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Abstract: This article is about the connection between enumerative com-
binatorics and equilibrium statistical mechanics. The combinatorics side
concerns species of combinatorial structures and the associated exponen-
tial generating functions. The passage from species to generating functions
is a combinatorial analog of the Fourier transform. Indeed, there is a convo-
lution multiplication on species that is mapped to a pointwise multiplica-
tion of the exponential generating functions. The statistical mechanics side
deals with a probability model of an equilibrium gas. The cluster expansion
that gives the density of the gas is the exponential generating function for
the species of rooted connected graphs. The main results of the theory are
simple criteria that guarantee the convergence of this expansion. It turns
out that other problems in combinatorics and statistical mechanics can be
translated to this gas setting, so it is a universal prescription for dealing
with systems of high dimension.
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1. Introduction

The Rosetta Stone has text carved on its surface with the same passage in
two Egyptian language scripts and in classical Greek. One version aids the
comprehension of the other. Something like that can happen in mathematics,
when ideas turn out to be common to more than one subject. In the case at hand,
enumerative combinatorics has a substantial overlap with cluster expansions
in statistical mechanics. These expansions themselves come in more than one
variant; a particle picture gives rise to a rather different polymer representation.
The theory of species of structures is a Rosetta Stone that translates between
the combinatorics and the two versions of the cluster expansion.

The first main subject, enumerative combinatorics, is about how to count
combinatorial objects, such as subsets and partitions and graphs. The systematic
use of exponential generating functions is a particularly useful device when the
objects are built from an underlying set (the label set). This practice has been
systemized in the theory of species of structures, for instance as presented in
the book of Bergeron, Labelle, and Leroux [2].

The second main subject, cluster expansions in statistical mechanics, arises
in classic form in the equilibrium statistical mechanics of particles interacting in
pairs. Here for technical simplicity the particles are taken to occupy a discrete
set of locations. The fundamental quantity is the power series for the expected
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number of particles at a given location as a function of activity parameters asso-
ciated with the locations. This is one version of the cluster expansion. The main
theorem is that for a gas with sufficiently weak interaction or sufficiently small
activities the cluster expansion has a non-zero radius of convergence, uniformly
in the size of the system.

The equilibrium gas interpretation is just one way of looking at the cluster
expansion; its importance is much more general in the study of infinite dimen-
sional systems. The locations in the gas picture play the role of coordinates in
the infinite dimensional space, and the assumption is that there is some control
over the dependence between the coordinates. The conclusion is the existence
of a well-defined probability model that depends on parameters in a nice way. A
variety of expansion problems in statistical mechanics and combinatorics may
treated in such a framework via a polymer representation. An overview of some
of these ideas may be found in the book of Malyshev and Minlos [16].

It is a remarkable fact that these two subjects overlap, and where they overlap
their results coincide. This is not so apparent, since they have different histories
and have developed diverging terminologies. The plan is give a unified picture
in terms of the combinatorial theory of species of structures. Thus, the first part
of this discussion is the combinatorics, and the second part deals with statistical
mechanics and with the convergence of cluster expansions. Two approaches to
the convergence problem are presented. One uses a partition of the set of con-
nected graphs such that each set in the partition has exactly one tree. The other
one uses the fixed point equations for the exponential generating functions for
rooted connected graphs and for rooted trees.

Most of what is presented in this survey is part of the lore of mathematical
physics, but it may be useful to have the perspective that is given by the con-
nection with combinatorics. The aim is not to give the most powerful result,
but to present the simplest case and direct the reader to recent literature for
improvements.

2. Enumerative combinatorics

2.1. Graphs and connected graphs

In the present context the combinatorial object that is most useful is a graph.
In most of the following this will denote a set of points together with a set
of two-point subsets. The points are the vertices of the graph; the two-point
subsets are the edges of the graph. Sometimes this is called a simple graph, to
emphasize that there are no loops or multiple edges. A graph with all possible
edges is called a complete graph. The opposite extreme is a graph with no edges.
A graph can have only one vertex, in which case it has no edges. There is also
an empty graph with no vertices and no edges. If U is a finite set, then G[U ]
will denote all graphs with U as vertex set. Counting graphs is easy. If the set
U of vertices has n points, then there are

(

n
2

)

possible edges, so there are a total
of

|G[U ]| = 2(
n

2) (2.1)
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graphs with this vertex set. Thus the number of graphs on n = 0, 1, 2, 3, 4, 5, 6
vertices is 1, 1, 2, 8, 64, 1024, 32768.

Consider a graph with a non-empty vertex set. There may be a partition of
the vertex set into non-empty parts such that every edge of the graph is a subset
of some part. A connected graph is a graph with non-empty vertex set such that
the only such partition has just one part, the vertex set itself. It follows that
every vertex is connected to every other vertex by a path of edges. Sometimes a
connected graph is called a spanning connected graph, to make the point that no
vertex can be omitted. A graph with only one vertex is connected. The empty
graph is not connected. This last fact is important for counting purposes. If
U is the vertex set, write C[U ] for the corresponding set of connected graphs.
Counting connected graphs is not so easy. The number of connected graphs on a
vertex set with n = 0, 1, 2, 3, 4, 5, 6 elements is 0, 1, 1, 4, 38, 728, 26704. There are
many connected graphs, in fact, most graphs are connected. This is confirmed
by the following argument. Fix a connected graph with n vertices and n − 1
edges (a tree graph). Every graph whose edge set includes the edge set of this
particular tree graph is connected. The number of edges that are not in the tree
graph is dn =

(

n
2

)

− (n − 1). So the number of graphs that include the tree is
2dn . That is,

|C[U ]| ≥ 2(
n

2)−(n−1). (2.2)

This crude lower bound for the number of connected graphs is already huge.
A tree is a minimal connected graph with a given vertex set. Sometimes this

is called a spanning tree. Each tree on a vertex set U with n points has n − 1
edges. Let T [U ] denote the set of all trees with vertex set U . A famous theorem
of Cayley says that there are

|T [U ]| = nn−2 (2.3)

trees. The number of trees on a vertex set with n = 0, 1, 2, 3, 4, 5, 6 elements is
0, 1, 1, 3, 16, 125, 1296. There are many fewer trees than connected graphs.

It is important to distinguish graphs on a set from isomorphism classes of
graphs. The number of isomorphism classes of graphs on a vertex set with
n = 0, 1, 2, 3, 4, 5, 6 elements is 1, 1, 2, 4, 11, 34, 156. The number of isomorphism
classes of connected graphs on a vertex set with n = 0, 1, 2, 3, 4, 5, 6 elements
is 0, 1, 1, 2, 6, 21, 112. The number of isomorphism classes of trees on a vertex
set with n = 0, 1, 2, 3, 4, 5, 6 elements is 0, 1, 1, 1, 2, 3, 6. The numbers counting
isomorphism classes are considerably smaller, but they are harder to calculate.
Isomorphism classes will play little or no role in the following. They may show
up in examples.

Every graph has a partition of its vertex set into non-empty parts on which
there is a connected graph. This is even true of the empty graph, since in that
case the partition is itself empty. One can think of a connected graph as a graph
on a non-empty vertex set that is minimal under partitioning. Thus connected
graphs are the natural constituents of graphs. A tree is a connected graph on a
non-empty vertex set with a minimal edge set. The goal in the following is to
understand connected graphs in terms of trees.
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2.2. Colored sets

In enumerative combinatorics it is common to count a set of structures that are
built from an underlying set U , often called the label set. In the following it will
be helpful to have a somewhat more general starting point. Fix a set P . This is
the palette of colors. Thus, for instance, its elements could be red, blue, green.
A colored set is given by an underlying finite set U and a function a : U → P .
Thus for each j in U there is a color a(j).

The special case when the color palette P has only one color is calledmonochro-
matic or scalar. In this situation the colored set may be identified with the label
set U .

There are various interpretations of the notion of colored set. In probability
the elements in U are called balls, and the elements of P are called urns. A
colored set is a way of placing balls into urns. There is also an important physics
interpretation. The set P is a fixed set of locations. These could be locations in
space, but all that is important for many purposes is that each location is a box
that can be occupied by particles. The set U is a set of particles, and a function
a : U → P is a particle configuration, in which particle j is placed at location
a(j).

There is a notion of isomorphism for colored sets. An isomorphism from
a : U → P to b : V → P is a bijection φ : U → V with b ◦ φ = a. One maps
colored sets using bijections that preserve the colors. Two colored sets that are
related in this way are regarded as the same in all important respects. That
is, the identities of the points in the set is not important, but the distribution
of colors must be preserved. Colored sets with maps given by this notion of
isomorphism form a category.

The most basic operation on colored sets is taking a subset. If a : U → P
is a colored set, and V ⊆ U is a subset, then it inherits the colors. Thus the
restriction aV : V → P is the corresponding colored subset.

Taking subsets is fundamental in combinatorics. Given a set, there is a fun-
damental combinatorial operation that consists of splitting it into an ordered
pair of complementary subsets in all possible ways. Another fundamental oper-
ation is to partition it into non-empty subsets in all possible ways. It will turn
out that another useful operation is that of adjoining an external point of given
color.

The colored set idea applies to graphs, where the set U is the vertex set, and
the graph is defined by giving a specified set of edges joining pairs of vertices.
Both in combinatorics and in physics one wants to do more than simply count
graphs. In many applications there is a given assignment to each pair of col-
ors p, q of a corresponding color pair weight t(p, q). It is assumed symmetric:
t(p, q) = t(q, p). Then for a given colored set a and a given edge {i, j} with i 6= j,
there is a edge weight t(a(i), a(j)) computed from the colors of the two vertices.

This also has a physics interpretation. For a given particle configuration a and
for a given pair i, j of particles, there is an edge weight t(a(i), a(j)) computed
from the locations of the two particles (which could be the same location). This
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is a measure of the interaction between this pair of particles. This picture will
be considered in more detail in later sections.

For a graph on a colored set there is a notion of graph weight. Let a : U → P
be a colored set. Consider a graph g with vertex set U . To each such graph is
associated the graph weight given by the product over all edges:

wt(g) =
∏

{i,j}∈g

t(a(i), a(j)). (2.4)

The total weight associated with all the graphs associated with the colored set
a is

∑

g∈G[U ]

wt(g) =
∑

g∈G[U ]

∏

{i,j}∈g

t(a(i), a(j)). (2.5)

By the distributive law, this can be expressed in the simple form
∑

g∈G[U ]

wt(g) =
∏

{i,j}

(1 + t(a(i), a(j))), (2.6)

where the product on the right is over all two-element subsets of U .
The total weight associated with the connected graphs g associated with the

colored set a is
∑

g∈C[U ]

wt(g) =
∑

g∈C[U ]

∏

{i,j}∈g

t(a(i), a(j)). (2.7)

Unfortunately, there is no simplification of this sum. Connected graphs are com-
binatorially difficult.

There is an operation called combinatorial exponential that takes the weighted
connected graph construction into the weighted graph construction. It works like
this. Say that a : U → P is a colored set. Consider an arbitrary partition Γ of
U into a collection of disjoint non-empty subsets. For each subset V in the par-
tition, consider a connected graph corresponding to this vertex set. These fit
together to define a graph with vertex set U whose connected components are
precisely the subsets V in the partition. For each such V let aV : V → P be the
restriction of a to the subset V . The graph weight given by the coloring a of the
graph on U is the product over V in the partition Γ of the graph weights given
by the colorings aV of the connected graphs on V .

If we allow all possible partitions, then we get all graphs in this way. It follows
from the distributive law that the total weight given by the coloring a : U → P
of the graphs with vertex set U is given by

∑

g∈G[U ]

wt(g) =
∑

Γ

∏

V ∈Γ

∑

g∈C[V ]

wt(g), (2.8)

where the last sum is the total weight for connected graphs g with vertex set V .
This combinatorial operation is based on the simple observation that for each
graph on a vertex set there is a unique partition of the vertex set with a con-
nected graph on each set in the partition. It is at the heart of the combinatorics
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of equilibrium statistical mechanics. The task ahead is to invert this relation
to get information about the total weight for the connected graph construction
from information about the total weight for the graph construction.

2.3. Multi-indices

In most of the constructions the specific identity of the points in U is not
important; one set with a given number of points is as good as any other.
Thus it is often useful to describe the situation via a multi-index. A multi-
index N : P → N is a function from the set of colors to the natural numbers
N = {0, 1, 2, 3, . . .}. The sum of the values of the multi-index N is the order

|N | =
∑

p

N(p). (2.9)

There is also the factorial

N ! =
∏

p

N(p)! (2.10)

which is the product of the factorials of the individual factors. Finally, there is
the sum of two multi-indices, defined in the obvious pointwise way.

Given a colored set a : U → P , there is a corresponding multi-index count(a)
given by

count(a) = N, where N(p) = #{j ∈ U | a(j) = p}. (2.11)

If a multi-index N comes from a colored set a : U → P , then the order |N | of
the multi-index is just the number of elements n in the set U . The number of
colored sets a : U → P with given multi-index count(a) = N is the multinomial
coefficient n!/N !.

The analog of a splitting of a colored set into a pair of complementary subsets
is a decomposition of a multi-index N as a sum N = K + L of multi-indices.
A multi-index in this decomposition has multiplicity given by the generalized
binomial coefficient

(

N

K

)

=
N !

K!L!
. (2.12)

There is also an operation on multi-indices that corresponds to adjoining an
external point of color p. This is simply addition with δp, where δp is the multi-
index that is 1 on p and 0 elsewhere.

2.4. Exponential generating functions

An exponential generating function is a formal power series in variables wp

indexed by p in P . It is a way of encoding the information given by coefficients
f(a) that depend on a choice of colored set a. The tensor form of an exponential
generating function is

F (w) =

∞
∑

n=0

1

n!

