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1. Introduction

This paper discusses a framework for regular variation and heavy tails for dis-
tributions of metric-space-valued random elements and applies this framework
to regular variation for measures on R∞+ and D([0, 1],R). (Here and elsewhere
we use the notation R+ for the space [0,∞) and D([0, 1],R) for the space of all
real-valued, right-continuous functions with left limits on [0, 1].)

Heavy tails appear in diverse contexts such as risk management; quantita-
tive finance and economics; complex networks of data and telecommunication
transmissions; as well as the rapidly expanding field of social networks. Heavy
tails are also colloquially called power law tails or Pareto tails, especially in one
dimension. The mathematical formalism for discussing heavy tails is the theory
of regular variation, originally formulated on R+ and extended to more general
spaces. See, for instance, [8, 16, 17, 19, 20, 24, 26, 37, 40, 42, 46].

One approach to estimating the probability of a remote risk region relies
on asymptotic analysis from the theory of extremes or heavy tail phenomena.
Asymptotic methods come with the obligation to choose an asymptotic regime
among potential competing regimes. This is often tantamount to choosing a
state space for the observed random elements as well as a scaling. For example,
in R

2
+, for a risk vector X = (X1, X2), if we need to estimate P [X > x] =

P [X1 > x1, X2 > x2] for large x, should the state space for asymptotic analysis
be [0,∞]2 r {(0, 0)} or (0,∞]2? Ambiguity for the choice of asymptotic regime
led to the idea of coefficient of tail dependence [10, 11, 28, 29, 36, 45], hidden
regular variation (hrv) [21, 30, 34, 35, 39–41] and the conditional extreme value
(cev) model [13–15, 22, 43].

Due to the scaling inherent in the definition of regular variation, a natural
domain for regularly varying tails is a region closed under scalar multiplication
and usually the domain is a cone centered at the origin. Commonly used cones
include R+, R

d
+, or the two sided versions allowing negative values that are natu-

ral in finance and economics. However, as argued in [15], there is need for other
cones as well, particularly when asymptotic independence or asymptotic full
dependence ([42, Chapter 5], [47]) is present. Going beyond finite-dimensional
spaces, there is a need for a comprehensive theory covering spaces such as R∞+
and function spaces. Fortunately a good framework for such a theory of regular
variation on metric spaces after removal of a point was created in [24]. The need
to remove more than a point, perhaps a closed set and certainly a closed cone,
was argued in [15]. These ideas build on w#-convergence in [12, Section A2.6].

This paper has a number of goals:

1. We follow the lead of [24] and develop a theory of regularly varying mea-
sures on complete separable metric spaces S with a closed cone C removed.
Section 2 develops a topology on the space of measures on SrC which are
finite on regions at positive distance from C. This topology allows creation
of mapping theorems (Section 2.1) that encourage continuity arguments
and is designed to allow simultaneous regular-variation properties to exist
at different scales as is considered in hidden regular variation.
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2. We apply the general material of Section 2 to two significant applications.

(a) In Section 4 we focus on R
p
+ and R∞+ , the space of sequences with

non-negative components. An iid sequence X = (X1, X2, . . . ) ∈ R∞+

such that P [X1 > x] is regularly varying has a distribution which
is regularly varying on R∞+ r C6j for any j > 1, where C6j are
sequences with at most j positive components. Mapping theorems
(Section 2.1) allow extension to the regular-variation properties of
S = (X1, X1 +X2, X1 +X2 +X3, . . . ) in R∞+ minus the set of non-
decreasing sequences which are constant after the jth component.
See Section 4.5.2. For reasons of simplicity and taste, we restrict
discussion to R∞+ but with modest effort, results could be extended
to R∞. We also discuss regular variation of the distribution of a
sequence of Poisson points in R∞+ (Section 4.5.4).

(b) The R∞+ discussion of Poisson points in Section 4.5.4 can be lever-
aged in a natural way to consider (Section 5) regular variation of
the distribution of a Lévy process whose Lévy measure ν is regu-
larly varying: limt→∞ tν

(
b(t)x,∞

)
= x−α, x > 0, for some scaling

function b(t) → ∞. We reproduce the result [23, 25] that the limit
measure of regular variation with scaling b(t) on D([0, 1],R) r {0}
concentrates on càdlàg functions with one positive jump. This raises
the natural question of what happened to the rest of the jumps of
the Lévy process that seem to be hidden by the scaling b(t). We are
able to generalize for any j > 1 to convergence under the weaker nor-
malization b(t1/j) on a smaller space in which the limit measure con-
centrates on non-decreasing functions with j positive jumps. Again,
as in the study of R∞+ , we focus for simplicity only on large positive
jumps of the Lévy process.

3. A final goal is to clarify the proper definition of regular variation in metric
spaces. For historical reasons, regular variation is usually associated with
scalar multiplication but what does this mean in a general metric space?
Traditional definitions are in Cartesian coordinates in finite-dimensional
spaces and the form of the definition may not survive change of coor-
dinates. For example, in R

p
+, a random vector X (in Cartesian coordi-

nates) has a regularly varying distribution if for some scaling function
b(t) → ∞ we have tP [X/b(t) ∈ · ] converging to a limit. If we transform
to polar coordinates, X 7→ (R,Θ) := (‖X‖, X/‖X‖), the limit is taken
on tP [(R/b(t),Θ) ∈ · ], which appears to be subject to a different notion
of scaling. The two convergences are equivalent but look different unless
one allows for a more flexible definition of scalar multiplication. We dis-
cuss requirements for scalar multiplication in Section 2 along with some
examples; related discussion is in [2, 3, 32].

The existing theory for regular variation on, say, Rd
+, uses the set-up of vague

convergence. A troubling consequence is the need to use the one-point uncom-
pactification [40, page 170ff] which adds lines through infinity to the state space.
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When regular variation is defined on the cone [0,∞]dr{0}, limit measures can-
not charge lines through infinity. However, on proper subcones of [0,∞]d r {0}
this is no longer true and this creates some mathematical havoc: Convergence to
types arguments can fail and limit measures may not be unique: Examples in [15,
Example 5.4] show that under one normalization the limit measure concentrates
on lines through infinity and under another it concentrates on finite points. An-
other difficulty is that the polar coordinate transform x 7→ (‖x‖, x/‖x‖) cannot
be defined on lines through infinity. One way to patch things up is to retain
the one-point un-compactification but demand all limit measures have no mass
on lines through infinity, but this does not resolve all difficulties since the unit
sphere {x : ‖x‖ = 1} defined by the norm x 7→ ‖x‖ may not be compact on
a subcone such as (0,∞]d. Another way forward, which we deem cleaner and
more suitable to general spaces where compactification is more involved, is not
to compactify and just to define tail regions as subsets of the metric space
at positive distance from the deleted closed set. This is the approach given in
Section 2.

2. Convergence of measures in the space MO

Let (S, d) be a complete separable metric space. The open ball centered at
x ∈ S with radius r is written Bx,r = {y ∈ S : d(x, y) < r} and these open sets
generate S , the Borel σ-algebra on S. For A ⊂ S, let A◦ and A− denote the
interior and closure of A, respectively, and let ∂A = A−rA◦ be the boundary of
A. Let Cb denote the class of real-valued, non-negative, bounded and continuous
functions on S, and letMb denote the class of finite Borel measures on S . A basic
neighborhood of µ ∈ Mb is a set of the form {ν ∈ Mb : |

∫
fidν−

∫
fidµ| < ǫ, i =

1, . . . , k}, where ǫ > 0 and fi ∈ Cb for i = 1, . . . , k. Thus a sub-basis for Mb are
sets of the form {ν ∈ Mb : ν(f) :=

∫
fdν ∈ G} for f ∈ Cb and G open in R+.

This equips Mb with the weak topology and convergence µn → µ in Mb means∫
fdµn →

∫
fdµ for all f ∈ Cb. See e.g. Sections 2 and 6 in [6] for details.

Fix a closed set C ⊂ S and set O = S r C. For example, one possible choice
is C = {s0} for some s0 ∈ S and then O = Sr {s0}. The subspace O is a metric
subspace of S in the relative topology with σ-algebra SO = S (O) = {A : A ⊂ O,
A ∈ S }.

Let CO = C(O) denote the real-valued, non-negative, bounded and continuous
functions f on O such that for each f there exists r > 0 such that f vanishes
on C

r; we use the notation C
r = {x ∈ S : d(x,C) < r}, where d(x,C) =

infy∈C d(x, y). Similarly, we will write d(A,C) = infx∈A, y∈C d(x, y) for A ⊂ S.
We say that a set A ∈ SO is bounded away from C if A ⊂ SrCr for some r > 0
or equivalently d(A,C) > 0. So CO consists of non-negative continuous functions
whose supports are bounded away from C. LetMO be the class of Borel measures
on O whose restrictions to SrCr are finite for each r > 0. When convenient, we
also write M(O) or M(S r C). A basic neighborhood of µ ∈ MO is a set of the
form {ν ∈ MO : |

∫
fidν −

∫
fidµ| < ǫ, i = 1, . . . , k}, where ǫ > 0 and fi ∈ CO



Regularly varying measures 275

for i = 1, . . . , k. A sub-basis is formed by sets of the form

{ν ∈ MO : ν(f) ∈ G}, f ∈ CO, G open in R+. (2.1)

Convergence µn → µ in MO is convergence in the topology defined by this base
or sub-base.

For µ ∈ MO and r > 0, let µ(r) denote the restriction of µ to SrCr. Then µ(r)

is finite and µ is uniquely determined by its restrictions µ(r), r > 0. Moreover,
convergence in MO has a natural characterization in terms of weak convergence
of the restrictions to SrCr. A similar result when only a point is removed from
the space can be found in [4, 24].

Theorem 2.1 (Portmanteau theorem). Let µ, µn ∈ MO. The following state-
ments are equivalent.

(i) µn → µ in MO as n → ∞.
(ii)

∫
fdµn →

∫
fdµ for each f ∈ CO which is also uniformly continuous on S.

(iii) lim supn→∞ µn(F ) 6 µ(F ) and lim infn→∞ µn(G) > µ(G) for all closed
F ∈ SO and open G ∈ SO and F and G are bounded away from C.
(iv) limn→∞ µn(A) = µ(A) for all A ∈ SO bounded away from C with µ(∂A) = 0.

(v) µ
(r)
n → µ(r) in Mb(S r Cr) for all but at most countably many r > 0.

(vi) There exists a sequence {ri} with ri ↓ 0 such that µ
(ri)
n → µ(ri) in Mb(S r Cri)

for each i.

For proofs, see Section 2.4.
Weak convergence is metrizable (for instance by the Prohorov metric; see

e.g. p. 72 in [6]) and the close relation between weak convergence and con-
vergence in MO in Theorem 2.1(v)–(vi) indicates that the topology in MO is
metrizable too. With minor modifications of the arguments in [12], pp. 627–628,
we may choose the metric

dMO
(µ, ν) =

∫ ∞

0

e−rpr(µ
(r), ν(r))[1 + pr(µ

(r), ν(r))]−1dr, (2.2)

where µ(r), ν(r) are the finite restrictions of µ, ν to SrCr, and pr is the Prohorov
metric on Mb(S r Cr).

Theorem 2.2. (MO, dMO
) is a separable and complete metric space.

2.1. Mapping theorems

Applications of weak convergence often rely on continuous mapping theorems
and we present versions for convergence in MO. Consider another separable and
complete metric space S′ and letO′,SO′ ,C

′,MO′ have the same meaning relative
to the space S′ as do O,SO,C,MO relative to S.

Theorem 2.3 (Mapping theorem). Let h : (O,SO) 7→ (O′,SO′) be a measur-
able mapping such that h−1(A′) is bounded away from C for any A′ ∈ SO′∩h(O)

bounded away from C′. Then ĥ : MO 7→ MO′ defined by ĥ(ν) = ν◦h−1 is contin-
uous at µ provided µ(Dh) = 0, where Dh is the set of discontinuity points of h.
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This result is illustrated in Examples 3.3 and 3.4 and is also needed for
considering the generalized polar coordinate transformation in Section 4.2.3. It
is the basis for the approach to regular variation of Lévy processes in Section 5.
Theorem 2.3 is formulated so that h is defined on O = S r C, rather than on
all of S. If S = R

p
+ and h(x) = (‖x‖, x/‖x‖) is the polar coordinate transform,

then h is not defined at 0. This lack of definition is not a problem since

h : O := R
p
+ r {0} 7→ O

′ := (0,∞)× {x ∈ R
p
+ : ‖x‖ = 1}

= [0,∞)× {x ∈ R
p
+ : ‖x‖ = 1}r

(
{0} × {x ∈ R

p
+ : ‖x‖ = 1}

)
.

The proof of Theorem 2.3 is in Section 2.4.4 but it is instructive to quickly
consider the special case where Dh = ∅ so that h is continuous. In this case h
induces a continuous mapping ĥ : MO 7→ M

′
O′

defined by ĥ(µ) = µ ◦h−1. To see
this, look at the inverse image of a sub-basis set (2.1): For G open in R+, and
f ′ ∈ CO′ ,

ĥ−1{µ′ ∈ MO′ : µ
′(f ′) ∈ G} = {µ ∈ MO : µ ◦ h−1(f ′) ∈ G}

= {µ ∈ MO : µ(f ′ ◦ h) ∈ G}.

Since h is continuous and f ′ ◦ h ∈ CO, {µ ∈ MO : µ(f ′ ◦ h) ∈ G} is open in MO.
Here are two variants of the mapping theorem. The first allows application of

the operator taking successive partial sums from R∞+ 7→ R∞+ in Proposition 4.2
and also allows application of the projection map (x1, x2, . . . ) 7→ (x1, . . . , xp)
from R∞+ 7→ R

p
+ in Proposition 4.3. The second variant allows a quick proof that

the polar coordinate transform is continuous on R
p
+ r {0} in Corollary 4.3.

