

[WT (h)u](t) =

∫ T

0

ĥ(t− s)u(s)ds, u(s) ∈ L2[0, T ], (1.2)

where ĥ(t) =
∫
R
eiλt h(λ) dλ (t ∈ R) is the Fourier transform of h(λ).

The problem of approximating traces of products of truncated Toeplitz ma-
trices and operators can be stated as follows.

Let H = {h1, h2, . . . , hm} be a collection of integrable real symmetric func-
tions defined on the domain Λ, where Λ = R := (−∞,∞) or Λ = T := (−π.π].
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For a given number T > 0, let AT (hk) denote either the (T × T )-truncated
Toeplitz matrix (BT (hk)), or the T -truncated Toeplitz operator (WT (hk)) gen-
erated by function hk, defined respectively by (1.1) and (1.2) with hk instead
of h. Further, let

τ := {τk : τk ∈ {−1, 1}, k = 1, 2, . . . ,m} (1.3)

be a given sequence of ±1’s. Define

SA,H,τ (T ) :=
1

T
tr

[
m∏

k=1

{AT (hk)}τk
]
, (1.4)

where tr[A] stands for the trace of A,

MΛ,H,τ := (2π)m−1

∫

Λ

m∏

k=1

[hk(λ)]
τkdλ, (1.5)

and
∆A,Λ,H,τ (T ) := |SA,H,τ (T )−MΛ,H,τ |. (1.6)

The problem is to approximate SA,H,τ(T ) by MΛ,H,τ and estimate the error
rate for ∆A,Λ,H,τ (T ) as T → ∞. More precisely, for a given sequence τ = {τk ∈
{−1, 1}, k = 1, 2, . . . ,m} find conditions on functions {hk(λ), k = 1, 2, . . . ,m}
such that:

Problem (A) : ∆A,Λ,H,τ (T ) = o(1) as T → ∞, or

Problem (B) : ∆A,Λ,H,τ (T ) = O(T−γ), γ > 0, as T → ∞.

The trace approximation problem goes back to the classical monograph by
Grenander and Szegö [40], and has been extensively studied in the literature (see,
e.g., Kac [49], Rosenblatt [57], [58], Ibragimov [45], Taniguchi [62], Avram [4],
Fox and Taqqu [20], Taqqu [66], Dahlhaus [17], Giraitis and Surgailis [37], Gi-
novyan [24], Taniguchi and Kakizawa [64], Lieberman and Phillips [51], Giraitis
et al. [36], Ginovyan and Sahakyan [32]–[35], and references therein).

In this paper we review and summarize the known results concerning Prob-
lems (A) and (B), prove some new results, as well as provide a number of appli-
cations to discrete- and continuous-time stationary time series models that have
various types of memory structures (short-, intermediate-, and long-memory).

We focus on the following special case which is important from an application
viewpoint, and is commonly discussed in the literature: m = 2ν, τk = 1, k =
1, 2, . . . ,m (or τk = (−1)k, k = 1, 2, . . . ,m), and

h1(λ) = h3(λ) = · · · = h2ν−1(λ) := f(λ) (1.7)

h2(λ) = h4(λ) = · · · = h2ν(λ) := g(λ).

This case is of importance from an application viewpoint because it appears
in many problems involving statistical analysis of stationary processes: asymp-
totic distributions and large deviations of Toeplitz-type quadratic functionals,
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estimation of the spectral parameters and functionals, asymptotic expansions of
the estimators, hypotheses testing about the spectrum, etc. (see, e.g., [4], [17],
[20], [24], [32]–[37], [45], [51], [62], [64], and references therein).

Throughout the paper the letters C and c, with or without index, are used
to denote positive constants, the values of which can vary from line to line.
Also, all functions defined on T are assumed to be 2π-periodic and periodically
extended to R.

1.2. The model: Short, intermediate and long memory processes

Let U denote either the real line R := (−∞,∞), or the set of integers Z :=
{0,±1,±2, . . .}. Let {X(u), u ∈ U} be a centered, real-valued, continuous-time
or discrete-time second-order stationary process with covariance function r(u),
possessing a spectral density function f(λ), λ ∈ Λ, where Λ = R or Λ = T, that
is,

E[X(u)] = 0, r(u) = E[X(t+ u)X(t)], u, t ∈ U,

and r(u) and f(λ) are connected by the Fourier integral (see, e.g., Brockwell
and Davis [12], Section 4.3):

r(u) =

∫

Λ

exp{iλu}f(λ)dλ, u ∈ U. (1.8)

Thus, the covariance function r(u) and the spectral density function f(λ) are
equivalent specifications of second order properties for a stationary process
{X(u), u ∈ U}.

The set U, called the time domain ofX(u), is the real line R in the continuous-
time case, and the set of integers Z in the discrete-time case. The set Λ, called
the frequency domain of X(u), is R in the continuous-time case, and Λ = T =
(−π, π] in the discrete-time case. In the continuous-time case the process X(u)
is also assumed mean-square continuous, that is, E[X(t) −X(s)]2 → 0 as t →
s. This assumption is equivalent to that of the covariance function r(u) be
continuous at u = 0 (see, e.g., Cramér and Leadbetter [16], Section 5.2).

The statistical and spectral analysis of stationary processes requires two types
of conditions on the spectral density f(λ). The first type controls the singulari-
ties of f(λ), and involves the dependence (or memory) structure of the process,
while the second type – controls the smoothness of f(λ).

Dependence (memory) structure of the model. We will distinguish the
following types of stationary models:

(a) short memory (or short-range dependent),
(b) long memory (or long-range dependent),
(c) intermediate memory (or anti-persistent).

The memory structure of a stationary process is essentially a measure of the
dependence between all the variables in the process, considering the effect of all
correlations simultaneously. Traditionally memory structure has been defined in
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the time domain in terms of decay rates of long-lag autocorrelations, or in the
frequency domain in terms of rates of explosion of low frequency spectra (see,
e.g., Beran [7], Guegan [41], Robinson [55], Giraitis et al. [36], Beran et al. [8],
and references therein).

It is convenient to characterize the memory structure in terms of the spectral
density function.

Short-memory models. Much of statistical inference is concerned with short-
memory stationary models, where the spectral density f(λ) of the model is
bounded away from zero and infinity, that is, there are constants C1 and C2

such that

0 < C1 ≤ f(λ) ≤ C2 <∞.

A typical short memory model example is the stationary Autoregressive Mov-
ing Average (ARMA)(p, q) process X(t) defined to be a stationary solution of
the difference equation:

ψp(B)X(t) = θq(B)ε(t), t ∈ Z,

where ψp and θq are polynomials of degrees p and q, respectively, B is the
backshift operator defined by BX(t) = X(t− 1), and {ε(t), t ∈ Z} is a discrete-
time white noise, that is, a sequence of zero-mean, uncorrelated random variables
with variance σ2. Notice that the covariance r(k) of (ARMA)(p, q) process is
exponentially bounded:

|r(k)| ≤ Cr−k, k = 1, 2, . . . ; 0 < C <∞; 0 < r < 1,

and the spectral density h(λ) is a rational function (see, e.g., Brockwell and
Davis [12], Section 3.1):

h(λ) =
σ2

2π
· |θq(e

−iλ)|2
|ψp(e−iλ)|2 . (1.9)

Discrete-time long-memory and anti-persistent models. Data in many
fields of science (economics, finance, hydrology, etc.), however, is well modeled
by a stationary process with unbounded or vanishing (at some fixed points)
spectral density (see, e.g., Beran [7], Guegan [41], Palma [53], Taqqu [65] and
references therein).

A long-memory model is defined to be a stationary process with unbounded
spectral density, and an anti-persistent model – a stationary process with van-
ishing (at some fixed points) spectral density.

In the discrete context, a basic long-memory model is the Autoregressive
Fractionally Integrated Moving Average (ARFIMA)(0, d, 0)) process X(t) de-
fined to be a stationary solution of the difference equation (see, e.g., Brockwell
and Davis [12], Section 13.2):

(1−B)dX(t) = ε(t), 0 < d < 1/2,
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where B is the backshift operator and ε(t) is a discrete-time white noise defined
above. The spectral density f(λ) of X(t) is given by

f(λ) = |1− e−iλ|−2d = (2 sin(λ/2))−2d, 0 < λ ≤ π, 0 < d < 1/2. (1.10)

A typical example of an anti-persistent model is the ARFIMA(0, d, 0) process
X(t) with spectral density f(λ) = |1 − e−iλ|−2d with d < 0, which vanishes at
λ = 0.

Note that the condition d < 1/2 ensures that
∫ π

−π
f(λ)dλ <∞, implying that

the process X(t) is well defined because E[|X(t)|2] =
∫ π

−π
f(λ)dλ.

Data can also occur in the form of a realization of a “mixed” short-long-
intermediate-memory stationary process X(t). A well-known example of such a
process, which appears in many applied problems, is an ARFIMA(p, d, q) process
X(t) defined to be a stationary solution of the difference equation:

ψp(B)(1 −B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backshift operator, ε(t) is a discrete-time white noise, and ψp

and θq are polynomials of degrees p and q, respectively. The spectral density
f(λ) of X(t) is given by

f(λ) = |1− e−iλ|−2dh(λ), d < 1/2, (1.11)

where h(λ) is the spectral density of an ARMA(p, q) process, given by (1.9).
Observe that for 0 < d < 1/2 the model X(t) specified by (1.11) displays long-
memory, for d < 0 – intermediate-memory, and for d = 0 – short-memory. For
d ≥ 1/2 the function f(λ) in (1.11) is not integrable, and thus it cannot represent
a spectral density of a stationary process. Also, if d ≤ −1, then the series X(t)
is not invertible in the sense that it cannot be used to recover a white noise ε(t)
by passing X(t) through a linear filter (see, e.g., [10, 12]).

The ARFIMA(p, d, q) processes, first introduced by Granger and Joyeux [39],
and Hosking [44], became very popular due to their ability in providing a good
characterization of the long-run properties of many economic and financial time
series. They are also very useful for modeling multivariate time series, since they
are able to capture a larger number of long term equilibrium relations among
economic variables than the traditional multivariate ARIMA models (see, e.g.,
Henry and Zaffaroni [43] for a survey on this topic).

Another important long-memory model is the fractional Gaussian noise (fGn).
To define fGn first consider the fractional Brownian motion (fBm) {BH(t), t ∈ R}
with Hurst indexH , 0 < H < 1, defined to be a centered GaussianH-self-similar
process having stationary increments, that is, BH(t) satisfies the following con-
ditions:

(a) BH(0) = 0, E[BH(t)] = 0, t ∈ R;

(b) {BH(at), t ∈ R} d
= {aHBH(t), t ∈ R} for any a > 0;

(c) {BH(t+ u)−BH(u), t ∈ R} d
= {BH(t), t ∈ R} for each fixed u ∈ R;

(d) the covariance function is given by

Cov(BH(s), BH(t)) =
σ2
0

2

[
|t|2H − |s|2H − |t− s|2H

]
,
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where the symbol
d
= stands for equality of the finite-dimensional distributions,

and σ2
0 = VarBH(1). Then the increment process

{X(k) := BH(k + 1)−BH(k), k ∈ Z},

called fractional Gaussian noise (fGn), is a discrete-time centered Gaussian
stationary process with covariance function

r(k) =
σ2
0

2

[
|k + 1|2H − |k|2H − |k − 1|2H

]
, k ∈ Z (1.12)

and spectral density function

f(λ) = c |1− e−iλ|2
∞∑

k=−∞

|λ+ 2πk|−(2H+1), −π ≤ λ ≤ π, (1.13)

where c is a positive constant.
It follows from (1.13) that f(λ) ∼ c |λ|1−2H as λ→ 0, that is, f(λ) blows up

if H > 1/2 and tends to zero if H < 1/2. Also, comparing (1.10) and (1.13),
we observe that, up to a constant, the spectral density of fGn has the same
behavior at the origin as ARFIMA(0, d, 0) with d = H − 1/2.

Thus, the fGn {X(k), k ∈ Z} has long-memory if 1/2 < H < 1 and is
anti-percipient if 0 < H < 1/2. The variables X(k), k ∈ Z, are independent
if H = 1/2. For more details we refer to Samorodnisky and Taqqu [59] and
Taqqu [65].

Continuous-time long- memory and anti-persistent models. In the
continuous context, a basic process which has commonly been used to model
long-range dependence is fractional Brownian motion (fBm) BH with Hurst
indexH , defined above. It can be regarded as Gaussian process having a spectral
density:

f(λ) = c|λ|−(2H+1), c > 0, 0 < H < 1, λ ∈ R. (1.14)

The form (1.14) can be understood in a generalized sense: either in the sense of
time-scale analysis (Flandrin [19]), or in a limiting sense (Solo [61]), since the
fBm BH is a nonstationary process (see, also, Anh et al. [3] and Gao et al. [23]).

