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Abstract: This is an introductory account of the emergence of confor-
mal invariance in the scaling limit of planar critical percolation. We give
an exposition of Smirnov’s theorem (2001) on the conformal invariance of
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one-parameter family of conformally invariant random curves discovered
by Schramm (2000). The article is organized around the aim of proving the
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1. Introduction

The field of percolation theory is motivated by a simple physical question:
does water flow through a rock? To study this question, Broadbent and Ham-
mersley [28] developed in 1957 the following model for a random porous medium.
View the material as an undirected graph G, a set of vertices V joined by edges
E. In the percolation literature the vertices are called sites and the edges bonds.
In site percolation, each site is independently chosen to be open or closed
with probabilities p and 1 − p respectively (we refer to p as the “site proba-
bility”). The closed sites are regarded as blocked; the open sites, together with
the bonds joining them, form the open subgraph, through which water can
flow. Percolation theory is the study of the connected components of the open
subgraph, called the open clusters. Fig. 1 shows site percolation at p = 1/2 on
the triangular lattice T (blue = open, yellow = closed), with the open subgraph
highlighted.

Formally, a (site) percolation configuration is a random element ω of
(Ω,F) where Ω = {0, 1}V (0 = closed, 1 = open) and F is the usual product σ-
algebra generated by the projections ω 7→ ωi. Let Pp ≡ Ps

p denote the probability
measure on (Ω,F) induced by percolation with site probability p.

This basic model is of course open to any number of variations. An important
one is bond percolation, defined similarly except that edges (bonds) rather
than vertices are chosen to be open independently with probability p, and the
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Fig 1: Site percolation on T

open subgraph is induced by the open edges. Denote the resulting probability
measure on {0, 1}E by Pb

p. In the physical interpretation, in site percolation, wa-
ter is held mainly in the sites or “pockets” and flows between adjacent pockets
— whereas in bond percolation, water is held mainly in the bonds or “channels,”
and the sites express the adjacency of channels. Historically, bond percolation
has been studied more extensively than site percolation; however, bond per-
colation on a graph G is equivalent to site percolation on the covering graph
of G.

Percolation is a minimal model which nonetheless captures aspects of the
mechanism of interest — that of water seeping through rock — and provides
qualitative and quantitative predictions. Since its introduction it has developed
into an extremely rich subject, extensively studied by physicists and mathe-
maticians. In this article we focus on one special facet of the theory, and so
will certainly miss mentioning many interesting results. The interested reader is
referred to the books [23, 47, 48, 65] for accounts of the mathematical theory.
For an introduction to the extensive physics literature see [112].

1.1. Critical percolation

In percolation, a natural property to consider is the existence of an infinite open
cluster: suppose G = (V,E) is countably infinite and connected, and consider
site percolation on G. For each site x ∈ G let Cx denote the open cluster
containing x (with Cx = ∅ if x does not belong to an open cluster). We say
that x percolates if |Cx| = ∞; the physical interpretation is that x “gets wet.”
The (site) percolation probability is defined to be

θx(p) ≡ θsx(p) ≡ P
s
p(|Cx| = ∞),

a non-decreasing function of p. Because G is connected, for any x, y ∈ G, θx(p)
and θy(p) must be both positive or both zero. Thus we can define a critical
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(site) probability for the graph G as

pc ≡ psc(G) ≡ inf{p : θx(p) > 0},

where x is any site in G. The analogous quantities for bond percolation are
denoted θbx(p) and p

b
c .

We say percolation occurs in the graph if |Cx| = ∞ for some x ∈ G. A
common feature of many models in statistical physics is the phase transition,
where physical properties of the system undergo abrupt changes as a parameter
passes a critical theshold. This is the case in percolation if G has a translation
invariance, for example, if G is a lattice, or G = G0 × Z for some base graph
G0: in this setting, the Kolmogorov zero-one law implies that the total number
of infinite open clusters is a constant in {0, 1,∞}. The number is zero below
pc and positive above pc, so a sharp transition occurs at pc. If G is a lattice,
pc ∈ (0, 1) (e.g. by (1.1)), and if an infinite open cluster exists then it is unique
([7], see also [23, 29]). For an example of a graph G0 × Z with infinitely many
infinite open clusters see [14].

The effort to determine exact values for pc in various models, and to complete
the picture of what happens at or near pc, has led to a wealth of interesting prob-
abilistic and combinatorial techniques. It was shown by Grimmett and Stacey
[49] that if G = (V,E) is countably infinite and connected with maximum vertex
degree ∆ <∞, then

1

∆− 1
≤ pbc ≤ psc ≤ 1− (1 − pbc )

∆−1. (1.1)

Kesten proved that pbc (Z
2) = 1/2 [64]. He also proved that pbc (Z

d) = (1 +
o(1))/(2d) as d → ∞ [66]; better estimates were obtained by Hara and Slade
([50–52], see also [22]). For Λ = T , Kesten showed pc = 1/2 [65]. There are still
famous open problems remaining in this field; for example, it is conjectured that
θbx(p

b
c (Z

d)) = 0 for all d ≥ 2, but this has been proved only for d = 2 [53, 64]
and d ≥ 19 [50] (see also [47, Ch. 10-11]). It is also known that θx(pc(G)) = 0
for both site and bond percolation on on any G which is a Cayley graph of a
finitely generated nonamenable group [15, 16].