Corollary 2.1. Suppose h : S 7→ S′ is uniformly continuous and C′ := h(C) is

closed in S′. Then ĥ : MO 7→ MO′ defined by ĥ(µ) = µ◦h−1 is continuous.

Corollary 2.2. Suppose h : S 7→ S′ is continuous and either S or C is compact.
Then ĥ : MO 7→ MO′ defined by ĥ(µ) = µ◦h−1 is continuous.

2.2. Relative compactness in MO

Proving convergence sometimes requires a characterization of relative compact-
ness. A subset of a topological space is relatively compact if its closure is com-
pact. A subset of a metric space is compact if and only if it is sequentially
compact. Hence, M ⊂ MO is relatively compact if and only if every sequence
{µn} in M contains a convergent subsequence. For µ ∈ M ⊂ MO and r > 0, let
µ(r) be the restriction of µ to S r Cr and M (r) = {µ(r) : µ ∈ M}. By Theorem
2.1(vi) we have the following characterization of relative compactness.

Theorem 2.4. A subset M ⊂ MO is relatively compact if and only if there exists
a sequence {ri} with ri ↓ 0 such that M (ri) is relatively compact in Mb(SrCri)
for each i.

Prohorov’s theorem characterizes relative compactness in the weak topology.
This translates to a characterization of relative compactness in MO.
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Theorem 2.5. M ⊂ MO is relatively compact if and only if there exists a
sequence {ri} with ri ↓ 0 such that for each i

sup
µ∈M

µ(S r C
ri) < ∞, (2.3)

and for each η > 0 there exists a compact set Ki ⊂ S r Cri such that

sup
µ∈M

µ(S r (Cri ∪Ki)) 6 η. (2.4)

2.3. M-convergence vs vague convergence

Vague convergence complies with the topology on the space of measures which
are finite on compacta. Regular variation for measures on a space such as R

p
+

has traditionally been formulated using vague convergence after compactifica-
tion of the space. In order to make use of existing regular variation theory on
R

p
+, it is useful to understand how M-convergence is related to vague conver-

gence.
Let S be a complete separable metric space and suppose C is closed in S.

Then M+(SrC) is the collection of measures finite on K(SrC), the compacta
of S r C:

M+(S r C) = {µ : µ(K) < ∞, ∀K ∈ K(S r C)}.
Vague convergence on M+(S r C) means µ 7→ µ(f) is continuous for all f ∈
C+
K(SrC), the continuous functions with compact support. The spaces M+(Sr

C) and M(S r C) are not the same. For example if S = [0,∞) and C = {0},
µ ∈ M(S r C) means µ(x,∞) < ∞ for x > 0 but µ ∈ M+(S r C) means
µ([a, b]) < ∞ for 0 < a < b < ∞. For instance Lebesgue measure is in M+(SrC)
but not in M(S r C).

2.3.1. Comparing M vs M+

We have the following comparison.

Lemma 2.1. M-convergence implies vague convergence and

M(S r C) ⊂ M+(S r C), C+
K(S r C) ⊂ C(S r C). (2.5)

Proof. If f ∈ C+
K(S r C), its compact support K ⊂ S r C must be bounded

away from C and hence d(K,C) > 0 and f ∈ C(Sr C). If µ ∈ M(S rC), and D

satisfies d(D,C) > 0, then µ(D) < ∞. If K ∈ K(SrC) then d(K,C) > 0 and so
µ(K) < ∞, showing any µ ∈ M(S r C) is also in M+(S r C).

Remark. Let S = [0,∞) and C = {0}, and

µn =
1

n

n2∑

i=1

ǫi/n ∈ M(S r C) ⊂ M+(S r C).
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Here and elsewhere, we use the notation ǫx for the Dirac measure concentrating
mass 1 on the point x so that ǫx(A) = 1, if x ∈ A, and ǫx(A) = 0, if x ∈ Ac.
We have µn converging to Lebesgue measure in M+(S r C) but {µn} does not
converge in M(S r C). If f is 0 on (0, 1), linear on (1, 2) and f ≡ 1 on [2,∞),

then f ∈ C(S r C) but µn(f) >
1
n

∑n2

i=2n+1 1 = n− 2 → ∞.

2.4. Proofs

2.4.1. Preliminaries

We begin with two well known preliminary lemmas in topology. The second one
is just a version of Urysohn’s lemma [18, 44] for metric spaces.

Lemma 2.2. Fix a set B ⊂ S. Then

(i) d(x,B) is a uniformly continuous function in x.
(ii) d(x,B) = 0 if and only if x ∈ B−.

Proof. (i) follows from the following generalization of the triangle inequality.
For x, y ∈ S,

d(x,B) 6 d(x, y) + d(y,B).

(ii) is an easy deduction from the definiton of d(x,B) = infz∈B d(x, z).

Lemma 2.3. For any two closed sets A,B ⊂ S such that A ∩ B = ∅, there
exists a uniformly continuous function f from S to [0, 1] such that f ≡ 0 on A
and f ≡ 1 on B

Proof. Define the function f as

f(x) =
d(x,A)

d(x,A) + d(x,B)
.

The desired properties of f are easily checked from Lemma 2.2.

Lemma 2.4. If A ∈ SO is bounded away from C, A = ∪i∈IAi for an uncount-
able index set I, disjoint sets Ai ∈ SO, and µ(A) < ∞, then µ(Ai) > 0 for at
most countably many i.

Proof. Suppose there exists a countably infinite set In such that µ(Ai) > 1/n
for i ∈ In. Then

∞ =
∑

i∈In

µ(Ai) = µ
(
∪i∈In Ai

)
6 µ(A)

which is a contradiction to the assumption that µ(A) < ∞. The conclusion
follows from letting n → ∞.

Lemma 2.5. For any µ ∈ MO, µ(∂(S r Cδ)) > 0 for at most countably many
δ > 0.

Proof. Notice first that ∂(SrC
δ) = {x ∈ S : d(x,C) = δ} so ∂(SrC

δ1)∩∂(Sr
Cδ2) = ∅ for δ1 6= δ2 . The conclusion follows from Lemma 2.4.
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2.4.2. Proof of Theorem 2.1

We show that (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv), (iv) ⇒ (v), (v) ⇒ (vi) and
(vi) ⇒ (i).

Suppose that (i) holds. Suppose µn → µ in MO and take f ∈ CO. Given ǫ > 0
consider the neighborhood Nǫ,f(µ) = {ν : |

∫
fdν−

∫
fdµ| < ǫ}. By assumption

there exists n0 such that n > n0 implies µn ∈ Nǫ,f (µ), i.e. |
∫
fdµn−

∫
fdµ| < ǫ.

Hence
∫
fdµn →

∫
fdµ.

Suppose that (ii) holds. Take any closed F that is bounded away from C. Then
there exists r > 0 such that F ⊂ S r Cr. So for all x ∈ F , d(x,C) > r. So if we
define F ǫ = {x ∈ S : d(x, F ) < ǫ}, then each F ǫ is open, F ⊂ F ǫ and F ǫ ↓ F
as ǫ ↓ 0. Also for ǫ < r/2, we have that for all x ∈ F ǫ d(x,C) > r − r/2 = r/2,
meaning that F ǫ ⊂ S r Cr/2. For ǫ > 0, S r F ǫ is closed and F ∩ (S r F ǫ) = ∅.
So for 0 < ǫ < r/2, by Lemma 2.3, there exists a uniformly continuous function
f from S to [0, 1] such that f ≡ 0 on S r F ǫ and f ≡ 1 on F . Observe that
f ∈ CO as F ǫ ⊂ S r Cr/2. So we have

lim sup
n→∞

µn(F ) 6 lim
n→∞

∫
fdµn =

∫
fdµ 6 µ(F ǫ).

As ǫ ↓ 0, F ǫ ↓ F and as F is closed, we have µ(F ǫ) ↓ µ(F ). This leads to

lim sup
n→∞

µn(F ) 6 µ(F ).

Now take any open G bounded away from C. Then there exists r > 0 such that
G ⊂ S r Cr. So if we define Gǫ = S r {x ∈ S rG : d(x, S rG) < ǫ}, then each
Gǫ is closed, Gǫ ⊂ G and Gǫ ↑ G as ǫ ↓ 0. So by Lemma 2.3, there exists a
uniformly continuous function f from S to [0, 1] such that f ≡ 0 on S rG and
f ≡ 1 on Gǫ. Observe that f ∈ CO as G ⊂ S r C

r. So we have

lim inf
n→∞

µn(G) > lim
n→∞

∫
fdµn =

∫
fdµ > µ(Gǫ).

As ǫ ↓ 0, Gǫ ↑ G and as G is open, we have µ(Gǫ) ↑ µ(G). This leads to

lim inf
n→∞

µn(G) > µ(G).

This completes the proof of (iii).
Suppose that (iii) holds and take A ∈ SO bounded away from C with

µ(∂A) = 0.

lim sup
n→∞

µn(A) 6 lim sup
n→∞

µn(A
−) 6 µ(A−)

= µ(A◦) 6 lim inf
n→∞

µn(A
◦) 6 lim inf

n→∞
µn(A).

Hence, limn→∞ µn(A) = µ(A), so that (iv) holds.
Suppose that (iv) holds and take r > 0 such that µ(∂(S r Cr)) = 0. By

Lemma 2.5, all but at most countably many r > 0 satisfy this property. As SrCr
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is trivially bounded away from C, we have that µn(SrCr) → µ(SrCr). Now any
A ⊂ SrCr is also bounded away from C and as SrCr is closed, ∂SrCrA = ∂A,
where the first expression denotes the boundary ofA when considered as a subset
of S r C

r. So for any subset A ⊂ S r C
r with µ(∂SrCrA) = 0, we have by (iv)

that µn(A) → µ(A) and hence µ
(r)
n (A) → µ(r)(A). The Portmanteau theorem

for weak convergence implies µ
(r)
n → µ(r) in Mb(S r Cr). This completes the

proof of (v).

Suppose that (v) holds. Since, µ
(r)
n → µ(r) in Mb(S r Cr) for all but at most

countably many r > 0 we can always choose a sequence {ri} with ri ↓ 0 such

that µ
(ri)
n → µ(ri) in Mb(S r C

ri) for each i.
Suppose that (vi) holds. Take ǫ > 0 and a neighborhood Nǫ,f1,...,fk(µ) = {ν :

|
∫
fjdν −

∫
fjdµ| < ǫ, j = 1, . . . , k} where each fj ∈ CO for j = 1, 2, . . . , k. Let

r > 0 be such that µ
(r)
n → µ(r) in Mb(SrCr) and each fj vanishes on Cr. Let nj

be an integer such that n > ni implies |
∫
fidµ

(r)
n −

∫
fidµ

(r)| < ǫ. Hence, n >

max(n1, . . . , nk) implies that |
∫
fidµ

(r)
n −

∫
fidµ

(r)| < ǫ for all j = 1, 2, . . . , k.
As each fj vanishes outside Cr, we also have that |

∫
fidµn −

∫
fidµ| < ǫ for all

j = 1, 2, . . . , k. So µn ∈ Nǫ,f1,...,fk(µ). Hence µn → µ in MO.

2.4.3. Proof of Theorem 2.2

The proof consists of minor modifications of arguments that can be found in
[12], pp. 628–630. Here we change from r to 1/r. For the sake of completeness
we have included a full proof.

We show that (i) µn → µ in MO if and only if dMO
(µn, µ) → 0, and (ii)

(MO, dMO
) is separable and complete.

(i) Suppose that dMO
(µn, µ) → 0. The integral expression in (2.2) can be

written dMO
(µn, µ) =

∫∞
0

e−rgn(r)dr, so that for each n, gn(r) decreases with r
and is bounded by 1. Helly’s selection theorem (p. 336 in [7]), applied to 1− gn,
implies that there exists a subsequence {n′} and a nonincreasing function g
such that gn′(r) → g(r) for all continuity points of g. By dominated convergence,∫∞
0 e−rg(r)dr = 0 and since g is monotone this implies that g(r) = 0 for all finite
r > 0. Since this holds for all convergent subsequences {gn′(r)}, it follows that
gn(r) → 0 for all continuity points r of g, and hence, for such r, pr(µ

(r)
n , µ(r)) → 0

as n → ∞. By Theorem 2.1(vi), µn → µ in MO.

Suppose that µn → µ in MO. Theorem 2.1(v) implies that µ
(r)
n → µ(r) in

Mb(O r Cr) for all but at most countably many r > 0. Hence, for such r,

pr(µ
(r)
n , µ(r))[1 + pr(µ

(r)
n , µ(r))]−1 → 0, which by the dominated convergence

theorem implies that dMO
(µn, µ) → 0.

(ii) Separability: For r > 0 let Dr be a countable dense set in Mb(S r Cr)
with the weak topology. Let D be the union of Dr for rational r > 0. Then D is
countable. Let us show D is dense in MO. Given ǫ > 0 and µ ∈ MO pick r′ > 0

such that
∫ r′

0
e−rdr < ǫ/2. Take µr′ ∈ Dr′ such that pr′(µr′ , µ

(r′)) < ǫ/2. Then

pr(µ
(r)
r′ , µ

(r)) < ǫ/2 for all r > r′. In particular, dMO
(µr′ , µ) < ǫ.
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Completeness: Let {µn} be a Cauchy sequence for dMO
. Then {µ(r)

n } is a
Cauchy sequence for pr for all but at most countably many r > 0. Since S is
separable and complete, its closed subspace S r Cr is separable and complete.

Therefore, Mb(S r Cr) is complete, which implies that {µ(r)
n } has a limit µr.