A proper stationary model in lieu of fBm is the fractional Riesz-Bessel motion
(fRBm), introduced in Anh et al. [2], and defined as a continuous-time Gaussian
process X(t) with spectral density

f(λ) = c |λ|−2α(1 + λ2)−β , λ ∈ R, 0 < c <∞, 0 < α < 1, β > 0. (1.15)

The exponent α determines the long-range dependence, while the exponent β
indicates the second-order intermittency of the process (see, e.g., Anh et al. [3]
and Gao et al. [23]).

Notice that the process X(t), specified by (1.15), is stationary if 0 < α < 1/2
and is non-stationary with stationary increments if 1/2 ≤ α < 1. Observe
also that the spectral density (1.15) behaves as O(|λ|−2α) as |λ| → 0 and as
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O(|λ|−2(α+β)) as |λ| → ∞. Thus, under the conditions 0 < α < 1/2, β > 0 and
α + β > 1/2, the function f(λ) in (1.15) is well-defined for both |λ| → 0 and
|λ| → ∞ due to the presence of the component (1 + λ2)−β , β > 0, which is the
Fourier transform of the Bessel potential.

Comparing (1.14) and (1.15), we observe that the spectral density of fBm is
the limiting case as β → 0 that of fRBm with Hurst index H = α− 1/2.

Remark 1.1. Recall (see Yaglom [72], Section 4.23) that a centered mean-
square continuous process {X(t), t ∈ R} is said to have second-order stationary
increments if its structure function:

D(τ1, τ2) := E {[(X(s+ τ1)−X(s)][(X(s+ τ2)−X(s)]}

is independent of s for all s, τ1, τ2 ∈ R. Then the function D(τ1, τ2) has the
spectral representation

D(τ1, τ2) =

∫ ∞

−∞

(
eiτ1λ − 1

) (
eiτ2λ − 1

)
dF (λ), (1.16)

where F (λ) is a left-continuous real-valued non-decreasing function on R, called
spectral distribution function of X(t), such that for any ε > 0

∫ ε

0

λ2dF (λ) +

∫ ∞

ε

dF (λ) <∞.

If the spectral distribution function F (λ) possesses a derivative f(λ) (with re-
spect to Lebesgue measure), then f is called spectral density function of X(t).
In particular, if f(λ) has the form (1.15), then the model X(t) is a fractional
Riesz-Bessel motion.

1.3. A link between stationary processes and the trace problem

As was mentioned above, Toeplitz matrices and operators arise naturally in
the theory of stationary processes, and serve as tools, to study many topics of
the spectral and statistical analysis of discrete- and continuous-time stationary
processes.

To understand the relevance of the trace approximation problem to sta-
tionary processes, consider a question concerning the asymptotic distribution
(as T → ∞) of the following Toeplitz type quadratic functionals of a Gaus-
sian stationary process {X(u), u ∈ U} with spectral density f(λ), λ ∈ Λ and

covariance function r(t) := f̂(t), t ∈ U (here U and Λ are as in Section 1.2):

QT :=





∫ T

0

∫ T

0
ĝ(t− s)X(t)X(s) dtds in the continuous-time case

∑T
k=1

∑T
j=1 ĝ(k − j)X(k)X(j) in the discrete-time case,

(1.17)
where ĝ(t) =

∫
Λ e

iλt g(λ) dλ, t ∈ U is the Fourier transform of some real, even,
integrable function g(λ), λ ∈ Λ. We will refer g(λ) as a generating function for
the functional QT .
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The form (1.17) of QT comes from statistical applications, where such a QT

provides a good approximation, called Whittle approximation, of the likelihood
function of the observed sample: {X(t), t = 1, 2, . . . , T } in the discrete-time case,
and {X(t), 0 ≤ t ≤ T } in the continuous-time case (see, e.g., [17], [20], [24], [36],
[37], [64], and references therein).

The limit distributions of the functionals (1.17) are completely determined
by the spectral density f(λ) and the generating function g(λ), and depending on
their properties the limit distributions can be either Gaussian (that is, QT with
an appropriate normalization obeys central limit theorem), or non-Gaussian.

The following two questions arise naturally:

(a) Under what conditions on f(λ) and g(λ) will the limits be Gaussian?
(b) Describe the limit distributions, if they are non-Gaussian.

These questions will be discussed in detail in Section 4.2.
Let AT (f) be the covariance matrix (or operator) of the process {X(u),

u∈U}, that is,AT (f) denote either the T×T Toeplitz matrix, or the T -truncated
Toeplitz operator generated by the spectral density f , and let AT (g) denote ei-
ther the T ×T Toeplitz matrix, or the T -truncated Toeplitz operator generated
by the function g (see Section 1.1).

Our study of the asymptotic distribution of the quadratic functionals (1.17)
is based on the following well–known results (see, e.g., [40, 45]):

1. The quadratic functional QT in (1.17) has the same distribution as the

sum
∑∞

k=1 λ
2
kξ

2
k (
∑T

k=1 λ
2
kξ

2
k in the discrete-time case), where {ξk, k ≥ 1}

are independent N(0, 1) Gaussian random variables and {λk, k ≥ 1} are
the eigenvalues of the operator AT (f)AT (g). (Observe that the sets of
non–zero eigenvalues of the operators AT (f)AT (g), AT (g)AT (f) and

A
1/2
T (f)AT (g)A

1/2
T (f) coincide, where A

1/2
T (f) denotes the positive defi-

nite square root of AT (f).
2. The characteristic function ϕ(t) of QT is given by

ϕ(t) =
∞∏

k=1

|1− 2itλk|−1/2. (1.18)

3. The k–th order cumulant χk(·) of QT is given by

χk(QT ) = 2k−1(k − 1)!

∞∑

j=1

λkj = 2k−1(k − 1)! tr [AT (f)AT (g)]
k. (1.19)

Thus, to describe the asymptotic distributions of the quadratic functionals
(1.17), we have to control the corresponding traces of the products of Toeplitz
matrices (or operators), yielding the trace approximation problem with gener-
ating functions specified by (1.7).

2. The trace problem for Toeplitz matrices

Let f(λ) be an integrable real symmetric function defined on T = (−π, π]. For
T = 1, 2, . . . denote by BT (f) the (T × T ) Toeplitz matrix generated by the
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function f , that is,

BT (f) := ‖f̂(s− t)‖s,t=1,2,...,T =




f̂(0) f̂(−1) · · · f̂(1− T )

f̂(1) f̂(0) · · · f̂(2− T )
· · · · · · · · · · · ·
f̂(T − 1) f̂(T − 2) · · · f̂(0)


 ,

(2.1)
where

f̂(t) =

∫

T

eiλt f(λ) dλ, t ∈ Z, (2.2)

are the Fourier coefficients of f .

Observe that

1

T
tr [BT (f)] =

1

T
· T f̂(0) =

∫ π

−π

f(λ)dλ. (2.3)

What happens to the relation (2.3) when the matrix BT (f) is replaced by a
product of Toeplitz matrices? Observe that the product of Toeplitz matrices is
not a Toeplitz matrix.

The idea is to approximate the trace of the product of Toeplitz matrices
by the trace of a Toeplitz matrix generated by the product of the generating
functions. More precisely, let H = {h1, h2, . . . , hm} be a collection of integrable
real symmetric functions defined on T. Define

SB,H(T ) :=
1

T
tr

[
m∏

i=1

BT (hi)

]
, MT,H := (2π)m−1

∫ π

−π

[
m∏

i=1

hi(λ)

]
dλ, (2.4)

and let

∆(T ) := ∆B,T,H(T ) = |SB,H(T )−MT,H|. (2.5)

Observe that by (2.3)

MT,H = (2π)m−1

∫ π

−π

[
m∏

i=1

hi(λ)

]
dλ =

1

T
tr

[
BT

(
m∏

i=1

hi(λ)

)]
. (2.6)

How well is SB,H(T ) approximated by MT,H? What is the rate of convergence
to zero of approximation error ∆B,T,H(T ) as T → ∞? These are Problems (A)
and (B), stated in Section 1.1.

Note that the Problems (A) and (B) are important not only for their the-
oretical interest (see, e.g., [11, 40, 49]), but also because of their applications.
For instance, in view of formulas (1.18) and (1.19), to describe the asymptotic
distributions of the quadratic functionals (1.17), and then to apply to statistical
estimation problems, we have to control the traces of the products of Toeplitz
matrices BT (f) and BT (g) (see, also, [17, 20, 36, 37, 64]).
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2.1. Problem (A) for Toeplitz matrices

Recall that Problem (A) involves finding conditions on the functions h1(λ),
h2(λ), . . . , hm(λ) in (2.4) such that ∆B,T,H(T ) = o(1) as T → ∞.

In Theorem 2.1 and Remark 2.2 we summarize the results concerning Prob-
lems (A) for Toeplitz matrices in the case where the exponents τk, k = 1, 2, . . . ,m
(see (1.4)) are all equal to 1 as in (2.4).

Theorem 2.1. Let ∆B,T,H(T ) be as in (2.5). Each of the following conditions
is sufficient for

∆B,T,H(T ) = o(1) as T → ∞. (2.7)

(A1) hi ∈ Lpi(T), 1 ≤ pi ≤ ∞, i = 1, 2, . . . ,m, with 1/p1 + · · ·+ 1/pm ≤ 1.
(A2) The function ϕ(u) given by

ϕ(u) : =

∫ π

−π

h1(λ)h2(λ − u1)h3(λ− u2) · · ·hm(λ − um−1) dλ, (2.8)

where u = (u1, u2, . . . , um−1) ∈ R
m−1, belongs to Lm−2(Tm−1) and is

continuous at 0 = (0, 0, . . . , 0).

Remark 2.1. Assertion (A1) was proved by Avram [4]. For the special case
pi = ∞, i = 1, 2, . . . ,m, that is, when all hi are bounded functions, it was first
established by Grenander and Szegö ([40], Sec. 7.4). For m = 4; p1 = p3 = 2;
p2 = p4 = ∞, (A1) was proved by Ibragimov [45] and Rosenblatt [57].

Assertion (A2), for m = 4, h1 = h3 := f and h2 = h4 := g was proved in
Ginovyan and Sahakyan [32].

Remark 2.2. For the special case m = 4, h1 = h3 := f and h2 = h4 := g,
in Giraitis and Surgailis [37] (see also Giraitis et al. [36]), and in Ginovyan and
Sahakyan [32], it was proved that the following conditions are also sufficient
for (2.7):

(A3) (Giraitis and Surgailis [37]). f ∈ L2(T), g ∈ L2(T), fg ∈ L2(T) and

∫ π

−π

f2(λ)g2(λ− µ) dλ −→
∫ π

−π

f2(λ)g2(λ) dλ as µ→ 0.

(A4) (Ginovyan and Sahakyan [32]). The functions f and g satisfy

f(λ) ≤ |λ|−αL1(λ) and |g(λ)| ≤ |λ|−βL2(λ) for λ ∈ [−π, π],

for some α < 1, β < 1 with α+β ≤ 1/2, and Li ∈ SV (R), λ−(α+β)Li(λ) ∈
L2(T), i = 1, 2, where SV (R) is the class of slowly varying at zero func-

tions u(λ), λ ∈ R, namely lima→0
u(aλ)
u(λ) = 1 for all a > 0, satisfying also

u(λ) ∈ L∞(R), limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) < u(µ) for
0 < λ < µ.

Remark 2.3. Case (A4), with α + β < 1/2, was first obtained by Fox and
Taqqu [20].
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Remark 2.4. It would be of interest to extend the results of (A3) and (A4) to
arbitrary m > 4.

We now consider the case when the product in (1.4) involves also inverse
matrices, that is, τk = (−1)k, k = 1, 2, . . . ,m. We assume that m = 2ν, and
the functions from the collection H = {h1, h2, . . . , hm} that involve Toeplitz
matrices we denote by gi, i = 1, 2, . . . , ν, while those involving inverse Toeplitz
matrices we denote by fi, i = 1, 2, . . . , ν. We set

SIB,H(T ) :=
1

T
tr

[
ν∏

i=1

[BT (fi)]
−1BT (gi)

]
, (2.9)

MIT,H :=
1

2π

∫ π

−π

[
ν∏

i=1

gi(λ)

fi(λ)

]
dλ, (2.10)

∆IB,T,H(T ) := |SIB,H(T )−MIT,H|. (2.11)

The following theorem was proved by Dahlhaus (see [17], Theorem 5.1).

Theorem 2.2. Let ν ∈ N, and α, β ∈ R with 0 < α, β < 1 and ν(β−α) < 1/2.
Suppose fi(λ) and gi(λ), i = 1, 2, . . . , ν, are symmetric real valued functions
satisfying the conditions:

(C1) fi(λ), i = 1, 2, . . . , ν, are nonnegative and continuous at all λ ∈ T \ {0},
f−1
i (λ) are continuous at all λ ∈ T, and fi(λ) = O

(
|λ|−α−δ

)
as λ → 0

for all δ > 0 and i = 1, 2, . . . , ν;
(C2) ∂/(∂λ)f−1

i (λ) and ∂2/(∂λ)2f−1
i (λ) are continuous at all λ ∈ T \ {0}, and

for all δ > 0 and i = 1, 2, . . . , ν

∂k/(∂λ)kf−1
i (λ) = O

(
|λ|−α−k−δ

)
for k = 0, 1.