The percolation phenomenon is also defined for a sequence of finite graphs
Gn = (Vn, En) with |Vn| → ∞, where the analogue of the infinite component
is the linear-sized or “giant” component. This has been studied most famously
in the case of the Erdős-Rényi random graphs (Gn is the complete graph Kn),
where it was found that around pn = 1/n the size of the largest component has a
“double jump” from O(log n) to n2/3 to linear; see [21] for historical background
and references. Extremely detailed results are known about the structure of the
open subgraph near criticality (see e.g. [38] and the references therein). There
has also been work to obtain analogous results for other graph sequences: for
example for increasing boxes in Zd [24], for vertex-transitive graphs ([25–27, 89]),
and for expander graphs [8].
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1.2. Conformal invariance

The purpose of this article is to explore the limiting structure of the percolation
configuration in the scaling limit of increasingly fine lattice approximations
to a fixed continuous planar domain D (a nonempty proper open subset of
C which is connected and simply connected). That is, for a planar lattice Λ,
we consider finite subgraphs Gδ ⊂ δΛ which “converge” to D as the mesh δ
decreases to zero (to be formally defined later).

It has been predicted by physicists that many classical models (percolation,
Ising, FK) at criticality have scaling limits which are conformally invariant and
universal. Recall that if U ⊆ C is an open set, f : U → C is said to be conformal
if it is holomorphic (complex-differentiable) and injective.1 Conformal maps are
so called because they are rigid, in the sense that they behave locally as a
rotation-dilation. The Riemann mapping theorem states that for any planar
domains D,D′, there is a conformal bijection ϕ : D → D′. Roughly speaking,
conformal invariance means that the limiting (random) behavior of the model
on D′ is the same (in law) as the image under ϕ of the limiting behavior on D.
Universality means that the limiting behavior is not lattice-dependent.

The physics prediction seems quite surprising because the lattices themselves
are certainly not conformally invariant. However, one might expect that lat-
tice percolation on increasingly small scales becomes essentially “locally de-
termined,” with the global lattice structure becoming insignificant. Conformal
maps behave locally as rotation-dilations and so preserve local structure, so the
conformal invariance property means heuristically that the scaling limit of lat-
tice percolation is locally scale-invariant and rotation-invariant. Scale-invariance
follows essentially by definition of the scaling limit, and rotation-invariance can
be hoped for based on the symmetry and homogeneity of the lattice.

In fact there is a classical example of a conformally invariant scaling limit:
the planar Brownian motion, which we discuss in §2. This is the process Wt =
W 1

t + iW 2
t where the W i

t are independent standard Brownian motions in R.
By Donsker’s invariance principle, the universal scaling limit of planar random
walks with finite variance is µt + AWt where µ ∈ R2, A ∈ R2×2 (see e.g.
[58]). Using the idea of “local determination” described above, Lévy deduced
in the 1930s that planar Brownian motion is conformally invariant, up to a
time reparametrization [80]. Lévy’s proof, however, was not completely rigorous,
and most modern proofs of this result use the theory of stochastic integrals
(developed by Itō in the 1950s). Underlying this conformal invariance are some
important connections between Brownian motion and harmonic functions, and
we will make precise some of these connections which were first observed by
Kakutani [57].

1Some authors more broadly define a conformal map to be any map which is holomorphic
with non-vanishing derivative. Basic facts from complex analysis used in this article may be
found in e.g. [1, 113].
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1.3. The percolation scaling limit

This article describes two major breakthroughs, due to Schramm [94] and Smirnov
[105, 108], which gave the rigorous identification in the early 2000s of the scaling
limit of critical percolation on the triangular lattice T .

1.3.1. Smirnov’s theorem on crossing probabilities

Langlands, Pouliot, and Saint-Aubin [69], based on experimental observations
and after conversations with Aizenman, conjectured that critical lattice perco-
lation has a conformally invariant scaling limit. Some mathematical evidence
was provided by Benjamini and Schramm [17], who proved that a different but
related model, Voronoi percolation, is invariant with respect to a conformal
change of metric.

Using non-rigorous methods of conformal field theory (CFT), physicists were
able to give very precise predictions about various quantities of interest in pla-
nar critical percolation. Cardy [33, 34] notably derived an exact formula for the
(hypothetical) limiting probability of an open crossing between disjoint bound-
ary arcs of a planar domain. Carleson made the important observation that this
formula has a remarkably simple form when the domain is an equilateral tri-
angle (see §3.4). However, for years mathematicians were unable to rigorously
justify the CFT methods used in Cardy’s derivation.

In 2001, Smirnov [105, 108] proved that for site percolation on the triangular
lattice T , the limiting crossing probability exists and is conformally invariant,
satisfying Cardy’s formula. The purpose of §3 is to give an exposition of this
result. The proof is based on the discovery of “preharmonic” functions which
encode the crossing probability and converge in the scaling limit to conformal
invariants of the domain.2 Although the percolation scaling limit is believed to
be universal, special symmetries of the triangular lattice play a crucial role in
Smirnov’s proof, and the result has not been extended to other lattices. For
recent work on this question see [12, 19, 20, 35].

The exposition of Smirnov’s theorem in §3 is partly based on the one in [23,
Ch. 7]. For different perspectives (in addition to the original works of Smirnov)
see [10, 48, 106].

The general principle of preharmonicity and preholomorphicity has been fur-
ther developed by Chelkak, Hongler, Kemppainen, and Smirnov in establishing
conformal invariance in the scaling limit of the critical Ising and FK models
[36, 37, 54, 59, 107, 109, 111]. Discrete complex analysis appears also in the
work of Duminil-Copin and Smirnov [43] determining the connective constant
of the hexagonal lattice, which makes substantial progress towards establishing
a conformally invariant scaling limit for the self-avoiding walk (SAW). For a
more general discussion and references see [44, 110].