These limits are consistent in the sense that µ
(r)
r′ = µr for r′ < r. On SO

set µ(A) = limr→0 µr(A ∩ S r Cr). Then µ is a measure. Clearly, µ > 0 and
µ(∅) = 0. Moreover, µ is countably additive: for disjoint An ∈ SO the monotone
convergence theorem implies that

µ(∪nAn) = lim
r→0

µr(∪nAn ∩ [S r C
r])

= lim
r→0

∑

n

µr(An ∩ [S r C
r]) =

∑

n

µ(An),

proving the result.

2.4.4. Proof of Theorem 2.3

Firstly, Dh ∈ SO [6, p. 243]. Take A′ ∈ SO′ bounded away from C′ with
µ◦h−1(∂A′) = 0. Since ∂h−1(A′) ⊂ h−1(∂A′)∪Dh (see e.g. (A2.3.2) in [12]), we
have µ(∂h−1(A′)) 6 µh−1(∂A′)+µ(Dh) = 0. Since µn → µ in MO, µ(∂h

−1(A′))
= 0, and h−1(A′) is bounded away from C, it follows from Theorem 2.1(iv) that
µnh

−1(A) → µh−1(A). Hence, µnh
−1 → µh−1 in MO′ .

2.4.5. Proof of Corollary 2.1

TakeA′ ⊂ S′rC′ such that d′(A′,C′) > 0. We claim this implies d(h−1(A′),C) >
0. Otherwise, if d(h−1(A′),C) = 0, there exist xn ∈ h−1(A′) and yn ∈ C such
that d(xn, yn) → 0. Then h(xn) ∈ A′, h(yn) ∈ h(C) = C′ and if h is uni-
formly continuous, then d′(h(xn), h(yn)) → 0 so that d′(A′,C′) = 0, giving us a
contradiction.

2.4.6. Proof of Corollary 2.2

The proof of Corollary 2.1 shows that it suffices if either {xn} or {yn} has a
limit point. In the former case, if xn′ → x for some subsequence n′ → ∞, then
d(x, yn′) → 0 and yn′ → x ∈ C and h(yn′) → h(x) so d′(A′,C′) = 0 again
giving a contradiction. Note if S is compact than {xn} has a limit point. On the
other hand, if {yn} has a limit point then there exists an infinite subsequence
{n′} and yn′ → y ∈ C so that d(xn′ , y) → 0. Thus if h is continuous, h(xn′) →
h(y) ∈ h(C) = C′ which contradicts d′(A′,C′) > 0. Note if C is compact, then
{yn} has a limit point and in particular if C = {s0}. Thus we have the second
variant.
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2.4.7. Proof of Theorem 2.4

Suppose M ⊂ MO is relatively compact. Let {µn} be a subsequence in M .
Then there exists a convergent subsequence µnk

→ µ for some µ ∈ M−. By

Theorem 2.1(v), there exists a sequence {ri} with ri ↓ 0 such that µ
(ri)
nk → µ(ri)

in Mb(S r C
ri). Hence, M (ri) is relatively compact in Mb(S r C

ri) for each
such ri.

Conversely, suppose there exists a sequence {ri} with ri ↓ 0 such that M (ri) ⊂
Mb(S r Cri) is relatively compact for each i, and let {µn} be a sequence of
elements in M . We use a diagonal argument to find a convergent subsequence.
Since M (r1) is relatively compact there exists a subsequence {µn1(k)} of {µn}
such that µ

(r1)
n1(k)

converges to some µr1 in Mb(S r Cr1). Similarly since M (r2)

is relatively compact and {µn1(k)} ⊂ M there exists a subsequence {µn2(k)} of

{µn1(k)} such that µ
(r2)
n2(k)

converges to some µr2 in Mb(S r Cr2). Continuing

like this; for each i > 3 let ni(k) be a subsequence of ni−1(k) such that µ
(ri)
ni(k)

converges to some µri in Mb(S r Cri). Then the diagonal sequence {µnk(k)}
satisfies µ

(ri)
nk(k)

→ µri in Mb(S r Cri) for each i > 1. Take f ∈ CO. There exists

some i0 > 1 such that f vanishes on S r Cri for each i > i0. In particular
f ∈ Cb(S r Cri) for each i > i0 and

∫
fdµri = lim

k

∫
fdµ

(ri)
nk(k)

= lim
k

∫
fdµ

(ri0)

nk(k)
=

∫
fdµri0

.

Hence, we can define µ′ : CO → [0,∞] by µ′(f) = limi→∞

∫
fdµri . This µ′

induces a measure µ in MO. Indeed, for A ∈ SO we can find a sequence fn ∈ CO
such that 0 6 fn ↑ 1A and set µ(A) = limn µ

′(fn). If A ∈ SrCr for some r > 0,
then there exists fn ∈ CO such that fn ↓ 1A and hence µ(A) 6 µ′(fn) < ∞.
Thus, µ is finite on sets A ∈ SrCr for some r > 0. To show that µ is countably
additive, let A1, A2, . . . be disjoint sets in SO and 0 6 fnk ↑ 1Ak

for each k.
Then

∑
k fnk ↑ 1∪kAk

and, by Fubini’s theorem and the monotone convergence
theorem, it holds that

µ(∪kAk) = lim
n

µ′
(∑

k

fnk

)
=

∑

k

lim
n

µ′(fnk) =
∑

k

µ(Ak).

By construction
∫
fdµ = µ′(f) for each f ∈ CO. Hence,

∫
fdµnk(k) →

∫
fdµ for

each f ∈ CO, and we conclude that M is relatively compact in MO.

2.4.8. Proof of Theorem 2.5

SupposeM ⊂ MO is relatively compact. By Theorem 2.4, there exists a sequence
{ri} with ri ↓ 0 such that M (ri) ⊂ Mb(SrCri) is relatively compact for each ri.
Prohorov’s theorem (Theorem A2.4.1 in [12]) implies that (2.3) and (2.4) hold.

Conversely, suppose there exists a sequence {ri} with ri ↓ 0 such that (2.3)
and (2.4) hold. Then, by Prohorov’s theorem, M (ri) ⊂ Mb(SrCri) is relatively
compact for each i. By Theorem 2.4, M ⊂ MO is relatively compact.
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3. Regularly varying sequences of measures

3.1. Scaling

The usual notion of regular variation involves comparisons along a ray and
requires a concept of scaling or multiplication. We approach the scaling idea in
a general complete, separable metric space S by postulating what is required
for a pleasing theory. Given any real number λ > 0 and any x ∈ S, we assume
there exists a mapping (λ, x) 7→ λx from (0,∞)× S into S satisfying:

(A1) the mapping (λ, x) 7→ λx is continuous,
(A2) 1x = x and λ1(λ2x) = (λ1λ2)x.

Assumptions (A1) and (A2) allow definition of a cone C ⊂ S as a set satisfying
x ∈ C implies λx ∈ C for any λ > 0. For this section, fix a closed cone C ⊂ S

and then O := S r C is an open cone. We require that

(A3) d(x,C) < d(λx,C) if λ > 1 and x ∈ O.

3.1.1. Examples to fix ideas

To emphasize the flexibility allowed by our assumptions, consider the following
circumstances all of which satisfy (A1)–(A3).

1. Let S = R2 and C = ({0} × R) ∪ (R × {0}) and for γ1 > 0, γ2 > 0 define
(λ, (x1, x2)) 7→ (λ1/γ1x1, λ

1/γ2x2).
2. Set S = R2 and C = R× {0}. Define (λ, (x1, x2)) 7→ (x1, λx2).
3. Set S = [0,∞)× {x ∈ R

2
+ : ‖x‖ = 1} and C = {0} × {x ∈ R

2
+ : ‖x‖ = 1}.

For λ > 0, define (λ, (r, a)) 7→ (λr, a).

3.2. Regular variation

Recall from e.g. [8] that a positive measurable function c(·) defined on (0,∞)
is regularly varying with index ρ ∈ R if limt→∞ c(λt)/c(t) = λρ for all λ > 0.
Similarly, a sequence {cn}n>1 of positive numbers is regularly varying with index
ρ ∈ R if limn→∞ c[λn]/cn = λρ for all λ > 0. Here [λn] denotes the integer part
of λn.

Definition 3.1. A sequence {νn}n>1 in MO is regularly varying if there exists
an increasing sequence {cn}n>1 of positive numbers which is regularly varying
and a nonzero µ ∈ MO such that cnνn → µ in MO as n → ∞.

The choice of terminology is motivated by the fact that {νn(A)}n>1 is a
regularly varying sequence for each set A ∈ SO bounded away from C, µ(∂A) =
0 and µ(A) > 0. We will now define regular variation for a single measure in MO.

Definition 3.2. A measure ν ∈ MO is regularly varying if the sequence

{ν(n·), n > 1}
in MO is regularly varying.
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There are many equivalent formulations of regular variation for a measure
ν ∈ MO. Some are natural for statistical inference. Consider the following state-
ments.

(i) There exist a nonzero µ ∈ MO and a regularly varying sequence
{cn}n>1 of positive numbers such that cnν(n·) → µ(·) in MO as n → ∞.

(ii) There exist a nonzero µ ∈ MO and a regularly varying function c such
that c(t)ν(t·) → µ(·) in MO as t → ∞.

(iii) There exist a nonzero µ ∈ MO and a set E ∈ SO bounded away from C

such that ν(tE)−1ν(t·) → µ(·) in MO as t → ∞.
(iv) There exist a nonzero µ ∈ MO and an increasing sequence {bn}n>1 of

positive numbers such that nν(bn·) → µ(·) in MO as n → ∞.
(v) There exist a nonzero µ ∈ MO and an increasing positive function b such

that tν(b(t)·) → µ(·) in MO as t → ∞.

Theorem 3.1. The statements (i)-(v) are equivalent and each statement implies
that the limit measure µ has the homogeneity property

µ(λA) = λ−αµ(A) (3.1)

for some α > 0 and all A ∈ SO and λ > 0.

The proof follows in Section 3.4.2 below.

Notice that a regularly varying measure does not correspond to a single scal-
ing parameter α unless the multiplication operation with scalars is fixed.

3.3. More examples

We amplify the discussion of Section 3.1.1.

3.3.1. Continuation of Section 3.1.1

Example 3.1. Consider again the context of Section 3.1.1, item 1 where S = R2

and let C = ({0} × R) ∪ (R × {0}). Consider two independent Pareto ran-
dom variables: Let X1 be Pa(γ1) and X2 be Pa(γ2). Define (λ, (x1, x2)) 7→
(λ1/γ1x1, λ

1/γ2x2). For a, b > 0

t2P
[
t−1(X1, X2) ∈ (a,∞)× (b,∞)

]
= tP

[
X1 > t1/γ1a]tP [X2 > t1/γ2b

]

= a−γ1b−γ2 .

According to our definition, the distribution of (X1, X2) is regularly varying on
S r C. The limit measure therefore has the scaling property that for λ > 0,

µ
(
λ[(a,∞)× (b,∞)]

)
= µ

(
(λ1/γ1a,∞)× (λ1/γ1b,∞)

)

= λ−2a−γ1b−γ2 = λ−2µ((a,∞)× (b,∞)).
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Example 3.2. Recall Section 3.1.1, item 2 where S = R2 and C = R × {0}
with (λ, (x1, x2)) 7→ (x1, λx2). Suppose X1, X2 are independent with X1 being
N(0, 1) and X2 being Pa(γ). For a, b > 0

tγP
[
t−1(X1, X2) ∈ (a,∞)× (b,∞)

]
= P [X1 > a]tγP [X2 > tb] = (1− Φ(a))b−γ ,

implying that the distribution of (X1, X2) is regularly varying. For λ > 0, the
limit measure has the scaling property,

µ(λ[(a,∞)× (b,∞)]) = µ((a,∞) × (λb,∞))

= λ−γ(1 − Φ(a))b−γ = λ−γµ((a,∞)× (b,∞)).

3.3.2. Examples using the mapping Theorem 2.3

Example 3.3 (Cf. [31], Theorem 2.1, page 677). Suppose S = [0,∞)2, C =
[0,∞)× {0} so that

O = S r C = [0,∞)2 r [0,∞)× {0} = [0,∞)× (0,∞) =: D⊓.

Define h : D⊓ 7→ D⊓ by h(x, y) = (xy, y). If A′ ⊂ D⊓ and d(A′, [0,∞)×{0}) > 0,
then inf{y : (x, y) ∈ A′ for some x} > 0 and so h−1(A′) = {(x, y) : h(x, y) ∈
A′} = {(x, y) : (xy, y) ∈ A′} is also at positive distance from [0,∞) × {0}. So
the hypotheses of Theorem 2.3 are satisfied with h and if µt → µ in MD⊓ then
it follows that µt ◦ h−1 → µ ◦ h−1 in MD⊓ . In particular, suppose for a random
vector (X,Y ) and scaling function b(t) → ∞,

tP
[(

X,
Y

b(t)

)
∈ ·

]
→ µ(·) in MD⊓ . (3.2)

This is regular variation of the distribution of (X,Y ) on D⊓ with the scaling
function defined as (λ, (x, y)) 7→ (x, λy). The mapping Theorem 2.3 gives

tP
[(XY

b(t)
,
Y

b(t)

)
∈ ·

]
→ µ′(·) in MD⊓ , (3.3)

where µ′ = µ ◦ h−1, which is regular variation with respect to the traditional
scaling (λ, (x, y)) 7→ (λx, λy).

Conversely, define g : D⊓ 7→ D⊓ by g(x, y) = (x/y, y). One observes g is
continuous and obeys the bounded away condition and so µt → µ inMD⊓ implies
µt ◦ h−1 → µ ◦ h−1 in MD⊓ .

The summary is that (3.2) and (3.3) are equivalent.