∑

a:Un→P

f(a)
∏

j∈Un

wa(j). (2.13)
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Here for each n the set Un is a set with n elements.
Another representation of the exponential generating function is in terms of

coefficients f(N) that depend on a choice of multi-index N . The multi-index
form of an exponential generating function is

F (w) =
∑

N

1

N !
f(N)wN , (2.14)

where wN =
∏

p∈P w(p)
N(p). The general relation between the two representa-

tions is

f(N) =
N !

n!

∑

a:count(a)=N

f(a), (2.15)

where n = |N | is the order of N .
An isomorphism of colored sets is obtained by permuting the underlying set

while preserving the colors. Suppose that f(a) depends only on the isomorphism
class of the colored set a : U → P . Then f(a) depends only on the corresponding
multi-index N = count(a). All the terms in the sum are the same, and so
f(N) = f(a). This is the usual situation in practice, and it is summarized in
the symmetry convention:

If count(a) = N, then f(a) = f(N). (2.16)

If one thinks of the set P as a set of values for tensor indices, then a : Un → P
is a listing of indices for a rank n tensor, and the coefficient f(a) is a symmetric
rank n tensor, in that a permutation of order in which the indices are listed gives
the same value of the coefficient. In the monochromatic case the coefficient may
be written f(U); it is a scalar that only depends on the cardinality n of U .

Among the natural operations on exponential generating functions are ad-
dition, multiplication, differentiation, Euler differentiation, scalar composition,
composition, and Hadamard product. In each case there are corresponding op-
erations on the coefficients, and these operations have a combinatorial interpre-
tation. Here is a description for each operation. We use F (w) and G(w) for the
exponential generating functions with tensor form coefficients given by f(a) and
g(a) and with multi-index form coefficients given by f(N) and g(N).

Sum The sum F (w)+G(w) has tensor form coefficients f(a)+ g(a) and multi-
index coefficients f(N) + g(N).

Product The product H(w) = F (w)G(w) has tensor form coefficients

h(a) =
∑

〈V,W 〉

f(aV )g(aW ), (2.17)

where a : U → P is a colored set, and the ordered pairs 〈V,W 〉 are
splittings of U into complementary subsets. The colored sets aV and aW
are obtained by restricting to the corresponding subsets. The multi-index
coefficients are

h(N) =
∑

K+L=N

(

N

K

)

f(K)g(L). (2.18)
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Derivative The derivative G(w) = (∂/∂wp)F (w) has tensor coefficients g(a) =
f(ap). For a : U → P the corresponding ap is obtained by adjoining an
external point ∗ of color p. Thus ap is defined on the disjoint union U+{∗}
with ap(j) = a(j) for j ∈ U and ap(∗) = p. The multi-index coefficients
are given by g(N) = f(N + δp).

Euler derivative The Euler derivative H(w) = wp(∂/∂wp)F (w) has tensor
coefficients h(a) = #{j | a(j) = p}f(a). The multi-index coefficients are
given by h(N) = N(p)f(N).

Scalar composition Suppose F (z) =
∑∞

n=0
1
n!f(Un)z

n is defined for z a scalar
variable. Suppose G(0) = 0. The composition H(w) = F (G(w)) is ob-
tained by replacing z by G(w) in F (z). Then H(w) has tensor coefficients

h(a) =
∑

Γ

f(Γ)
∏

V ∈Γ

g(aV ). (2.19)

Here a : U → P , and Γ ranges over partitions of U into a set of non-empty
subsets with union equal to U . The multi-index coefficients are

h(N) =

∞
∑

n=0

∑

M1+···+Mn=N

1

n!

N !

M1! · · ·Mn!
f(n)g(M1) · · · g(Mn). (2.20)

The inner sum is over sequences M1, . . . ,Mn of n multi-indices with sum
N . Since each multi-index Mi is non-zero, this is a finite sum.

Composition The most general notion of composition requires another palette
Q of colors. Suppose that F (z) is an exponential generating function in-
volving variables zq indexed by q ∈ Q. Suppose that for each q ∈ Q there
is a Gq(w) with variables wp for p ∈ P . Suppose each Gq(0) = 0. Then
H(w) = F (G(w)) is obtained by replacing each zq in F (z) by Gq(w). It
has tensor coefficients

h(a) =
∑

Γ

∑

c:Γ→Q

f(c)
∏

V ∈Γ

gc(V )(aV ). (2.21)

Here a : U → P , Γ ranges over partitions of U into a set of non-empty
subsets V with union equal to U , and c ranges over colorings of Γ, so each
set V in Γ has a color c(V ) in Q. The corresponding multi-index version
is too awkward to be of much use.

Hadamard product The Hadamard product of F (w) and G(w) is the ex-
ponential generating function H(w) with tensor form coefficients h(a) =
f(a)g(a) and multi-index form coefficients h(N) = f(N)g(N).

The Hadamard product on exponential generating functions is not a partic-
ularly nice operation. However there is one special case where something useful
can be said. Say that there is a value λ(q) defined for each color q in P . Consider
the multi-variable exponential function

F (w) = exp(λ · w) =
∑

N

1

N !
(λw)N . (2.22)
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Here λ · w is the scalar product, while λw is the pointwise product. Then the
Hadamard product of F (w) with G(w) is just G(λw). In other words, in this
special case the Hadamard product induces a scaling of the variable.

2.5. Cluster expansions

The case of scalar composition with the exponential function is particularly
important. Suppose that C(w) is an exponential generating function. Further
suppose that C(0) = 0. Then G(w) = exp(C(w)) is an exponential generating
function with G(0) = 1. Typically in combinatorics the G(w) will enumerate
some kind of objects, and the C(w) will enumerate corresponding connected
objects. For this reason, the exponential generating function C(w) may be called
the connected function associated with G(w), and the representation of G(w)
in terms of C(w) is called the cluster representation. Its expansion

C(w) =
∑

N 6=0

1

N !
cNw

N (2.23)

is sometimes called the cluster expansion for the connected function. A multi-
index N for this expansion is called a cluster, and the corresponding cN is a
cluster coefficient. The partial derivative ∂C(w)/∂wp is the pinned connected
function. It has the cluster expansion

∂C(w)

∂wp

=
1

G(w)

∂G(w)

∂wp

=
∑

N

1

N !
cN+δpw

N . (2.24)

This is also a cluster expansion. Similarly, the Euler partial derivative C•
p (w) =

wp∂C(w)/∂wp is the rooted connected function. It has the cluster expansion

C•
p (w) = wp

∂C(w)

∂wp

= wp

1

G(w)

∂G(w)

∂wp

=
∑

N 6=0

1

N !
N(p)cNw

N . (2.25)

The pinned cluster expansion and the rooted cluster expansion give information
about the ratio of ∂G(w)/∂wp to G(w). The convergence question for one or
the other of these expansions is a major topic in mathematical physics. As we
shall see, the challenge is to get results that are independent of the number of
colors. This is why it is useful to fix one color and consider the pinned connected
function or the rooted connected function with that specified color as a reference
point. By contrast, the connected function does not refer to a fixed color. To
discuss convergence of the connected function it is thus customary to fix a p
and consider only terms with N(p) ≥ 1. The resulting series is dominated by
the series for the rooted connected function.

The expression of the coefficients of G(w) in terms of the coefficients of C(w)
will here be called the cluster coefficient representation. With tensor coefficients
it is

g(a) =
∑

Γ

∏

V ∈Γ

c(aV ). (2.26)
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Here a : U → P , and Γ ranges over partitions of U into a set of non-empty
subsets with union equal to U . The multi-index form is

g(N) =

∞
∑

n=0

∑

M1+···+Mn=N

1

n!

N !

M1! · · ·Mn!
c(M1) · · · c(Mn). (2.27)

In this expression M1, . . . ,Mn is a sequence taken in order; this is compensated
by the division by n!.

An important special case is whenG(w) is anmulti-affine generating function,
that is when g(N) 6= 0 implies 0 ≤ N ≤ 1. In that case N may be identified
with its support, and we may write

G(w) =
∑

X

g(X)wX , (2.28)

where wX =
∏

q∈X wq. In the cluster representation G(w) = exp(C(w)), the
exponential generating C(w) will not typically be multi-affine, but G(w) is de-
termined by the multi-affine part of C(w). Thus

g(X) =
∑

Γ

∏

Y ∈Γ

c(Y ), (2.29)

where Γ ranges over partitions of X . In this context a set Y is called a clus-
ter, and c(Y ) is a cluster coefficient. This is yet another version of the cluster
coefficient representation.

A famous realization of the cluster coefficient representation occurs in prob-
ability, statistical mechanics, and random field theory. The original coefficients
g(N) aremoments of random variables. That is, there is a probability space with

expectation µ and random variables φp indexed by p in P . Write φN =
∏

p φ
N(p)
p .

Then
g(N) = µ(φN ) = µ(

∏

p

φN(p)
p ). (2.30)

The corresponding connected cluster coefficients c(N) are called cumulants or
semi-invariants or Ursell functions or truncated functions. Apparently a good
concept deserves many names.

2.6. Weighted sets

The original problem in enumerative combinatorics is this: Given a finite set A,
generated in some systematic way, find its cardinal number |A|. This problem
is too limited for many applications. An obvious generalization is the following:
assign a weight to each element of the set, and add the weights. When each
weight is equal to one, this addition just gives the cardinal number. If the
weights are allowed other values, but in a systematic way, then enough of the
properties of counting may be preserved so that the more general problem can
be solved with little more effort.
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The starting point is an arbitrary assignment of weights on the level of colors.
For the applications to graphs the natural starting point is color pair weights.
Each pair of colors p, q gets a weight t(p, q) = t(q, p). Then the individual
graphs each have a graph weight. The weight function maps each graph g on the
underlying set U of a colored set a : U → P to the corresponding graph weight
given by the product formula wt(g) =

∏

{i,j}∈g t(a(i), a(j)). Here is an example
of a weighted set that will be of central concern in the following developments.
It is given by this graph weighting function restricted to the set C[U ] of all
connected graphs on the vertex set U . The total weight obtained by summing
is then

∑

g∈C[U ]

wt(g) =
∑

g∈C[U ]

∏

{i,j}∈g

t(a(i), a(j)). (2.31)

In general, when we have a set of objects and a weight for each object, then
we have a weighted set. A weighted set is a finite set underlying set dom(A)
together with a weight function A : dom(A) → R. The elements of the target
R of this function belong to a ring, typically a number system like R or C or
perhaps a ring of formal power series. The total weight of a weighted set is given
by

|A|∗ =
∑

α∈dom(A)

A(α). (2.32)

In a given context it is often useful to require that the collection of weighted
sets under consideration be closed under the operations of disjoint union and
Cartesian product. They should obey the following rules. Say that A : dom(A) →
R and B : dom(B) → R are weighted sets.

Disjoint union Let dom(A) + dom(B) be the usual disjoint union of the sets
dom(A) and dom(B). Then the disjoint union weighted set A + B is the
function A +B : dom(A) + dom(B) → R given by (A +B)(α) = A(α) if
α ∈ dom(A) and (A+B)(β) = B(β) if β ∈ dom(B).

Cartesian product Let dom(A) × dom(B) be the usual cartesian product of
the sets dom(A) and dom(B). The Cartesian product weighted set A×B
is the function (A×B) : dom(A)×dom(B) → Rc given by (A×B)(α, β) =
A(α)B(β) for α ∈ dom(A), β ∈ dom(B).

The total weight of a disjoint union is the sum of the total weights, that is,
|A + B|∗ = |A|∗ + |B|∗. What is more interesting is that the total weight of
a Cartesian product is the product of the total weights, which is expressed by
|A×B|∗ = |A|∗|B|∗. The reason for this is the distributive law:

|A×B|∗ =
∑

α

∑

β

A(α)B(β) =

(

∑

α

A(α)

)





∑

β

B(β)



 = |A|∗|B|∗. (2.33)

There is a notion of isomorphism for weighted sets. An isomorphism h from
A : dom(A) → R to B : dom(B) → R is a bijection h : dom(A) → dom(B)
such that B ◦ h = A. Weighted sets with maps that are isomorphisms form a
category.
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The advantage of the weighted set concept is that the same constructions
work on the level of the underlying sets and on the level of the weighted sets.
One could even write α ∈ A to mean that α is in the underlying set of A, while
at the same time writing A(α) for the weight of α. In the following identities
involving sum and cartesian product for weighted sets will always accompany
corresponding identities for the underlying sets of combinatorial objects.

Weighted set identities generalize those of ordinary enumerative combina-
torics. This is because they include the degenerate situation in which the weight
function assigns to each element of the underlying set the number 1. In this case
giving a weighted set simply amounts to specifying the underlying set. The total
weight of such a set is simply the number of points in it. This is the most classic
form of combinatorics: counting.

2.7. A species example

The concept of species of combinatorial structures was introduced by André Joyal
in 1980. A species assigns to each label set a set of combinatorial structures. In
the book of Bergeron, Labelle, and Leroux [2] there is an appendix that gives
a table of many common species. These include permutations, subsets, set par-
titions, trees, graphs, and many others. If the label set U has n elements, then
the corresponding number of permutations, subsets, set partitions, trees, graphs

constructed from U are n!, 2n, Bn, n
n−2, 2(

n

2). (Here Bn is the Bell number,
the number of partitions of a set with n elements into disjoint non-empty sub-
sets.) These sequences are invariants of the corresponding species. The purpose
of species theory is to give a systematic way of constructing such invariants.

A classical example is the power set species P , the species that assigns to a
set U the set P [U ] of its subsets. As noted above, if U has n elements, then the
number of sets in P [U ] is 2n. This number alone does not give a particularly
detailed description of the subsets. A first refinement of the species concept is to
go beyond counting to adding weights. Assign to each subset V with k elements
the weight λk. The total weight of P [U ] is the polynomial

n
∑

k=0

(

n

k

)

λk = (1 + λ)n. (2.34)

This is a more interesting combinatorial invariant. It includes counting subsets
as a special case by setting λ equal to one. On the other hand, setting λ to −1
produces a remarkable cancelation.