2We use the term preharmonic rather than “discrete harmonic,” which also appears in
the literature, to avoid confusion with the classical meaning of discrete harmonic (a function
whose value at any vertex is the average of the neighboring values) which is not necessarily
what is meant here.
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1.3.2. Schramm-Loewner evolutions

While the notion of a limiting crossing probability is easy to define (though it
may not exist), it is not immediately clear how to formally define the “limiting
percolation configuration.” This notion is discussed in the work of Aizenman
[3, 4], and the 1999 work of Aizenman and Burchard [5] shows how to obtain
subsequential scaling limits of the percolation configuration. At the time, no
direct construction for the limiting object — that is, a construction not involving
limits of discrete systems — was available.

Such a construction was discovered in 1999-2000 when, in the course of study-
ing the scaling limit of the loop-erased random walk (LERW), Schramm gave
an explicit mathematical description of a one-parameter family of conformally
invariant random curves, now called the Schramm-Loewner evolutions (SLE).
These curves are characterized by simple axioms which identify them as essen-
tially the universal candidate for the scaling limits of macroscopic interfaces in
planar models.

The theory of SLE contains some very beautiful mathematics and is one of
the major developments of probability theory within the past decade, and §4
aims to give an accessible introduction. Here is a brief preview, glossing over all
technical details: the SLE are a one-parameter family of self-avoiding3 random
planar curves γ ≡ γ(D; a, b) traveling from a to b in domain D, where a is in
the boundary ∂D and b is either in D (radial) or elsewhere on ∂D (chordal).
The curves satisfy two axioms:

(1) Conformal invariance: if ϕ is a conformal map defined on domain D,
ϕγ(D; a, b) has the same law as γ(ϕD;ϕa, ϕb).

(2) Domain Markov property: conditioned on γ[0, t], the remaining curve
has the same law as γ(D(t), γ(t), b) where D(t) is the unique connected
component of D \ γ[0, t] whose closure contains b (the “slit domain”).

Conformal invariance is expected by physicists as already mentioned, and typi-
cally the domain Markov property holds in the discrete setting and is believed
to pass to the scaling limit.

Schramm realized that these two properties essentially fully determine the
distribution of the curve. His discovery is based on the Loewner differential
equation (LDE), which describes the evolution of a self-avoiding curve γ(D; a, b)
through the evolution of the corresponding conformal mappings gt : D(t) → D
(the “slit mappings”). If the domain is the upper-half plane H with marked
boundary points 0,∞, we will see that if the maps gt are normalized to “behave
like the identity” near ∞, then under a suitable time parametrization they
satisfy the chordal LDE

ġt(z) =
2

gt(z)− ut
, g0(z) = z ∀z ∈ H,

3A formal definition appears in §4.2. Self-avoiding curves are not necessarily simple; indeed,
the scaling limit of the percolation interface will have many double points. Informally, a self-
avoiding curve is a curve without transversal self-crossings.
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γ

ab

D

(a) Original SLE curve γ = γD,a

γ[0, t] ab

D

(b) γ[t,∞) conditioned on γ[0, t]

γD(t),γ(t) ab

γ(t)

D(t)

(c) γD(t),γ(t) where D(t) = D \ γ[0, t]

gt(γ(t,∞))

ut

ab

D

(d) γD(t),γ(t) mapped to original domain

Fig 2: Domain Markov property

where ut ≡ gt(γ(t)) is a continuous real-valued process, called the driving func-
tion. (The radial version of the LDE was developed by Charles Loewner in 1923
and used by him to prove a case of the Bieberbach conjecture; see [2].) This equa-
tion is remarkable because it encodes the planar curve γ in the one-dimensional
process ut. Given ut, one can recover the original curve γ by solving the ordinary
differential equation above for each z up to time t, and setting γ(t) = g−1

t (ut).

The SLE axioms imply that if we condition on γ[0, t], the image of the remain-
ing curve under gt is distributed as ut+ γ̃ where γ̃ is an independent realization
of γ. Figs. 2a through 2d illustrate this idea. As Schramm noted, this implies
that ut must be a Brownian motion, ut = µt+

√
κWt. Further, under symmetry

assumptions u will have zero drift. The Schramm-Loewner evolutions SLEκ are
the curves recovered from the LDE with driving function ut =

√
κWt.

In fact, it will require work to show that “ut = gt(γ(t))” is even well-defined,
and it is not trivial to find conditions under which a true curve is recovered from
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the LDE. A detailed study of the geometric properties of deterministic Loewner
evolutions may be found in [82]. That the SLEκ processes are true curves is a
difficult theorem, proved for κ = 8 in [77] and for κ 6= 8 in [92] (see [72, Ch. 7]).
We will not make use of this fact.

In §4 we follow for the most part Lawler’s book [72], which contains far more
information than can be covered here. See also the lecture notes [70, 116]. In
the decade since Schramm’s original paper there have been many works inves-
tigating properties of SLE, e.g. the Hausdorff dimension [9, 11]. Connections to
(planar) Brownian motion are discussed in [71, 73, 74, 76]. There has been work
on characterizing more measures with conformal invariance properties, e.g. the
restriction measures of [71]. Sheffield and Werner have given a characterization
of conformally invariant loop configurations, the conformal loop ensemble
(CLE) [103].

1.3.3. Percolation exploration path and convergence to SLE6

Schramm conjectured that interfaces in the percolation model converge to forms
of SLE6, and the conformal invariance of crossing probabilities was the key
to proving this result. In his work [105, 108], Smirnov outlined a proof for
the conformal invariance of the full percolation configuration (as a collection of
nested curves). His outline was later expanded into detailed proofs in work by
Camia and Newman [30, 31].