(C3) gi(λ) are continuous at all λ ∈ T \ {0} and gi(λ) = O
(
|λ|−β−δ

)
as λ→ 0

for all δ > 0 and i = 1, 2, . . . , ν.

Then
∆IB,T,H(T ) = o(1) as T → ∞.

2.2. Problem (B) for Toeplitz matrices

Recall that Problem (B) involves finding conditions on the functions h1(λ),
h2(λ), . . . , hm(λ) in (2.4) such that ∆B,T,H(T ) = O(T−γ) as T → ∞ for some
γ > 0.

In Theorem 2.3 below we summarize the results concerning Problem (B) for
Toeplitz matrices in the case where τk = 1, k = 1, 2, . . . ,m. First we introduce
some classes of functions (see, e.g., [14, 62, 64]). Recall that T = (−π, π] and
denote

F1(T) :=

{
f ∈ L1(T) :

∞∑

k=−∞

|k||f̂(k)| <∞;

}
, (2.12)
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where f̂(k) =
∫
T
eiλk f(λ) dλ, f̂(−k) = f̂(k), and

F2(T) = FARMA(T) :=

{
f : f(λ) =

σ2

2π

|θq(e−iλ)|2
|ψp(e−iλ)|2

}
, (2.13)

where 0 < σ2 < ∞, θq(z) :=
∑q

k=0 akz
k (q ∈ N) and ψp(z) :=

∑p
k=0 bkz

k

(p ∈ N) are both bounded away from zero for |z| ≤ 1.

Remark 2.5. The following implications were established in [62]:

(a) If f1, f2 ∈ F1(T), then f1f2 ∈ F1(T).
(b) If f ∈ F2(T), then f ∈ F1(T) and f

−1 ∈ F2(T).

For ψ ∈ Lp(T), 1 ≤ p ≤ ∞, let ωp(ψ, δ) denote the L
p–modulus of continuity

of ψ:

ωp(ψ, δ) := sup
0<h≤δ

‖ψ(·+ h)− ψ(·)‖p, δ > 0.

Definition 2.1. Given numbers 0 < γ ≤ 1 and 1 ≤ p ≤ ∞, we denote by
Lip(T; p, γ) the Lp-Lipschitz class of functions defined on T (see, e.g., [14]):

Lip(T; p, γ) = {ψ(λ) ∈ Lp(T); ωp(ψ; δ) = O(δγ), δ → 0}.

Observe that if ψ ∈ Lip(p, γ), then there exists a constant C such that
ωp(ψ; δ) ≤ C δγ for all δ > 0.

Theorem 2.3. Assume that τk = 1, k = 1, 2, . . . ,m, H = {h1, h2, . . . , hm},
and let ∆B,T,H(T ) be as in (2.5). The following assertions hold:

(B1) If hi ∈ F1(T), i = 1, 2, . . . ,m, then

∆B,T,H(T ) = O(T−1) as T → ∞.

(B2) If the functions hi(λ), i = 1, 2, . . . ,m, have uniformly bounded derivatives
on T := (−π, π], then for any ǫ > 0

∆B,T,H(T ) = O(T−1+ǫ) as T → ∞.

(B3) Assume that the function ϕ(u) given by (2.8) with some constants C > 0
and γ ∈ (0, 1] satisfies

|ϕ(u)− ϕ(0)| ≤ C|u|γ , u = (u1, u2, . . . , um−1) ∈ T
m−1,

where 0 = (0, 0, . . . , 0) and |u| = |u1|+ |u2|+ · · ·+ |um−1|. Then for any
ε > 0

∆B,T,H(T ) = O
(
T−γ+ε

)
as T → ∞. (2.14)

(B4) Let hi(λ) ∈ Lip(T; pi, γ), pi > 1, i = 1, 2, . . . ,m, 1/p1 + · · · + 1/pm ≤ 1
and γ ∈ (0, 1]. Then (2.14) holds for any ε > 0.
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(B5) Let hi(λ), i = 1, 2, . . . ,m, be differentiable functions defined on T \ {0},
such that for some constants C1i > 0, C2i > 0, and αi, i = 1, 2, . . . ,m,
satisfying 0 < αi < 1, α :=

∑m
i=1 αi < 1

|hi(λ)| ≤ C1i|λ|−αi , |h′i(λ)| ≤ C2i|λ|−(αi+1), λ ∈ T\{0}, i = 1, 2, . . . ,m.

Then (2.14) holds for any ε > 0 with

γ =
1

m
(1− α). (2.15)

Remark 2.6. Assertion (B1) was proved in Taniguchi [62] (see, also, [64]).
Assertion (B2), which is weaker than (B1), but holding under weaker conditions
than those in (B1), was proved in Lieberman and Phillips [51]. Assertions (B3)–
(B5) for m = 4 were proved in Ginovyan and Sahakyan [35].

Remark 2.7. It is easy to see that under the conditions of (B2) we have
hi ∈ Lip(T; p, 1) for any i = 1, 2, . . . ,m and p ≥ 1. Hence (B4) implies (B2).

Example 2.1. Let hi(λ) = |λ|−αi , λ ∈ [−π, π], i = 1, 2, . . . ,m, with 0 < αi < 1
and α :=

∑m
i=1 αi < 1. It is easy to see that the conditions of (B5) are satisfied,

and hence we have (2.14) with γ as in (2.15).

The next results (cf. Ginovyan [28]) show that for special case m = 2 the
rates in Theorem 2.3 (B4) and (B5) can be substantially improved.

Theorem 2.4. Let hi(λ) ∈ Lip(T; pi, γi) with pi > 1, 1/p1 + 1/p2 = 1 and
γi ∈ (0, 1], i = 1, 2, and let

∆2,B(T ) :=

∣∣∣∣
1

T
tr[BT (h1)BT (h2)]− 2π

∫

T

h1(λ)h2(λ) dλ

∣∣∣∣ .

Then

∆2,B(T ) =





O(T−(γ1+γ2)), if γ1 + γ2 < 1
O(T−1 lnT ), if γ1 + γ2 = 1
O(T−1), if γ1 + γ2 > 1.

Theorem 2.5. Assume that the functions hi(λ), i = 1, 2, satisfy the conditions
of Theorem 2.3 (B5) with m = 2. Then

∆2,B(T ) = O
(
T−1+(α1+α2)

)
as T → ∞. (2.16)

The next result, due to Taniguchi [62] (see, also, [64]), concerns the case when
the product in (1.4) involves also inverse matrices, that is, τk = (−1)k, k =
1, 2, . . . ,m.

Theorem 2.6. Let SIB,H(T ), MIT,H and ∆IB,T,H(T ) be as in (2.9)–(2.11),
and let F1(T) and F2(T) be as in (2.12) and (2.13), respectively. If fi ∈ F2 and
gi ∈ F1(T), i = 1, 2, . . . , ν, then

∆IB,T,H(T ) = O(T−1) as T → ∞. (2.17)
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3. The trace problem for Toeplitz operators

In this section we consider Problems (A) and (B) for Toeplitz operators, that is,
in the case where the generating functions are defined on the real line. Again,
Problem (A) involves o(1) approximation and Problem (B) involves O(T−γ)
approximation with γ > 0. The theorems in this section are proved in Section 5.

Let f(λ) be an integrable real symmetric function defined on R. The analogue

of the Fourier coefficients f̂(k) in (2.2) is the Fourier transform f̂(t) of f(λ):

f̂(t) =

∫ +∞

−∞

eiλt f(λ) dλ, t ∈ R. (3.1)

The f̂ in (3.1) will play the role of kernel in an integral operator.
Given T > 0 and an integrable real symmetric function f(λ) defined on R, the

T -truncated Toeplitz operator generated by f(λ), denoted by WT (f), is defined
by the following equation (see, e.g., [33, 40, 45]):

[WT (f)u](t) =

∫ T

0

f̂(t− s)u(s)ds, u(s) ∈ L2[0, T ], (3.2)

where f̂ is as in (3.1).
It follows from (3.1), (3.2) and the formula for traces of integral operators

(see, e.g., Gohberg and Krein [38], p. 114) that

tr [WT (f)] =

∫ T

0

f̂(t− t)dt = T f̂(0) = T

∫ +∞

−∞

f(λ)dλ. (3.3)

We pose the same question as in the case of Toeplitz matrices: what happens
to the relation (3.3) when the single operator WT (f) is replaced by a product
of such operators? Observe that the product of Toeplitz operators again is not
a Toeplitz operator.

The approach is similar to that of Toeplitz matrices – to approximate the
trace of the product of Toeplitz operators by the trace of a Toeplitz opera-
tor generated by the product of generating functions. More precisely, let H =
{h1, h2, . . . , hm} be a collection of integrable real symmetric functions defined
on R. Define

SW,H(T ) :=
1

T
tr

[
m∏

i=1

WT (hi)

]
, MR,H := (2π)m−1

∫ ∞

−∞

[
m∏

i=1

hi(λ)

]
dλ, (3.4)

and let

∆(T ) := ∆W,R,H(T ) = |SW,H(T )−MR,H|. (3.5)

Observe that by (3.3),

MR,H = (2π)m−1

∫ ∞

−∞

[
m∏

i=1

hi(λ)

]
dλ =

1

T
tr

[
WT

(
m∏

i=1

hi(λ)

)]
. (3.6)
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How well is SW,H(T ) approximated by MR,H? What is the rate of convergence
to zero of approximation error ∆W,R,H(T ) as T → ∞? These are Problems (A)
and (B) in this case.

3.1. Problem (A) for Toeplitz operators

In Theorem 3.1 and Remark 3.1 we summarize the results concerning Problem
(A) for Toeplitz operators in the case where τk = 1, k = 1, 2, . . . ,m.

Theorem 3.1. Let ∆(T ) := ∆W,R,H(T ) be as in (3.5). Each of the following
conditions is sufficient for

∆(T ) = o(1) as T → ∞. (3.7)

(A1) hi ∈ L1(R) ∩ Lpi(R), pi > 1, i = 1, 2, . . . ,m, with 1/p1 + · · ·+ 1/pm ≤ 1.
(A2) The function ϕ(u) defined by

ϕ(u) : =

∫ +∞

−∞

h1(λ)h2(λ− u1)h3(λ− u2) · · ·hm(λ− um−1) dλ, (3.8)

where u = (u1, u2, . . . , um−1) ∈ R
m−1, belongs to Lm−2(Rm−1) and is

continuous at 0 = (0, 0, . . . , 0) ∈ R
m−1.

Remark 3.1. For the special case m = 4, h1 = h3 := f and h2 = h4 :=
g, Ginovyan and Sahakyan [33] proved that the following conditions are also
sufficient for (3.7):

(A3) f ∈ L1(R) ∩ L2(R), g ∈ L1(R) ∩ L2(R), fg ∈ L2(R) and
∫ +∞

−∞

f2(λ)g2(λ− µ) dλ −→
∫ +∞

−∞

f2(λ)g2(λ) dλ as µ→ 0.

(A4) The functions f and g are integrable on R, bounded on R \ (−π, π), and
satisfy

f(λ) ≤ |λ|−αL1(λ) and |g(λ)| ≤ |λ|−βL2(λ) for λ ∈ [−π, π],
for some α < 1, β < 1 with α+β ≤ 1/2, and Li ∈ SV (R), λ−(α+β)Li(λ) ∈
L2(T), i = 1, 2, where SV (R) is the class of slowly varying at zero func-
tions u(λ), λ ∈ R, satisfying u(λ) ∈ L∞(R), limλ→0 u(λ) = 0, u(λ) =
u(−λ) and 0 < u(λ) < u(µ) for 0 < λ < µ.

Remark 3.2. It would be of interest to extend the results of (A3) and (A4) to
arbitrary m > 4.

3.2. Problem (B) for Toeplitz operators

In Theorem 3.2 below we summarize the results concerning Problem (B) for
Toeplitz operators in the case where τk = 1, k = 1, 2, . . . ,m. Let

F1(R) :=

{
f ∈ L1(R) :

∫ ∞

−∞

|t||f̂(t)|dt <∞
}
, (3.9)
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where f̂(t) =
∫
R
eiλt f(λ) dλ, f̂(−t) = f̂(t).

For ψ ∈ Lp(R), 1 ≤ p ≤ ∞ let ωp(ψ, δ) denote the Lp–modulus of continuity
of ψ:

ωp(ψ, δ) := sup
0<h≤δ

‖ψ(·+ h)− ψ(·)‖p, δ > 0.

Given numbers 0 < γ ≤ 1 and 1 ≤ p ≤ ∞, we denote by Lip(R; p, γ) the
Lp-Lipschitz class of functions defined on R (see, e.g., [14]):

Lip(R; p, γ) = {ψ(λ) ∈ Lp(R) : ωp(ψ; δ) = O(δγ) as δ → 0}.

Theorem 3.2 is the continuous version of Theorem 2.3.