Example 3.4 (Polar coordinates). Set

S = [0,∞)2, C = {0}, O = [0,∞)2 r {0}

with scaling function (λ, x) = (λ, (x1, x2)) 7→ λx = (λx1, λx2). For some choice
of norm x 7→ ‖x‖ define ℵ = {x ∈ S : ‖x‖ = 1}. Also define

S
′ = [0,∞)× ℵ, C′ = {0} × ℵ, O′ = (0,∞)× ℵ,
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and scaling operation on O′ is
(
λ, (r, a)

)
7→ (λr, a). The map

h(x) =
(
‖x‖, x/‖x‖

)

from O 7→ O′ is continuous. Let d and d′ be the the metrics on S and S′. Suppose
X has a regularly varying distribution on O so that for some b(t) → ∞,

tP
[
X/b(t) ∈ ·

]
→ µ(·) (3.4)

in MO for some limit measure µ. We show h(X) =: (R,Θ) has a regularly
varying distribution on O′. We apply Theorem 2.3 so suppose A′ ⊂ O′ satisfies
d′(A′, {0} × ℵ) > 0, that is, A′ is bounded away from the deleted portion of S′.
Then inf{r > 0 : (r, a) ∈ A′} = δ > 0 and h−1(A′) = {x ∈ O :

(
‖x‖, x/‖x‖

)
∈

A′} satisfies inf{‖x‖ : x ∈ h−1(A′)} = δ′ > 0. So the hypotheses of Theorem 2.3
are satisfied and allow the conclusion that

tP
[( R

b(t)
,Θ

)
∈ ·

]
→ µ ◦ h−1(·) in MO′ . (3.5)

Conversely, given regular variation on O′ as in (3.5), define g : O′ 7→ O by
g(r, a) = ra. Mimic the verification above to conclude (3.5) implies (3.4).

Example 3.5. Examples 3.3 and 3.4 typify the following paradigm. Consider
two triples (S,C,O) and (S′,C′,O′), and a homeomorphism h : O → O′ with the
property that h−1(A′) is bounded away from C if A′ is bounded away from C′.
The multiplication by a scalar (λ, x) 7→ λx in O gives rise to the multiplication
by a scalar (λ′, x′) 7→ λ′x′ := h(λ′h−1(x′)) in O′. Notice that (λ′, x′) 7→ λ′x′ is
continuous, 1x′ = x′, and λ′1(λ

′
2(x
′)) = (λ′1λ

′
2)x
′. We also need to check that

d′(λ′x′,C′) > d′(x′,C′) if λ′ > 1.

3.4. Proofs

3.4.1. Preliminaries

For A ∈ SO, write S(A) = {λx : x ∈ A, λ > 1}.
Lemma 3.1. Let µ ∈ MO be nonzero. There exists x ∈ O and δ > 0 such that
S(Bx,δ) is bounded away from C, µ(S(Bx,δ)) > 0, and µ(∂rS(Bx,δ)) = 0 for
r > 1 in some set of positive measure containing 1.

Proof. The first two properties are obvious. In order to prove the final claim, set
γ(r) = d(∂rS(Bx,δ),C). Notice that γ(r) = d(∂rBx,δ,C) and that ∂rS(Bx,δ) ⊂
O r Cγ(r). Choose x ∈ O and δ > 0 such that µ(∂S(Bx,δ)) = 0 and µ(∂(O r

Cγ(1))) = 0, and such that γ(r′) > γ(1) for some r′ > 1. The existence of such x
and δ follows from Lemma 2.5. Lemma 2.5 also implies that µ(∂(OrCγ)) = 0 for
all but at most countably many γ ∈ [γ(1), γ(r′)]. Since γ(r) is a nondecreasing
and continuous function and γ(r′) > γ(1), there exists a set R ⊂ [1, r′] of positive
Lebesgue measure, with 1 ∈ R, such that µ(∂(O rCγ(r))) = 0 for r ∈ R.
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Given µ ∈ MO, let Aµ denote the set of µ-continuity sets A ∈ SO bounded
away from C satisfying S(A) = A.

Lemma 3.2. If µn(A) → µ(A) for all A ∈ Aµ, then µn → µ in MO.

Proof. Let Dµ denote the π-system of finite differences of sets of the form A1rA2

for A1, A2 ∈ Aµ with A2 ⊂ A1. Take x ∈ O and ǫ > 0 such that Bx,ǫ is bounded
away from C. The sets ∂S(Bx,r), for r ∈ (0, ǫ), are disjoint. Similarly, the sets
∂Bx,r, for r ∈ (0, ǫ), are disjoint. Therefore, µ(∂S(Bx,r)) = µ(∂Bx,r) = 0 for all
but at most countably many r ∈ (0, ǫ). Moreover, Bx,r = S(Bx,r)r (S(Bx,r)r
Bx,r), so Bx,r ∈ Dµ for all but at most countably many r ∈ (0, ǫ). Hence, there
exists A ∈ Dµ such that x ∈ A◦ ⊂ A ⊂ Bx,ǫ. Moreover, for any x in an open
set G bounded away from C, there exists A ∈ Dµ such that x ∈ A◦ ⊂ A ⊂ G.
Since O is separable we find (as in the proof of Theorem 2.3 in [6]) that there is
a countable subcollection {A◦xi

} of {A◦x : x ∈ G}, A◦x ∈ Dµ, that covers G and
that G = ∪iA

◦
xi
. The inclusion-exclusion argument in the proof of Theorem 2.2

in [6] implies that lim infn µn(G) > µ(G) for all open sets G bounded away from
C. Any closed F bounded away from C is a subset of an open µ-continuity set
A = Or Cr for some r > 0. Notice that A ∈ Aµ. Therefore

µ(A)− lim sup
n

µn(F ) = lim inf
n

µn(Ar F ) > µ(Ar F ) = µ(A)− µ(F ),

i.e. lim supn µn(F ) 6 µ(F ). The conclusion follows from Theorem 2.1.

3.4.2. Proof of Theorem 3.1

The proof is structured as follows. We first prove that (iii) implies the homogene-
ity property in (3.1) of the limit measure µ. Then we prove that the statements
(i)–(v) are equivalent and that the limit measures are the same up to a constant
factor.

Suppose that (iii) holds and take E′ = S(Bx,δ) satisfying the conditions in
Lemma 3.1. Then, for λ > 1 in a set of positive measure containing 1,

ν(tλE′)

ν(tE′)
=

ν(tλE′)

ν(tE)

ν(tE)

ν(tE′)
→ µ(λE′)

µ(E′)
∈ (0,∞),

as t → ∞. It follows from Theorem 1.4.1 in [8] that t 7→ ν(tE′) is regularly vary-
ing and that µ(λE′) = λ−αµ(E′) for some α ∈ R and all λ > 0. Property (A3)
implies that ν(tλE′)/ν(tE′) 6 1 for λ > 1, so α > 0. Moreover, µ(∂(λE′)) = 0
for all λ > 0 and ν(tE′)−1ν(t·) → µ(E′)−1µ(·) in MO as t → ∞. In particular,
if A ∈ Aµ, then for any λ > 0,

ν(tλA)

ν(tE′)
=

ν(tλA)

ν(tλE′)

ν(tλE′)

ν(tE′)
→ λ−α

µ(A)

µ(E′)
,

as t → ∞. Hence, for A ∈ Aµ µ(λA) = λ−αµ(A) for all λ > 0. Lemma 3.2
implies that µ(λA) = λ−αµ(A) for all A ∈ SO and λ > 0.
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Suppose that (i) holds and set c(t) = c[t]. For each A ∈ Aµ and t > 1 it holds
that

c[t]

c[t]+1
c[t]+1ν(([t] + 1)A) 6 c(t)ν(tA) 6 c[t]ν([t]A). (3.6)

Since {cn}n>1 is regularly varying it holds that limn→∞ cn/cn+1 = 1. Hence,
limt→∞ c(t)ν(tA) = µ(A) for all A ∈ Aµ. It follows from Lemma 3.2 that (ii)
holds.

Suppose that (ii) holds. Then c[t]ν([t]·) → µ(·) in MO. Moreover, {c[t]} is a
regularly varying sequence since c(t) is a regularly varying function. Therefore,
(ii) implies (i).

Suppose that (ii) holds. Take a set E ∈ SO bounded away from C such that
ν(tE), µ(E) > 0 and µ(∂E) = 0. Then

ν(t·)
ν(tE)

=
c(t)ν(t·)
c(t)ν(tE)

→ µ(·)
µ(E)

in MO

as t → ∞. Hence, (iii) holds.
Suppose that (iii) holds. It was already proved that statement (iii) implies

that t 7→ ν(tE) is regularly varying with index −α 6 0. Setting c(t) = 1/ν(tE)
implies that c(t) is regularly varying with index α and that c(t)ν(t·) → µ(·) in
MO. This proves that (iii) implies (ii). Up to this point we have proved that
statements (i)–(iii) are equivalent.

Suppose that (iv) holds. Set b(t) = b[t] and take A ∈ Aµ. Then

[t]

[t+ 1]
[t+ 1]ν(b[t+1]A) 6 tν(b(t)A) 6

[t+ 1]

[t]
[t]ν(b[t]A),

from which it follows that limt→∞ tν(b(t)A) = µ(A). Lemma 3.2 implies that
(v) holds. If (v) holds, then it follows immediately that also (iv) holds. Hence,
statements (iv) and (v) are equivalent.

Suppose that (iv) holds. Take E such that µ(∂E) = 0 and µ(E) > 0. For
t > b1, let k = k(t) be the largest integer with bk 6 t. Then bk 6 t < bk+1 and
k → ∞ as t → ∞. Hence, for A ∈ Aµ,

k

k + 1

(k + 1)ν(bk+1A)

kν(bkE)
6

ν(tA)

ν(tE)
6

k + 1

k

kν(bkA)

(k + 1)ν(bk+1E)
,

from which it follows that limt→∞ ν(tA)/ν(tE) = µ(A)/µ(E). It follows from
Lemma 3.2 that (iii) holds. Hence, each of the statments (iv) and (v) implies
each of the statements (i)–(iii).

Suppose that (iii) holds. Then c(t) := 1/ν(tE) is regularly varying at infinity
with index α > 0. If α > 0, then c(c−1(t)) ∼ t as t → ∞ by Proposition B.1.9
(10) in [17] and therefore

lim
t→∞

tν(c−1(t)A) = lim
t→∞

c(c−1(t))ν(c−1(t)A) = µ(A)
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for all A ∈ SO bounded away from C with µ(∂A) = 0. If α = 0, then Proposition
1.3.4 in [8] says that there exists a continuous and increasing function c̃ such
that c̃(t) ∼ c(t) as t → ∞. In particular, c̃(c̃−1(t)) = t and

tν(c̃−1 ·) = c̃(c̃−1(t))ν(c̃−1 ·) → µ(·)

in MO as t → ∞. Hence, (v) holds.

4. R∞

+
and R

p

+

This section considers regular variation for measures on the metric spaces R∞+
and R

p
+ for p > 1 and applies the theory of Sections 2 and 3. We begin in Section

4.1 with notation and specification of metrics and then address in Section 4.2
continuity properties for the following maps

• CUMSUM : (x1, x2, . . . ) 7→ (x1, x1 + x2, x1 + x2 + x3, . . . ).
• PROJp : (x1, x2, . . . ) 7→ (x1, . . . , xp).
• POLAR : (x1, . . . , xp) 7→

(
‖x‖, (x1, . . . , xp)/‖x‖

)
, where x = (x1, . . . , xp)

and the norm is Euclidean norm on R
p
+. We also define the generalized

polar coordinate transformation in (4.3) which is necessary for estimating
the tail measure of regular variation when {x ∈ R

p
+ : ‖x‖ = 1}, the

Euclidean unit sphere, is not bounded away from C in the space R
∞
+ rC.

Section 4.3 reduces the convergence question to finite dimensions by giving cri-
teria for reduction of convergence of measures in M(R∞+ rC) to convergence of
projected measures in M(Rp

+ r PROJp(C)). Section 4.4 returns to the compar-
ison of vague convergence with M-convergence initiated in Section 2.3 with the
goal of using existing results based on regular variation in a compactified version
R

p
+r{0} in our present context, rather than proving things from scratch. Section

4 concludes with Section 4.5, a discussion of regular variation of measures on
R∞+ rC giving particular attention to hidden-regular-variation properties of the
distribution of X = (X1, X2, . . . ), a sequence of iid non-negative random vari-
ables whose marginal distriutions have regularly varying tails. This discussion
extends naturally to hidden-regular-variation properties of an infinite sequence
of non-negative decreasing Poisson points whose mean measure has a regularly
varying tail. Results for the Poisson sequence provide the basis of our approach
in Section 5 to regular variation of the distribution of a Lévy process whose
Lévy measure is regularly varying.

4.1. Preliminaries

We write x ∈ R∞+ as x = (x1, x2, . . . ). For p > 1, the projection into R
p
+ is

written as PROJp(x) = x|p = (x1, . . . , xp). To avoid confusion, we sometimes
write 0∞ = (0, 0, . . . ) ∈ R

∞
+ and 0p = (0, . . . , 0) ∈ R

p
+, the vector of p zeros. We

also augment a vector in R
p
+ to get a sequence in R∞+ and write, for instance,

(x1, . . . , xp, 0∞) = (x1, . . . , xp, 0, 0, . . . ).
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4.1.1. Metrics

All metrics are equivalent on R
p
+. The usual metric on R∞+ is

d∞(x, y) =

∞∑

i=1

|xi − yi| ∧ 1

2i
,

and we also need

d′∞(x, y) =

∞∑

p=1

(∑p
l=1 |xl − yl|

)
∧ 1

2p
=

∞∑

p=1

‖x|p − y|p‖1 ∧ 1

2p
,

where ‖ · ‖1 is the usual L1 norm on R
p
+.