The proof for the full configuration is beyond the scope of this article, and
instead we focus on a single macroscopic interface. The percolation exploration
path is defined roughly as follows (the formal definition appears in §3.5): fix
two points a, b on the boundary of a simply connected domain. Fix all the
hexagons on the counterclockwise arc ab to be closed, and all those on ba to
be open. The exploration path is the interface curve which separates the closed
cluster touching ab from the open cluster touching ba. Fig. 3 shows part of an
exploration path traveling in H between 0 and ∞. The purpose of §5 and §6 is
to prove that the exploration path converges to chordal SLE6.

1.3.4. Outline of remaining sections

The organization of the remainder of this article is as follows:

• In §2 we give a proof of the conformal invariance of Brownian motion, and
discuss the connection to harmonic functions first developed by Kakutani
[57]. The material presented in this section is elementary in nature and
can be skipped without loss by readers already familiar with the subject.

• In §3 we present Smirnov’s theorem [105, 108] on the conformal invariance
of crossing probabilities in critical percolation on the triangular lattice T .

• §4 is an introduction to the Loewner differential equation and SLE. §4.3
states a characterization of SLE6 (following Camia and Newman [31])
which will be used in identifying the scaling limit of the exploration path.
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Fig 3: Percolation exploration path

• §5 presents a result of Aizenman and Burchard [5] which uses a priori esti-
mates (in our case, percolation crossing exponents) to deduce the existence
of subsequential weak limits for the percolation exploration path.

• In §6 we show that all subsequential limits of the exploration path are
chordal SLE6. Our exposition follows the work of Binder, Chayes and Lei
[19, 20] and of Camia and Newman [31].

• §7 concludes with some additional references and open problems concern-
ing other planar models.

For more accounts on conformal invariance in percolation and convergence to
SLE6, see the lecture notes of Werner [117] and of Beffara and Duminil-Copin
[13]. For a broad overview of conformally invariant scaling limits of planar mod-
els see the survey of Schramm [96].
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2. Brownian motion

Some notations: let Br(z) denote the open ball of radius r centered at z ∈ Rd,
and Cr(z) ≡ ∂Br(z). Let Br ≡ Br(0), Cr ≡ ∂Br denote the versions of these
which are centered at the origin.

If (Ω,F ,P) is a probability triple and (Ft)t≥0 is an increasing filtration in
F , we call (Ω,F , (Ft)t≥0,P) a filtered probability space. For X ∈ F0, an (Ft)-
Brownian motion started at X is a stochastic process (Wt)t≥0 defined on
(Ω,F ,P) which is (Ft)-adapted and satisfies

1. W0 = X a.s.;
2. W is a.s. continuous;
3. for s < t, Wt −Ws ∼ N (0, t− s) and is independent of Ft.

A Brownian motion in Rd is simply a d-dimensional vector of independent
Brownian motions (W 1

t , . . . ,W
d
t ). For d = 2 we always identify R2 ∼= C and write

Wt ≡W 1
t + iW 2

t (t ≥ 0), referred to as planar or complex Brownian motion. An
approximation of a sample path is shown in Fig. 4 (the path becomes lighter over
time). For z ∈ C let Pz denote the probability measure for Brownian motion
started at z, and write Ez for expectation with respect to Pz. For more on
Brownian motion see e.g. [58, 87].

2.1. Conformal invariance of planar Brownian motion

The result below tells us that the holomorphic image of a Brownian motion
is again a Brownian motion up to a (random) time change. For D a complex
domain4 and W a Brownian motion started at z0 ∈ D, let

τD ≡ inf{t ≥ 0 :Wt /∈ D}
denote the exit time of D.

Theorem 2.1. Let ϕ be a holomorphic map defined on the complex domain D,
and for W a Brownian motion started at z0 ∈ D let Yt = ϕ(Wt) (t < τD). If

Yt ≡ W̃σ(t), σ(t) ≡
∫ t

0

|f ′(Ws)|2 ds

then W̃t is a Brownian motion started at ϕ(z0) run up to τϕ(D).

4Recall that by a complex domain we always mean a nonempty proper open subset of C
which is connected and simply connected.
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Fig 4: Approximate sample path of Brownian motion

Here is Lévy’s heuristic argument [80]: translations and rotations of C clearly
map Brownian motions to Brownian motions, and we have the Brownian scaling
W̃t = cWt/c2 (c > 0) for W̃ another Brownian motion of the same speed as W .
The stochastic process is determined by its behavior “locally” at each point in
time, and near time t we have

ϕ(Wt+h)− ϕ(Wt) ≈ λt(Wt+h −Wt), λt ≡ ϕ′(Wt).
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By rotation-invariance and the Brownian scaling, λt(Wt+h −Wt) = W̃|λt|
2h, so

ϕ(W ) at time t behaves like a standard Brownian motion “sped up” by a factor
of |λt|2.

Below we present the modern proof of this result, which uses stochastic cal-
culus.5 In preparation we first recall Itō’s formula, Lévy’s characterization of
Brownian motion, and the Dubins-Schwarz theorem (proofs may be found in e.g.
[58]). For two continuous semimartingales X,X ′ we use the notation [X,X ′] for
their covariation process, and we write [X ] ≡ [X,X ] for the quadratic variation
process of X .

Theorem 2.2 (Itō’s formula). Let X be a continuous semimartingale: Xt =
X0+Mt+At where M is a local martingale and A is a finite-variation process.
Then f(Xt) is again a continuous semimartingale with

f(Xt)− f(X0) =

d∑

j=1

∫ t

0

∂jf(Xs) dX
j
s +

1

2

d∑

j,k=1

∫ t

0

∂j∂kf(Xs) d[X
j, Xk]s.