Theorem 3.2. Let H = {h1, h2, . . . , hm}, and ∆W,R,H(T ) and ϕ(u) be as in
(3.5) and (3.8), respectively. The following assertions hold:

(B1) If hi ∈ F1(R), i = 1, 2, . . . ,m, then

∆W,R,H(T ) = O(T−1) as T → ∞. (3.10)

(B2) Assume that ϕ(u) ∈ L∞(Rm−1) and with some constants C > 0 and
γ ∈ (0, 1]

|ϕ(u) − ϕ(0)| ≤ C|u|γ , u = (u1, u2, . . . , um−1) ∈ R
m−1, (3.11)

where 0 = (0, 0, . . . , 0) and |u| = |u1|+ |u2|+ · · ·+ |um−1|. Then for any
ε > 0

∆W,R,H(T ) = O
(
T−γ+ε

)
as T → ∞. (3.12)

(B3) Let hi(λ) ∈ Lip(R; pi, γ), i = 1, 2, . . . ,m, 1/p1 + · · · + 1/pm ≤ 1 and
γ ∈ (0, 1]. Then (3.12) holds for any ε > 0.

(B4) Let hi(λ), i = 1, 2, . . . ,m, be differentiable functions defined on R \ {0},
such that for some constants Ci > 0, σi > 0 and δi > 1, i = 1, 2, . . . ,m
with σ :=

∑m
i=1 σi < 1

|hi(λ)| ≤
{
Ci|λ|−σi if |λ| ≤ 1

Ci|λ|−δi if |λ| > 1
, |h′i(λ)| ≤

{
Ci|λ|−σi−1 if |λ| ≤ 1

Ci|λ|−δi−1 if |λ| > 1

(3.13)
for all i = 1, 2, . . . ,m. Then for any ε > 0

∆W,R,H(T ) = O
(
T−γ+ε

)
as T → ∞ (3.14)

with

γ =
1

m
(1− σ). (3.15)

The next results, which are continuous versions of Theorems 2.4 and 2.5,
respectively, show that for the special case m = 2, the rates in Theorem 3.2
(B3) and (B4) can be substantially improved.



The trace problem and its impact in probability 411

Theorem 3.3. Let hi(λ) ∈ Lip(R; pi, γi) with pi > 1, 1/p1 + 1/p2 = 1 and
γi ∈ (0, 1], i = 1, 2, and let

∆2,W (T ) :=

∣∣∣∣
1

T
tr[WT (h1)WT (h2)]− 2π

∫

R

h1(λ)h2(λ) dλ

∣∣∣∣ .

Then

∆2,W (T ) =





O(T−(γ1+γ2)), if γ1 + γ2 < 1
O(T−1 lnT ), if γ1 + γ2 = 1
O(T−1), if γ1 + γ2 > 1.

Theorem 3.4. Assume that the functions hi(λ), i = 1, 2, satisfy the conditions
of Theorem 3.2 (B4) with m = 2. Then

∆2,W (T ) = O
(
T−1+(σ1+σ2)

)
as T → ∞. (3.16)

Remark 3.3. It would be of interest to prove the continuous analogs of Dahl-
haus theorem (Theorem 2.2) and Taniguchi theorem (Theorem 2.6) for Toeplitz
operators.

4. Applications to stationary processes

In this section we provide some applications of the trace problem to discrete-
and continuous-time stationary processes: ARFIMA and Fractional Riesz-Bessel
motions; central and non-central limit theorems, Berry-Esséen bounds, and large
deviations for Toeplitz quadratic forms and functionals.

4.1. Applications to ARFIMA time series and fractional
Riesz-Bessel motions

In this subsection we apply the results of Sections 2 and 3 to the important spe-
cial cases where the generating functions are spectral densities of a discrete-time
ARFIMA(0, d, 0) stationary processes or continuous-time stationary fractional
Riesz-Bessel motions.

We use the following notation: m = 2ν;

h1(λ) = h3(λ) = · · · = h2ν−1(λ) := f1(λ)

h2(λ) = h4(λ) = · · · = h2ν(λ) := f2(λ);

and

Sν,A(T ) =
1

T
tr[AT (f1)AT (f2)]

ν , (4.1)

∆ν,A(T ) :=

∣∣∣∣Sν,A(T )− (2π)2ν−1

∫

Λ

[f1(λ)f2(λ)]
ν dλ

∣∣∣∣ , (4.2)

where either AT (fi) = BT (fi) and Λ = T or AT (fi) = WT (fi) and Λ = R,
i = 1, 2.
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4.1.1. Applications to ARFIMA time series

The next theorem gives an error bound for ∆2,B(T ) in the case where the corre-
sponding Toeplitz matrices are generated by spectral densities of two discrete-
time ARFIMA(0, d, 0) stationary processes.

Theorem 4.1. Let fi(λ), i = 1, 2, be the spectral density functions of two
ARFIMA(0, d, 0) stationary processes defined as

fi(λ) =
σ2
i

2π

∣∣1− e−iλ
∣∣−2di

, i = 1, 2 (4.3)

with 0 < σ2
i <∞ and 0 < di < 1/2. Then under d : = d1 + d2 < 1/(2ν), ν ∈ N,

for any ε > 0,
∆ν,B(T ) = O

(
T−γ+ε

)
as T → ∞ (4.4)

with

γ =
1

2ν
− (d1 + d2). (4.5)

Proof. Assuming that λ ∈ (0, π] (the case λ ∈ [−π, 0) is treated similarly), and
taking into account |1− e−iλ| = 2 sin(λ/2), we have for i = 1, 2

fi(λ) =
σ2
i

2π
· 2−2di

[
sin

λ

2

]−2di

,

f ′
i(λ) =

σ2
i

2π
·
[
−2di2

−2di−1

(
sin

λ

2

)−2di−1

cos
λ

2

]
. (4.6)

It is clear that the conditions of Theorem 2.3 (B5) are satisfied with αi = 2di
and C1i = C2i = σ2

i , i = 1, 2, and the result follows.

The next theorem, which was proved in Lieberman and Phillips [51], gives
an explicit second-order asymptotic expansion for S1,B(T ) in the case where
the Toeplitz matrices are generated by the spectral densities given by (4.3), and
shows that in this special case a second-order asymptotic expansion successfully
removes the singularity and delivers a substantially improved approximation.

Theorem 4.2. Let fi(λ), i = 1, 2, be the spectral density functions of two
ARFIMA(0, d, 0) stationary processes defined by (4.3) with 0 < σ2

i < ∞ and
0 < di < 1/2, i = 1, 2. Then under d : = d1 + d2 < 1/2

S1,B(T ) :=
1

T
tr[BT (f1)BT (f2)]

= 2π

∫ π

−π

f1(λ)f2(λ) dλ − C(d1, d2)

T 1−2d
+ o

(
1

T 1−2d

)
(4.7)

as T → ∞, where

C(d1, d2) =
2σ2

1σ
2
2π

2

cos(πd1) cos(πd2)Γ(2d1)Γ(2d2)
· 1

2d(1− 2d)
. (4.8)
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Remark 4.1. The asymptotic relation (4.7) in Lieberman and Phillips [51] was
established by direct calculations using the explicit forms of functions fi given
by (4.3). On the other hand, as it follows from (4.6), the functions fi (i = 1, 2)
satisfy conditions of Theorem 2.5 with αi = 2di (i = 1, 2), and hence (4.7) is a
special case of Theorem 2.5.

4.1.2. Applications to fractional Riesz-Bessel motions

Now we assume that the underlying model is a fractional Riesz-Bessel motion
with spectral density given by (1.15). The following result is an immediate
consequence of Theorem 3.1 (A1).

Theorem 4.3. Let f1(λ) = f(λ) be the spectral density of a fractional Riesz-
Bessel motion defined by (1.15), and let f2(λ) = g(λ) be an integrable real
symmetric function on R. If for some p, q ≥ 1 with 1/p+1/q ≤ 1/ν (ν ∈ N) we
have g(λ) ∈ Lq(R) and 0 < α < 1/(2p), α+ β > 1/2, then

∆ν,W (T ) = o(1) as T → ∞.

Theorem 4.4. Let f1(λ) = f(λ) be as in (1.15) with 0 < α < 1/(2p) and
α+β > 1/2, and let f2(λ) = g(λ) be an integrable real symmetric function from
the class Lip(q, 1/p− 2α) with 1/p+ 1/q ≤ 1/ν, ν ∈ N. Then for any ε > 0

∆ν,W (T ) = O
(
T−γ+ε

)
as T → ∞. (4.9)

with γ = 1/p− 2α.

Proof. The result follows from Theorem 3.2 (B3) and the following lemma,
which is proved in the Appendix.

Lemma 4.1. Let p > 1, 0 < σ < 1/p and let f(λ) be differentiable function
defined on R \ {0}, such that for some constant C > 0

|f(λ)| ≤
{
C|λ|−σ if |λ| ≤ 1

C|λ|−δ if |λ| > 1
, |f ′(λ)| ≤

{
C|λ|−σ−1 if |λ| ≤ 1

C|λ|−δ−1 if |λ| > 1
. (4.10)

Then f ∈ Lip(p, 1/p− σ).

Now to prove (4.9) observe that by (1.15),

f ′(λ) = − 2α+ 2(α+ β)λ2

λ2α+1(1 + λ)β+1
. (4.11)

It follows from (1.15) and (4.11) that the functions f and f ′ satisfy conditions
(4.10) with σ = 2α and δ = 2α+2β. Hence by Lemma 4.1, f(λ) ∈ Lip(p, 1/p−
2α). Therefore the result follows from Theorem 3.2 (B3).
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Theorem 4.5. Let fi(λ), i = 1, 2, be the spectral density functions of two
fractional Riesz-Bessel motions defined as

fi(λ) =
Ci

|λ|2αi(1 + λ2)βi
, 0 < αi < 1/2, αi + βi > 1/2, i = 1, 2. (4.12)

If α1 + α2 < 1/(2ν), then (4.9) holds for any ε > 0 with

γ =
1

2ν
− (α1 + α2). (4.13)

Proof. It follows from (1.15) and (4.11) that the functions f1 and f2 satisfy
conditions of Theorem 3.2 (B4) with σi = 2αi and δi = 2αi +2βi, i = 1, 2, and
the result follows.

The next theorem, which is a continuous version of Theorem 4.2, contains an
explicit second-order asymptotic expansion for S1,W (T ) in the case where the
Toeplitz operators are generated by the spectral densities given by (4.12), and
shows that in this special case a second-order asymptotic expansion successfully
removes the singularity and delivers a substantially improved approximation.

Theorem 4.6. Let fi(λ), i = 1, 2, be as in (4.12). Then under α : = α1 +α2 <
1/2

S1,W (T ) :=
1

T
tr[WT (f1)WT (f2)]

= 2π

∫ +∞

−∞

f1(λ)f2(λ) dλ − C(α1, α2)

T 1−2α
+ o

(
1

T 1−2α

)
(4.14)

as T → ∞, where

C(α1, α2) =
2C1C2π

2

cos(πα1) cos(πα2)Γ(2α1)Γ(2α2)
· 1

2α(1 − 2α)
. (4.15)

The proof is based on the following lemma, which contains an asymptotic for-
mula for the covariance function of a fRBm process. It is proved in the Appendix.

Lemma 4.2. Let f(λ) be as in (1.15) with 0 < α < 1/2 and β > 1/2, and let

r(t) : = f̂(t) be the Fourier transform of f(λ). Then

r(t) = t2α−1 · πC

cos(πα)Γ(2α)
· (1 + o(1)) as t→ ∞. (4.16)

Remark 4.2. Taking into account the reflection formula Γ(2α)Γ(1 − 2α) =
π/ sin(2πα), the asymptotic relation (4.16) can be written in the following form

r(t) = Ct2α−1 sin(πα)Γ(1 − 2α) · (1 + o(1)) as t→ ∞. (4.17)

Proof of Theorem 4.6. By Lemma 5.2 1) and Parseval-Plancherel theorem we
have

ST,1 =

∫ T

−T

(
1− |t|

T

)
r1(t)r2(t) dt = 2π

∫ +∞

−∞

f1(λ)f2(λ) dλ− I1 − I2, (4.18)
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where

I1 =

∫

|t|>T

r1(t)r2(t) dt (4.19)

and

I2 =
1

T

∫ T

−T

|t|r1(t)r2(t) dt. (4.20)

Hence, for α : = α1 +α2 < 1/2 from Lemma 4.2 and (4.19), we have as T → ∞

I1 =

∫

|t|>T

r1(t)r2(t) dt = 2

∫

t>T

r1(t)r2(t) dt

=
2C1C2π

2

cos(πα1) cos(πα2)Γ(2α1)Γ(2α2)
·
∫

t>T

t2(α−1) (1 + o(1))

=
2C1C2π

2

cos(πα1) cos(πα2)Γ(2α1)Γ(2α2)
· 1

1− 2α
· T 2α−1 (1 + o(1)) . (4.21)

For I2, from Lemma 4.2 and (4.20), we have as T → ∞ and α : = α1+α2 < 1/2

I2 =
1

T

∫ T

−T

|t|r1(t)r2(t) dt =
2

T

∫ T

0

t r1(t)r2(t) dt

=
2

T
· C1C2π

2

cos(πα1) cos(πα2)Γ(2α1)Γ(2α2)

∫ T

0

t2α−1 dt (1 + o(1))

=
2C1C2π

2

cos(πα1) cos(πα2)Γ(2α1)Γ(2α2)
· 1

2α
· T 2α−1 (1 + o(1)) . (4.22)

From (4.18), (4.21) and (4.22) the result follows. Theorem 4.6 is proved.