Proposition 4.1. The metrics d∞ and d′∞ are equivalent on R∞+ and

d∞(x, y) 6 d′∞(x, y) 6 2d∞(x, y).

Proof. First of all,

d′∞(x, y) =
∞∑

i=1

(∑i
l=1 |xl − yl|

)
∧ 1

2i
>

∞∑

i=1

|xi − yi| ∧ 1

2i
= d∞(x, y).

Furthermore, observe that

d′∞(x, y) =

∞∑

i=1

(∑i
l=1 |xl − yl|

)
∧ 1

2i
6

∞∑

i=1

∑i
l=1

(
|xl − yl| ∧ 1

)

2i

=

∞∑

l=1

∞∑

i=l

2−i
(
|xl − yl| ∧ 1

)
=

∞∑

l=1

2 · 2−l
(
|xl − yl| ∧ 1

)
= 2d∞(x, y),

which proves the other inequality.

4.2. Continuity of maps

With a view toward applying Corollary 2.1, we consider the continuity of several
maps.

4.2.1. Cumsum

We begin with the map CUMSUM : R∞+ 7→ R∞+ defined by

CUMSUM(x) = (x1, x1 + x2, x1 + x2 + x3, . . . ).

Proposition 4.2. The map CUMSUM : R∞+ 7→ R∞+ is uniformly continuous
and, in fact, is Lipschitz in the d∞ metric.
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Proof. We write

d∞
(
CUMSUM(x),CUMSUM(y)

)
=

∞∑

i=1

∣∣∑i
l=1 xl −

∑i
l=1 yl

∣∣ ∧ 1

2i

6

∞∑

i=1

(∑i
l=1 |xl − yl|

)
∧ 1

2i
= d′∞(x, y) 6 2d∞(x, y).

We can now apply Corollary 2.1.

Corollary 4.1. Let S = S
′ = R

∞
+ and suppose both C and CUMSUM(C) are

closed in R∞+ . If for n > 0, µn ∈ M(R∞+ rC) and µn → µ0 in M(R∞+ rC), then

µn ◦ CUMSUM−1 → µ0 ◦ CUMSUM−1 in M(R∞+ r CUMSUM(C)).

For example, if C = {0∞}, then CUMSUM(C) = {0∞}. For additional ex-
amples, see (4.6).

4.2.2. Projection

For p > 1, recall PROJp(x) = x|p = (x1, . . . , xp) from R∞+ 7→ R
p
+.

Proposition 4.3. PROJp : R∞+ 7→ R
p
+ is uniformly continuous.

Proof. Let dp(x|p, y|p) =
∑p

i=1 |xi−yi| be the usual L1 metric. Given 0 < ǫ < 1,
we must find δ > 0 such that d∞(x, y) < δ implies dp(x|p, y|p) < ǫ. We try
δ = 2−pǫ. Then

δ = 2−pǫ > d∞(x, y) =

∞∑

i=1

|xi − yi| ∧ 1

2i
>

p∑

i=1

|xi − yi| ∧ 1

2i

> 2−p
p∑

i=1

|xi − yi| ∧ 1.

Therefore ǫ >
∑p

i=1 |xi − yi| ∧ 1, so that ǫ >
∑p

i=1 |xi − yi| = dp(x|p, y|p).

Apply Corollary 2.1:

Corollary 4.2. Let S = S
′ = R

∞
+ and suppose C is closed in R

∞
+ and PROJp(C)

is closed in R∞+ . If for n > 0, µn ∈ M(R∞+ r C) and µn → µ0 in M(R∞+ r C),

then µn ◦ PROJ−1p → µ0 ◦ PROJ−1p in M(Rp
+ r PROJp(C)).

4.2.3. Polar coordinate transformations

The polar coordinate transformation in R
p
+ is heavily relied upon when mak-

ing inferences about the limit measure of regular variation. Transforming from
Cartesian to polar coordinates disintegrates the transformed limit measure into
a product measure, one of whose factors concentrates on the unit sphere. This
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factor is called the angular measure. Estimating the angular measure and then
transforming back to Cartesian coordinates provides the most reliable inference
technique for tail probability estimation in R

p
+ using heavy-tail asymptotics.

See [40, pages 173ff, 313]. When removing more than {0} from R
p
+, the unit

sphere may no longer be bounded away from what is removed and an alterna-
tive technique we call the generalized polar coordinate transformation can be
used.

We continue the discussion of Example 3.4 that relied on the mapping The-
orem 2.3. Here we rely on Corollary 2.2. Pick a norm ‖ · ‖ on R

p
+ and de-

fine ℵ = {x ∈ R
p
+ : ‖x‖ = 1}. The conventional polar coordinate transform

POLAR : Rp
+ r {0p} 7→ (0,∞)× ℵ is traditionally defined as

POLAR(x) =
(
‖x‖, x/‖x‖

)
. (4.1)

Compared with the notation of Corollary 2.2, we have S = R
p
+, C = {0p} which

is compact in S, S′ = [0,∞)×ℵ,C′ = {0}×ℵ which is closed in S′. Since POLAR
is continuous on the domain, we get from Corollary 2.2 the following.

Corollary 4.3. Suppose µn → µ0 in M(Rp
+ r {0p}). Then

µn ◦ POLAR−1 → µ0 ◦ POLAR−1

in M((0,∞)× ℵ).
When removing more from the state space than just {0p}, the conventional

polar coordinate transform (4.1) is not useful if ℵ is not compact, or at least
bounded away from what is removed. For example, if S r C = (0,∞)p, ℵ is not
compact nor bounded away from the removed axes. The following generalization
[15] sometimes resolves this, provided (4.2) below holds.

Temporarily, we proceed generally and assume S is a complete, separable
metric space and that scalar multiplication is defined. If C is a cone, θC = C

for θ > 0. Suppose further that the metric on S satisfies

d(θx, θy) = θd(x, y), θ > 0, (x, y) ∈ S× S. (4.2)

Note (4.2) holds for a Banach space where distance is defined by a norm. (It
does not hold for R∞+ .) If we intend to remove the closed cone C, set

ℵC = {s ∈ S r C : d(s,C) = 1},

which plays the role of the unit sphere and C′ = {0} × ℵC is closed. Define the
generalized polar coordinate transformation

GPOLAR : S r C 7→ (0,∞)× ℵC = [0,∞)× ℵC r

(
{0} × ℵC

)
= S

′
rC

′

by

GPOLAR(s) =
(
d(s,C), s/d(s,C)

)
, s ∈ S r C. (4.3)
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Since C is a cone and d(·, ·) has property (4.2), we have for any s ∈ S r C that

d
( s

d(s,C)
,C

)
= d

( s

d(s,C)
,

1

d(s,C)
C

)
=

1

d(s,C)
d(s,C) = 1,

so the second coordinate of GPOLAR belongs to ℵC. For example, if S = R2
+

and we remove the cone consisting of the axes through 02, that is, C = {0} ×
[0,∞) ∪ [0,∞) × {0}, then ℵC = {x ∈ R2

+ : x1 ∧ x2 = 1}. The inverse map
GPOLAR−1 : (0,∞)× ℵC 7→ S r C is

GPOLAR−1(r, a) = ra, r ∈ (0,∞), a ∈ ℵC.

It is relatively easy to check that if A′ ⊂ (0,∞) × ℵC is bounded away from
C′ = {0}× ℵC, then GPOLAR−1(A′) is bounded away from C. On (0,∞)×ℵC

adopt the metric

d′
(
(r1, a1), (r2, a2)

)
= |r1 − r2| ∨ dℵC(a1, a2),

where dℵC(a1, a2) is an appropriate metric on ℵC. Suppose d′(A′, {0} × ℵC) =
ǫ > 0. This means

ǫ = inf
(r1,a1)∈A

′

a2∈ℵC

d′
(
(r1, a1), (0, a2)

)

and setting a2 = a1 this is inf(r1,a1)∈D′ r1. We conclude that (r, a) ∈ A′ implies

r > ǫ. Since GPOLAR−1(A′) = {ra : (r, a) ∈ A′}, we have in SrC, remembering
that C is assumed to be a cone,

d({ra : (r, a) ∈ A′},C) = inf
(r,a)∈A′

d(ra,C) = inf
(r,a)∈A′

d(ra, rC)

= inf
(r,a)∈A′

rd(a,C) > ǫ · 1.

The last line uses (4.2) and the definition of ℵC.
The hypotheses of Theorem 2.3 are verified so we get the following conclusion

about GPOLAR.

Corollary 4.4. Suppose S is a complete, separable metric space such that (4.2)
holds, scalar multiplication is defined and supposed C is a closed cone. Then
µn → µ0 in M(S r C) implies

µn ◦GPOLAR−1 → µ0 ◦GPOLAR−1

in M((0,∞) × ℵC). The converse holds as well.

The converse is proven in a similar way.

Remark on (4.2). As mentioned, (4.2) holds if the metric is defined by a norm
on the space S. Thus, (4.2) holds for a Banach space and on R

p
+, C[0, 1] with

sup-norm and D([0, 1],R) with Skorohod metric. It fails in R∞+ .
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4.3. Reducing R∞

+
convergence to finite-dimensional convergence

Corollary 4.2 shows when convergence in M(R∞+ r C) implies convergence in
M(Rp

+ r PROJp(C)). Here is a circumstance where the converse is true and
reduces the problem of convergence in infinite-dimensional space to finite di-
mensions.

Theorem 4.1. Supppse for every p > 1, that the closed set C ⊂ R∞+ satisfies
PROJp(C) is closed in R

p
+ and

(z1, . . . , zp) ∈ PROJp(C) implies (z1, . . . , zp, 0∞) ∈ C. (4.4)

Then µn → µ0 in M(R∞+ r C) if and only if for all p > 1 such that R
p
+ r

PROJp(C) 6= ∅ we have

µn ◦ PROJ−1p → µ0 ◦ PROJ−1p (4.5)

in M(Rp
+ r PROJp(C)).

Remark on condition (4.4). The condition says take an infinite sequence z
in C, truncate it to z|p ∈ R

p
+, and then make it infinite again by filling in zeros

for all the components beyond the pth. The result must still be in C. Examples:

1. C = {0∞}.
2. Pick an integer j > 1 and define

C6j = {x ∈ R
∞
+ :

∞∑

i=1

ǫxi(0,∞) 6 j}, (4.6)

where recall ǫx(A) = 1, if x ∈ A, and 0, if x ∈ Ac. So C6j is the set
of sequences with at most j positive components. Truncation and then
insertion of zeros does not increase the number of positive components so
C6j is invariant under the operation implied by (4.4).

Proof. Suppose C satisfies (4.4) and (4.5) holds. Suppose f ∈ C(R∞+ r C) and
without loss of generality suppose f is uniformly continuous with modulus of
continuity

ωf (η) = sup
(x,y)∈R∞+ rC

d∞(x,y)<η

|f(x)− f(y)|.

There exists 1 > δ > 0 such that d∞(x,C) < δ implies f(x) = 0. Observe,

d∞
(
(x|p, 0∞), x

)
6

∞∑

j=p+1

2−j = 2−p. (4.7)

Pick any p so large that 2−p < δ/2 and define

g(x1, . . . , xp) = f(x1, . . . , xp, 0∞).

Then we have
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(a) From (4.7),

|f(x)− g(x|p)| = |f(x)− f(x|p, 0∞)| 6 ωf (2
−p).

(b) g ∈ C(Rp
+ r PROJp(C)) and g is uniformly continuous.

To verify that the support of g is positive distance away from PROJp(C), sup-
pose dp is the L1 metric on R

p
+ and dp

(
(x1, . . . , xp),PROJp(C)

)
< δ/2. Then

there is (z1, . . . , zp) ∈ PROJp(C) such that dp
(
((x1, . . . , xp), (z1, . . . , zp)

)
< δ.

But then if z ∈ C with z|p = (z1, . . . , zp), we have, since (z1, . . . , zp, 0∞) ∈ C

by (4.4),

d∞
(
(x1, . . . , xp, 0∞), (z1, . . . , zp, 0∞)

)
=

p∑

i=1

|xi − zi| ∧ 1

2i

6

p∑

i=1

|xi − zi| ∧ 1 6

p∑

i=1

|xi − zi|

= dp
(
(x1, . . . , xp), (z1, . . . , zp)

)
< δ,

and therefore dp
(
(x1, . . . , xp),PROJp(C)

)
< δ/2 implies

g(x1, . . . , xp) = f(x1, . . . , xp, 0∞) = 0.

So the support of g is bounded away from PROJp(C) as claimed.
Now write

µn(f)− µ0(f) = [µn(f)− µn(g ◦ PROJp)] + [µn(g ◦ PROJp)− µ0(g ◦ PROJp)]

+ [µ0(g ◦ PROJp)− µ0(f)] = A+B + C. (4.8)

From (4.5), since g ◦ PROJp ∈ C(Rp
+ r PROJp(C)), we have

B = µn(g ◦ PROJp)− µ0(g ◦ PROJp) → 0

as n → ∞.
How to control A? For x ∈ R∞+ r C, if d∞((x1, . . . , xp, 0∞),C)<δ/2, then

f((x1, . . . , xp, 0∞)= 0 and also d∞(x,C)6 d∞(x, (x|p, 0∞))+d∞((x|p, 0∞),C) <
2−p + δ/2 < δ so f(x) = 0. Therefore, on

Λ = {x ∈ R
∞
+ rC : d∞

(
(x|p, 0),C

)
< δ/2}

both f and g ◦ PROJp are zero. Set

Λc = (R∞+ rC)r Λ = {x ∈ R
∞
+ rC : d∞

(
(x|p, 0),C

)
> δ/2}.