In differential notation

df(Xt) =

d∑

j=1

∂jf(Xs) dX
j
s +

1

2

d∑

j,k=1

∂j∂kf(Xs) d[X
j, Xk]s.

Theorem 2.3 (Lévy’s characterization of Brownian motion). Let (Xt)t≥0 be
a continuous adapted process in Rd defined on the filtered probability space
(Ω,F , (Ft)t≥0,P) such that

(i) Xj
t −Xj

0 is a local (Ft)-martingale for 1 ≤ j ≤ d;
(ii) the pairwise quadratic variations are [Xj, Xk]t = δkjt for 1 ≤ k, j ≤ d.

Then X is an (Ft)-Brownian motion in Rd.

Theorem 2.4 (Dubins-Schwarz theorem). Let M be a continuous local mar-
tingale defined on the filtered probability space (Ω,F , (Ft)t≥0,P) with [M ]t → ∞
a.s. If

τ(s) ≡ inf{t ≥ 0 : [M ]t > s}, Gs ≡ Fτ(s),

then Ws ≡Mτ(s) is a (Gt)-Brownian motion, and Mt =W[M ]t .

Proof of Thm. 2.1. Let u = Reϕ and v = Imϕ; we regard u, v as functions
on R2 and write ϕ(x + iy) = u(x, y) + iv(x, y). Writing Wt = W 1

t + iW 2
t and

applying Itō’s formula (using the indepence of the two components) gives

du(Wt) = ∂xu(Wt) dW
1
t + ∂yu(Wt) dW

2
t +

1

2
∆u(Wt) dt,

dv(Wt) = ∂xv(Wt) dW
1
t + ∂yv(Wt) dW

2
t +

1

2
∆u(Wt) dt.

5Stochastic calculus is not heavily used in this article, so the reader not familiar with the
subject will not lose much by simply skipping over the places where it appears.
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By the Cauchy-Riemann equations,

d[u(W )]t =
(
[∂xu(Wt)]

2 + [∂yu(Wt)]
2
)
dt = |f ′(Wt)|2 dt = d[v(W )]t

and

d[u(W ), v(W )]t = [∂xu(Wt)∂xv(Wt) + ∂yu(Wt)∂yv(Wt)] dt = 0.

Further u, v are harmonic (again by the Cauchy-Riemann equations) so u(Wt)
and v(Wt) are local martingales, hence time-changed Brownian motions by the
Dubins-Schwarz theorem:

u(Wt) = W̃ 1
σ(t), u(Wt) = W̃ 2

σ(t)

for Brownian motions W̃ 1, W̃ 2. (One needs to verify that σ(t) → ∞; this follows
from holomorphicity of ϕ and the neighborhood recurrence of planar Brownian
motion.) Finally, we leave the reader to check that [W̃ 1, W̃ 2] = 0; the result
then follows from Lévy’s characterization of Brownian motion.

2.2. Harmonic functions and the Dirichlet problem

Given a domain D and a bounded continuous function f : ∂D → R, we say
that u ∈ C2(D) ∩ C(D) solves the Dirichlet problem on D with boundary
data f if u is harmonic (∆u = 0) in D and agrees with f on ∂D. We now
demonstrate the connection to Brownian motion as first noted by Kakutani
[57]. Recall that τD denotes the exit time of a Brownian motion from D, and let
τ+D ≡ inf{t > 0 :Wt /∈ D}. A domain D is said to be regular if for all z ∈ ∂D,
τ+D = 0, Pz-a.s.

Proposition 2.5. Let D be a bounded regular domain, and let f : ∂D → R

continuous. Define u : D → R by

u(z) =

{
f(z) if z ∈ ∂D.

Ez [f(WτD )] if z ∈ D.

Then u is a bounded solution to the Dirichlet problem on D with boundary data
f , and it is the unique such solution.

Proof (sketch). Since f is bounded, u is certainly bounded. Uniqueness is easy:
let v be another such solution. Then v(Wt) is a bounded local martingale, hence
a uniformly integrable martingale, so by the optional stopping theorem

v(z) = v(W0) = Ez[v(WτD )] = Ez[f(WτD )] = u(z).

To show u is harmonic we check the local mean-value property, that for each
z ∈ D there exists r0 > 0 such that

u(z) =
1

2π

∫ 2π

0

u(z + reiθ) dθ,
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for 0 < r ≤ r0 (see e.g. [81]). Let Wt be a Brownian motion started at z, and let
σ = τBr(z). By the rotational symmetry of Brownian motion, Wσ is uniformly
distributed on ∂Br(z), so the right-hand side of the above is

Ez[u(Wσ)] = Ez [EWσ
[f(WτD )]] by definition of u

= Ez [Ez[f(WτD )|Fσ]] by strong Markov property

= Ez [f(WτD )] by iterated expectations

= u(z).

This shows that u is harmonic. Continuity of u on D requires the regularity
assumption and we omit the proof here.

Remark 2.6. For some simple domains U a Poisson integral formula gives
an explicit mapping PU from a (bounded continuous) function f defined on
∂U to the solution of the Dirichlet problem on U with boundary values f . The
formulas for the disc and the upper half-plane are well known and will be used
in deriving the Loewner differential equation, so we recall them here:

(PDf)(re
iθ) =

1

2π

∫ 2π

0

Pr(θ − ϕ)f(eiϕ) dϕ, Pr(θ) = Re

(
1 + reiθ

1− reiθ

)
, (2.1)

(PHf)(x+ iy) =
1

π

∫

R

Qy(t− x)f(t) dt, Qy(x) =
y

x2 + y2
. (2.2)

For proofs see e.g. [113, 114].