Remark 4.3. (a) As in Remark 4.1, the rate in (4.14) can be obtained from
Theorem 3.4.

(b) We analyze the behavior of the approximations as α1, α2 → 1/4. First
observe that the first-order asymptotic formula has a pole when α :=
α1 +α2 = 1/2. In particular, denoting β := β1 + β2, and using the change
of variable λ2 = u, we have

2π

∫ +∞

−∞

f1(λ)f2(λ) dλ = 2πC1C2

∫ +∞

−∞

1

|λ|2α(1 + λ2)β
dλ

= 2πC1C2

∫ ∞

0

u−1/2−α

(1 + u)β
du. (4.23)

Applying the formula (see, e.g., [18])
∫ ∞

0

um−1

(1 + u)m+n
du =

Γ(m)Γ(n)

Γ(m+ n)
, m > 0, n > 0, (4.24)

with m = 1/2− α and n = β −m = α+ β − 1/2, from (4.23) we find

2πC1C2

∫ +∞

−∞

f1(λ)f2(λ) dλ = 2πC1C2
Γ(1/2− α)Γ(α + β − 1/2)

Γ(β)
. (4.25)
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Then, using the Laurent expansion of the gamma function Γ(1/2 − α)
around the pole α = 1/2, from (4.25) we obtain: as α = α1 + α2 → 1/2

2π

∫ +∞

−∞

f1(λ)f2(λ) dλ =
4πC1C2

1− 2α
+O(1). (4.26)

However, the asymptotic behavior of the second-order term C(α1, α2)
(see (4.15)), as α1, α2 → 1/4 is readily seen to be

C(α1, α2) =
2π2C1C2

cos(πα1) cos(πα2)Γ(2α1)Γ(2α2)
· 1

2α(1− 2α)

=
2π2C1C2

cos2(π/4)[Γ(1/2)]2
· 1

1− 2α
+O(1)

=
4πC1C2

1− 2α
+O(1). (4.27)

Thus, the pole in the first-order approximation is removed by the second-
order approximation, so that the approximation

2π

∫ +∞

−∞

f1(λ)f2(λ) dλ − C(α1, α2)

T 1−2(α1+α2)
(4.28)

is bounded as α1, α2 → 1/4.
This good behavior explains why the second-order approximation pro-
duces a good approximation that does uniformly well over α1, α2 ∈ [0, 1/4],
including the limits of the domain.

(c) The second-order equivalence holds along an arbitrary ray for which α =
α1 + α2 → 1/2. Indeed, let α0

1 ∈ [0, 1/2] be any fixed number such that
α1 → α0

1 and α = α1 + α2 → 1/2, then the representation (4.26) for the
first-order asymptotic term continues to apply.
On the other hand, using the reflection formula Γ(z)Γ(1− z) = π/ sin(πz)
with z = 2α0

1, we have from (4.15) as α1 → α0
1 and α = α1 + α2 → 1/2

C(α1, α2) =
2π2C1C2

cos(α1π) cos(α2π)Γ(2α1)Γ(2α2)
· 1

2α(1− 2α)

=
2π2C1C2

cos(α0
1π) cos[(1 − 2α0

1)π/2]Γ(2α
0
1)Γ(1− 2α0

1)
· 1

1− 2α
+O(1)

=
2π2C1C2

cos(α0
1π) sin(α

0
1π)

· sin(2α
0
1π)

π
· 1

1− 2α
+O(1)

=
4πC1C2

1− 2α
+O(1),

and again the second-order equivalence holds.
Thus, in this special case, the second-order asymptotic expansion removes
the singularity in the first-order approximation, and provides a substan-
tially improved approximation to the original functional.
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4.2. Limit theorems for Toeplitz quadratic functionals

In this section we examine the limit behavior of quadratic forms and function-
als of discrete- and continuous-time stationary Gaussian processes with possi-
bly long-range dependence. The matrix and the operator that characterize the
quadratic form and functional are Toeplitz.

Let {X(u), u ∈ U} be a centered real-valued Gaussian stationary process

with spectral density f(λ), λ ∈ Λ and covariance function r(t) := f̂(t), t ∈ U,
where U and Λ are as in Section 1.2. We are interested in the asymptotic distri-
bution (as T → ∞) of the following Toeplitz type quadratic functionals of the
process X(u):

QT :=





∫ T

0

∫ T

0 ĝ(t− s)X(t)X(s) dt ds in the continuous-time case
∑T

k=1

∑T
j=1 ĝ(k − j)X(k)X(j) in the discrete-time case,

(4.29)
where

ĝ(t) =

∫

Λ

eiλt g(λ) dλ, t ∈ U (4.30)

is the Fourier transform of some real, even, integrable function g(λ), λ ∈ Λ. We
will refer g(λ) as a generating function for the functionalQT . In the discrete-time
case the functions f(λ) and g(λ) are assumed to be 2π-periodic and periodically
extended to R.

The limit distributions of the functionals (4.29) are completely determined
by the spectral density f(λ) and the generating function g(λ), and depending on
their properties the limit distributions can be either Gaussian (i.e., QT with an
appropriate normalization obeys central limit theorem), or non-Gaussian. The
following two questions arise naturally:

(a) Under what conditions on f(λ) and g(λ) will the limits be Gaussian?
(b) Describe the limit distributions, if they are non-Gaussian.

4.2.1. Central limit theorems for Toeplitz quadratic functionals

We first discuss the question (a), that is, finding conditions on the spectral
density f(λ) and the generating function g(λ) under which the functional QT ,
defined by (4.29), obeys central limit theorem.

This question goes back to the classical monograph by Grenander and Szegö
[40], where the problem was considered for discrete time processes, as an appli-
cation of the authors’ theory of the asymptotic behavior of the trace of products
of truncated Toeplitz matrices (see [40], p. 217–219).

Later the problem (a) was studied by Ibragimov [45] and Rosenblatt [57], in
connection to the statistical estimation of the spectral (F (λ)) and covariance
(r(t)) functions, respectively. Since 1986, there has been a renewed interest in
both questions (a) and (b), related to the statistical inferences for long-memory
processes (see, e.g., Avram [4], Fox and Taqqu [20], Giraitis and Surgailis [37],
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Giraitis et al. [36], Terrin and Taqqu [70], Taniguchi [63], Taniguchi and Kak-
izawa [64], Ginovyan and Sahakyan [32], and references therein). In particular,
Avram [4], Fox and Taqqu [20], Giraitis and Surgailis [37], Ginovyan and Sa-
hakyan [32] have obtained sufficient conditions for the quadratic form QT to
obey the central limit theorem (CLT), when the model X(t) is a discrete-time
process.

For continuous time processes the question (a) was studied in Ibragimov [45],
Ginovyan [25, 27], and Ginovyan and Sahakyan [33].

Let QT be as in (4.29). We will use the following notation: By Q̃T we denote
the standard normalized quadratic functional:

Q̃T =
1√
T

(QT − EQT ) . (4.31)

The notation
Q̃T =⇒ N(0, σ2) as T → ∞ (4.32)

will mean that the distribution of the random variable Q̃T tends (as T → ∞)
to the centered normal distribution with variance σ2.

Our study of the asymptotic distribution of the quadratic functionals (4.29)

is based on the following representation of the k–th order cumulant χk(·) of Q̃T ,
which follows from (1.19) (see, also, [40, 45]):

χk(Q̃T ) =

{
0, for k = 1

T−k/22k−1(k − 1)! tr [AT (f)AT (g)]
k, for k ≥ 2,

(4.33)

where AT (f) and AT (g) denote either the T -truncated Toeplitz operators (for
continuous-time case), or the T × T Toeplitz matrices (for discrete-time case)
generated by the functions f and g respectively, and tr[A] stands for the trace
of an operator A.

The next result contains sufficient conditions in terms of f(λ) and g(λ) en-

suring central limit theorems for standard normalized quadratic functionals Q̃T

both for discrete-time and continuous-time processes.
Below we assume that f, g ∈ L1(Λ), and with no loss of generality, that g ≥ 0.

Also, we set

σ2
0 := 16π3

∫

Λ

f2(λ)g2(λ) dλ. (4.34)

As usual Λ = T = (−π, π] in the discrete-time case and Λ = R = (−∞,∞) in
the continuous-time case.

Theorem 4.7. Each of the following conditions is sufficient for

Q̃T =⇒ N(0, σ2
0) as T → ∞, (4.35)

with σ2
0 given by (4.34).

(A) f · g ∈ L1(Λ) ∩ L2(Λ) and

χ2(Q̃T ) :=
2

T
tr
[
BT (f)BT (g)

]2 −→ σ2
0 <∞. (4.36)
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(B) The function

ϕ(u) := ϕ(u1, u2, u3) =

∫

Λ

f(λ)g(λ− u1)f(λ− u2)g(λ− u3) dλ (4.37)

belongs to L2(Λ3) and is continuous at 0 = (0, 0, 0).
(C) f ∈ L1(Λ) ∩ Lp(Λ) (p ≥ 2) and g ∈ L1(Λ) ∩ Lq(Λ) (q ≥ 2) with

1/p+ 1/q ≤ 1/2.

(D) f ∈ L1(Λ) ∩ L2(Λ), g ∈ L1(Λ) ∩ L2(Λ), fg ∈ L2(Λ) and
∫

Λ

f2(λ)g2(λ − µ) dλ −→
∫

Λ

f2(λ)g2(λ) dλ as µ→ 0.

(E) The spectral density f(λ) and the generating function g(λ) satisfy

f(λ) ≤ |λ|−αL1(λ), |g(λ)| ≤ |λ|−βL2(λ), λ ∈ Λ,

for some α < 1, β < 1 with

α+ β ≤ 1/2 and Li ∈ SV (R), λ−(α+β)Li(λ) ∈ L2(Λ), i = 1, 2,

where SV (R) is the class of slowly varying at zero functions u(λ), λ ∈ R,
satisfying u(λ) ∈ L∞(R), limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) <
u(µ) for 0 < λ < µ.
In the continuous-time case, we also assume that the functions f(λ) and
g(λ) are bounded on R \ (−π, π).

Remark 4.4. For discrete-time case: assertions (A) and (D) were proved in
Giraitis and Surgailis [37] (see also Giraitis et al. [36]); assertions (B) and (E)
were proved in Ginovyan and Sahakyan [32]; assertion (E) with α + β < 1/2
was first obtained by Fox and Taqqu [20]; assertion (C) for p = q = ∞ was
first established by Grenander and Szegö ([40], Section 11.7), while the case
p = 2, q = ∞ was proved by Ibragimov [45] and Rosenblatt [57], in the general
discrete-time case assertion (D) was proved by Avram [4].

For continuous-time case assertions (A)–(E) were proved in Ginovyan [27]
and Ginovyan and Sahakyan [33].

Remark 4.5. Assertion (A) implies assertions (B)–(E). Assertion (B) implies
assertions (C) and (D). On the other hand, for functions f(λ) = λ−3/4 and
g(λ) = λ3/4 satisfying the conditions of (E), the function ϕ(t1, t2, t3) is not
defined for t2 = 0, t1 6= 0, t3 6= 0, showing that assertion (B) generally does not
imply assertion (E) (see Ginovyan and Sahakyan [32]).

Remark 4.6. Examples of spectral density f(λ) and generating function g(λ)
satisfying the conditions of Theorem 4.7 (E) are provided by the functions

f(λ) = |λ|−α| ln |λ||−γ and g(λ) = |λ|−β | ln |λ||−γ , (4.38)

where α < 1, β < 1, α+β ≤ 1/2 and γ > 1/2 (see Ginovyan and Sahakyan [32]).
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Remark 4.7. The functions f(λ) and g(λ) in Theorem 4.7 (E) have singularities
at the point λ = 0, and are bounded in any neighborhood of this point. It can
be shown that the choice of the point λ = 0 is not essential, and instead it can
be taken to be any point λ0 ∈ [−π, π]. Using the properties of the products of
Toeplitz matrices and operators it can be shown that Theorem 4.7 (E) remains
valid when f(λ) and g(λ) have singularities of the form (4.38) at the same finite
number of points of the segment [−π, π] (see Ginovyan and Sahakyan [32]).

Remark 4.8. The next proposition shows that the condition of positiveness and
finiteness of asymptotic variance of quadratic form QT is not sufficient for QT to
obey CLT as was conjectured in Giraitis and Surgailis [37], and Ginovyan [26].