Much of classical combinatorics may be done in this framework, with an
unstructured label set U . However, for many applications it is useful to allow the
weights to depend on additional structure. A particularly natural structure is a
given classification of the set U into categories. That is, there is a fixed set P and
a function a : U → P . There are various interpretations of this kind of structure.
For example, if P is a set of political parties, then each set U of individuals has
political preferences a : U → P . A relatively neutral interpretation is to take P
to be a set of colors; in that case a : U → P is a colored set.
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Say that each p in P has an attached weight λ(p). Assign to each subset V
the product

∏

i∈V λ(a(i)). Then the equation for the total weight of P [U ] is

∑

V ⊆U

∏

i∈V

λ(a(i)) =
∏

i∈U

(1 + λ(a(i))). (2.35)

This formula includes the previous total weight formula as a special case by
taking all the weights to be the same. It has many consequences. Here is one.
Let X be a set, and let P be the collection of all subsets of X . For p in P , define
λ(p) = −1p, the negative of the indicator function of p. For a family a(i), i ∈ U
of subsets of X the formula gives

∑

V ⊆U

(−1)|V |1⋂
i∈V

a(i) = 1⋂
i∈U

a(i)c . (2.36)

This is algebraically equivalent to

∑

∅6=V⊆U

(−1)|V |−11⋂
i∈V

a(i) = 1⋃
i∈U

a(i), (2.37)

which is the inclusion-exclusion principle.
If we think of the species as assigning to each colored set a : U → P the

set P [U ] together with the weight function, then it is natural to denote the
weight function itself by P [a]. Thus P [a] is an example of what we have called
a weighted set; it is a function P [a] : P [U ] → R that assigns to each subset
V ⊆ U the weight

P [a](V ) =
∏

i∈V

λ(a(i)). (2.38)

This example illustrates the general notion of species. The motivation for species
theory, however, cannot be captured by a single example. Instead, the power of
the theory is that it gives a systematic theory of operations that build new
species from old ones. Some of these operations have nice properties that lead
to relatively easy computations. Other constructions are relatively nasty. This
taxonomy of operations on species does much to illuminate the workings of
combinatorics.

2.8. Combinatorial species

Fix the set P , regarded as a palette of colors, or a set of locations. As before,
a colored set a : U → P assigns to each label a color, or to each particle a
location. A species associates to each colored set a : U → P a weighted set
F [a] : dom(F [a]) → R. Here the underlying domain set dom(F [a]) is a set of
combinatorial objects, and F [a] is a function that assigns a weight to each of
these objects.

The species must also associate to each colored set map from a : U → P to b :
V → P a corresponding map of weighted sets. This correspondence is required
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to send identity maps to identity maps. Also, the image of the composition of
two maps should be the composition of the two images. In brief, it is a functor
from the category of colored sets to the category of weighted sets.

In a specific situation the functor property should be apparent. Thus typically
we shall place emphasis on the combinatorial construction as an operation that
associates to a colored set a corresponding weighted set. There is a much more
extensive discussion of the theory of species of structures in the book [2]. The
formal definition above is merely designed to capture the idea that relabeling the
elements of the label set U (preserving the colors) must induce a corresponding
relabeling of the set of combinatorial objects dom(F [a]) (preserving the weights).

In at least some cases one only needs to know the underlying set U of the col-
ored set a : U → P in order to determine the underlying domain set dom(F [a])
of the weighted set F [a]. In this case it is reasonable to denote this underlying
set by F [U ]. The weights of the elements of F [U ] may of course depend on the
coloring a, so we might then write F [a] : F [U ] → R.

An important special case is when a species is defined for sets U without
any choice of color (a monochromatic set). There can be a weighting, but the
weighting cannot depend on the color. In this case F [U ] could denote either
the weighted set or its underlying domain set. In the extreme case when the
weighting is the default weighting that assigns 1 to each element, the underlying
set is F [U ]. Its total weight is just its cardinality.

Consider a species F . For each colored set a there is a corresponding weighted
set F [a] : dom(F [a]) → R, and for each such weighted set there is a correspond-
ing total weight

f(a) = |F [a]|∗ =
∑

α∈dom(F [a])

F [a](α) (2.39)

belonging to the ring R. This is often the quantity of ultimate interest, since it
translates combinatorics into algebra. So we have yet another notion of weight,
one that attaches to a colored set a the total weight of the structure associated
by F to a.

Each species defines a corresponding exponential generating function whose
coefficients are f(a) = |F (a)|∗. Explicitly,

F (w) =

∞
∑

n=0

1

n!

∑

a:Un→P





∑

α∈dom(F [a])

F [a](α)





∏

i∈Un

wa(i). (2.40)

Here are some examples. The graph species and the connected graph species
are of course just the formal specification of the graph constructions presented
before.

Graph species G There is a given function t : P ×P → R that is symmetric:
t(p, q) = t(q, p). The graph species G associates to each colored set a :
U → P the set G[U ] of all graphs g on U . The weight of each graph g is

G[a](g) =
∏

{i,j}∈g

t(a(i), a(j)). (2.41)
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The total weight is then

g(a) = |G[a]|∗ =
∑

g∈G[U ]

∏

{i,j}∈g

t(a(i), a(j)) =
∏

{i,j}

(1 + t(a(i), a(j)). (2.42)

Connected graph species C The connected graph species C associates to
each colored set a : U → P the set C[U ] of all connected graphs g on
U . The weight of each connected graph g is

C[a](g) =
∏

{i,j}∈g

t(a(i), a(j)). (2.43)

The total weight is then

c(a) = |C[a]|∗ =
∑

g∈C[U ]

∏

{i,j}∈g

t(a(i), a(j)). (2.44)

This time there is no simplification.
Power set with edges species P p Sometimes it is helpful to consider a set

of edges from an external point to an arbitrary subset of the vertex set. Say
that the external point has color p. The power set with edges species P p

assigns to each colored set a : U → P the weighted set P [a] : P [U ] → R
defined by

P [a](S) =
∏

j∈S

t(p, a(j)) (2.45)

for each subset S ⊆ U . Here P [U ] is the set of all subsets of U . The total
weight is

|P p[a]|∗ =
∑

S∈P [U ]

∏

j∈S

t(p, a(j)) =
∏

j∈U

(1 + t(p, a(j))). (2.46)

2.9. Operations on species

There are various operations on species. Here are some basic ones. Let F be a
species that associates to each colored set a : U → P a weighted set F [a] : A→
R. Similarly, let G be a species that associates to each colored set a : U → P a
weighted set G[a] : B → R.

Sum The sum F + G assigns to the colored set a the disjoint union weighted
set

(F +G)[a] = F [a] +G[a] : A+B → R. (2.47)

Convolution product The convolution product F ∗G assigns to the colored
set a : U → P the weighted set given as a disjoint union of Cartesian
products of the form

(F ∗G)[a] =
∑

〈V,W 〉

F [aV ]×G[aW ]. (2.48)

Here 〈V,W 〉 denotes an ordered pair of complementary subsets of U .
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External point Let p be in P . Then the external point species F ′
p assigns to

the colored set a the weighted set

F ′
p[a] = F [ap], (2.49)

where ap : U ∪ {∗} → P agrees with a on U and sends the extra point ∗
to p. In effect, all that has been done is to add an external point of color
p.

Internal point Let p be in P . Then the internal point species F •
p assigns to

the colored set a the weighted set

F •
p [a] =

∑

{j∈U|a(j)=p}

F [a]. (2.50)

Thus one has disjoint copies of the construction indexed by the elements
of U of color p. One can think of the underlying set of the weighted set
as consisting of all ordered pairs j, α, where a(j) = p and α is in the
underlying set of the original construction. The weight attached to a pair
j, α is just the weight attached to α. In effect, all that has been done is to
distinguish a point of color p internal to the underlying set, in all possible
ways.

Scalar partitional composition Let F be a species that associates to each
(uncolored) set U a weighted set F [U ]. Suppose that G[∅] is empty. Then
F ◦G assigns to the colored set a the weighted set

(F ◦G)[a] =
∑

Γ

F [Γ]×
∏

V ∈Γ

G[aV ]. (2.51)

Here Γ ranges over partitions of U . The resulting value of F ◦ G is thus
the disjoint union over such Γ of weighted sets, each of which is itself a
product of weighted sets given by appropriate values of F and G.

Partitional composition Let F be a species that associates to each colored
set c : U → Q a weighted set F [a] : A → R. Similarly, for each q ∈ Q let
Gq be a species that associates to each colored set a : U → P a weighted
set Gq[a] : B → R. Suppose that Gq[∅] is empty. Then F ◦ G assigns to
the colored set a the weighted set

(F ◦G)[a] =
∑

Γ

∑

c

F [c]×
∏

V ∈Γ

Gc(V )[aV ]. (2.52)

Here c : Γ → Q ranges over colorings of partitions Γ of U .
Cartesian product The Cartesian product F ×G assigns to the colored set a

the weighted set
(F ×G)[a] = F [a]×G[a]. (2.53)

One can consider the passage from species to exponential generating functions
as a combinatorial transform.
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Theorem 2.1 (Combinatorial transform). The combinatorial transform takes
the operations on species to the corresponding operations on exponential gener-
ating functions.

In this theorem the operations on the level of species are sum, convolution
product, external point, internal point, scalar partitional composition, parti-
tional composition, and Cartesian product. The corresponding operations on
exponential generating functions are sum, product, derivative, Euler derivative,
scalar composition, composition, and Hadamard product.

2.10. Indicator species

Here are indicator species that are used as building blocks. They are called
indicator species because the set of combinatorial structures that they produce
is either the empty set or a one-point set.

The empty species 0 The empty species 0 assigns to each colored set the
empty set of structures. The exponential generating function is 0.

The empty set indicator species 1 The empty set indicator species 1 as-
signs to each non-empty colored set the empty set of structures, but it
assigns to the empty set a single point with weight one. The exponential
generating function is 1.

The one-point colored set of designated color indicator species Xp The
one-point set indicator species Xp assigns to each colored set a : U → P
the empty set of structures, with the exception of the case when U = {j}
consists of precisely one point with a(j) = p. In that case it assigns to a a
single point with weight one. The exponential generating function is wp.

The one-point colored set indicator species X The one-point set indica-
tor species X assigns to each colored set a : U → P the empty set of
structures, with the exception of the case when U = {j} consists of pre-
cisely one point. In that case it assigns a single point with weight one. The
exponential generating function is 1 · w =

∑

q wq.
The set indicator species E The set indicator species (or ensemble species)

E assigns to each set U a single point of weight one. The exponential
generating function is the exponential function exp(z), where z is a scalar
variable.

The colored set indicator species Ê The colored set indicator species (or
ensemble species) is the composition Ê = E ◦ X . It assigns to each col-
ored set a : U → P a single point with weight one. The exponential
generating function is the multi-variable exponential function exp(1 ·w) =
exp(

∑

q wq).

Here are some weighted indicator species examples. The color weight function
t(p, q) is defined on pairs of colors, with the symmetry condition t(p, q) = t(q, p).
The species can return the empty set or a single point with a weight computed
from the color weight function.
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The edge indicator species E2 The edge indicator speciesE2 assigns to each
colored set a : U → P with a two-element set U = {i, j} a single point
with weight t(a(i), a(j)). It assigns the empty set to all other colored sets.
The exponential generating function is 1

2

∑

p

∑

q t(p, q)wpwq.
The edge to one colored point indicator species E′

2p This species is de-
rived from the edge indicator species. It represents an edge from an ex-
ternal point of color p. It assigns to each colored set a : U → P with a
one-element set U = {j} a single point with weight t(p, a(j)). It assigns the
empty set to all other colored sets. The exponential generating function is
tp · w =

∑

q t(p, q)wq.

The edges to colored set indicator species Êp This species is the compo-
sition Êp = E ◦ E′

2p. It indicates a set of edges from an external point
of color p. It assigns to each colored set a : U → P a single point with
weight

∏

j∈U t(p, a(j)). The exponential generating function is exp(tp·w) =
exp(

∑

q t(p, q)wq).

Here are some examples of this apparatus at work, using these set indicator
species as a starting point.

Power set with edges Take the convolution product P p = Ê ∗ Êp. By the
definition of the combinatorial convolution product, the value of this on a
colored set a : U → P is the disjoint union over all subsetsW of U of a sin-
gle point with weight

∏

j∈W t(p, a(j)). In other words, P p[a] consists of all
subsetsW of U ; each subset W determines a set of edges from an external
point of color p to the vertices in W . Its exponential generating function
is the product exp(

∑

q wp) exp(
∑

q t(p, q)wq) = exp(
∑

q(1 + t(p, q))wq).
Cluster expansion as scalar composition Let C be a species that asso-

ciates to each colored set a : U → P a weighted set C[a] : C[U ] → R. Sup-
pose that C[∅] is empty. Then the scalar partitional composition G = E◦C
assigns to the colored set a the weighted set

G[a] = (E ◦ C)[a] =
∑

Γ

∏

V ∈Γ

C[aV ]. (2.54)

Here Γ ranges over partitions of U . The corresponding transform isG(w) =
exp(C(w)).

3. Combinatorial fixed point equations

3.1. The rooted tree fixed point equation

In the following constructions there is always a function t(p, q) defined for colors
p, q. It is required that t(p, q) = t(q, p). Let T •

p be the species of rooted trees with
root of color p. To find a combinatorial equation, let Xp be the one-point colored

set of designated color indicator species, with weight one. Let Êp = E ◦ E′
2p be

the edges to colored set indicator species that assigns to a colored set a the
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product
∏

j t(p, a(j)). The equation is

T •
p = Xp ∗ (Ê

p ◦ T •). (3.1)

This says that a rooted tree on U is given by choosing a root point and par-
titioning the complement, with a rooted tree on each set in the partition, and
with edges from the original root to the new roots. In more detail, a rooted tree
on U with root of color p is obtained by splitting U into one point with color
p, recognized by Xp, and by doing a construction on the complement, namely

Êp ◦ T •. This in turn is obtained by partitioning the complement and doing
the construction T •

q , for some q, on each set in the partition. Each set in the
partition gets a corresponding weight factor t(p, q) from the edge.