Propn. 2.5 also gives us a weaker version of Thm. 2.1, namely, that the
hitting distribution of Brownian motion is conformally invariant. Indeed, let
D,D′ be regular domains (say with smooth boundaries), and let z be a point
in D and A an arc on ∂D. Let z′ = ϕ(z), A′ = ϕ(A), and W ′

t = ϕ(Wt).
Then u(z) ≡ Pz(WτD ∈ A) solves the Dirichlet problem on D with boundary
conditions f = 1A, while u

′(z) ≡ Pz′(WτD′ ∈ A′) solves the Dirichlet problem
on D′ with boundary conditions f ′ = 1A′ .6 But

u ◦ ϕ−1

is also a solution, so by uniqueness we have u = u′ ◦ ϕ. Since A was arbitrary
the conformal invariance of the hitting distribution follows.

In fact, here is a way to deduce the full conformal invariance of the Brownian
path (modulo time reparametrization) from this seemingly weaker result. For
each ǫ > 0, we approximate the Brownian path by the piecewise linear curve

W
(ǫ)
t joining the points z = z1, z2, . . ., where zk+1 is the first point where the

Brownian motion starting from zk hits Bǫ(zk). To be precise, we will define
a sequence of stopping times 0 = τ0, τ1, . . . by recursively setting zk = Wτk

and τk+1 = τBǫ(zk). We then make W
(ǫ)
t into a continuous stochastic process

6The indicator functions are discontinuous, but since we assumed ∂D to be smooth we
may easily approximate 1A by continuous functions.
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by linear interpolation. It is clear that as ǫ → 0, W
(ǫ)
t converges a.s. to Wt in

the topology of uniform convergence. Now, if ϕ is a conformal map, then by

the above ϕ(W
(ǫ)
τk+1

) has the same distribution as the point where a Brownian
motion started at ϕ(zk) first exits the conformal ball ϕ(Bǫ(zk)). It follows that

ϕ(W
(ǫ)
t ) converges a.s. as ǫ→ 0 to a process which is a time reparametrization

of Brownian motion.
The proof of Smirnov’s theorem for crossing probabilities, in the next section,

is to some extent motivated by these simple observations. In particular, confor-
mal invariance of the crossing probabilities will follow naturally from expressing
the probabilities in terms of a harmonic function solving some form of Dirichlet
problem. The idea of constructing polygonal approximations to a random path
will also reappear, in §6, when we use a modification of this construction to
show that the scaling limit of percolation agrees with chordal SLE6.

3. Percolation and Smirnov’s theorem on crossing probabilities

In this section we present Smirnov’s celebrated theorem on the conformal invari-
ance of crossing probabilities in critical percolation on the triangular lattice T
[105, 108]. Smirnov’s key insight was the discovery of a “preharmonic” function
whose evaluation at a certain point gives the crossing probability. As δ → 0,
these functions converge to a true harmonic function solving a Dirichlet-type
problem on D, and the theorem follows because the solution to the Dirichlet
problem is a conformal invariant.

The first section below gives a formal statement of Smirnov’s crossing prob-
abilities theorem.

3.1. Statement of Smirnov’s theorem

Let Λ = (V,E) be a planar lattice. Write u ∼ v if (u, v) ∈ E. Site percolation
on Λ may be visualized as face percolation on the dual lattice Λ∗. We will
use blue and yellow in the place of open and closed respectively, particularly
to avoid confusion with the topological meanings of those words.

Smirnov’s theorem is for site percolation on T , shown with its dual hexagonal
lattice H in Fig. 5. Each vertex v ∈ T corresponds to a hexagon Hv. A triangu-
lar vertex means a vertex of T , and a triangular path means the polygonal
interpolation of a path in T , regarded as a polygonal curve in C. Define similarly
hexagonal vertex and hexagonal path.

Recall that a domain is a nonempty proper open subset D ⊂ C which
is simply connected. D is called a Jordan domain if its boundary ∂D is a
Jordan curve. In this case if a, b ∈ ∂D then ab denotes the counterclockwise arc
from a to b on ∂D.

Definition 3.1. A k-marked (Jordan) domain is a Jordan domain D to-
gether with k distinct points P1, . . . , Pk ∈ ∂D in counterclockwise order, de-
noted Dk = (D;P1, . . . , Pk). Write Aj ≡ Aj(Dk) for the arc PjPj+1 (indices
taken modulo k).
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(a) T with dual H (b) Face percolation on H

Fig 5: Site percolation on T as face percolation on H

A conformal equivalence of k-marked domains Dk, D
′
k is a conformal map

ϕ : D → D′ with ϕ : Pj 7→ P ′
j for all j.

Definition 3.2. A k-marked discrete domain with mesh δ is a k-marked
domain Dδ

k = (Dδ;P δ
1 , . . . , P

δ
k ) such that Dδ is the interior of a union of closed

hexagonal faces of δH , and each P δ
j is a vertex of δH incident to a unique

hexagon inside D.

Let Pδ
p denote the law of percolation at probability p on Dδ

4 (more precisely,

face percolation on the hexagons inside Dδ). We say a blue (yellow) crossing of
Dδ

4 occurs if there is a path of blue (yellow) hexagons joining A1(D
δ
4) to A3(D

δ
4).

Let A+
j denote the set of hexagons in the external boundary of Dδ with at least

one edge contained in Aj ; it is sometimes helpful to think of the A+
j as having

predetermined colors, and these are shown with darker shading in the figures.
We now clarify the sense in which the Dδ

4 approximate D4 as δ ↓ 0. To do so
we need a formal definition of “curves modulo reparametrization”:

Definition 3.3. A distance function on the space C0 of continuous functions
f : [0, 1] → Rd is given by

dU (f1, f2) ≡ inf
φ

‖f1 ◦ φ− f2‖∞

where the infimum is taken over increasing homeomorphisms φ of [0, 1]. Say
that f1, f2 are equivalent up to reparametrization, denoted f1 ∼ f2, if
dU (f1, f2) = 0. A curve is an element of the space C ≡ C0/ ∼, and we refer to
the metric dU on C as the uniform metric.