Proposition 4.1. There exist a spectral density f(λ) and a generating function
g(λ) such that

0 <

∫ π

−π

f2(λ) g2(λ) dλ <∞ (4.39)

and

lim
T→∞

supχ2(Q̃T ) = lim
n→∞

sup
2

T
tr (BT (f)BT (g))

2
= ∞, (4.40)

that is, the condition (4.39) does not guarantee convergence in (4.36).

To construct functions f(λ) and g(λ) satisfying (4.39) and (4.40), for a fixed
p ≥ 2 we choose a number q > 1 to satisfy 1/p+ 1/q > 1, and for such p and q
we consider the functions f0(λ) and g0(λ) defined by

f0(λ) =

{ (
2s

s2

)1/p
, if 2−s−1 ≤ λ ≤ 2−s, s = 2m

0, if 2−s−1 ≤ λ ≤ 2−s, s = 2m+ 1
(4.41)

g0(λ) =

{ (
2s

s2

)1/q
, if 2−s−1 ≤ λ ≤ 2−s, s = 2m+ 1

0, if 2−s−1 ≤ λ ≤ 2−s, s = 2m,
(4.42)

where m is a positive integer. For an arbitrary finite positive constant C we
set g±(λ) = g0(λ) ± C. Then the functions f = f0 and g = g+ or g = g−
satisfy (4.39) and (4.40) (for details we refer to Ginovyan and Sahakyan [32].
Consequently, for these functions the standard normalized quadratic form QT

does not obey CLT, and it is of interest to describe the limiting non-Gaussian
distribution of QT in this special case.

4.2.2. Non-central limit theorems

The problem (b) for discrete-time processes, that is, the description of the limit
distribution of the quadratic form

QT :=

T∑

k=1

T∑

j=1

ĝ(k − j)X(k)X(j), T ∈ N (4.43)

if it is non-Gaussian, goes back to the papers by Rosenblatt [56]–[58].
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Later this problem was studied in a series of papers by Taqqu, and Terrin
and Taqqu (see, e.g., [65], [68], [69], [70], and references therein). Specifically,
suppose that the spectral density f(λ) and the generating function g(λ) are
regularly varying functions at the origin:

f(λ) = |λ|−αL1(λ) and g(λ) = |λ|−βL2(λ), α < 1, β < 1, (4.44)

where L1(λ) and L2(λ) are slowly varying functions at zero, which are bounded
on bounded intervals. The conditions α < 1 and β < 1 ensure that the Fourier
coefficients of f and g are well defined. When α > 0 the model {X(t), t ∈ Z}
exhibits long memory.

It is the sum α+β that determines the asymptotic behavior of the quadratic
form QT . If α + β ≤ 1/2, then by Theorem 4.7(E) the standard normalized
quadratic form

T−1/2 (QT − EQT )

converges in distribution to a Gaussian random variable. If α + β > 1/2, con-
vergence to Gaussian fails.

Consider the embedding of the discrete sequence {QT , T ∈ N} into a conti-
nuous-time process {QT (t), T ∈ N, t ∈ R} defined by

QT (t) :=

[Tt]∑

k=1

[Tt]∑

j=1

ĝ(k − j)X(k)X(j), (4.45)

where [ · ] stands for the greatest integer. Denote by Z(·) the complex-valued
Gaussian random measure defined on the Borel σ-algebra B(R), and satisfying
EZ(B) = 0, E|Z(B)|2 = |B|, and Z(−B) = Z(B) for any B ∈ B(R).

The next result, proved in Terrin and Taqqu [69], describes the non-Gaussian
limit distribution of the suitable normalized process QT (t).

Theorem 4.8. Let f(λ) and g(λ) be as in (4.44) with α < 1, β < 1 and slowly
varying at zero and bounded on bounded intervals factors L1(λ) and L2(λ). Let
the process QT (t) be as in (4.45). Then for α+ β > 1/2

Q̂T (t) :=
1

Tα+βL1(1/T )L2(1/T )
(QT (t)− E[QT (t)]) (4.46)

converges (as T → ∞) weakly in D[0, 1] to

Q(t) :=

∫ ′′

R2

Kt(x, y)dZ(x)dZ(y), (4.47)

where

Kt(x, y) = |xy|−α/2

∫

R

eit(x+u) − 1

i(x+ u)
· e

it(y−u) − 1

i(y − u)
|u|−βdu, (4.48)

The double prime in the integral (4.47) indicates that the integration excludes
the diagonals x = ±y.
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Remark 4.9. The limiting process in (4.47) is real-valued, non-Gaussian, and
satisfies EQ(t) = 0 and EQ2(t) =

∫
R2 |Kt(x, y)|2dxdy. It is self-similar with

parameter H = α + β ∈ (1/2, 2), that is, the processes {Q(at), t ≥ 0} and
{aHQ(t), t ≥ 0} have the same finite dimensional distributions for all a > 0.

Remark 4.10. In [56] (see also [58]) Rosenblatt showed that if a discrete-time
centered Gaussian process X(t) has covariance function r(t) = (1 + t2)α/2−1/2

with 1/2 < α < 1, then the random variable

QT := T−α
T∑

k=1

[
X2(k)− 1

]

has a non-Gaussian limiting distribution, and described this distribution in
terms of characteristic functions. This is a special case of Theorem 4.8 with
t = 1, 1/2 < α < 1 and β = 0. In [65] (see also [68]) Taqqu extended Rosen-
blatt’s result by showing that the stochastic process

QT (t) := T−α

[Tt]∑

k=1

[
X2(k)− 1

]

converges (as T → ∞) weakly to a process (called the Rosenblatt process) which
has the double Wiener-Itô integral representation

Q(t) := Cα

∫ ′′

R2

eit(x+y) − 1

i(x+ y)
|x|−α/2|y|−α/2dZ(x)dZ(y). (4.49)

The distribution of the random variable Q(t) in (4.49) for t = 1 is described in
Veillette and Taqqu [71].

Remark 4.11. The slowly varying functions L1 and L2 in (4.44) are of impor-
tance because they provide a great flexibility in the choice of spectral density f
and generating function g. Observe that in Theorem 4.8 the functions L1 and
L2 influence only the normalization (see (4.46)), but not the limit Q(t). The-
orem 4.7(E) shows that in the critical case α + β = 1/2 the limit distribution

of the standard normalized quadratic form Q̃T given by (4.31) is Gaussian and
depends on the slowly varying factors L1 and L2 through f and g.

Note also that the critical case α + β = 1/2 was partially investigated by
Terrin and Taqqu in [70]. Starting from the limiting random variable Q(1) =
Q(1;α, β), which exists only when α + β > 1/2, they showed that the random
variable

(α + β − 1/2)Q(1;α, β)

converges in distribution to a Gaussian random variable as α+β approaches to
1/2.

Remark 4.12. For continuous-time processes the problem (b) has not been
investigated, and it would be of interest to describe the limiting non-Gaussian
distribution of the quadratic functional QT .
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4.3. Berry-Esséen bounds and large deviations for Toeplitz
quadratic functionals

In this section, we briefly discuss Berry-Esséen bounds in the CLT and large de-
viations principle for quadratic functionals both for continuous-time and discrete-
time Gaussian stationary processes (for more about these topics we refer to
[6, 13, 15, 22, 47, 52, 63], and reference therein).

Berry-Esséen Bounds Let QT and Q̃T be as in (4.29) and (4.31), respec-

tively. Denote Q̂T := Q̃T /

√
Var(Q̃T ), and let Z be the standard normal random

variable: Z ∼ N(0, 1). The CLT for QT (Theorem 4.7) tells us that Q̂T −→ Z
in distribution as T → ∞. The natural next step concerns the closeness be-
tween the distribution of Q̂T and standard normal distribution, which means
asking for the rate of convergence in the CLT. Results of this type are known
as Berry-Esséen bounds (or asymptotics).

In the discrete-time case, for special quadratic functionals, Berry-Esséen
bounds were established in Tanoguchi [63], while for the continuous-time case,
Berry-Esséen-type bounds were obtained in Nourdin and Peccati [52]. The next
theorem captures both cases.

Theorem 4.9. Let Q̃T be as in (4.31), Q̂T := Q̃T /

√
Var(Q̃T ), and Φ(z) =

P (Z ≤ z), where Z ∼ N(0, 1). Assume that f(λ) ∈ L1(Λ) ∩ Lp(Λ) (p > 1) and
g(λ) ∈ L1(Λ) ∩ Lq(Λ) (q > 1). The following assertions hold.

1. If 1/p+1/q ≤ 1/4, then there exists a constant C = C(f, g) > 0 such that
for all T > 0 we have

sup
z∈R

|P (Q̂T ≤ z)− Φ(z)| ≤ C√
T
. (4.50)

2. If 1/p+ 1/q ≤ 1/8 and
∫
Λ
f3(λ)g3(λ) dλ 6= 0, then there exist a constant

c = c(f, g) > 0 and a number T0 = T0(f, g) > 0 such that T > T0 implies

sup
z∈R

|P (Q̂T ≤ z)− Φ(z)| ≥ c√
T
. (4.51)

More precisely, for any z ∈ R, we have as T → ∞

√
T |P (Q̂T ≤ z)− Φ(z)| −→

√
2

3

∫
Λ f

3(λ)g3(λ)dλ
(∫

Λ
f2(λ)g2(λ)dλ

)3/2 (1− z2)e−z2/2.

(4.52)

Remark 4.13. In the continuous-time case, Theorem 4.9 was proved in Nourdin
and Peccati [52], by appealing to a general CLT of Section 4.2 (Theorem 4.7),
and Stein’s method. The proof, in the discrete-time case, is similar to that of
the continuous-time case.
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Large Deviations We now present sufficient conditions that ensure large
deviations principle (LDP) for Toeplitz type quadratic functionals of stationary
Gaussian processes. For more about LDP we refer to Bryc and Dembo [13],
Bercu et al. [6], Sato et al. [60], Taniguchi and Kakizawa [64], and references
therein.

First observe that large deviation theory can be viewed as an extension of the
law of large numbers (LLN). The LLN states that certain probabilities converge
to zero, while the large deviation theory focuses on the rate of convergence.
Specifically, consider a sequence of random variables {ξn, n ≥ 1} converging
in probability to a real constant m. Note that ξn could represent, for instance,
the n-th partial sum of another sequence of random variables: ξn = 1

n

∑n
k=1 ηk,

where the sequence {ηk} may be independent identically distributed, or depen-
dent as in an observed stretch of a stochastic process. By the LLN, we have for
ε > 0

IP{|ξn −m| > ε} → 0 as n→ ∞. (4.53)

It is often the case that the convergence in (4.53) is exponentially fast, that is,

IP{|ξn −m| > ε} ≈ R(·) exp[−nI(ε,m)] as n→ ∞, (4.54)

where R(·) = R(ε,m, n) is a slowly varying (relative to an exponential) function
of n and I(ε,m) is a positive quantity. Loosely, if (4.54) holds, we say that the
sequence {ξn} satisfies a large deviations principle. One of the basic problems
of the large deviation theory is to determine I(ε,m) and R(ε,m, n). To be more
precise, we recall the definition of Large Deviation Principle (LDP) (see, e.g.,
[13, 64]).

Definition 4.1. Let {ξn, n ∈ Z} be a sequence of real–valued random variables
defined on the probability space (Ω,F , IP). We say that {ξn} satisfies a Large
Deviation Principle (LDP) with speed an → 0 and rate function I : R → [0,∞],
if I(x) is lower semicontinuous, that is, if xn → x then lim infn→∞ I(xn) ≥ I(x),
and

lim inf
n→∞

an log IP{ξn ∈ A} ≥ − inf
x∈A

I(x)

for all open subsets A ⊂ R, while

lim sup
n→∞

an log IP{ξn ∈ B} ≤ − inf
x∈B

I(x)

for all closed subsets B ⊂ R. The function I(x) is called a good rate function
if its level sets are compact, that is, the set {x ∈ R : I(x) ≤ b} is compact for
each b ∈ R.

Now let QT be the Toeplitz type quadratic functionals of a process X(u)
defined by (4.29) with spectral density f(λ) and generating function g(λ).

The next result states sufficient conditions in terms of f(λ) and g(λ) to
ensure that the LDP for normalized quadratic functionals { 1

TQT } holds both
for discrete-time and continuous-time processes.
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Theorem 4.10. Assume that f(λ)g(λ) ∈ L∞(Λ). Then the random variable
{ 1
TQT } satisfies a LDP with the speed aT = 1

T and a good rate function I(x):

I(x) = sup
−∞<y<1/(2C)

{xy − V (f, g; y)},

where C = ess supf(λ)|g(λ)| and for y < 1/(2C)

V (f, g; y) = − 1

4π

∫

Λ

log(1− 2yf(λ)g(λ))dλ.

Remark 4.14. In the special case of g(λ) = 1, Theorem 4.10 was proved by
Bryc and Dembo [13]. For the general case we refer to Bercu et al. [6].

5. Proof of Theorems 3.1–3.4

We only prove the results concerning Toeplitz operators (Theorems 3.1–3.4).
The proofs of the corresponding results for Toeplitz matrices are similar. First
we state a number of technical lemmas, which are proved in the Appendix.