The exponential generating function for rooted trees thus satisfies

T •
p (w) = wp exp(

∑

q

t(p, q)T •
q (w)). (3.2)

This is because Xp has exponential generating function wp and Êp ◦ T • has
exponential generating function that is the composition of exp(

∑

q t(p, q)zq)
with zq = T •

q (w).
Set zp = T •

p (w). Then this is a fixed point equation

zp = wp exp(
∑

q

t(p, q)zq). (3.3)

This equation is of the form z = φ(z). It has a unique formal power series
solution in which z is expressed as a formal power series in w. Furthermore,
this solution is given by iteration starting with 0. Let z(0) = 0, and define the
sequence z(k) inductively by z(k+1) = φ(z(k)). Then for k ≥ 1 the term z(k) gives
the contribution of all trees of depth ≤ k−1. Furthermore, z(k) converges to z, in
the sense that the each coefficient of the power series expansion of z is achieved
at some k. To see this, consider a tree on a set with n points. Then the depth of
this tree is at most n− 1. If k ≥ n the term z(k) includes the contribution of all
trees of depth at most n− 1 and so includes the contribution of this particular
tree. In other words, for k ≥ n the term z(k) includes all contributions of trees
with n vertices.

Let us take t(p, q) ≥ 0 and wp ≥ 0. Then the formal power series has only
positive terms. We would like to find a hypothesis that guarantees that the
formal power series converges. The correct hypothesis was found by Kotecký
and Preiss [14], working in the context of statistical mechanics.

Theorem 3.1 (Tree convergence). Consider the tree exponential generating
function with color pair weight factors t(p, q) ≥ 0, and take the variables wq ≥ 0.
Suppose the Kotecký-Preiss condition is satisfied, that is, there exists a finite
vector x ≥ 0 such that

wp exp(
∑

q

|t(p, q)|xq) ≤ xp. (3.4)
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Then the power series expansion of T •
p (w) converges for the given w and has

absolute value bounded by xp.

The inequality in the hypothesis is of the form φ(x) ≤ x with 0 ≤ x. The
proof of the theorem is via fixed point iteration. It uses the fact that φ is an
increasing function, in the sense that x′ ≤ x′′ implies φ(x′) ≤ φ(x′′). Let z(k)

be the kth iterate of φ applied to 0. Suppose that z(k) ≤ x. Then z(k+1) =
φ(z(k)) ≤ φ(x) ≤ x. By induction it follows that z(k) ≤ x for all k. It follows
that the limiting power series z for the given value of w also satisfies z ≤ x.
This completes the proof.

There is something mysterious about this argument, since the fixed point
equation will in general have several numerical solutions. It may help to look
at a more general picture. The natural analysis setting is a complete lattice L,
that is, a partially ordered set for which every subset has a supremum and an
infimum. There is also a function φ : L → L that is increasing, in the sense
that x′ ≤ x′′ implies φ(x′) ≤ φ(x′′). The Knaster-Tarski theorem says that an
increasing function φ from a complete lattice to itself always has a fixed point.
In fact, it has a least fixed point z = inf{y | φ(y) ≤ y}.

It is perhaps worth recalling the proof of this fact. Let S be the set of y with
φ(y) ≤ y. Since the lattice is complete, S has an infimum z. Consider arbitrary
y in S. Then z ≤ y, and since φ is increasing, φ(z) ≤ φ(y) ≤ y. Thus φ(z) is a
lower bound for S. Since z is the greatest lower bound, it follows that φ(z) ≤ z.
Since φ is increasing, φ(φ(z)) ≤ φ(z). It follows that φ(z) is in S. Since z is a
lower bound, we have z ≤ φ(z). Hence φ(z) = z.

It is also useful to know when the fixed point equation may be solved by
iteration starting with the least element. Let u(k) be the kth iterate. Since
φ is an increasing function, it follows by induction that the sequence u(k) is
increasing. It also follows by induction that each u(k) ≤ z, where z is the least
fixed point. Let z′ = supk u

(k), so z′ ≤ z. In general z′ need not be a fixed point.
However, assume the monotone convergence property for increasing sequences:
supk φ(u

(k)) = φ(supk u
(k)). This says that z′ = supk u

(k+1) = supk φ(u
(k)) =

φ(z′), so z′ is indeed a fixed point. It follows that the limit z′ of the sequence is
the least fixed point z.

In the present context the natural choice of complete lattice is L = [0,+∞]P .
This is just the set of positive vectors indexed by color. The value +∞ is allowed
in order to ensure that L is a complete lattice. The condition φ(x) ≤ x with x
finite simply guarantees that the fixed point z is itself finite, with z ≤ x.

When the iteration argument is applied to the tree fixed point, it shows that
the least fixed point is given by a convergent power series in powers of w. Even
though the fixed point equation can have several solutions, there is just one that
has such a convergent power series.

3.2. The connected graph fixed point equation

Trees are relatively easy to treat, because of the nice fixed point equation.
Connected graphs present more difficulties. The relation between graphs and
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connected graphs is given by the species equation with the scalar partitional
composition

G = E ◦ C. (3.5)

This says that one gets graphs by partitioning the vertex set and putting a
connected graph on each set in the partition. The corresponding equation for
exponential generating functions is the usual cluster representation G(w) =
exp(C(w)).

Similarly, the relation between graphs with root of color p and connected
graphs with root of color p is given by

G•
p = C•

p ∗G. (3.6)

This works because a rooted graph is given by a rooted connected graph on a
subset and a graph on the complement. The exponential generating function
equation is

G•
p(w) = C•

p (w)G(w). (3.7)

Let Ê = E ◦X be the colored set indicator species with weight one for every
colored set. Let Êp = E ◦ E′

2p be the colored set indicator species with weight
∏

j∈U t(p, a(j)) for every colored set a : U → P . One can consider this as a
construction that produces the set of all edges from some external point with
color p to a point in U . Consider the convolution product

P p = Ê ∗ Êp. (3.8)

This power set construction assigns to each colored set a : U → P the set of
all subsets W ⊆ U , where each such W has weight

∏

j∈W t(p, a(j)). One can
consider it as a construction that assigns to each colored set a : U → P the set
of all possible edge sets from an external point of color p to some subset of U .
If U has n points, then there are 2n such possible edge sets. The exponential
generating function for the power set is

P p(w) = exp(1 · w) exp(tp · w) = exp((1 + tp) · w). (3.9)

Let G•
p be the species of rooted graphs with root of color p. This satisfies the

combinatorial equation
G•

p = Xp ∗ (P
p ×G). (3.10)

This says that a graph with root of color p is obtained by taking a root of color p
and an ordered pair consisting of a graph on the complement and a subset of the
complement. This subset represents the vertices of the graph that are directly
connected to the root. The weight of this subset is the product of t(p, q), where q
is the color of a point in the subset. The Cartesian product of species translates
to the Hadamard product of exponential generating functions. The exponential
generating function for rooted graphs thus satisfies

G•
p(w) = wpG((1 + tp)w) (3.11)
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This is unfortunately not a closed equation for the quantity of interest. Also, it
involves a nasty scaling operation.

Let C•
p be the species of rooted connected graphs with root of color p. This

satisfies the combinatorial equation

C•
p = Xp ∗ (E ◦ (P p

+ × C)). (3.12)

This says that a connected graph is obtained by choosing a root, partitioning the
complement, and then on each set in the partition picking a non-empty subset
and a connected graph. The vertices in such a non-empty subset are connected
by edges to the original root, thus producing the original connected graph.

The exponential generating function for non-empty subsets is

P p
+(w) = exp(1 · w)(exp(tp · w)− 1) =

∑

N

1

N !
[(1 + tp)

N − 1]wN . (3.13)

The exponential generating function for the Cartesian product is given by the
Hadamard product of P p

+(w) with C(w), giving C((1 + tp)w) − C(w). The ex-
ponential generating function for rooted connected graphs thus satisfies

C•
p (w) = wp exp(C((1 + tp)w)− C(w)). (3.14)

It can be made into a closed equation, in fact, a fixed point equation. However,
this comes at a price. By the fundamental theorem of calculus

C•
p (w) = wp exp(

∑

q

t(p, q)

∫ 1

0

C•
q ((1 + stp)w) ds). (3.15)

The unpleasant feature of this equation is that it involves a scaling factor 1+stp.
There is also an integral over the s parameter to add to the complication.

4. The equilibrium gas

4.1. Equilibrium statistical mechanics

Mathematicians may appreciate a few words about the terminology of equi-
librium statistical mechanics. There are several different probability models;
the ones that occur most frequently are the canonical ensemble and the grand
canonical ensemble.

In the canonical ensemble the volume V and the number of particles n is
fixed. The energy value is not fixed; it is tuned by a parameter β, the inverse
temperature. This parameter is measured in inverse energy units. The Hamilto-
nian function that expresses the energy of a configuration is denoted H . The
temperature and energy enter together via the Boltzmann factor e−βH . There
is also a given reference measure µ0. In all the following we use the same nota-
tion for measure and for integral, and in particular for probability measure and
expectation. The model is given by the probability measure with expectation

µ(f) =
1

Z
µ0(fe

−βH). (4.1)
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Here
Z = µ0(e

−βH) (4.2)

is the partition function. The free energy F is defined via the logarithm of the
partition function as −βF = log(Z), so

Z = e−βF . (4.3)

The free energy is an example of a thermodynamic potential. The logarithm of
the partition function can enter into important calculations. For instance,

−
∂ logZ

∂β
= µ(H) (4.4)

is the energy of the system.
In the grand canonical ensemble the volume V is fixed. The energy is tuned

by the inverse temperature parameter β, and the density of particles is tuned by
the the activity parameter w. (This is usually called z in the physics literature).
The reference measure for an arbitrary number of particles is given by

µw
0 (f) =

∞
∑

n=0

1

n!
µn
0 (f)w

n, (4.5)

where µn
0 is the reference measure for n particles. (In the physics literature the

1/n! factor is sometimes included in the reference measures µn
0 .) The probability

model is given by

µ(f) =
1

Ξ
µw
0 (fe

−βH). (4.6)

Here
Ξ = µw

0 (e
−βH) (4.7)

is the grand partition function. The grand potential Ω is defined in terms of the
logarithm of the grand partition function by −βΩ = log(Ξ), so

Ξ = e−βΩ. (4.8)

In physics there is often an identification Ω = −PV , where PV is the pressure-
volume work. Thus we can also write

Ξ = eβPV . (4.9)

Sometimes one says, somewhat carelessly, that the thermodynamic potential
for the grand canonical ensemble is the pressure P . The logarithm of the grand
partition function is also important. For instance,

w
∂ log Ξ

∂w
= µ(n), (4.10)

the expected number of particles of the system.
In the end, one wants to take the thermodynamic limit in which the volume

V becomes infinite. In the canonical ensemble the density needs to be fixed,
that is, the number of particles is taken proportional to the volume. The grand
canonical ensemble is simpler; all that needs to be done is to fix the activity
parameter, which controls the density.
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4.2. Particles and locations

Here is a particular example of a model in equilibrium statistical mechanics, a
gas consisting of a variable number of interacting particles in a discrete space.
The discrete space is modeled by a set P of locations. For technical simplicity
we shall think of it as finite, but potentially very large. All estimates should be
independent of the number of points in this set. This treatment is in the spirit
of the thermodynamic limit, that is, the idea that an arbitrarily large region
of space might as well be modeled by a space that is of infinite extent in all
directions. If we are mainly interested in what is happening deep in the interior
of the region, then we may wish to disregard boundary effects. So we try to find
quantities that have limits as the boundary becomes arbitrarily remote. In the
present framework, the goal is to get results that do not depend on the size of
the set P .

Associated with each location p ∈ P there is an activity parameter wp that
gives a prior weight for a particle being at site p. In the case of no interaction
it will turn out that wp is the expected number of particles at p, but in general
it should be thought of as a parameter that influences the expected number
off particles at p in some indirect way. It is natural in this context to take
wp ≥ 0. However, we shall see that there are important applications where the
wp can take either sign. In these applications there is no direct probabilistic
interpretation, but the same formulas work.

For each ordered pair of points p, q there is a potential energy v(p, q), assumed
throughout to satisfy 0 ≤ v(p, q) ≤ +∞. There is a corresponding Boltzmann
factor exp(−βv(p, q)) with 0 ≤ exp(−βv(p, q)) ≤ 1. Here β > 0 is the inverse
temperature parameter, measured in energy units. In the following we shall often
write the Boltzmann factor as 1 + t(p, q), so that the interaction factor

t(p, q) = exp(−βv(p, q)) − 1 (4.11)

is negative, satisfying −1 ≤ t(p, q) ≤ 0. The reason for doing this will be evident
in the next section.

A particle configuration is a function a : Un → P . Here Un is a set considered
as consisting of n particles. The corresponding multi-index N that counts the
number of particles at each location is called an occupation number function.
The potential energy V (a) of a particle configuration is

V (a) =
∑

{i,j}

v(a(i), a(j)), (4.12)

where the sum is over subsets consisting of exactly two particles. The corre-
sponding Boltzmann factor is exp(−βV (a)). It weights particle configurations
in such a way that higher energy gives lower weight.

The inverse temperature and the energy occur in the dimensionless Boltz-
mann factor exp(−βV (a)). The activities wp are also dimensionless. For the
development of the theory and for flexibility in applications it is helpful to have
a separate activity parameter wp for each location p. Of course there is nothing
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to prevent each wp from being set equal to the same number. On the other hand,
it can be useful to have certain locations that are reluctant to have particles,
and this can be achieved by taking the corresponding activities to be small.