The space C is separable and complete. For γ ∈ C we will frequently abuse
notation and write γ also for a representative of γ in C0.
Definition 3.4. For bounded k-marked domains Dδ

k, Dk, say that Dδ
k con-

verges uniformly to Dk if Aj(D
δ
k) → Aj(Dk) uniformly for all j.
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Recall that the critical probability for site percolation on T is pc = 1/2; from
now on we write Pδ ≡ Pδ

1/2. Here then is a statement of Smirnov’s theorem
confirming the Langlands et al. conjecture:

Theorem 3.5 (Smirnov’s theorem on crossing probabilities [105, 108]). Let
Dδ

4 be four-marked discrete domains converging uniformly to the bounded four-
marked Jordan domain D4. Then

Φδ(Dδ
4) ≡ P

δ(Dδ
4 has a blue crossing)

converges to a limit Φ(D4) ∈ (0, 1) which is conformally invariant.

Remark 3.6. It will be clear from the proof that the above assumption of
uniform convergence is unnecessarily strong. In fact, in order to prove the scaling
limit for the exploration path we will require a version of Thm. 3.5 which holds
for a more general notion of discrete approximation, which will be conceptually
straightforward but slightly tricky to describe. With a view towards keeping the
exposition simple, we ignore the issue for now and address it in §6.1.

3.2. FKG, BK, and RSW inequalities

In this section are collected some results of basic percolation theory which will
be needed in the proof.

For the first two results, the FKG and BK inequalities, the graph structure
is irrelevant so we return to a more general setting: let Ω ≡ {0, 1}V , and let
Pp denote the law of site percolation at probability p on V . For ω, ω′ ∈ Ω, say
ω ≤ ω′ if the inequality holds coordinate-wise. A random variable X on (Ω,F)
is called increasing if X(ω) ≤ X(ω′) for all ω ≤ ω′, and an event A ∈ F is
increasing if 1A is increasing. The following inequality tells us that increasing
events are, as naturally expected, positively correlated:

FKG inequality (Harris [53], Fortuin, Kasteleyn, Ginibre [46]). If X,Y are
increasing random variables on (Ω,F), then Ep(XY ) ≥ (EpX)(EpY ). In par-
ticular, increasing events are positively correlated.

Here is another useful result which gives bounds in the other direction: for
A,B ∈ F increasing events depending only on the states of finitely many sites,
let A�B denote the event that there are disjoint witnesses for A and B —
i.e., ω ∈ A�B if and only if there exist disjoint sets IA, IB ⊂ V such that
ω′|IA = ω|IA implies ω′ ∈ A, and ω′|IB = ω|IB implies ω′ ∈ B. The following
inequality says that the existence of disjoint witnesses for two events is less likely
than the simple intersection of the two events:

BK inequality (van den Berg, Kesten [115]). If A,B ∈ F are both increasing
events depending only on the states of finitely many edges, then Pp(A�B) ≤
Pp(A)Pp(B).

We remark that van den Berg and Kesten conjectured that their inequality
could be generalized to arbitrary sets; this remained open for almost a decade
until it was resolved by Reimer [91].
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The third result is specific to planar percolation. Russo [93] and Seymour and
Welsh [101] proved that in an m × n discrete rectangle, the probability of an
open crossing between the length-m sides has a non-zero lower bound depending
only on the aspect ratio m/n. The following is a straightforward consequence of
their result:

Theorem 3.7. There exist positive constants c, λ such that the Pδ-probability of
a blue crossing of an annulus with inner radius r and outer radius R is . (r/R)λ

provided R/r, r/δ ≥ c.

For proofs of the above results see [23, 47]. A proof of Thm. 3.7 can also be
found in [117].

3.3. Preharmonic functions

We now arrive at the central argument of Smirnov’s proof. By way of histor-
ical background Smirnov mentions the classical connection of Kakutani [57]
between Brownian motion and harmonic functions described in §2.2. The key
to Smirnov’s proof was the discovery of a “preharmonic” function sδ2 on Dδ

2, the
“separating probability function,” which encodes the crossing probability. One
then shows that as δ ↓ 0, sδ2 converges to a harmonic function s2 which encodes
the limiting crossing probability. The result follows because s2 is a conformal
invariant.

The function sδ2 is part of a triple (sδ1, s
δ
2, s

δ
3) which we now define: let Dδ

4

be a four-marked domain, and let Dδ
3 be the three-marked domain obtained by

forgetting P δ
4 . For z ∈ Dδ ∩H and 1 ≤ j ≤ 3, let

Ej(z) ≡ Ej(z;D
δ
3)

denote the event that there is a blue Aj−1–Aj+1 simple path separating z from
Aj (indices taken modulo 3). A schematic diagram is shown in Fig. 6. The
separating probability functions for Dδ

3 are

sδj(z) ≡ P
δ[Ej(z)], 1 ≤ j ≤ 3. (3.1)

In particular, notice that sδ2(P
δ
4 ) is exactly the crossing probability Φδ(Dδ

4). The
plan is then to prove that sδ2 converges to a function s2 which is a conformal
invariant of D3. But s2(P4) is the desired limiting crossing probability Φ(D4),
which must then be a conformal invariant.