Then we have

|µn(f)− µn(g ◦ PROJp)| 6
∫

|f − g ◦ PROJp|dµn
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=

∫

Λc

|f − g ◦ PROJp|dµn

6 µn(Λ
c)ωf (2

−p),

and similarly for dealing with term C, we would have |µ0(f)−µ0(g ◦PROJp)| 6
µ0(Λ

c)ωf (2
−p).

Owing to finite-dimensional convergence (4.5) and (4.8), we have

lim sup
n→∞

|µn(f)− µ0(f)| 6 2ωf(2
−p)µ0(Λ

c) + 0.

Since Λc is bounded away from C, µ0(Λ
c) < ∞ and since the inequality holds

for any p sufficiently large such that 2−p < δ, we may let p → ∞ to get µn(f) →
µ0(f).

Remark. The proof shows (4.5) only needs to hold for all p > p0. For example,
if

C = Cj = {x ∈ R
∞
+ :

∞∑

i=1

ǫxi(0,∞) 6 j},

then

PROJp(Cj) = {(x1, . . . , xp) ∈ R
p
+ :

p∑

i=1

ǫxi(0,∞) 6 j},

and for p < j, PROJp(Cj) = R
p
+ and R

p
+rPROJp(Cj) = ∅. However, it suffices

for the result to hold for all p > j.

4.4. Comparing M-convergence on S r C with vague convergence

when S is compactified

This continues the discussion of Section 2.3. Conventionally [40] regular varia-
tion on [0,∞)p has been defined on the punctured compactified space [0,∞]p r
{0p}. This solves the problem of how to make tail regions relatively compact.
However, as discussed in [15], when deleting more than {0p}, this approach
causes problems with the convergence to types lemma and also because certain
natural regions are no longer relatively compact. The issue arises when there is
mass on the lines through ∞p, something that is impossible for regular variation
on [0,∞]p r {0p}. The following discussion amplifies what is in [15].

Suppose C is closed in [0,∞]p and set

C0 = C ∩ [0,∞)p, Ω = [0,∞]p rC, Ω0 = [0,∞)p rC0.

Examining the definitions we see that,

• Ω0 ⊂ Ω.
• Ωr Ω0 = Cc ∩

(
[0,∞]p r [0,∞)p

)



Regularly varying measures 297

Proposition 4.4. Suppose for every n > 0 that µn ∈ M+(Ω) and µn places no
mass on the lines through ∞p:

µn(
(
[0,∞]p r [0,∞)p

)
∩ C

c) = 0. (4.9)

Then

µn
v→ µ0 in M+(Ω), (4.10)

if and only if the restrictions to the space without the lines through ∞p converge:

µn0 := µn(· ∩ Ω0) → µ0(· ∩ Ω0) =: µ00 in M(Ω0). (4.11)

Proof. Given (4.11), let f ∈ C+
K(Ω). Then the restriction to Ω0 satisfies f |Ω0

∈
C(Ω0) so

µn(f) = µn0(f |Ω0
) → µ00(f |Ω0

) = µ0(f),

so µn
v→ µ0 in M+(Ω).

Conversely, assume (4.10). Suppose B ∈ S (Ω0) and µ00(∂Ω0
B) = 0, where

∂Ω0
B is the set of boundary points of B in Ω0. This implies µ0(∂ΩB) = 0 since

∂Ω(B) ⊂ ∂Ω0
B ∪

((
Ωr Ω0

)
∩C

)
.

Therefore µn(B) → µ0(B) and because of (4.9), µn0(B) → µ00(B) which
proves (4.11).

4.5. Regular variation on R
p

+ and R
∞

+

For this section, either S is Rp
+ or R∞+ and C is a closed cone; then SrC is still

a cone. Applying Definition 3.2, a random element X of S r C has a regularly
varying distribution if for some regularly varying function b(t) → ∞, as t → ∞,

tP [X/b(t) ∈ · ] → ν(·) in M(S r C),

for some limit measure ν ∈ M(S r C). In R
p
+, if C = {0p} or if (4.9) holds, this

definition is the same as the one using vague convergence on the compactified
space.

4.5.1. The iid case: Remove {0∞}

Suppose X = (X1, X2, . . . ) is iid with non-negative components, each of which
has a regularly varying distribution on (0,∞) satisfying

P [X1 > tx]/P [X1 > t] → x−α, as t → ∞, x > 0, α > 0.

Equivalently, as t → ∞,

tF (b(t)·) := tP [X1/b(t) ∈ · ] → να(·) in M((0,∞)), (4.12)
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where να(x,∞) = x−α, α > 0. Then in M(R∞+ r {0∞}), we have

µt((dx1, dx2, . . . ) := tP [X/b(t) ∈ (dx1, dx2, . . . ) ]

→
∞∑

l=1

∏

i6=l

ǫ0(dxi)να(dxl) =: µ(0)(dx1, dx2, . . . ), (4.13)

and the limit measure concentrates on

C=1 = {x ∈ R
∞
+ :

∞∑

i=1

ǫxi

(
(0,∞)

)
= 1},

the set of sequences with exactly one component positive. Note {0∞} ∪C=1 =:
C61, the set of sequences with at most one component positive, is closed.

To verify (4.13), note from Theorem 4.1, it suffices to verify finite-dimensional
convergence since {0∞} satisfies (4.4), so it suffices to prove as t → ∞, for p > 1,

µt◦PROJ−1p ((dx1, . . . , dxp)) := tP [(X1, . . . , Xp)/b(t) ∈ (dx1, . . . , dxp) ]

→ µ(0) ◦ PROJ−1p ((dx1, . . . , dxp)) =

p∑

l=1

∏

i6=l

ǫ0(dxi)να(dxl), (4.14)

in M(Rp
+ r {0p}. Since neither µt ◦ PROJ−1p nor µ(0) ◦ PROJ−1p place mass on

the lines through ∞p, M-convergence and vague convergence are the same and
then (4.14) follows from the binding lemma in [40, p. 228, 210].

Applying the operator CUMSUM and Corollary 4.1 to (4.13) gives

tP [CUMSUM(X)/b(t) ∈ (dx1, dx2, . . . )] → µ(0) ◦ CUMSUM−1((dx1, dx2, . . . ))

=
∞∑

l=1

l−1∏

i=1

ǫ0(dxi)να(dxl)
∞∏

i=l+1

ǫxl
(dxi) in M(R∞+ r {0∞})), (4.15)

where the limit concentrates on non-decreasing sequences with one jump and
the size of the jump is governed by να. Then applying the operator PROJp we
get, by Corollary 4.2,

tP [(X1,X1 +X2, . . . ,

p∑

i=1

Xk)/b(t) ∈ (dx1, dx2, . . . , dxp)]

→ µ(0) ◦ CUMSUM−1 ◦ PROJ−1p ((dx1, dx2, . . . , dxp))

=

p∑

l=1

l−1∏

i=1

ǫ0(dxi)να(dxl)

p∏

i=l+1

ǫxl
(dxi) in M(Rp

+ r {0p})), (4.16)

giving an elaboration of the one-big-jump heuristic saying that summing in-
dependent risks which have the same heavy tail results in a tail risk which is
the number of summands times the individual tail risk; for example, see [40,
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p. 230]. In particular, applying the projection from R
p
+r {0p} 7→ (0,∞) defined

by T : (x1, . . . , xp) 7→ xp gives by Corollary 2.1 that

tP [

p∑

i=1

Xi > b(t)x] → µ(0) ◦ CUMSUM−1 ◦ PROJ−1p ◦ T−1(x,∞) (4.17)

= pνα(x,∞) = px−α.

The projection T is uniformly continuous but also Theorem 2.3 applies to T
since for y > 0, T−1(y,∞) = {(x1, . . . , xp) : xp > y} is at positive distance
from {0p}.

The above discussion could have been carried out with minor modifications
without the iid assumption by assuming (4.12) and

P [Xj > x]/P [X1 > x] → cj > 0, j > 2.

4.5.2. The iid case: Remove more; Hidden regular variation

We now investigate how to get past the one-big-jump heuristic by using hidden
regular variation. For j > 1, set

C=j = {x ∈ R
∞
+ :

∞∑

i=1

ǫxi

(
(0,∞)

)
= j},

C6j = {x ∈ R
∞
+ :

∞∑

i=1

ǫxi

(
(0,∞)

)
6 j} = C6(j−1) ∪ C=j, (4.18)

so that C6j is closed. We imagine an infinite sequence of reductions of the
state space with scaling adjusted at each step. This is suggested by the previous
discussion. On M(R∞+ r {0∞}), the limit measure µ(0) concentrated on C=1,
a small part of the potential state space. Remove {0∞} ∪ C=1 = C61 and on
M(R∞+ rC61) seek a new convergence using adjusted scaling b(

√
t). We get in

M(R∞+ rC61) as t → ∞,

µ
(1)
t (dx1, dx2, . . . ) = tP [X/b(

√
t) ∈ (dx1, dx2, . . . )] → µ(1)

(
(dx1, dx2, . . . )

)

:=
∑

l<k

( ∏

j /∈{l,k}

ǫ0(dxj)
)
να(dxl)να(dxk), (4.19)

which concentrates on C=2. In general, we find that in M(R∞+ rC6j) as t → ∞,

µ
(j)
t (dx1, dx2, . . . ) = tP [X/b(t1/(j+1) ∈ (dx1, dx2, . . . )] → µ(j)

(
(dx1, dx2, . . . )

)

:=
∑

i1<i2<···<ij+1

( ∏

j /∈{i1,...,ij+1}

ǫ0(dxj)
)
να(dxi1 )να(dxi2 ) . . . να(dxij+1

), (4.20)

which concentrates on C=(j+1). This is an elaboration of results in [30, 33, 34].
The result in R∞+ can be proven by reducing to R

p
+ by means of Theorem 4.1
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Table 1

An infinite number of coexisting regular-variation properties

j remove scaling µ(j) support

1 {0} b(t)
∑∞

l=1 να(dxl)
[
∏

i6=l ǫ0(dxi)
]

axes

2 axes b(
√
t)

∑

l,m

να(dxl)να(dxm)
[

∏

i/∈{l,m}

ǫ0(dxi)
]

2-dim faces

.

..
.
..

.

..
.
..

.

..

m C6(m−1) b(t
1
m )

∑

(l1,...,lm)

m
∏

p=1

να(dxlp )
[

∏

i/∈{l1,...,lm}

ǫ0(dxi)
]

C=m

noting that C6j satisfies (4.4) and then observing that neither µ
(j)
t nor µ(j) puts

mass on lines through ∞p. It is enough to show convergences of the following
form: Assume p > j and i1 < i2 < · · · < ij+1 and yl > 0, l = 1, . . . , j + 1 and

tP [Xil > b(t1/(j+1))yl, l = 1, . . . , j + 1] =

j+1∏

l=1

t1/(j+1)P [Xil > b(t1/(j+1))yl]

→
j+1∏

l=1

να(yi,∞) =

j+1∏

l=1

y−αl .

A formal statement of the result and a proof relying on a convergence-determining
class is given in the next Section 4.5.3. Table 1 gives a summary of the results
in tabular form.

Proposition 4.2 and Corollary 2.1 allow application of CUMSUM to get

µ
(j)
t ◦ CUMSUM−1(dx1, dx2, . . . )

= tP [CUMSUM(X)/b(t1/(j+1) ∈ (dx1, dx2, . . . )]

→ µ(j) ◦ CUMSUM−1
(
(dx1, dx2, . . . )

)
(4.21)

in M(CUMSUM(R∞+ )rCUMSUM(C6j)). Note CUMSUM(R∞+ ) =: R∞↑+ is the
set of non-decreasing sequences and CUMSUM(C6j) =: S6j is the set of non-
decreasing sequences with at most j positive jumps. Now apply the map PROJp
to (4.21) to get a p-dimensional result for (X1, X1 +X2, . . . , X1 + · · ·+Xp) and
the analogue of (4.16) is

tP [(X1,X1 +X2, . . . ,

p∑

i=1

Xk)/b(t
1/(j+1)) ∈ (dx1, dx2, . . . , dxp)]

→ µ(j) ◦ CUMSUM−1 ◦ PROJ−1p ((dx1, dx2, . . . , dxp)) (4.22)

in M(CUMSUM(Rp
+)r PROJp(S6j) = M(Rp ↑

+ )r PROJp(S6j).
When j > 1, unlike the step leading to (4.17), we cannot apply the map

T : (x1, . . . , xp) 7→ xp to (4.22) to get a marginal result for X1 + · · · + Xp.
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Although T is uniformly continuous, Corollary 2.1 is not applicable since

T (Rp ↑
+ )r T (PROJp(S6j)) = [0,∞)r [0,∞) = ∅.

4.5.3. The iid case: HRV; Formal statement and proof

Recall X = (Xl, l > 1) has iid components each of which has a distribution
with a regularly varying tail of index α > 0. Define C6j as in (4.18) and set
Oj = R∞+ rC6j. The definition of µt and µ(j) are given in (4.20).

Theorem 4.2. For every j > 1 there is a nonzero measure µ(j) ∈ MOj with

support in C=(j+1) such that tP [X/b(t1/j+1) ∈ · ] → µ(j)(·) in MOj as t → ∞.

The measure µ(j) is given in (4.20), or more formally,

µ(j)(A) =
∑

(i1,...,ij+1)

∫
I
{ j+1∑

k=1

zkeik ∈ A
}
να(dz1) . . . να(dzj+1),

where the components of eik are all zero except component ik whose value is 1
and the indices (i1, . . . , ij+1) run through the ordered subsets of size j + 1 of
{1, 2, . . .}.