We begin with the situation that is easiest to interpret, where the activities
wp are all positive. In this situation there is an elegant probability model. The
fundamental postulate for the equilibrium gas is that the probability measure is
defined by a discrete probability density defined for each particle configuration
a : Un → P . The number of particles can be any finite number n = 0, 1, 2, 3, . . ..
The formula for the probability of having the n particles that constitute Un in
the locations specified by a is

µ({a}) =
1

Ξ

1

n!
exp(−βV (a))

∏

k∈Un

wa(k). (4.13)

Here

Ξ =

∞
∑

n=0

∑

a:Un→P

1

n!
exp(−βV (a))

∏

k∈Un

wa(k) (4.14)

is the normalization needed to make this a discrete probability density. The
symbol Ξ is the conventional in physics for the grand partition function, but
in much of the following Ξ will be denoted by G(w), since the grand partition
function turns out to be the exponential generating function for graphs.

The discrete probability density for particle configurations induces a discrete
probability density for occupation number functions. It is given by the formula
µ({N}) =

∑

count(a)=N µ({a}), or

µ({N}) =
1

Ξ

1

N !
exp(−βV (N))wN . (4.15)

If V (N) = 0 for all N , then the probability for k particles at location p is

µ({N | N(p) = k}) =
1

exp(
∑

q wq)

1

k!
wk

p exp(
∑

q 6=p

wq) =
1

k!
wk

p exp(−wp). (4.16)

In other words, N(p) has a Poisson distribution with mean wp. The model
describes independent Poisson random variables.

If V (N) = 0 for all N with 0 ≤ N ≤ 1, and otherwise V (N) = +∞, then for
k = 0, 1 we get

µ({N | N(p) = k}) =
1

∏

q(1 + wq)
wk
∏

q 6=p

(1 + wq) =
wp

1 + wp

. (4.17)

This model describes independent Bernoulli random variables.

4.3. Grand potential and density

The grand partition function is given by sums over graphs. To see this, we write
exp(−βv(p, q)) = 1 + t(p, q), so −1 ≤ t(p, q) ≤ 0. Thus the deviation of t(p, q)
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below zero measures the amount of energy interaction between the two sites. It
is also the color pair weight that we considered earlier in the context of graphs.
In order to make the connection, one may write the grand partition function Ξ
as G(w) and recognize it as the exponential generating function for graphs. In
the particle notation it is

G(w) =

∞
∑

n=0

∑

a:Un→P

1

n!

∏

{i,j}

(1 + t(a(i), a(j)))
∏

j

wa(j). (4.18)

In the occupation number notation it takes the simple form

G(w) =
∑

N

1

N !
(1 + t)Pair(N)wN . (4.19)

Here Pair(N) is a multi-index defined for pairs {p, q} of locations. If p 6= q its

value is N(p)N(q), while if p = q its value is the binomial coefficient
(

N(p)
2

)

.

Thus (1+ t)Pair(N) is the product of the Boltzmann factors 1+ t(p, q) for all the
pairs of particles at various locations described by N . The most immediately
useful consequence of this equation is the identity

∂G(w)

∂wp

= G((1 + tp)w). (4.20)

At this point it is convenient to introduce the exponential generating function
C(w) = logG(w) for connected graphs. This is an important thermodynamic
quantity related to the grand potential or the pressure-volume work. In com-
binatorics it is natural to call it the connected function. The grand partition
function is the exponential of the connected function:

G(w) = exp(C(w)). (4.21)

The connected function has the cluster expansion

C(w) =
∑

N 6=0

1

N !
c(N)wn. (4.22)

The probabilities of particular configurations will typically be tiny. What one
wants to calculate are expectations of random variables, such as the number of
particles N(p) = #{i | a(i) = p} at a given point p. Such expectations may
not have a strong dependence on the total number of locations, so they have
a more robust physical significance. In particular, it is reasonable to hope that
they may have thermodynamic limits.

The first expectation to be considered is the pinned connected function

∂C(w)

∂wp

=
1

G(w)

∂G(w)

∂wp

=
1

G(w)
G((1 + tp)w) = exp(C((1 + tp)w) − C(w)).

(4.23)
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This is the expectation of the random variable

(1 + tp)
N =

∏

q

(1 + t(p, q))N(q) = exp(−β
∑

q

v(p, q)N(q)). (4.24)

This random variable has the value 1 for occupation number functions N such
that N(q) ≥ 1 implies v(p, q) = 0. On the other hand, it is small for occupation
numbers N for which there exists a q with N(q) ≥ 1 and a large value of
βv(p, q). So, roughly speaking, it is a random variable that indicates avoidance
of interaction with location p. Thus, though this is not standard terminology,
the pinned connected function could be called the expected avoidance at location
p. In the graphical interpretation the expected avoidance at location p is the
exponential generating function for connected graphs on a set with an external
point of color p.

Perhaps the most physically natural expectation is the expectation of the
number N(p) of particles at location p given by

µ(N(p)) =
1

G(w)
G•

p(w) = C•
p (w) = wp

∂C(w)

∂wp

. (4.25)

This has a cluster expansion

C•
p (w) =

∑

N 6=0

1

N !
N(p)c(N)wN . (4.26)

It will be convenient to refer to the expected number of particles at a point as
the density of the gas. Thus the density at p is the rooted connected function,
which is the exponential generating function for rooted connected graphs with
root of color p.

The expression of the density in terms of the connected function can be quite
convenient. For instance, in the Poisson model C(w) =

∑

q wq, so C
•
p (w) = wp,

as expected. Similarly, in the Bernoulli model C(w) =
∑

q log(1+wq), so in this
case C•

p (w) = wp/(1 + wp).
It is extraordinarily convenient how the cancelation between numerator and

denominator is expressed by merely replacing rooted graphs by rooted connected
graphs. If the connected function C(w) has coefficients c(N), then the derivative
∂C(w)/∂wp has coefficients c(N + δp), and the density C•

p (w) has coefficients
N(p)c(N). Thus the only coefficients c(N) that matter for the density at p are
those for which N(p) > 0. Each particle configuration that contributes is not
only connected but has at least one particle at the root location p.

In the cluster expansion for the density C•
p (w) the particle configurations

that matter are all connected by a chain of interactions to a particle at loca-
tion p. Remote particles have little effect on the density at p. This suggests
why the density might have a thermodynamic limit as the number of locations
approaches infinity.

Yet another quantity of interest is the probability of finding no particle at p.
Write wΛ for the variables equal to wq for q in Λ and to zero elsewhere. The
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probability is

µ({N | N(p) = 0}) =
G(wP\{p})

G(w)
= exp(C(wP\{p})− C(w)). (4.27)

One sees again how convenient it is to have the connected function C(w) to make
explicit the cancelation between numerator and denominator. The coefficients
c(N) that enter into the difference C(w)−C(wP\{p}) are those with N(p) > 0.
This quantity should also make sense in the thermodynamic limit.

The quantities that describe the equilibrium gas are identical to those that
arise in the combinatorial constructions. Only the names have changed. Here is
a dictionary that gives the translation.

• The color palette is the set of locations.
• A label set is a set of particles.
• A colored set is a particle configuration.
• A multi-index is a particle occupation number function.
• A color variable is an activity parameter.
• An color pair weight is an interaction factor.
• The graph exponential generating function is the grand partition function.
• The connected graph exponential generating function is the connected
function (related to pressure).

• The pinned connected graph exponential generating function is the ex-
pected avoidance.

• The rooted connected graph exponential generating function is the density.

4.4. Convergence of the cluster expansion

The next topic is a version of the cluster expansion called the Mayer expansion.
This refers to the expansion of the pressure or the density of an equilibrium
gas in powers of the activity. There is another closely related virial expansion
that expresses the pressure in terms of the density. Combinatorial aspects of the
virial expansion are discussed in an paper of Leroux [15].

The goal here is to present a standard theorem on convergence of the clus-
ter expansion for the rooted connected function (the density) as a function of
activity parameters. It says that if the equilibrium gas has sufficiently weak in-
teraction or sufficiently small activity values, then the cluster expansion for the
density converges, with a radius of convergence independent of the number of
locations. This is a standard result, the work of many authors; see the references
in [10, 13, 22]; also consult [4, 5, 6, 9, 17]. In one version, that of Kotecký-Preiss
[14], the condition for convergence is precisely the condition for convergence of
a certain tree expansion.

Theorem 4.1 (Cluster expansion convergence). Consider the equilibrium gas
system with interactions −1 ≤ t(p, q) ≤ 0 and activities wp satisfying |wp| ≤ w∗

p.
Suppose there are finite xp ≥ 0 such that Kotecký-Preiss condition

w∗
p exp(

∑

q

|t(p, q)|xq) ≤ xp (4.28)



W.G. Faris/Combinatorics and cluster expansions 186

is satisfied, so that the corresponding rooted tree series T •
p (w

∗) (defined with
weights 0 ≤ |t(p, q)| ≤ 1) converges to a value bounded by xp. Then the series
C•

p (w) for the expected number of particles at a site p converges absolutely for
|w| ≤ w∗, and its value satisfies

|C•
p (w)| ≤ xp < +∞. (4.29)

Sometimes the Kotecký-Preiss criterion and similar results are stated in terms
of the pinned connected function. As argued before, this function could also be
called the expected avoidance for location p. For this reformulation it is natural
to make the change of variable xp = w∗

pe
ap .

Theorem 4.2 (Cluster expansion convergence). Consider the equilibrium gas
system with interactions −1 ≤ t(p, q) ≤ 0 and activities wp satisfying |wp| ≤ w∗

p.
Suppose there are finite ap ≥ 0 such that Kotecký-Preiss condition

∑

q

|t(p, q)|w∗
qe

aq ≤ ap (4.30)

is satisfied. Then the pinned connected function series ∂C(w)/∂wp for the ex-
pected avoidance at location p converges absolutely, and its value satisfies

∣

∣

∣

∣

∂C(w)

∂wp

∣

∣

∣

∣

≤ eap < +∞. (4.31)

This form of the theorem has the feature that the parameters to be estimated
appear together in the combination |t(p, q)|w∗

q . For this to be a small parameter
either the interaction t(p, q) can be small or the activity bound w∗

p can be small.
The following sections present two proofs of the theorem. One works di-

rectly with an equation for the exponential generating function for the rooted
connected graphs. The other is via partitioning the set of connected graphs,
following the approach of Penrose [18]. These are not the only proof strategies;
another particularly powerful technique is the use of Brydges-Kennedy tree iden-
tities [7, 6] and the related Abdesselam-Rivasseau forest identities [1]. See [8,
Section VIII] for a recent treatment.

Recently Fernández and Procacci [13] used Penrose partitioning to give a new
cluster expansion convergence theorem. Let |tp| be the vector with components
|t(p, q)| for q in P . Define the rooted grand partition function by

G(|t|px) =
∑

N

1

N !
(1 + t)Pair(N)(|tp|x)

N =
∑

N

1

N !
(1 + t)Pair(N)|tp|

NxN . (4.32)

The quantity Pair(N) counts the number of pairs of particles at various loca-
tions {p, q}, and (1 + t)Pair(N) is the resulting Boltzmann factor. The quantity
|tp|N =

∏

q |t(p, q)|
N(q) is the product of interaction factors that link p to an-

other location q. The Fernández-Procacci condition is that there is a finite vector
x ≥ 0 such that

w∗
pG(|t|px) ≤ xp. (4.33)
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Their conclusion is convergence of the cluster expansion for the density with
values of w satisfying |wp| ≤ w∗

p.

Since (1 + t)Pair(N) ≤ 1, the Kotecký-Preiss condition

w∗
p

∑

N

1

N !
(|tp|x)

N = w∗
p exp(|tp| · x) ≤ xp (4.34)

implies the Fernández-Procacci condition. It follows that the Fernández-Procacci
result implies the Kotecký-Preiss result. While it may be difficult to compute
(1+ t)Pair(N) exactly, Fernández-Procacci showed that it is possible to estimate
this quantity in such as way as get useful results.

It is also possible to get results for the case of negative potential v(p, q) < 0
(which corresponds to t(p, q) > 1) under a certain positive definiteness condi-
tion (stability). Procacci [20] has recently made progress on this. New work of
Poghosyan and Ueltschi [19] gives a particularly nice formulation.

Finally, it should be acknowledged that space is not discrete. Fortunately, the
entire apparatus of cluster expansions can be carried out in Euclidean space or
even on a general measurable space [22]. The role of activity parameters is then
played by activity measures.

4.5. Cluster expansion convergence via tree fixed point

This section gives a proof that the cluster expansion converges that is based
on a fixed point equation. The idea was inspired by work of Ueltschi [22]. The
version of the proof presented here makes no mention of graphs or any other
form of combinatorics [10]. Of course the quantities used in the proof do have
graphical interpretations; that just adds to their charm.

Here is the result to be proved. Suppose −1 ≤ t(p, q) ≤ 0 and wp ≥ 0.
Suppose that there are finite xp ≥ 0 so that the Kotecký-Preiss condition
wp exp(

∑

q |t(p, q)|xq) ≤ xp holds. Then the sum C•
p (w) for the expected number

of particles converges absolutely, and in fact

0 ≤ C•
p (w) ≤ −C•

p (−w) ≤ xp <∞. (4.35)

The starting point is the definition of the grand partition function G(w) as a
power series with terms g(N) = (1+ t)Pair(N). The fundamental equation (3.11)
then follows immediately from the definition.

Once we have the grand partition function, we can define the connected
function C(w) by G(w) = exp(C(w)). The corresponding equation (3.7) for the
density then follows by differentiating. The fundamental equation may then be
reformulated as an equation (3.14) for the density. This in turn gives the fixed
point equation (3.15).