The following result is known (see, e.g., [33], or [36], p. 8).

Lemma 5.1. Let DT (u) be the Dirichlet kernel

DT (u) =
sin(Tu/2)

u/2
. (5.1)

Then, for any δ ∈ (0, 1)

|DT (u)| ≤ 2T δ|u|δ−1, u ∈ R. (5.2)

Denote

GT (u) :=

∫ T

0

eiTudt = eiTu/2DT (u), u ∈ R, (5.3)

ΦT (u) : =
1

(2π)m−1T
·DT (u1) · · ·DT (um−1)DT (u1 + · · ·+ um−1), (5.4)

Ψ(u) : = ϕ(u1, u1 + u2, . . . , u1 + · · ·+ um−1), (5.5)

where u = (u1, . . . , um−1) ∈ R
m−1 and the function ϕ(u), corresponding to the

collection H = {h1, h2, . . . , hm}, is defined by (3.8).
The next lemma follows from (3.4) and (5.3)–(5.5) (cf. [33], Lemma 1).

Lemma 5.2. Let H = {h1, h2, . . . , hm} be a collection of integrable real symmet-

ric functions on R, ĥk be the Fourier transform of function hk (k = 1, . . . ,m),
and let S(T ) := SW,H(T ) be as in (3.4). The following equalities hold.

1) S(T ) =
1

T

∫ T

0

. . .

∫ T

0

ĥ1(u1 − u2)ĥ2(u2 − u3) . . . ĥm(um − u1)
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2) S(T ) =
1

T

∫

Rm

h1(u1) . . . hm(um)GT (u1 − u2)GT (u2 − u3) · · ·

×GT (um − u1)du1 . . . dum.

3) S(T ) = (2π)m−1

∫

Rm−1

Ψ(u)ΦT (u)du.

For m = 3, 4, . . . and δ > 0 we denote

Eδ = {(u1, . . . , um−1) ∈ R
m−1 : |ui| ≤ δ, i = 1, . . . ,m− 1}, E

c
δ = R

m−1 \ Eδ

and

p3 = 2, p(m) =
m− 2

m− 3
(m > 3).

Lemma 5.3. The kernel ΦT (u), u ∈ R
m−1, m ≥ 3 possesses the following

properties:

a) sup
T

∫

Rm−1

|ΦT (u)| du = C1 <∞;

b)

∫

Rm−1

ΦT (u) du = 1;

c) lim
T→∞

∫

E
c
δ

|ΦT (u)| du = 0 for any δ > 0;

d) for any δ > 0 there exists a constant Cδ > 0 such that
∫

E
c
δ

|ΦT (u)|p(m)
du ≤ Cδ for T > 0, (5.6)

The proof of the next lemma can be found in [36], p. 161.

Lemma 5.4. Let 0 < β < 1, 0 < α < 1, and α + β > 1. Then for any
y ∈ R, y 6= 0, ∫

R

1

|x|α|x+ y|β dx =
C

|y|α+β−1
, (5.7)

where C is a constant depending on α and β.

Denote E1 = {(u1, u2, . . . , un) ∈ R
n : |ui| ≤ 1, i = 1, 2, . . . , n} and let

Ec
1 = R

n \ E1.

Lemma 5.5. Let 0 < α ≤ 1 and n
n+1 < β < n+α

n+1 . Then

Bi :=

∫

E1

|ui|α
|u1 · · ·un(u1 + · · ·+ un)|β

du1 · · · dun <∞, i = 1, . . . , n. (5.8)

Lemma 5.6. Let n
n+1 < β < 1. Then

I :=

∫

Ec
1

1

|u1 · · ·un(u1 + · · ·+ un)|β
du1 · · · dun <∞. (5.9)
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Proof of Theorem 3.1. We start with (A2). By Lemma 5.2, 3) and 5.3, b), we
have ∆(T ) = (2π)m−1|R(T )|, where

R(T ) =

∫

R3

[Ψ(u)−Ψ(0)]ΦT (u)du.

It follows from (5.5) that the function Ψ(u) belongs to Lm−2(Rm−1) and is
continuous at 0 = (0, . . . , 0) ∈ R

m−1. Hence for any ε > 0 we can find δ > 0 to
satisfy

|Ψ(u)−Ψ(0)| < ε

C1
, u ∈ Eδ, (5.10)

where C1 is the constant from Lemma 5.3, a). Consider the decomposition Ψ =
Ψ1 +Ψ2 such that

‖Ψ1‖(m−2) ≤
ε√
Cδ

and ‖Ψ2‖∞ <∞, (5.11)

where Cδ is as in Lemma 5.3, d).
Observe that 1

m−2 + 1
p(m) = 1, where p(m) = m−2

m−3 . Hence, applying Lemma

5.3 and (5.10), (5.11) for sufficiently large T we obtain

|R(T )| ≤
∫

Eδ

|Ψ(u)−Ψ(0)||ΦT (u)|du + Cm

∫

E
c
δ

|Ψ1(u)||ΦT (u)|du

+

∫

E
c
δ

|Ψ2(u)−Ψ(0)||ΦT (u)|du ≤ ε

C1

∫

Eδ

|ΦT (u)|du

+ ‖Ψ1‖(m−2)

[∫

E
c
δ

Φ
p(m)
T (u)du

]1/p(m)

+ C2

∫

E
c
δ

|ΦT (u)|du ≤ 3 ε,

and the result follows.

Proof of (A1). According to Theorem (A2) it is enough to prove that the func-
tion

ϕ(u) : =

∫ +∞

−∞

h1(λ)h2(λ− u1)h3(λ − u2) · · ·hm(λ− um−1) dλ, (5.12)

where u = (u1, . . . , um−1) ∈ R
m−1, belongs to Lm−2(Rm−1) and is continuous

at 0 = (0, . . . , 0) ∈ R
m−1, provided that

hi ∈ L1(R)
⋂
Lpi(R), 1 ≤ pi ≤ ∞, i = 1, . . . ,m,

m∑

i=1

1

pi
≤ 1. (5.13)

It follows from Hölder’s inequality, (5.12) and (5.13) that

|ϕ(u)| ≤
m∏

i=1

||fi||Lpi (R) <∞, u ∈ R
m−1.

Hence, ϕ ∈ L∞(Rm−1). On the other hand, the condition hi ∈ L1(R) and (5.12)
imply ϕ ∈ L1(Rm−1). Therefore ϕ ∈ Lm−2(Rm−1).
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To prove the continuity of ϕ(u) at the point 0 we consider three cases.
Case 1. pi <∞, i = 1, . . . ,m.

For an arbitrary ε > 0 we can find δ > 0 satisfying (see (5.13))

‖hi(λ− u)− hi(λ)‖Lpi (R) ≤ ε, i = 2, . . . ,m, if |u| ≤ δ. (5.14)

We fix u = (u1, . . . , um−1) with |u| < δ and denote

hi(λ) = hi(λ − ui−1)− hi(λ), i = 2, . . . ,m.

Then in view of (5.12) we have

ϕ(u) =

∫

R

h1(λ)

m−1∏

i=2

(
hi(λ) + hi(λ)

)
dλ = ϕ(0) +W.

It follows from (5.14) that ‖hi‖pi
≤ ε, i = 2, . . . ,m. Observe that each of the

integrals comprising W contains at least one function hi and can be estimated
as follows:

∣∣∣∣
∫

R

h1(u)h2(λ)h3(λ) . . . hm−1(λ)dλ

∣∣∣∣

≤ ‖h1‖Lp1‖h2‖Lp2‖h3‖Lp3 . . . ‖hm‖Lpm ≤ Cε.

Case 2. pi ≤ ∞, i = 1, . . . ,m,
∑m

i=m
1
pi
< 1.

There exist finite numbers p′i < pi, i = 1, . . . ,m, such that
∑m

i=1 1/p
′
i ≤ 1.

Hence according to (5.13) we have hi ∈ Lp′

i i = 1, . . . ,m and ϕ is continuous at
0 as in the case 1.

Case 3. pi ≤ ∞, i = 1, . . . ,m,
∑m

i=1
1
pi

= 1.
First observe that at least one of the numbers pi is finite. Suppose, without loss
of generality, that p1 <∞. For any ε > 0 we can find functions h′1, h

′′
1 such that

h1 = h′1 + h′′1 , h′1 ∈ L∞(R), ‖h′′1‖Lp1 < ε. (5.15)

Therefore
ϕ(u) = ϕ′(u) + ϕ′′(u),

where the functions ϕ′ and ϕ′′ are defined as ϕ in (5.12) with h1 replaced by
h′1 and h′′1 , respectively. It follows from (5.15) that ϕ′ is continuous at 0 (see
Case 2), while by Hölder’s inequality |ϕ′′(u)| ≤ C · ε. Hence, for sufficiently
small |u|

|ϕ(u) − ϕ(0)| ≤ |ϕ′(u)− ϕ′(0)|+ |ϕ′′(u)− ϕ′′(0)| ≤ (C + 1)ε,

and the result follows. Theorem 3.1 is proved.

Proof of Theorem 3.2. We start with (B1). First observe that the condition
hi ∈ F1 implies that

ĥi ∈ L1(R) and |ĥi(t)| ≤ A, t ∈ R, i = 1, 2, . . . ,m (5.16)
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for some constant A > 0. By Lemma 5.2 we have

T · S(T ) =
∫ T

0

. . .

∫ T

0

ĥ1(u1 − u2)ĥ2(u2 − u3) . . . ĥm(um − u1)du1 . . . dum.

Making the change of variables

u1 − u2 = t1, u2 − u3 = t2, . . . , um−1 − um = tm−1,

and observing that t1+ · · ·+tm−1 = u1−um, we get (below we use the notation:
tm−1 = (t1, . . . , tm−1) and dtm−1 = dt1 · · · dtm−1),

T · S(T ) =
∫ T

0

∫ um−t1−···−tm−1

um−t1−···−tm−1−T

∫ um−t1−···−tm−2

um−t1−···−tm−2−T

· · · (5.17)

· · ·
∫ um−t1

um−t1−T

ĥ1(t1) · · · ĥm−1(tm−1)ĥm(−t1 − · · · − tm−1)dtm−1dum

=

∫ T

−T

· · ·
∫ T

−T

ĥ1(t1) · · · ĥm−1(tm−1)ĥm(−t1 − · · · − tm−1) [T − l(tm−1)] dtm−1,

where
|l(tm−1)| = |l(t1, . . . , tm−1)| ≤ 2 (|t1|+ · · ·+ |tm−1|) . (5.18)

On the other hand, by (3.4) and Parseval’s equality we have

M := MR,H = (2π)m−1

∫ ∞

−∞

[
m∏

i=1

hi(λ)

]
dλ (5.19)

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

ĥ1(t1) · · · ĥm−1(tm−1)ĥm(−t1 − · · · − tm−1)dtm−1.

It follows from (3.4), (5.17) and (5.19) that

S(T )−M := SW,H(T )−MR,H

= − 1

T

∫

[−T, T ]m−1

ĥ1(t1) · · · ĥm−1(tm−1)ĥm(−t1 − · · · − tm−1)l(tm−1)dtm−1

+

∫

Rm−1\[−T, T ]m−1

ĥ1(t1) · · · ĥm−1(tm−1)ĥm(−t1 − · · · − tm−1)dtm−1

=: ∆1
T +∆2

T . (5.20)

By (5.16), (5.18) and (5.20) we have

|T ·∆1
T | ≤ 2A

m−1∑

i=1

∫

Rm−1

∣∣ĥ1(t1) · · · ĥm−1(tm−1)ti
∣∣dtm−1 =: A1 <∞, (5.21)

since hi ∈ F1, i = 1, 2, . . . ,m.
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Further, observe that

R
m−1 \ [−T, T ]m−1 ⊂

m⋃

i=1

{
(t1, . . . , tm−1) ∈ R

m−1 : |ti| > T
}
=:

m⋃

i=1

Ei.

Hence by (5.16) and (5.20) we have

|T ·∆2
T | ≤ 2A

m−1∑

i=1

∫

Ei

∣∣ĥ1(t1) . . . ĥm−1(tm−1)ti
∣∣dtm−1 =: A2 <∞. (5.22)

From (5.20)–(5.22) we get (B1).