The proof of Theorem 4.2 uses a particular convergence-determining class
A>j of subsets of Oj. Let A>j denote the set of sets Am,i,a for m > j, where

Am,i,a = {x ∈ R
∞
+ : xik > ak for k = 1, . . . ,m}, i1 < · · · < im, a1, . . . , am > 0.

Lemma 4.1. If µt, µ ∈ MOj and limt→∞ µt(A) = µ(A) for all A ∈ A>j bounded
away from Cj with µ(∂A) = 0, then µt → µ in MOj as t → ∞.

Proof. Consider the set of finite differences of sets in A>j and note that this set
is a π-system. Take x ∈ Oj and ǫ > 0. Since x ∈ Oj there are i1 < · · · < ij such
that xik > 0 for each k. If 2−ij < ǫ/2 choose m = ij. Otherwise, choose m > ij
such that 2−m < ǫ/2. Take δ < min{ǫ/2,min{xk : xk > 0 and k 6 m}} and set

B = {y ∈ R
∞
+ : yk > 0 if xk = 0 and yk > xk − δ otherwise for k 6 m},

B′ = {y ∈ R
∞
+ : yk > δ if xk = 0 and yk > xk + δ otherwise for k 6 m}.

Then B,B′ ∈ A>j , B
′ is a proper subset of B, and z ∈ B r B′ implies that

d(z, x) < δ
∑m

k=1 2
−k + ǫ/2 < ǫ, i.e. that z ∈ Bx,ǫ. Moreover,

(B rB′)◦ = {y ∈ R
∞
+ : yk ∈ J(xk) for k 6 m},

where J(xk) = [0, δ) if xk = 0 and J(xk) = (xk − δ, xk + δ) if xk 6= 0. Finally,
∂(B r B′) is the set of y ∈ R∞+ such that yk ∈ [max{0, xk − δ}, xk + δ] for all
k 6 m and yk = δ or yk = xk ± δ for some k 6 m. In particular, there is an
uncountable set of δ-values, for which the boundaries ∂(B r B′) are disjoint,
satisfying the requirements. Therefore δ can without loss of generality be chosen
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so that µ(∂(B r B′)) = 0. The separability of R∞+ implies (cf. the proof of
Theorem 2.3 in [6]) that each open set is a countable union of µ-continuity sets
of the form (B r B′)◦. The same argument as in the proof of Theorem 2.2 in
[6] therefore shows that lim inf t→∞ µt(G) > µ(G) for all open G ⊂ Oj bounded
away from Cj . Any closed set F ⊂ Oj bounded away from Cj is a subset of some
A ∈ A>j . By the same argument as above, we may without loss of generality
take A such that µ(∂A) = 0. The set Ar F is open and therefore

µ(A)− lim sup
t→∞

µt(F ) = lim inf
t→∞

µt(Ar F ) > µ(Ar F ) = µ(A)− µ(F ),

i.e. lim supt→∞ µt(F ) 6 µ(F ). The conclusion follows from Theorem 2.1(iii).

Proof of Theorem 4.2. For any m > j and a1, . . . , am > 0, the following two
limits hold,

lim
t→∞

c(t)jP [X ∈ tAj,i,a] =

j∏

k=1

a−αk = µj(Aj,i,a), lim
t→∞

c(t)jP [X ∈ tAj+1,i,a] = 0.

Therefore, the support of µ is a subset of Cj+1 rCj . Notice that for j > 1

(Cj+1 rCj) ∩R
p
+ = ∪i1<···<ij{(λ1ei1 , . . . , λjeij );λ1, . . . , λj > 0},

where indices i1, . . . , ij run through ordered subsets of size j of {1, 2, . . .}.

4.5.4. Poisson points as random elements of R∞+

Considering Poisson points provides a variant to the iid case and leads natu-
rally to considering regular variation of the distribution of a Lévy process with
regularly varying measure.

Suppose ν ∈ M(0,∞) and x 7→ ν(x,∞) is regularly varying at infinity with
index −α < 0. If Q(x) = ν([x,∞)), define Q←(y) = inf{t > 0 : ν([t,∞)) < y}.
Then the function b given by b(t) = Q←(1/t) satisfies limt→∞ tν(b(t)x,∞) =
x−α. It follows that b is regularly varying at infinity with index 1/α.

Let {En, n > 1} be iid standard exponentially distributed random variables
so that if {Γn, n > 1} := CUMSUM{En, n > 1}, we get points of a homogeneous
Poisson process of rate 1. Transforming [40, p. 121], we find {Q←(Γn), n > 1}
are points of a Poisson process with mean measure ν, written in decreasing
order.

Define the following subspaces of R∞+ :

R
∞↓
+ = {x ∈ R

∞
+ : x1 > x2 > . . . },

H=j = {x ∈ R
∞↓
+ : xj > 0, xj+1 = 0},

H6j = {x ∈ R
∞↓
+ : xj+1 = 0}, Oj = R

∞↓
+ rH6j , (4.23)

with the usual meaning of multiplication by a scalar. So H60 = {0∞} and R
∞↓
+

are sequences with decreasing, non-negative components and H6j are decreasing
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sequences such that components are 0 from the (j + 1)st component onwards.
Furthermore, for each j > 1, H6j is closed. To verify the closed property, sup-
pose {x(n), n > 1} is a sequence in H6j and x(n) → x(∞) in the R∞+ metric.
This means componentwise convergence, so for the mth component convergence,
where m > j, as n → ∞, 0 = xm(n) → xm(∞) and x(∞) is 0 beyond the jth
component. The monotonicity of the components for each x(n) is preserved by
taking limits. Hence H6j is closed.

Analogous to (4.13), we claim

tP [
(
Q←(Γl)/b(t), l > 1

)
∈ · ] → µ(1)(·),

in M(O0) as t → ∞, where

µ(1)(dx1 × dx2 × . . . ) = να(dx1)1[x1>0]

∞∏

l=2

ǫ0(dxl).

To verify this, it suffices to prove finite dimensional convergence and for the
biggest component and x > 0,

tP [Q←(Γ1)/b(t) > x] = tP [Γ1 6 Q(b(t)x)] = t(1− e−Q(b(t)x))

∼ tQ(b(t)x) → x−α = να(x,∞).

For the first two components, let PRM(ν) be a Poisson counting function with
mean measure ν and for x > 0, y > 0,

tP [Q←(Γ1)/b(t) > x, Q←(Γ2)/b(t) > y] 6 tP [PRM(ν)(b(t)(x ∧ y,∞) > 2]

and writing p(t) = ν(b(t)(x ∧ y,∞)), we have

tP [PRM(ν)(b(t)(x ∧ y,∞) > 2] = t(1− e−p(t) − p(t)e−p(t))

6 t(p(t)− p(t)e−p(t)) 6 tp2(t) → 0.

The conclusion now follows from Lemma 4.1 by observing that we have shown
convergence for the sets in a convergence-determining class.

Similarly, we claim

tP [
(
Q←(Γl)/b(t

1/2), l > 1
)
∈ · ] → µ(2)(·)

in M(O1) as t → ∞, where

µ(2)(dx1 × dx2 × . . . ) = να(dx1)να(dx2)1[x1>x2>0]

∞∏

l=3

ǫ0(dxl).

Simple computations show that the distribution of (Γ1,Γ2) = (E1, E1 + E2)
satisfies

P [Γ1 6 z,Γ2 6 w] =

{
1− e−z − ze−w, z < w,
1− e−w − we−w, z > w.
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Notice that, for x > y > 0,

P [Q←(Γ1)/b(t
1/2) > x, Q←(Γ2)/b(t

1/2) > y]

= P [Γ1 6 Q(b(t1/2)x),Γ2 6 Q(b(t1/2)y)]

= 1− e−Q(b(t1/2)x) −Q(b(t1/2)x)e−Q(b(t1/2)y)

∼ Q(b(t1/2)x)−Q(b(t1/2)x)2/2 +O(Q(b(t1/2)x)3)

−Q(b(t1/2)x)
(
1−Q(b(t1/2)y) +O(Q(b(t1/2)y)2)

)
.

In particular, it is easy to verify that for x > y > 0

lim
t→∞

tP [Q←(Γ1)/b(t
1/2) > x, Q←(Γ2)/b(t

1/2) > y]

= x−αy−α − x−2α/2

= µ(2)(z ∈ R
∞↓ : z1 > x, z2 > y).

Similar computations show that, for y > x > 0,

lim
t→∞

tP [Q←(Γ1)/b(t
1/2) > x, Q←(Γ2)/b(t

1/2) > y]

= y−2α/2

= µ(2)(z ∈ R
∞↓ : z1 > x, z2 > y).

Moreover, for x > 0, y > 0, z > 0,

tP [Q←(Γ1)/b(t
1/2) > x, Q←(Γ2)/b(t

1/2) > y, Q←(Γ3)/b(t
1/2) > z]

6 tP [PRM(ν)(b(t1/2)(x ∧ y ∧ z,∞) > 3],

and writing p(t) = ν(b(t1/2)(x ∧ y ∧ z,∞)), we have

tP [PRM(ν)(b(t1/2)(x ∧ y ∧ z,∞) > 3]

= t(1− e−p(t) − p(t)e−p(t) − p(t)2e−p(t)/2)

∼ t(p(t)3/3! + o(p(t)3))

as t → ∞. Hence, limt→∞ tP [PRM(ν)(b(t1/2)(x ∧ y ∧ z,∞) > 3] = 0.
As in the iid case described by Theorem 4.2 and (4.20), we have an infinite

number of regular-variation properties co-existing.

Theorem 4.3. For the Poisson points {Q←(Γl), l > 1
}
, for every j > 1, we

have

tP
[(
Q←(Γl)/b(t

1/j), l > 1
)
∈ ·

]
→ µ(j)(·), (4.24)

in MOj−1
as t → ∞, where µ(j) is a measure concentrating on H=j given by

µ(j)(dx1, dx2, . . . ) =

j∏

i=1

να(dxi)1[x1>x2>···>xj>0]

∞∏

i=j+1

ǫ0(dxi). (4.25)

Proof. The explicit computations above, and similarly for j > 3, together with
an application of Lemma 4.1 yields the conclusion.
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5. Finding the hidden jumps of a Lévy process

In this section we consider a real-valued Lévy process X = {Xt, t ∈ [0, 1]} as a
random element of D := D([0, 1],R), the space of real-valued càdlàg functions
on [0, 1]. We metrize D with the usual Skorohod metric

dsk(x, y) = inf
λ∈Λ

‖λ− e‖ ∨ ‖x ◦ λ− y‖,

where x, y ∈ D, λ is a non-decreasing homeomorphism of [0, 1] onto itself,
Λ is the set of all such homeomorphisms, e(t) = t is the identity, and ‖x‖ =
supt∈[0,1] |x(t)| is the sup-norm. The space D is not complete under the metric
dsk, but there is an equivalent metric under which D is complete [6, page 125].
Therefore, the space D fits into the framework presented in Section 2 and we
may use the Skorohod metric to check continuity of mappings.

For simplicity we suppose X has only positive jumps and its Lévy measure
ν concentrates on (0,∞). Suppose x 7→ ν(x,∞) is regularly varying at infin-
ity with index −α < 0. Let Q(x) = ν([x,∞)) and define Q←(y) = inf{t > 0 :
ν([t,∞)) < y}. Then the function b given by b(t) = Q←(1/t) satisfies
limt→∞ tν(b(t)x,∞) = x−α and b is regularly varying at infinity with index
1/α. It is shown in [23, 25] that with scaling function b(t), the distribution
of X is regularly varying on D r {0} with a limit measure concentrating on
functions which are constant except for one jump. Where did the other Lévy
process jumps go? Using weaker scaling and biting more out of D than just the
zero-function 0 allows recovery of the other jumps.

The standard Itô representation [1, 5, 27] of X is

Xt = ta+Bt +

∫

|x|61

x[N([0, t]× dx)− tν(dx)] +

∫

|x|>1

xN([0, t]× dx),

where B is standard Brownian motion independent of the Poisson random mea-
sure N on [0, 1]×(0,∞) with mean measure Leb×ν. Referring to the discussion
preceding (4.23), {Q←(Γn), n > 1} are points written in decreasing order of a
Poisson random measure on (0,∞) with mean measure ν and by augmentation
[40, p. 122], we can represent

N =
∞∑

l=1

ǫ(Ul,Q←(Γl)),

where (Ul, l > 1) are iid standard uniform random variables independent of {Γn}.
The Lévy-Itô decomposition allows X to be decomposed into the sum of two

independent Lévy processes,
X = X̃ + J, (5.1)

where J is a compound Poisson process of large jumps bounded from below by
1, and X̃ = X − J is a Lévy process of small jumps that are bounded from
above by 1. The compound Poisson process can be represented as the random
sum J =

∑N1

l=1 Q
←(Γl)1[Ul,1], where N1 = N([0, 1]× [1,∞)).
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Recall the notation in (4.23) for R∞↓+ , H=j and H6j and the result in The-
orem 4.3. We seek to convert a statement like (4.24) into a statement about
X . The first step is to augment (4.24) with a sequence of iid standard uniform
random varables. The uniform random variables will eventually serve as jump
times for the Lévy process. The following result is an immediate consequence of
Theorem 4.3.

Proposition 5.1. Under the given assumptions on ν and Q, for j > 1,

tP
[(
(Q←(Γl)/b(t

1/j), l > 1), (Ul, l > 1)
)
∈ ·

]
→ (µ(j) × L)(·) (5.2)

in M((R∞↓+ r H6j−1) × [0, 1]∞) as t → ∞, where L is Lebesgue measure on

[0, 1]∞ and µ(j) concentrates on H=j and is given by (4.25).

Think of (5.2) as regular variation on the product space R∞↓+ × [0, 1]∞ when
multiplication by a scalar is defined as (λ, (x, y)) 7→ (λx, y).