One technical problem with the fixed point equation is that the t(p, q) factor
is negative. So instead let Č•

p (w) = −C•
p (−w). This will be an upper bound for

C•
p (w). It satisfies the equation

Č•
p (w) = wp exp(

∑

q

|t(p, q)|

∫ 1

0

Č•
q ((1 + stp)w) ds). (4.36)
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Compare this with the tree equation

T •
p (w) = wp exp(

∑

q

|t(p, q)|T •
q (w)). (4.37)

These are fixed point equations

ž = ψ(ž) (4.38)

and
z = φ(z). (4.39)

Each of these equations has a solution as an exponential generating function in
powers of w for which all Taylor coefficients are positive. While the iteration
functions ψ and φ are quite different, they have the same value ψ(x) = φ(x) for
an x that does not depend on w.

Consider the iteration v(0) = 0 and v(k+1) = ψ(v(k)). This generates a se-
quence of exponential generating functions with positive Taylor coefficients. Fur-
thermore, it increases to the fixed point ž. The Kotecký-Preiss condition is that
there is a finite vector x ≥ 0 with φ(x) ≤ x. Suppose that for some k we have
v(k) ≤ x. Then v(k+1) = ψ(v(k)) ≤ ψ(x) = φ(x) ≤ x. It follows by induction
that v(k) ≤ x for all k. Hence ž ≤ x. In fact, since we could take x = z, we have
ž ≤ z. The density ž is dominated by the tree fixed point z.

4.6. Cluster expansion convergence via partitioning and tree bounds

This section presents a graphical proof of convergence of the cluster expansion.
Even though it is possible in some cases to reason without using the graph
language, there are other situations where it is much more convenient. In any
case, the graph setting gives a picture that is simple and direct.

The starting point is the existence of a Boolean partition of the set of con-
nected graphs. From a Boolean partition one immediately gets an identity that
relates connected graphs to trees. This in turn gives a tree bound, from which
the cluster expansion convergence theorem is immediate.

Let E be a set. A Boolean interval is a subset of the power set P (E) of the
form [A,B] = {C | A ⊆ C ⊆ B}.

Theorem 4.3 (Boolean partition). Fix a vertex set U . Then there is a map χ
from the trees on U to the connected graphs on U such that the set of connected
graphs is the disjoint union of the Boolean intervals [T, χ(T )].

The map χ and the resulting partitioning is far from unique. As an exam-
ple, take the case when U has 3 vertices. There are four connected graphs
T1, T2, T3,K3. One way to partition is to take χ(T1) = K3, while χ(T2) = T2
and χ(T3) = T3. Then the set of connected graphs is the disjoint union of the
intervals [T1,K3], [T2, T2], [T3, T3], that is, of the sets {T1,K3}, {T2}, {T3}.

There are several ways to construct such a partition into Boolean intervals.
Here is the construction due to Penrose. The graph distance between two points
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is the minimum number of edges in the graph needed to make a path from
one point to the other. Choose a root point r in the vertex set U . Then each
connected graph on U defines a finite sequence of disjoint non-empty subsets
L0, L1, L2, . . . , Lm that exhaust U and such that L0 = {r}. The set Lk consists
of the points in U at graph distance k from the root. Conversely, given such a
sequence of Lk, there is a corresponding collection of connected graphs. Thus
the set of all connected graphs is partitioned, with the partitions indexed by
such sequences. For each sequence, the connected graphs may have arbitrary
edges present or absent between vertices in the same Lk. Thus the within-layer
edges are arbitrary. Furthermore, for k ≥ 1 and for each vertex in Lk there are
edges going to a non-empty set of vertices in Lk−1. All inter-layer edges are of
this form.

Linearly order the vertices U starting with r. For each connected graph G on
U there will be a corresponding tree φ(G) on U . A tree is defined by giving a
function from U to U with no cycle other than a fixed point at the root. Start
with the connected graph G and the corresponding partition of U . Consider i in
U , other than the root. Then i belongs to some Lk in the partition with k ≥ 1.
Then the tree maps i to the j in Lk−1 that is least in the order.

The set of connected graphs with φ(G) = T consists of all connected graphs
inducing the same partition, with some set of within-layer edges and with inter-
layer edges from i in Lk to j and to a non-empty set of j′ in Lk−1 with j′ ≥ j.
The maximal such graph χ(T ) has all possible within-layer edges and all inter-
layer edges from i in Lk to j′ in Lk−1 with j′ ≥ j. Thus the set of graphs with
φ(G) = T is the Boolean interval [T, χ(T )]. This completes the construction.

There are other ways to construct a partition into Boolean intervals [21].
Such constructions always involve arbitrary choices, such as a linear ordering of
the vertices or a linear ordering of the edges. A geometric explanation for why
partitioning is possible and for why it involves arbitrary choices may be found
in [3]. The idea is that for a fixed set of vertices, the complements of the edge
sets of connected graphs form a simplicial complex. The complements of the
edge sets of trees are the facets of this complex. A topological property of this
simplicial complex ensures the partitioning is possible.

Fernández and Procacci [13] found that the particular construction used by
Penrose was the appropriate path to their result on the convergence of the
cluster expansion. See [11] for an alternative approach to their result using an
identity of the type introduced in [6, 7, 1].

Theorem 4.4 (Connected graph identity). The total weight of the connected
graphs is

c(a) = |C(a)|∗ =
∑

T

∏

{i,j}∈T

t(a(i), a(j))
∏

{i,j}∈χ(T )\T

(1 + t(a(i), a(j))). (4.40)

The proof starts with the connected graph sum c(a) =
∑

Gc

∏

{i,j}∈Gc
t(a(i),

a(j)). Each connected graph Gc in a Boolean interval [T, χ(T )] is the disjoint
union of the tree T with a subset H of χ(T ) \ T . By the Boolean partition
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identity the connected graph sum is

c(a) =
∑

T

∏

{i,j}∈T

∑

H⊆χ(T )\T

∏

{i,j}∈H

t(a(i), a(j)). (4.41)

By the distributive law the sum over subsetsH of the products of the t(a(i), a(j))
factors gives a single product of 1 + t(a(i), a(j)) factors.

Corollary 4.5 (Alternating sign property). Take each t(p, q) with −1 ≤ t(p, q) ≤
0. If a : U → P with a set U with n elements, then the sign of the total weight
c(a) = |C(a)|∗ of connected graphs with vertex set U is (−1)n−1.

This is obvious because each tree has n−1 edges. The tree factors are negative,
and the remaining factors are positive.

Theorem 4.6 (Tree bound). Let −1 ≤ t(p, q) ≤ 0 be the edge factor for graphs.
For each colored set (particle configuration) the absolute value of the total weight
c(a) = |C(a)|∗ of connected graphs with the weight factors t(p, q) is bounded by
the total weight t(a) = |T (a)|∗ of trees taken with the weight factors |t(p, q)|.
That is,

|c(a)| ≤ t(a). (4.42)

This comes from estimating the tree factors by their absolute values and the
remaining factors by one. The explicit form of the tree bound is

|
∑

Gc

∏

{i,j}∈Gc

t(a(i), a(j))| ≤
∑

T

∏

{i,j}∈T

|t(a(i), a(j))|. (4.43)

The total weight for connected graphs involves a huge amount of cancelation,
due to the fact that the interaction factors are negative. The partitioning identity
gives a way of making this cancelation explicit. The conclusion is the remarkable
fact that the various series for connected graphs, rooted connected graphs, and
so on are bounded term by term by the corresponding series for trees, rooted
trees, and so on.

The connected graph identity also gives information about invariants of par-
titioning. For each partitioning scheme T 7→ χ(T ), define the corresponding
h-polynomial

h(s) =
∑

T

s|χ(T )\T |. (4.44)

The coefficients of this polynomial describe how many trees give rise to an
element of the partition of each fixed size.

Proposition 4.7 (Invariants of partitions). The h-polynomial that describes the
number of sets in the partition of each fixed size is the same for every partition.

The proof of this proposition follows from the connected graph identity with
t(p, q) = t. This is
∑

Gc

t|Gc| = tn−1
∑

T

∑

T⊆H⊆χ(T )

t|H\T | = tn−1
∑

T

(1 + t)|χ(T )\T | = tn−1h(1 + t).

(4.45)
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The left hand side depends only on the number of connected graphs of each size,
and so it is independent of the partition. It follows that the same is true for the
right hand side. Thus the polynomial h(1 + t) is independent of the partition.
It follows that the polynomial h(s) is independent of the partition.

Here is an example of an h-polynomial . Take n = 3. There are four connected
graphs. Their weight is t3 + 3t2 = t2(t+ 3) = t2((1 + t) + 2) = t2h(1 + t). Thus
h(s) = s+2. Thus no matter how the partitioning is done, there is one part where
χ(T ) = K3 is the complete graph, and there are two parts where χ(T ) = T .

5. Hard-core interaction and polymers

5.1. Soft interaction

There are at least four levels at which one can consider the equilibrium particle
gas, starting with the most general and ending with the most special. The case
considered up to now is that of the soft repulsive interaction, which is the case of
a potential V (p, q) satisfying 0 ≤ V (p, q) ≤ +∞. As we have seen, if V (p, q) = 0
for all p, q then the number of particles at each location p is a Poisson random
variable with mean wp. So one might think of the soft case as a situation where
one is perturbing Poisson random variables.

Level 1: Soft interaction The function 1+ t(p, q) = exp(−βV (p, q)) has val-
ues in the interval [0, 1].

Level 2: Hard-core self-repulsion The function 1+t(p, p) = exp(−βV (p, p))
is restricted to have values 0 or 1. Thus there can be at most one particle
at a given location. Particle configurations are sets of locations.

Level 3: Hard-core interaction The function 1 + t(p, q) = exp(−βV (p, q))
is restricted to have values 0 or 1. Every configuration is either allowed or
completely forbidden.

Level 4: Polymer interaction There is a set T such that each p in P is a non-
empty finite subset of T . In this case p is called a polymer. The function
1+ t(p, q) = exp(−βv(p, q)) is 1 if p∩ q = ∅ and 0 if p∩ q 6= ∅. An allowed
configuration is a collection of non-intersecting polymers.

5.2. Hard-core self-repulsion

For a hard-core self-repulsion the only particle configurations a : Un → P are
those that are injective functions: different particles occupy different locations.
The corresponding occupation number function will just be the indicator func-
tion of the subset X of occupied locations. For each such subset X there are
n! corresponding particle configurations. A particle configuration thus has an
alternate description as a finite set X ⊆ P . The grand partition function is an
multi-affine generating function. In general, the expected number of particles at
location p is just the probability of a particle at p. Otherwise, the formulas are
the same.
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In the case of hard-core self-repulsion but no other interaction, the probability
of a particle at p is

∑

N(p)=1

p(N) =
1

∏

q(1 + wq)
wp

∏

q 6=p

(1 + wq) =
wp

1 + wp

. (5.1)

Therefore the probability distribution for the number of particles at p is Bernoulli
with probability wp/(1 + wp) for one particle and 1/(1 + wp) for no particle.
The probability model is given by independent Bernoulli distributions for the
number of particles at a given locations. So one can think of the general case of
hard-core self-repulsion as a perturbation about the Bernoulli distribution.

The fact that the grand partition function G(w) is multi-affine may also be
seen from the general formula in terms of sums over graphs. Consider an n and
a particle configuration a such that a(i) = a(j) = p for some i 6= j. Consider
the contribution to the graph sum in

g(a) =
∑

G

∏

{i,j}∈G

t(a(i), t(a(j))) (5.2)

from this pair. Partition the set of graphs into two parts, depending on whether
the pair {i, j} is an edge or not. Each graph in the first part has a factor
t(p, p) = −1, and each graph in the second part has no such factor. There is
perfect cancelation, so g(a) = 0. This argument does not apply to the connected
function, since connected graphs prefer having edges to not having edges. Indeed,
the connected function is not multi-affine.

In the case of hard-core self-repulsion Dobrushin [9] proved that if there are
finite xp ≥ 0 with

w∗
p

∏

q

(1 + |t(p, q)|xq) ≤ xp, (5.3)

then the cluster expansion for the density converges for w satisfying |wp| ≤ w∗
p.

This is yet one more finite fixed point condition. The relation to the other
conditions is the following. It is clear that

w∗
p

∏

q

(1 + |t(p, q)|xq) ≤ w∗
p

∏

q

exp(|t(p, q)|xq) = w∗
p exp(

∑

q

|t(p, q)|xq). (5.4)

Thus the Kotecký-Preiss condition implies the Dobrushin condition, so for hard-
core self-repulsion the Dobrushin result implies the Kotecký-Preiss result. For
a comparison with the Fernández-Procacci result, notice that with hard-core
self-repulsion (1 + t)Pair(N) 6= 0 implies 0 ≤ N ≤ 1. So

w∗
pG(|t|px) ≤ w∗

p

∑

0≤N≤1

|tp|
NxN = w∗

p

∏

q

(1 + t(p, q)xq). (5.5)

It follows that for hard-core self-repulsion the Dobrushin condition implies the
Fernández-Procacci condition. Turning this around, the Fernández-Procacci re-
sult implies the Dobrushin result.
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5.3. Hard-core interaction

An even more special case is the hard-core interaction gas. This is a hard core gas
for which the potential for locations p, q satisfies v(p, q) = 0 or v(p, q) = +∞.
The corresponding Boltzmann factor 1 + t(p, q) = exp(−βv(p, q)) takes the
value either 1 or 0. Thus t(p, q) takes the value 0 or −1. Two points p 6= q are
compatible if 1+ t(p, q) = 1, incompatible if 1+ t(p, q) = 0. This defines a graph
structure H with vertex set P , where an edge is present between p, q whenever
t(p, q) = −1. This is a more general kind of graph, since it has a loop at every
vertex.

A graph homomorphism is a map from the vertices of a graph G to the
vertices of another graph H that sends edges to edges. The formula for the
grand partition function is

G(w) =

∞
∑

n=0

1

n!