Proof of (B2). By Lemma 5.2, 3) and Lemma 5.3, b), and (3.5) we have

∆(T ) = (2π)m−1

∣∣∣∣
∫

Rm−1

[Ψ(u)−Ψ(0)]ΦT (u)du

∣∣∣∣ , 0 = (0, . . . , 0). (5.23)

It follows from (3.11) and (5.5) that for u = (u1, . . . , um−1) ∈ R
m−1

|Ψ(u)−Ψ(0)| ≤ (m− 1)C (|u1|γ + · · ·+ |u2ν−1|γ) . (5.24)

Let ε ∈ (0, γ). Then, applying Lemma 5.1 with δ = 1+ε−γ
m , and using (5.23) and

(5.24), we can write

∆(T ) ≤ Cm

∫

E

|Ψ(u)−Ψ(0)||ΦT (u)|du

+ Cm

∫

Ec

|Ψ(u)−Ψ(0)||ΦT (u)|du (5.25)

≤ Cm

T 1−mδ

m−1∑

i=1

∫

E

|ui|γ
|u1 · · ·um−1(u1 + · · ·+ um−1)|1−δ

du1 · · · dum−1

+ 2‖ϕ‖∞
Cm

T 1−mδ

∫

Ec

1

|u1 · · ·um−1(u1 + · · ·+ um−1)|1−δ
du1 · · · dum−1,

where E = {(u1, u2, . . . , um−1) ∈ R
m−1 : |ui| ≤ 1, i = 1, 2, . . . ,m− 1} and

Ec = R
m−1 \ E. Since

m− 1

m
< 1− δ <

m− 1 + γ

m
,

we can apply Lemmas 5.5 and 5.6 with α = γ, n = m − 1 and β = 1 − δ to
conclude that all the integrals in (5.25) are finite. Since 1 −mδ = γ − ε, from
(5.25) follows the statement (B2).

Proof of (B3). According to (B2) it is enough to prove that the function

ϕ(u) :=

∫

R

h1(λ)h2(λ − u1) · · ·hm(λ− um−1)du, (5.26)
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where u = (u1, . . . , um−1) ∈ R
m−1, belongs to L∞(Rm−1), and with some posi-

tive constant C
|ϕ(u)− ϕ(0)| ≤ C|u|γ , u ∈ R

m−1, (5.27)

provided that

hi ∈ Lip(R; pi, γ), 1 ≤ pi ≤ ∞, i = 1, 2, . . . ,m, and

m∑

i=1

1

pi
≤ 1. (5.28)

It follows from Hölder’s inequality and (5.28) that

|ϕ(u)| ≤
m∏

i=1

||hi||pi
<∞, u ∈ R

m−1.

Hence ϕ ∈ L∞(Rm−1).
To prove (5.27) we fix u = (u1, . . . , um−1) ∈ R

m−1 and denote

hi(λ) = hi(λ− ui−1)− hi(λ), λ ∈ R, i = 2, . . . ,m. (5.29)

Since hi ∈ Lip(R; pi, γ) we have

‖hi‖pi
≤ Ci|u|γ , i = 2, . . . ,m. (5.30)

By (5.26) and (5.29),

ϕ(u) =

∫

R

h1(λ)

m∏

i=2

(
hi(λ) + hi(λ)

)
dλ = ϕ(0) +W.

Each of the (2m−1 − 1) integrals comprising W contains at least one function
f i, and in view of (5.30), can be estimated as follows:

∣∣∣∣
∫

R

h1(λ)h2(λ)h3(λ) · · ·hm(λ)dλ

∣∣∣∣

≤ ‖h1‖p1
‖h2‖p2

‖h3(u)‖p2
· · · ‖hm‖pm

≤ C|u|γ .
This completes the proof of (B3).

Proof of (B4). We set

1

pi
:= σi +

1

m
[1− (σ1 + · · ·+ σm)] , i = 1, 2, . . . ,m.

Then
m∑

i=1

1

pi
= 1 and

1

pi
− σi +

1

m
[1− (σ1 + · · ·+ σm)] = γ > 0, i = 1, 2, . . . ,m,

and

0 < σi <
1

p i

< 1 < δi, i = 1, 2, . . . ,m.

Hence, according to Lemma 4.1, hi ∈ Lip(pi, γ), i = 1, 2, . . . ,m. Applying (B3),
we get (3.14) with γ as in (3.15).
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Proof of Theorem 3.3. First observe that by Lemma 7 from [34]

S2,W (T ) :=
1

T
tr[WT (h1)WT (h2)] = 2π

∫

R

∫

R

FT (s− t)h1(s)h2(t) dt ds, (5.31)

where FT (u) is the Fejér kernel:

FT (u) =
1

2πT

(
sinTu/2

u/2

)2

, t ∈ R.

Below we use the following properties of FT (u) (see, e.g., [14]):
∫

R

FT (u) du = 1, (5.32)

∫

u≥1

FT (u)du ≤ C T−1, (5.33)

∫ 1

0

FT (u)u
αdu ≤





CT−α, if α ≤ 1
CT−1 lnT, if α = 1
CT−1, if α > 1.

(5.34)

Since the function FT (u) is even, in view of (5.31) we can write

S2,W (T ) = π

∫

R

∫

R

FT (u) [h1(u+ t)h2(t) + h1(t)h2(u + t)] dudt. (5.35)

Consequently, taking into account (5.32) and the equality
∫

R

h1(t)h2(t)dt =

∫

R

h1(u+ t)h2(u+ t)dt,

by (5.35) we get

∆2,W (T ) :=

∣∣∣∣
1

T
tr[WT (h1)WT (h2)]− 2π

∫

R

h1(t)h2(t) dt

∣∣∣∣ (5.36)

=

∣∣∣∣π
∫

R

FT (u)

∫

R

(h1(t)− h1(u+ t))(h2(u+ t)− h2(t))dtdu

∣∣∣∣ .

Using Hölder’s inequality, we find from (5.36)

∆2,W (T ) ≤ π

∫

R

FT (u)||h1(u+ ·)− h1(·)||p||h2(u+ ·)− h2(·)||qdu. (5.37)

In view of (5.37) we have

∆2,W (T ) ≤ C1

∫ 1

0

FT (u)|u|γ1+γ2du+ C2||h1||p||h2||q
∫

u>1

FT (u)du. (5.38)

Therefore, the result follows from (5.33), (5.34) and (5.38).

Proof of Theorem 3.4. It follows from Lemma 4.1 that under the assumptions
of theorem hi ∈ Lip(pi, 1/pi − σi), i = 1, 2. Hence, applying Theorem 3.3 with
γi = 1/pi − σi, we obtain (3.16).
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Appendix: Proof of technical lemmas

In this section we give proofs of technical lemmas stated and used in Sections 4
and 5.

Proof of Lemma 4.1. Let h ∈ (0, 1/2) be fixed. Then

∫

|λ|≤2h

|f(λ+ h)− f(λ)|pdλ ≤ (2C)p
∫ 3h

0

|λ|−pσdλ ≤ C1h
1−pα. (A.1)

Next, for |λ| > 2h we have f(λ+ h)− f(λ) = f ′(ξ) · h with some ξ ∈ (λ, λ+ h).
Hence

∫

2h<|λ|<1/2

|f(λ+ h)− f(λ)|pdλ ≤ Cphp
∫ 1/2

h

|λ|−p(σ+1)dλ ≤ Ch1−pσ (A.2)

and

∫

1/2<|λ|<∞

|f(λ+ h)− f(λ)|pdλ ≤ Cphp
∫ 1

1/2

|λ|−p(σ+1)dλ

+ Cphp
∫ ∞

1

|λ|−p(δ+1)dλ

≤ Chp ≤ Ch1−pσ. (A.3)

From (A.1), (A.2) and (A.3) we get

‖f(λ+ h)− f(λ)‖p ≤ Ch1/p−σ,

implying f ∈ Lip(p, 1/p− σ).

Proof of Lemma 4.2. We use the technique of [48], where (4.16) was proved for
β = 1. Since the underlying process X(t) is real-valued, we have for t > 0

r(t) :=

∫ +∞

−∞

eitλf(λ) dλ = 2

∫ ∞

0

C

λ2α(1 + λ2)β
cos(tλ) dλ. (A.4)

Using the change of variable λ = 1/(tu), we obtain

r(t) = 2C · t2α−1

∫ ∞

0

(
(tu)2

1 + (tu)2

)β

u2α−2 cos(1/u) du

= 2C · t2α−1

∫ ∞

0

L(tu)k(u) du, (A.5)

where

L(u) =
u2β

(1 + u2)β
and k(u) = u2α−2 cos(1/u).
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Choose δ > 0 such that δ < min(1− 2α, 2α). Then the improper integrals

∫ 1

0+

u−δk(u) du and

∫ ∞−

1

uδk(u) du

exist. Therefore, by the Bojanic-Karamata theorem (see [9], Th. 4.1.5) we have

∫ ∞

0

k(u)L(tu) du −→
∫ ∞−

0+

k(u) du as t→ ∞. (A.6)

Next, using the change of variable 1/u = v and the formula (see, e.g., [18])

∫ ∞−

0

x−p cos(mx) dx =
πmp−1

2 cos(pπ/2)Γ(p)
, 0 < p < 1, m > 0,

with p = 2α and m = 1, we obtain

∫ ∞−

0+

k(u) du =

∫ ∞−

0

u2α−2 cos(1/u) du =
π

2 cos(πα)Γ(2α)
. (A.7)

From (A.4)–(A.7) we get (4.16).

Proof of Lemma 5.3. The proof of properties a)–c) can be found in [5], Lemma 3.2
(see also [33], Lemma 2). To prove d) first observe that for T > 0

∫

R

|DT (u)|p(m)
du ≤ C · T p(m)−1 and |DT (u)| ≤ Cδ for |u| > δ. (A.8)

For u = (u1, . . . , um−1) ∈ R
m−1 we have

∫

E
c
δ

Φ
p(m)
T (u)du ≤

∫

|u1|>δ

Φ
p(m)
T (u)du +

∫

|u2|>δ

Φ
p(m)
T (u)du

+ . . .+

∫

|um−1|>δ

Φ
p(m)
T (u)du

=: I1 + I2 + · · ·+ Im−1. (A.9)

It is enough to estimate I1 (I2, . . . , In can be estimated in the same way). We
have

I1 ≤
∫

|u1|>δ, |u2|>δ/m

Φ
p(m)
T (u)du+ · · ·+

∫

|u1|>δ, |um−1|>δ/m

Φ
p(m)
T (u)du

+

∫

|u1|>δ, |u2|≤δ/m, |um−1|≤δ/m

Φ
p(m)
T (u)du

=: I
(2)
1 + · · ·+ I

(m−1)
1 + I

(m)
1 . (A.10)
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According to (A.8)

I
(2)
1 ≤ Cδ ·

1

T p(m)
·

∫

|u2|>δ/m

|DT (u2)|p(m) · · · |DT (um−1)|p(m)

× |DT (u1 + · · ·+ um−1)|p(m)
du1dum−1 . . . du2

≤ Cδ ·
1

T p(m)
· T (p(m)−1)(m−2)

∫

|u2|>δ/m

1

|u2|p(m)
du2 ≤ Cδ. (A.11)

Likewise,

I
(j)
1 ≤ Cδ, j = 3, . . . ,m− 1. (A.12)

Next, observe that in the integral I
(m)
1 , we have |u1+ · · ·+um−1| > δ/m,. Hence

by (A.8)

I
(m)
1 ≤ Cδ ·

1

T p(m)

∫

|u1|>δ

D
p(m)
T (u1) · · ·Dp(m)

n (um−1)du2 . . . dum−1du1

≤ Cδ

∫

|u1|>δ

1

|u1|p(m)
du1 ≤ Cδ. (A.13)

From (A.9)–(A.13) we obtain (5.6). Lemma 5.3 is proved.

Proof of Lemma 5.5. Using Lemma 5.4 and the notation du = dundun−1 · · · du1,
we can write

B1 ≤
∫

{|u1|≤1}

1

|u1|β−α

∫

Rn−2

1

|u2 · · ·un−1|β
∫

R

1

|un(u1 + · · ·+ un)|β
du

≤ C

∫

{|u1|≤1}

1

|u1|β−α

∫

Rn−2

1

|u2 · · ·un−1|β|(u1 + · · ·+ un−1)|2β−1
dun−1 · · · du1

≤ C2

∫

{|u1|≤1}

1

|u1|β−α

∫

Rn−3

1

|u2 · · ·un−2|β |(u1 + · · ·+ un−2)|3β−2
dun−2 · · · du1

≤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ Cn−2

∫

{|u1|≤1}

1

|u1|β−α

∫

R

1

|u2|β|(u1 + u2)|(n−1)β−n+2
du2du1

≤ Cn−1

∫

{|u1|≤1}

1

|u1|(n+1)β−α−n+1
du1 <∞,

yielding (5.8) for i = 1. The quantities B2, . . . , Bn can be estimated in the same
way.
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Proof of Lemma 5.6. We have

I ≤
∫

|u1|>1

+ · · ·+
∫

|un|>1

1

|u1 · · ·un(u1 + · · ·+ un)|β
du1 · · · dun =: I1 + · · ·+ In.

(A.14)
Using Lemma 5.4 we get

I1 ≤
∫

|u1|>1

1

|u1|β
∫

Rn−2

1

|u2 · · ·un−1|β
∫

R

1

|un(u1 + · · ·+ un)|β
dun · · · du1

≤ C

∫

|u1|>1

1

|u1|β
∫

Rn−2

1

|u2 · · ·un−1|β |u1 + · · ·+ un−1|2β−1
dun−1 · · · du1

≤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ Cn−1

∫

|u1|>1

1

|u1|(n+1)β−n+1
du1 <∞.

The quantities I2, . . . , In can be estimated in the same way, and by (A.14) the
result follows.
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