Recall να is the Pareto measure on (0,∞) satisfying να(x,∞) = x−α, for
x > 0, and we denote by νjα product measure generated by να with j factors.
For m > 0, let D6m be the subspace of the Skorohod space D consisting of
nondecreasing step functions with at most m jumps and define Am as

Am = {(x, u) ∈ R
∞↓
+ × [0, 1]∞ (5.3)

: ui ∈ (0, 1) for 1 6 i 6 m;ui 6= uj for i 6= j, 1 6 i, j 6 m}.
Let Tm be the map

Tm : Am 7→ D defined by Tm(x, u) =

m∑

i=1

xi1[ui,1], (5.4)

and we think of Tm as mapping a jump-size sequence and a sequence of distinct
jump times into a step function in D6m ⊂ D. Our approach applies Tm to
the convergence in (5.2) to get a sequence of regular-variation properties of the
distribution of X . Whereas in Section 4.5.2, we could rely on uniform continuity
of CUMSUM, Tm is not uniformly continuous and hence the mapping Theorem
2.3 must be used and its hypotheses verified. We will prove the following.

Theorem 5.1. Under the regular variation assumptions on ν and Q, for j > 1,

tP
[
X/b(t1/j) ∈ ·

]
→ (µ(j) × L) ◦ T−1j (·) (5.5)

= E
[
νjα

{
y ∈ (0,∞)j :

j∑

i=1

yi1[Ui,1] ∈ ·
}]

in M(D r D6j−1) as t → ∞.

The first expression after taking the limit in (5.5) follows from the mapping
Theorem 2.3 and the second from applying Tj to (5.2) and then using Fubini to
hold the integration with respect to Lebesgue measure L outside as an expec-
tation.

Proof. Here is the outline; more detail is given in the next section. We prove
convergence using Theorem 2.1(iii). Take F and G closed and open sets respec-
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tively in D that are bounded away from D6j−1. Take δ > 0 small enough so
that also Fδ = {x ∈ D : dsk(x, F ) 6 δ} is bounded away from D6j−1. Then

tP [X/b(t1/j) ∈ F ] = tP
[
X ∈ b(t1/j)F, sup

s∈[0,1]

|X̃s| 6 b(t1/j)δ
]

+ tP
[
X ∈ b(t1/j)F, sup

s∈[0,1]

|X̃s| > b(t1/j)δ
]

6 tP [J ∈ b(t1/j)Fδ ] + tP [ sup
s∈[0,1]

|X̃s| > b(t1/j)δ]. (5.6)

The Lévy process X̃ has all moments finite and does not contribute asymptoti-
cally. Application of Lemmas 5.2 and 5.1, and letting δ ↓ 0 gives

lim sup
t→∞

tP [X/b(t1/j) ∈ F ] 6 (µ(j) × L) ◦ T−1j (F ).

To deal with the lower bound using open G, take δ > 0 small enough so that

G−δ :=
(
(Gc)δ

)c
= {x ∈ G : dsk(x, y) < δ implies y ∈ G}

is nonempty and bounded away from D6j−1. Then

tP [X/b(t1/j) ∈ G] > tP
[
J ∈ b(t1/j)G−δ, sup

s∈[0,1]

|X̃s| 6 b(t1/j)δ
]

= tP
[
J ∈ b(t1/j)G−δ

]
P
[

sup
s∈[0,1]

|X̃s| 6 b(t1/j)δ
]
.

Applying Lemmas 5.2 and 5.1 and letting δ ↓ 0 gives

lim inf
t→∞

tP [X/b(t1/j) ∈ G] > (µ(j) × L) ◦ T−1j (G).

5.1. Details

We now provide more detail for the proof of Theorem 5.1.
In the decomposition (5.1), the process X̃ represents small jumps that should

not affect asymptotics. We make this precise with the next Lemma.

Lemma 5.1. For j > 1, and any δ > 0,

lim sup
t→∞

tP
[

sup
s∈[0,1]

|X̃s| > b(t1/j)ǫ
]
= 0.

Proof. We rely on Skorohod’s inequality for Lévy processes [9], [38, Section 7.3].
For a > 0,

P
[

sup
s∈[0,1]

|X̃s| > 2a
]
6 (1− c)−1P [|X̃1| > a],

where c = sups∈[0,1] P [|X̃s| > a]. Thus, since X̃1 has all moments finite, for any
m > 1,

tP
[

sup
s∈[0,1]

|X̃s| > b(t1/j)δ
]
6 t(1− c(t))−1P [|X̃1| > b(t1/j)δ/2]
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6 t(1− c(t))−1
E|X̃1|m

bm(t1/j)(δ/2)m
.

For large enough m, t/bm(t1/j) → 0 as t → ∞ and

c(t) := sup
s∈[0,1]

P [|X̃s| > b(t1/j)δ/2] 6 sup
s∈[0,1]

E|X̃s|m
bm(t1/j)(δ/2)m

= sup
s∈[0,1]

smE|X̃1|m
bm(t1/j)(δ/2)m

6
E|X̃1|m

bm(t1/j)(δ/2)m
→ 0,

as t → ∞ since b(t) → ∞.

Lemma 5.2. For j > 1, tP [J ∈ b(t1/j) · ] → (µ(j)×L)◦T−1j (·) in M(DrD6j−1)
as t → ∞.

Proof. We apply Theorem 2.1(iii).
Construction of the lower bound for open sets: Let G ⊂ D be open

and bounded away from D6j−1. This implies that functions in G have no fewer
than j jumps. Recall that Γl = E1 + · · · + El, where the Eks are iid standard
exponentials. Take M > j and notice that

tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)G
]

> tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)G,N1 6 M
]

= tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)G, j 6 N1 6 M
]

> tP
[ j∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)Gδ,
M∑

l=j+1

Q←(Γl) 6 b(t1/j)δ,Q←(ΓM+1) < 1
]

> tP
[ j∑

l=1

Q←(Γl)

b(t1/j)
1[Ul,1] ∈ Gδ,M

Q←(Ej+1)

b(t1/j)
6 δ,Q←(ΓM+1 − Γj+1) < 1

]

> tP
[ j∑

l=1

Q←(Γl)

b(t1/j)
1[Ul,1] ∈ b(t1/j)Gδ

]
P
[
MQ←(Ej+1) 6 b(t1/jδ

]

×P
[
Q←(ΓM+1 − Γj+1) < 1

]

> tP
[(

(
Q←(Γl)

b(t1/j)
, l > 1), (Ul, l > 1)

)
∈ T−1j (Gδ)

]
P
[
MQ←(Ej+1) 6 b(t1/j)δ

]

×P
[
Q←(ΓM+1 − Γj+1) < 1

]
.

Let t → ∞ and apply Theorem 2.1(iii) to (5.2), so the lim inf of the first factor
above has a lower bound. As t → ∞, the second factor approaches 1. LetM → ∞
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and the third factor also approaches 1. Let δ ↓ 0 and we obtain

lim inf
t→∞

tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)G
]
> (µ(j) × L) ◦ T−1j (G).

Construction of the upper bound for closed sets: Let F ⊂ D be
closed and bounded away from D6j−1. Take β ∈ (0, 1) close to 1 and let

Mt =

N1∑

l=1

1(b(t1/j)β ,∞)(Q
←(Γl)).

Choose δ > 0 small enough so that Fδ := {x ∈ D : d(x, F ) 6 δ} is bounded
away from D6j−1. Then

tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)F
]

= tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)F,

N1∑

l=Mt+1

Q←(Γl) 6 b(t1/j)δ
]

+ tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)F,

N1∑

l=Mt+1

Q←(Γl) > b(t1/j)δ
]

6 tP
[ Mt∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)Fδ

]
+ tP

[ N1∑

l=Mt+1

Q←(Γl) > b(t1/j)δ
]
.

Decompose the first summand according to whether Mt 6 j or Mt > j + 1.
Notice Mt < j is incompatible with

∑Mt

l=1 Q
←(Γl)1[Ul,1] ∈ b(t1/j)Fδ since Fδ is

bounded away from D6j−1. Thus we get the upper bound

6 tP
[ j∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)Fδ

]
+ tP [Mt > j + 1]

+ tP
[ N1∑

l=Mt+1

Q←(Γl) > b(t1/j)δ
]
.

We now show that the second and third of the three terms above vanish
as t → ∞. Firstly, the definition of Mt implies that Q←(Γl) 6 b(t1/j)β for
Mt + 1 6 l 6 N1. Thus,

tP
[ N1∑

l=Mt+1

Q←(Γl) > b(t1/j)δ
]
6 tP [(N1 −Mt)b(t

1/j)β > b(t1/j)δ]

6 tP [N1 > b(t1/j)1−βδ].
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The right-hand side converges to 0 as t → ∞ since the tail probability has a
Markov bound of tE(Np

1 )/[b(t
1/j)1−βδ]p for any p. Secondly,

P [Mt > j + 1] 6 P [Q←(Γj+1) > b(t1/j)β ]

6 P [Γj+1 6 ν([b(t1/j)β ,∞))]

6 P [max(E1, . . . , Ej+1) 6 ν([b(t1/j)β ,∞))]

= P [E1 6 ν([b(t1/j)β ,∞))]j+1.

Since P [E1 6 y] ∼ y as y ↓ 0, and since ν([x,∞)) is regularly varying at infinity
with index −α and b is regularly varying at infinity with index 1/α, we find that

lim sup
t→∞

tν([b(t1/j)β ,∞))j+1 = lim sup
t→∞

L(t)t1−β(j+1)/j

for some slowly varying function L. In particular, choosing β ∈ ( j
j+1 , 1) ensures

that limt→∞ tP [Mt > j + 1] = 0.

We now deal with the remaining term. Since

tP
[ j∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)Fδ

]

= tP
[
((Q←(Γl), l > 1), (Ul, l > 1)) ∈ b(t1/j) ◦ T−1j (Fδ)

]

+tP
[
((Q←(Γl), l > 1), (Ul, l > 1)) ∈ Ac

m

]

and, by Lemmas 5.3 and 5.4, T−1j (Fδ) is, if nonempty, closed and bounded away
from H6j−1× [0, 1]∞, Proposition 5.1 and the fact that Ac

m is a P -null set yield
that

lim sup
t→∞

tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)F
]
6 (µ(j) × L) ◦ T−1j (Fδ).

Letting δ ↓ 0 shows that

lim sup
t→∞

tP
[ N1∑

l=1

Q←(Γl)1[Ul,1] ∈ b(t1/j)F
]
6 (µ(j) × L) ◦ T−1j (F ).

We have thus shown that lim inft→∞ tP [J ∈ b(t1/j)G] > (µ(j)×Lj)◦T−1j (G) and

lim supt→∞ tP [J ∈ b(t1/j)F ] 6 (µ(j) × Lj) ◦ T−1j (F ) for all open G and closed
F bounded away from D6j−1. The conclusion follows from Theorem 2.1.

Recall the definitions of Am and Tm in (5.3) and (5.4).

Lemma 5.3. For m > 1, Tm : Am 7→ D is continuous.
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Proof. The projection

Am ∋ (x, u) 7→ ((x1, . . . , xm), (u1, . . . , um)) ∈ R
m ↓
+ × (0, 1)m, 6=

where (0, 1)m, 6= = {(u1, . . . , um) ∈ (0, 1)m : ui 6= uj for i 6= j}, is continuous.
Since compositions of continuous functions are continuous, it remains to check
that

R
m ↓
+ × (0, 1)m, 6= ∋ ((x1, . . . , xm), (u1, . . . , um)) 7→

m∑

i=1

xi1[ui,1] ∈ D

is continuous. Take (x, u) ∈ R
m ↓
+ × (0, 1)m, 6=. Then there exists some δ > 0

such that, for (x̃, ũ) ∈ R
m ↓
+ × (0, 1)m, 6=, d2m((x, u), (x̃, ũ)) < δ, where d2m is the

usual metric in R
2m, implies that the components of ũ appear in the same order

as do the components of u. If 0 = u(0) < u(1) < · · ·u(m) < u(m+1) = 1, with

corresponding notation for the ordered ũ’s, make sure 3·δ < ∨m+1
i=1 |u(i)−u(i−1)|∨

|ũ(i) − ũ(i−1)|. Consider the piece-wise linear function λl for which λl(0) = 0,
λl(1) = 1, and λl(ui) = ũi for each i. Notice that λl is strictly increasing and
satisfies ‖λl − e‖ < δ. Therefore,

sup
t∈[0,1]

∣∣∣
m∑

i=1

xi1[λl(ui),1](t)−
m∑

i=1

x̃i1[ũi,1](t)
∣∣∣ <

m∑

i=1

|xi − x̃i| < mδ.

In particular,

dsk

( m∑

i=1

xi1[ui,1],

m∑

i=1

x̃i1[ũi,1]

)
< mδ,

which shows the continuity.

Lemma 5.4. Suppose A ⊂ D is bounded away from D6j−1. For m > j, if
T−1m (A) is nonempty, then it is bounded away from H6j−1 × [0, 1]∞.

Proof. If A ∩ D6m = ∅, then T−1m (A) = ∅. Therefore, without loss of generality
we may take A ⊂ D6m. Assume dsk(A,D6j−1) > δ > 0 and notice that x ∈ D6m

if and only if

x =
m∑

i=1

yi1[ui,1] for y1 > · · · > ym > 0, ui ∈ [0, 1].

If x ∈ A,
∑m

i=j yi > δ as a consequence of dsk(A,D6j−1) > δ and because the
y’s are non-increasing, yj > δ/(m− j + 1). Consequently,

T−1m (A) ⊂
{(

xi, i > 1
)
∈ R

∞↓
+ : xj > δ/(m− j + 1)

}
× [0, 1]∞,

and the latter set is bounded away from H6j−1 × [0, 1]∞.
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