∑

G

∑

a:Un→P

(−1)|G|
∏

j∈Un

wa(j), (5.6)

where the sum is over graphsG with vertex set Un and over functions a : Un → P
that are graph homomorphisms from G to H . However, as we have seen, the
contribution of the particle configurations that are not injective sums to zero.
So we may instead write this as the sum over graphs G with vertex set Un and
over injective functions a : Un → P that are graph homomorphisms from G to
H . Finally, we may identify the graph G with its image in H and write this as

G(w) =
∑

X

∑

G

(−1)|G|wX , (5.7)

where the sum is over graphs G on X ⊆ P that are subgraphs of H .
For the connected function the corresponding representation is

C(w) =

∞
∑

n=0

1

n!

∑

Gc

∑

a:Un→P

(−1)|Gc|
∏

j∈Un

wa(j), (5.8)

where the sum is over connected graphsGc with vertex set Un and over functions
a : Un → P that are graph homomorphisms from Gc to H . Notice that the
subgraph of H whose vertices are the image of a and whose edges are the images
of the edges of G is connected.

The general formula for the cluster coefficient is

c(a) =
∑

Gc

(−1)|Gc| (5.9)

when a is a graph homomorphism from G to H and is zero otherwise. We can
represent the coefficients of the grand partition function in terms of the first
order coefficients of the connected function. These coefficients are given by

c(Y ) =
∑

Gc

(−1)|Gc|, (5.10)
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where Gc ranges over connected graphs with vertex set Y that are subgraphs
of H . The contribution of a connected graph is +1 if it has an even number of
edges and −1 if it has an odd number of edges. This explicit representation is a
good reminder that such graph expressions involve rather large cancelations.

In the hard-core interaction case it is interesting to contrast various proba-
bility expressions. The avoidance probability is

∂C(w)

∂wp

=
G(wP\p̄)

G(w)
= exp(C(wP\p̄)− C(w)), (5.11)

where p̄ denotes the set of q such that are not compatible with p. This will be
automatically bounded above by one in the case when the weights wp are positive
and there is a genuine probability interpretation. The sum in the exponential
is over connected graphs such that N(q) ≥ 1 for some q with t(p, q) = 1. The
probability of a particle at p has just one more factor of wp, so it is given by

P 1
p = C•

p (w) = wp

∂C(w)

∂wp

, (5.12)

while the probability for no particle at p is

P 0
p =

G(wP\{p})

G(w)
= exp(C(wP\{p})− C(w)). (5.13)

In the latter case the sum in the exponential is over connected graphs such that
N(p) ≥ 1.

5.4. Polymer systems

In a polymer system there is a set T , finite or countably infinite. A point t in
T will be called a site. Each element A in P is a non-empty finite subset of T .
Before such an object was called a color or a location, but in this context it
is called a polymer. The constraint is that polymers cannot overlap. Typically
only certain kinds of sets A are admissible as polymers. This can be ensured
by requiring that the corresponding weights wA are fixed with value zero, or
one can simply restrict the set P . In order for the formulas to make sense, it is
customary to work within finite subsets Λ ⊆ T with coefficients wA that vanish
unless A ⊆ Λ. The idea is that the results should be uniform in Λ.

The grand partition function for a polymer system will be written as Z(w).
If Λ is a given finite subset of T , we can write Z(wP (Λ)) for the value when w
is set zero except for polymers A that belong to P (Λ). Of course A ∈ P (Λ) is
equivalent to A ⊆ Λ. It is convenient to denote this instead by ZΛ(w).

The grand partition function for a polymer is thus of the form

ZΛ(w) =
∑

Γ

∏

A∈Γ

wA, (5.14)
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where Γ ranges over finite sets of non-overlapping admissible subsets of Λ. Be-
cause of the way it arises in applications, we shall refer to ZΛ(w) as the partition
function. In fact, it often arises as a partition function for a statistical mechan-
ical system whose underlying space is the set T of sites. This makes it natural
to define the free energy FΛ by

ZΛ = exp(−βFΛ). (5.15)

It is perhaps confusing that the particle location language has been replaced
by the polymer language. Here is a dictionary that may be helpful.

• A particle location is a polymer (a subset of the set of sites).
• A particle occupation number function (for hard-core interaction) is a set
of polymers that are present (occupied).

• An activity parameter is a polymer weight (not necessarily positive).
• The interaction factor (for hard-core interaction) is exclusion (non-overlap)
of polymers.

• The grand partition function is the partition function.
• The connected function is (a multiple of) the free energy.
• The pinned connected function is the avoidance probability (not necessar-
ily bounded above by one).

Proposition 5.1 (Convergence of cluster expansion for polymers). Let the par-
tition function ZΛ have a polymer representation in terms of coefficients wA,
with no restriction on sign, but satisfying a bound |wA| ≤ w∗

A. Suppose the
Kotecký-Preiss condition is satisfied in the following form: there is a constant
c ≥ 0 such that for each B we have

∑

A∩B 6=∅

w∗
Ae

c|A| ≤ c|B|. (5.16)

Then for each A ⊆ Λ the avoidance probability has a convergent power series
expansion in powers of the wA, and the sum satisfies

∂CΛ(w)

∂wA

=
ZΛ\A(w)

ZΛ(w)
= exp(CΛ\A(w) − CΛ(w)) ≤ e|A|. (5.17)

There is a somewhat sharper criterion for the convergence in the polymer case
due to Gruber and Kunz. Fernández-Procacci show that in the polymer context
their result implies the Gruber-Kunz result which implies the Dobrushin result
which implies the Kotecký-Preiss result. The stronger results give a somewhat
better radius of convergence in specific examples. The book [16, Chapter 3]
works with the Gruber-Kunz framework. The article [12] presents a typical
application.

5.5. Cluster representations as polymer partition functions

It is remarkable that this polymer structure arises naturally in the context of
combinatorics, namely in the situation when there is a cluster representation.
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Proposition 5.2 (Cluster representation as polymer system). For Λ ⊆ T con-
sider the cluster representation representing combinatorial coefficients ZΛ by
cluster coefficients wA in the form

ZΛ =
∑

Γ

∏

A∈Γ

wA. (5.18)

Here Γ ranges over partitions of X into non-empty pairwise disjoint subsets with
union X. Suppose that wA = 1 for each A that is a one-point subset. Then the
cluster representation is the partition function for a polymer.

It may be that the condition on one-point subsets is not satisfied, but then it
is often possible to get a partition function for a polymer by dividing both sides
by the product of the w{t} for t in Λ. This amounts to dividing each wA by the
product of the w{t} for t ∈ A, so one just works with these modified activities.

We shall see that the cluster representation often arises in a context where
the ZΛ is related to a graph sum associated with the set Λ of sites, while the wA

is a corresponding quantity related to a connected graph sum associated with
the subsets A. The partition Γ then arises from the decomposition of graphs
into connected subgraphs. Either the contributions of the one-point connected
graphs are already equal to one, or one takes care of the problem by division.

The terminology is inherently confusing, since when the cluster representa-
tion is interpreted as a grand partition function, then it is possible to do a cluster
expansion of the cluster representation. That is, the cluster representation rep-
resents combinatorial coefficients in terms of cluster coefficients associated with
connected clusters of sites. Then this representation is reinterpreted as a grand
partition function, which has a cluster expansion indexed by connected clusters
of polymers. The activity parameters in the grand partition function are the
cluster coefficients in the cluster representation. Again a dictionary that may
be helpful.

• A particle location is a polymer which is a cluster of sites.
• A particle occupation number function is a set of polymers which in turn
is a partition into clusters of sites.

• An activity parameter is a polymer weight which is a cluster coefficient.
• The grand partition function is the partition function which is a combi-
natorial coefficient.

6. Random fields

6.1. Gibbs measures

Cluster expansion ideas are important for understanding an equilibrium gas
system, but their importance is much more general. In other physical systems it
is often possible to introduce a cluster representation in a more or less natural
way, most often in the framework of a polymer system. One such example is that
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of a random field defined by a Gibbs measure. Here is the general framework; a
particular application will follow.

Let T be a countable set, and consider the product space Ω = RT . In physics a
real function φ on T is often called a scalar field. This is of course just an element
of the product space Ω. A random field is given by specifying a probability
measure µ on Ω. Thus φ may be considered as a random function, and its
values φt for t ∈ T form a collection of random variables.

In physics the usual procedure is to start with a random field µ0 that is
well-understood and to use this to build another random field µ that has more
significant interactions. The same general strategy applies both to systems from
classical and quantum statistical mechanics and from Euclidean quantum field
theory. Here are two examples of random fields µ0 that make good starting
points.

Independent random variables This is the case when the measure µ0 is a
product measure µ0. The random variables φt for t in T are independent.
Once the distribution of each φt is known, the distribution of the entire
random field is determined by product property for independent random
variables.

Gaussian random variables This is the case when the measure µ0 is Gaus-
sian. The random variables φt for t in T have a joint Gaussian distribution.
Their distribution is thus determined by the means m(t) = µ0(φt) and the
covariances

C(s, t) = µ0((φs −ms)(φt −mt)). (6.1)

The goal is to define another probability measure µ on Ω that gives a random
field that describes the state of a interacting system at a given temperature. This
measure should be formally defined by a factor that depends on the energy H of
the infinite system. The problem is that the energy for an infinite system is given
by a divergent series. The solution is to deal with an approximate expression
HΛ for the energy, obtained by restricting the interactions to sites in a finite
subset Λ ⊆ T . This in turn defines an approximate measure µΛ. Then estimates
are derived that show that these measures converge to a limit µ as Λ gets large.

Thus suppose that HΛ is a measurable function on Ω, bounded below, de-
pending only on the coordinates φt for t in Λ. This represents the approximate
version of the energy. Let β be the inverse temperature, measured in inverse
energy units. Then WΛ = exp(−βHΛ) is a Boltzmann weight factor that is used
to define the approximate probability model µΛ corresponding to the subset Λ.
Define the partition function

ZΛ = µ0(WΛ) (6.2)

and the probability measure whose expectation is given by

µΛ(f) =
1

ZΛ
µ0(fWΛ). (6.3)

This defines a new random field µΛ that has non-trivial interactions in Λ. The
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corresponding free energy FΛ is then defined by

ZΛ = exp(−βFΛ). (6.4)

In general it is difficult to control the limit of large Λ. In order to have
some hope of this the reference measure µ0 and the energy functions HΛ cannot
depend too strongly on too many coordinates. When this is the case, there is
an extensive theory of the resulting interacting measures µΛ and of their large
Λ limits. A probability measure µ on Ω that arises in this way as a large Λ limit
is called a Gibbs measure. There are elegant characterizations of such measures,
but, as always, getting control of specific examples can involve some effort. An
introduction to Gibbs measures may be found in [16, Chapter 1].

The situation is quite different from that of the equilibrium gas of particles,
since there is no activity parameter. However, in some cases it is possible to
construct a polymer cluster representation, where the role of the activity pa-
rameter is played by a cluster coefficient representing the size of the interaction.
This cluster coefficient may have either sign. With suitable estimates it is then
possible to show that the cluster expansion converges and hence that the ratio
has a large Λ limit.

The procedure is in several steps. The first is to find a cluster representation

ZΛ = µ0(WΛ) =
∑

Γ

∏

A∈Γ

wA (6.5)

for the denominator. Here the wA are cluster coefficients associated to certain
polymers A. The second step is to find a similar representation for the numerator

µ0(fWΛ) =
∑

R,Γ

w̃R

∏

A∈Γ

wA, (6.6)

where f only depends on the φt for t ∈ B, the subset R is R = ∅ or satisfies
R∩B 6= ∅, and where A ∈ Γ implies A∩(B∪R) = ∅. Once this is accomplished,
one has a representation

µ(f) =
∑

R

w̃R

ZΛ\(B∪R)

ZΛ
. (6.7)

As is shown in [16, Chapter 3] the main difficulty in taking the limit of large Λ
is to control the ratio

ZΛ\A

ZΛ
= exp(β(FΛ − FΛ\A)) (6.8)

uniformly in Λ for fixed A. This is the avoidance probability, so this is just
another instance of the need to control the convergence of the cluster expansion.

The following subsections treat the cluster representation for the situation
when the reference measure µ0 describes independent random variables. The
discussion is confined to the situation where the interactions are weak or the
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temperature is high. It is also possible to find a cluster representation at low
temperature perturbing around a ground state.

The case where µ0 is a Gaussian measure is also of great importance. In
this case there is a graphical structure that arises from the combinatorics of
Gaussian random variables. The cluster representations relates moments (sums
over graphs) to cumulants (sums over connected graphs). See [5] or [6] or [16,
Chapter 2, Sections 1,2, 3; Chapter 4, Section 6] for a more complete account
of cluster representations for perturbations of Gaussian measures.

6.2. Cluster expansion for perturbations of a product measure

One important type of Gibbs measure arises from perturbing a product probabil-
ity measure. In physics these are often called spin systems, but their importance
is more general. Here it is shown that a polymer cluster representation arises
rather naturally in this application.

Consider a product probability measure µ0 indexed by t ∈ T . One perturbs
this by a Boltzmann factor WΛ = exp(−βHΛ), where Λ ⊆ T , and WΛ only
depends on the coordinates φt for t in Λ. For simplicity consider only the case
when H{t} = 0, so W{t} = 1. This will mean that there will be no headaches
about one-point subsets.

A classic example is when the Hamiltonian is HΛ =
∑

Y UY , where Y ranges
over subsets of Λ with two or more points. The term UY is supposed to depend
only on the coordinates φt with t in Y . The the Boltzmann factor WΛ has the
product structure WΛ =

∏

Y exp(−βUY ).

Theorem 6.1. The system with product probability measure µ0 and Hamilto-
nian HΛ =

∑

Y UY admits a polymer cluster representation.

To obtain the cluster representation, write the Boltzmann factor as

WΛ =
∏

Y

exp(−βUY ) =
∏

Y

(1 + χY ), (6.9)

where χY = exp(−βUY )− 1. The distributive law then gives

WΛ =
∑

∆

∏

Y ∈∆

χY , (6.10)

where ∆ ranges over hypergraphs on Λ. The ∆ = ∅ term is 1.
A hypergraph is a set Λ of vertices together with a collection ∆ of non-empty

subsets. Such a non-empty subset is a hyper-edge or link. (In our case each
link has two or more points.) The support of a hypergraph is the subset

⋃

∆
of vertices that belong to some set in ∆. A hypergraph ∆ is connected if the
support of ∆ is non-empty and cannot be partitioned into non-empty sets with
no links joining the parts. (Thus in the present context a connected hypergraph
is only required to connect the vertices in its support.) If ∆ is a hypergraph,
then the support of ∆ may be partitioned into non-empty subsets on each of
which there is a connected hypergraph.
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If A ⊂ Λ, define

αA =
∑

∆c

∏

Y ∈∆c

χA, (6.11)

where ∆c ranges over connected hypergraphs with support A.

Lemma 6.2. The Boltzmann factor may be written as sum over products of
independent factors in the form

WΛ =
∑

Γ

∏

A∈Γ

αY , (6.12)

where Γ ranges over collections of disjoint subsets of Λ, where each subset has
two or more points.

In the representation given by the lemma the Γ = ∅ contribution is 1. The
proof of the lemma begins by breaking hypergraphs into connected parts. The
sum over hypergraphs ∆ is then a sum over collections Γ of disjoint sets and
over assignments S of connected hypergraphs to these sets. The S range over
functions from Γ to connected hypergraphs with the property that S(A) is a
connected hypergraph with support A. The product over ∆ is equivalent to the
product over A in Γ and the links in the corresponding S(A). Hence

WΛ =
∑

Γ

∑

S

∏

A∈Γ

∏

Y ∈S(A)

χY . (6.13)

Apply the distributive law. This gives

WΛ =
∑

Γ

∏

A∈Γ

∑

∆c

∏

Y ∈∆c

χY , (6.14)

where ∆c ranges over connected hypergraphs with support A. This proves the
lemma.

The advantage of the representation in the lemma is that the αA are inde-
pendent with respect to the product measure µ0. It follows that the partition
function is also a sum over a product, in the form

ZΛ = µ0(WΛ) =
∑

Γ

∏

A∈Γ

wA, (6.15)

where the cluster coefficient

wA = µ0(αA) =
∑

∆c

µ0

(

∏

Y ∈∆c

χY

)

(6.16)

plays the role of an activity parameter.
The numerator may be handled in a similar way. Say that f only depends

on the coordinates corresponding to the set B. Then there are two kinds of
terms in the expansion of fWΛ in hypergraphs on the sets A in Γ. In some



W.G. Faris/Combinatorics and cluster expansions 201

of these none of the connected components intersect B. For these one gets a
product of f with a product of independent random variables αA. For the other
terms one decomposes the hypergraph into one connected component that is
connected to B and remaining connected components that are not. The result
is the representation

fWΛ =
∑

R,Γ

α̃R

∏

A∈Γ

αA, (6.17)

where R = ∅ or R ∩B 6= ∅, and where A ∈ Γ implies A ∩ (B ∪ R) = ∅. Taking
expectations and using independence gives a representation

µ0(fWΛ) =
∑

R,Γ

w̃R

∏

A∈Γ

wA. (6.18)

6.3. Convergence of the cluster expansion

The cluster representation must be accompanied by estimates in order to be
able to prove anything about convergence. What follows is a derivation of such
estimates.

Theorem 6.3. Consider finite subsets Λ of the set T of sites. Consider a prod-
uct probability measure µ0 on the fields indexed by T . Let

HΛ =
∑

Y

UY , (6.19)

where the interactions UY depend only on the fields indexed by Y ⊆ Λ with
|Y | ≥ 2. Let uY = sup |UY |, and suppose that for some a > 0 and b > 0

sup
t

∑

t∈Y

uY e
a|Y | ≤ b. (6.20)

Let f be a bounded function depending on the fields indexed by B ⊆ Λ. Define
the expectation

µΛ(f) =
µ0(fe

−βHΛ)

µ0(e−βHΛ)
. (6.21)

If βb is sufficiently small, then the cluster expansion for µΛ(f) converges, and
the estimates are uniform in Λ.

The remainder of this section outlines the proof of this theorem. The hy-
pothesis of the theorem describes a reasonable Banach space for describing the
interactions, and the condition of small norm indicates a regime of high tem-
perature or weak interaction. The main task is to obtain an estimate of the
Kotecký-Preiss type. A more detailed account may be found in [16, Chapter 4,
Sections 1,2].

Recall that χY = exp(−βUY ) − 1. Let vY = sup |χY |. The main hypothesis
of the theorem is that βb is small. In the following we consider a small constant
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x > 0 that is controlled by βb. The new starting point is then

sup
t

∑

t∈Y

vY e
a|Y | ≤ x. (6.22)

This condition says that the total interaction with a given point is small. Actu-
ally what is used is the consequence

sup
t

∑

|Y |=m,t∈Y

vY ≤ xe−am. (6.23)

The quantity to be estimated is the cluster coefficient

|wA| ≤
∑

∆c

∏

Y ∈∆c

vY , (6.24)

where ∆c ranges over connected hypergraphs on A.

Lemma 6.4. For each c with 0 < c < a there is a sufficiently small x such that
the cluster coefficients satisfy a Kotecký-Preiss bound

sup
t

∑

t∈A

|wA|e
c|A| ≤ c. (6.25)

The proof of this lemma will require two more lemmas. The plan is to use an
inductive argument that involves removing one link of size m from a connected
hypergraph with n links, so that the remaining links comprise a collection of r
connected hypergraphs, for some r ≤ m. Here are the details.

Consider the sum over connected hypergraphs with root t given by

s =
∑

t∈
⋃

∆c

∏

Y ∈∆c

vY e
c|Y |. (6.26)

Since A =
⋃

∆c implies |A| ≤
∑

Y ∈∆c
|Y |, we have

∑

t∈A

|wA|e
c|A| ≤ s. (6.27)

All that is required is to show that if the parameter x that controls the size of
the vY is sufficiently small, then s also becomes arbitrarily small. The following
lemma shows that the contributions of these connected hypergraphs satisfies a
recursive estimate such as one would find in a tree structure.

Lemma 6.5. For n ≥ 1 let

sn = sup
t

∑

|∆c|=n:t∈
⋃

∆c

∏

Y ∈∆c

vY e
c|Y |. (6.28)

be the contribution of all rooted connected hypergraphs with n links. Set s0 = 0.
Take 0 < c < a, so that ǫ = e(c−a) < 1. Then for n ≥ 1

sn ≤ x
∞
∑

m=0

ǫm
m
∑

r=0

(

m

r

)

∑

n1+···+nr=n−1

sn1
· · · snr

. (6.29)
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For n ≥ 2 the right hand side of the inequality only has contributions from
r ≥ 1 and each ni ≥ 1. For n = 1 only r = 0 contributes, and the sum over
the empty sequence of the empty product gives 1. So in this case the inequality
says that s1 ≤ x/(1− ǫ). For the inductive step linearly order the points t in T .
Also linearly order the finite subsets Y of T . Consider a connected hypergraph
∆c rooted at t with n links. Consider the least Y in ∆c with t in Y . Then
∆c \ {Y } has n− 1 links and is naturally partitioned into connected parts. Let
r be the number of such connected parts. Say that ∆′

c is one of these connected
parts with underlying set

⋃

∆′
c. Since Y connects ∆c, there is a least t′ in

Y ∩
⋃

∆′
c. Let S ⊆ Y be the set of such t′. Since the ∆′

c are separate connected
components of ∆c \ {Y }, the points t′ corresponding to distinct ∆′

c are distinct.
So S has r points. Letm be the number of points in Y . Sum overm and over the
corresponding links Y rooted at t. Also sum over the r element subsets S ⊆ Y .
These subsets correspond to the r connected parts of ∆c \ {Y }. Then sum over
the number of links in each part. The contributions factor, and the result is the
recursive estimate

sn ≤
∞
∑

m=0

∑

|Y |=m,t∈Y

vY e
cm

m
∑

r=0

(

m

r

)

∑

n1+···+nr=n−1

sn1
· · · snr

(6.30)

where the sum is over all n1, . . . , nr constrained by n1+· · ·+nr = n−1. Estimate
the sum over Y via the parameter x. This immediately gives the lemma.

Lemma 6.6. If x is sufficiently small, then the sum s =
∑∞

n=1 sn representing
the contributions of all rooted connected hypergraphs converges, and the sum
approaches zero as x approaches zero.

Majorize the sn by a sequence s̄n obtained by fixed point iteration, where
s̄0 = 0 and for n ≥ 1

s̄n = x
∞
∑

m=0

ǫm
m
∑

r=0

(

m

r

)

∑

n1+···+nr=n−1

s̄n1
· · · s̄nr

. (6.31)

We can write this via an index shift

s̄n = x
∞
∑

m=0

ǫm
m
∑

r=0

(

m

r

)

t̄n−1, (6.32)

on a convolution sum

t̄n =
∑

n1+···+nr=n

s̄n1
· · · s̄nr

. (6.33)

Consider the generating function p =
∑∞

n=1 s̄nq
n. For the generating function

the convolution sum becomes a product pr, and the shift of index corresponds
to multiplication by q. Therefor p satisfies a fixed point equation

p = x

∞
∑

m=0

ǫm
m
∑

r=0

(

m

r

)

qpr = qx

∞
∑

m=0

ǫm(1 + p)m = qx
1

1 − ǫ(1 + p)
. (6.34)

This fixed point equation has solution
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p =
2qx

(1 − ǫ) +
√

(1− ǫ)2 − 4ǫqx
. (6.35)

For q = 1 and x sufficiently small the fixed point p is small and is given by
s̄ =

∑

n s̄n. Therefore s =
∑

n sn is also small. This proves the bound on the
sum over rooted connected hypergraphs, which establishes the lemma.

The last two lemmas finish the proof that the Kotecký-Preiss condition is
satisfied. The cluster expansion theorem then gives the bound |ZΛ\A/ZΛ| ≤

ec|A|. The next task is to use this to estimate the expansion of

µΛ(f) =
∑

R

w̃R

ZΛ\(B∪R)

ZΛ
, (6.36)

where R = ∅ or R∩B 6= ∅. Then w̃R is a sum over hypergraphs ∆ with
⋃

∆ = R
such that B,∆ is connected. As a consequence

|w̃R| ≤
∑

∆

‖f‖
∏

Y∈∆

vY . (6.37)

We need to estimate
∑

R

|w̃R|e
c|B∪R| ≤

∑

∆

‖f‖ec|B|
∏

Y ∈∆

vY e
c|Y |. (6.38)

Here the hypergraphs ∆ are such that B,∆ is connected.
Remove B; the remaining hypergraph breaks up into r connected compo-

nents, with 0 ≤ r ≤ |B|. So the last quantity is bounded by

‖f‖ec|B|

|B|
∑

r=0

(

|B|

r

)

sr = ‖f‖ec|B|(1 + s)|B|. (6.39)

Since this is finite, the conclusion is that the expansion for µΛ(f) is convergent.
The fact that this is taking place in the finite set Λ plays no role in the estimates,
so the result applies to arbitrarily large systems.

7. Conclusion

The combinatorial mathematics of exponential generating functions is closely
related to the grand partition function for the equilibrium gas. A ratio related
to this grand partition function gives the density of the gas. This quantity has
a cluster expansion that has a radius of convergence that is independent of the
size of the system.

The classic criterion for the radius of convergence uses a reduction of a sum
over connected graphs to a sum over tree graphs. The sum over rooted tree
graphs has a recursive structure that is well-known in combinatorics, and the
convergence criterion is the condition for the finiteness of the exponential gen-
erating function for rooted tree graphs. The entire story provides a remarkable
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connection between the science of enumerative combinatorics and the physics
of equilibrium statistical mechanics.

There is another surprise. The gas picture may be specialized to a situation
where, instead of describing a particle at a location, it describes the presence
of a polymer, a composite object. These polymers arise in the description of
interaction terms in the physics of random fields. The cluster expansion thus
gives results in areas of physics that have little to do with the equilibrium gas.
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[4] Anton Bovier and Miloš Zahradńık, A simple inductive approach to
the problem of convergence of cluster expansions of polymers, J. Stat. Phys.
100 (2000), pp. 765–778. MR1788485

[5] David C. Brydges, A short course on cluster expansions, Course 3, pp.
129–183 in Critical Phenomena, Random Systems, Gauge Theories, Les
Houches, Session XLIII, 1984, Part I, ed. by K. Osterwalder and R. Stora,
Elsevier, Amsterdam, 1986. MR0880525

[6] David C. Brydges, Functional Integrals and their Applications (Notes
for a course for the Troisieme Cycle de la Physique en Suisse Romande

http://www.ams.org/mathscinet-getitem?mr=1356024
http://www.ams.org/mathscinet-getitem?mr=1629341
http://www.ams.org/mathscinet-getitem?mr=1165544
http://www.ams.org/mathscinet-getitem?mr=1788485
http://www.ams.org/mathscinet-getitem?mr=0880525


W.G. Faris/Combinatorics and cluster expansions 206

given in Lausanne, Switzerland, during the summer of 1992). Notes with
the collaboration of R. Fernandez.

[7] David C. Brydges and Thomas G. Kennedy, Mayer expansions and the
Hamilton-Jacobi Equation, J. Stat. Phys. 48 (1987), 19–49. MR0914427

[8] David C. Brydges and Philippe A. Martin, Coulomb systems at low
density: A review, J. Stat. Phys. 96 (1999), 1163–1330. MR1722991

[9] Roland L. Dobrushin, Perturbation methods of the theory of Gibbsian
fields, pp. 1–66 in Lectures on Probability Theory and Statistics, Ecole d’été
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