3.3.1. Cauchy-Riemann equations

The approach is to take advantage of the relationships among the sδj to show
that they form a (discrete) “harmonic conjugate triple.” This concept is easier
to describe in the continuous setting: we will say that real-valued harmonic
functions h1, h2, h3 form a harmonic conjugate triple if f = h1 + ζh2 + ζ2h3
is holomorphic, where ζ ≡ ζ3 ≡ e2πi/3.
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A1

A2

P1

P2

P3

A3

D

z

separating

not separating

Fig 6: Schematic of separating event E2(z)

Here is a version of the Cauchy-Riemann equations for harmonic conjugate
triples: consider the directional derivatives

∂kf(z) ≡ lim
h→0

f(z + hζk−1)− f(z)

h
, 1 ≤ k ≤ 3.

The same argument used in deriving the usual Cauchy-Riemann equations (see
e.g. [113, p. 12]) gives

∂kf =
1

ζ
∂k+1f =

1

ζ2
∂k+2f, (3.2)

It will turn out that h1 + h2 + h3 ≡ 1, so the ∂khj are uniquely determined by
the real linear relations



∂k Re f
∂k Im f

0


 =



1 Re ζ Re ζ2

1 Im ζ Im ζ2

1 1 1





∂kh1
∂kh2
∂kh3


 .

Matching coefficients in (3.2) gives the 2π/3-rotational Cauchy-Riemann equa-
tions

∂khj = ∂k+1hj+1 = ∂k+2hj+2, 1 ≤ k, j ≤ 3, (3.3)

with indices taken modulo three.
We return now to the discrete setting. Recalling the definition (3.1), for w ∼ z

in δH ∩Dδ define

dzs
δ
j(w) ≡ P

δ[Ej(z) \ Ej(w)].

The following result is Smirnov’s “color switching identity,” and is a discrete
version of the 2π/3-rotational Cauchy-Riemann equations (3.3).
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v1

v2

v3

x3

x2

x1

z1

z2 z3

w

P1

P2

P3

(a) Eδ
3(z3) \ Eδ

3(w) = B1B2Y3

v1

v2

v3

x3 x2

x1

z1

z2 z3

w

P1

P2

P3

(b) Interface; “innermost” disjoint paths

Fig 7: Color switching

Proposition 3.8 (color switching). In the setting of Thm. 3.5, let w ∈ δH ∩
Dδ, and fix a counterclockwise ordering z1, z2, z3 of the neighbors of w in δH,
assumed to lie in Dδ. Then

dzks
δ
j(w) = dzk+1

sδj+1(w) = dzk+2
sδj+2(w). (3.4)

Further dzs
δ
j(w) = O(δλ) where λ is as in Thm. 3.7.

Proof. For now we suppress the dependence on δ from the notation. By cyclic
permutation of indices it suffices to prove the result with k = j. Let xj ∈ T be
the center of the hexagon incident to w opposite zj , and let Cj denote the event
that there is a path ηj of color C ∈ {B = blue, Y = yellow} joining xj to Aj .
Then

Ej(zj) \ Ej(w) = Bj−1YjBj+1,

where the right-hand side denotes the event that Bj−1 ∩ Yj ∩ Bj+1 occurs via
disjoint paths ηj−1, ηj , ηj+1. Fig. 7a illustrates this equality of events; a detailed
proof of this statement may be found in [23, Ch. 7]. Thus (3.4) may be restated
as

P(Y1B2B3) = P(B1Y2B3) = P(B1B2Y3).

By symmetry it suffices to prove the second identity, which by flipping blue and
yellow is the same as P(Y1B2Y3) = P(B1B2Y3).

Conditioned on B2Y3, consider exploring the interface beginning at the edge
separating Hx2

(blue) from Hx3
(yellow), oriented so that blue is to the right.

This exploration path P must end on some vertex of H ∩ (A2 ∪ A3), and the
hexagons adjacent to P determine the “innermost” disjoint paths η2 and η3
corresponding to B2 and Y3 respectively (erase loops so that the ηj are simple
paths). Note that these paths are determined without looking at any sites not
incident to P .

Conditioning on the explored sites, the event C1B2Y3 occurs if and only if
there is a path of color C from x1 to A1 which is disjoint from the explored
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sites. But the probability of this event clearly does not depend on whether C is
blue or yellow, so P(Y1B2Y3|B2Y3) = P(B1B2Y3|B2Y3) and (3.4) is proved.

Finally, since the maximum distance from w to an arc Ak is of constant order,
it follows from Thm. 3.7 that dzs

δ
j(w) = O(δλ).

Remark 3.9. In fact dzs
δ
j(w) = O(δ2/3); see [108]. However, we will see that the

sδj converge to harmonic functions, which suggests that the discrete derivatives

sδj(z)− sδj(w) = dzs
δ
j(w) − dws

δ
j(z)

are in fact O(δ) — that is, there is some cancellation between the disjoint events
Ej(z) \ Ej(w) and Ej(w) \ Ej(z). It is unclear why this happens, and we turn
now instead to proving relations among contour integrals, where the estimate
of Propn. 3.8 is sufficient.

3.3.2. Integral relations

In taking the limit δ ↓ 0 it is easier to use global manifestations of holomorphicity
such as Morera’s theorem (see e.g. [113, Thm. 5.1]). In this section we use
Propn. 3.8 to prove relations on discrete contour integrals.

Suppose (h1, h2, h3) form a harmonic conjugate triple: since f and 1 are both
holomorphic, by Morera’s theorem

(
0
0

)
=

(
1 ζ ζ2

1 1 1

)

I1
I2
I3


 , Ij ≡

∮

C

hj dz,

therefore
∮
C hj+1 dz = ζ

∮
C hj dz. It is instructive to note that this relation

can alternately be derived from the 2π/3-rotational Cauchy-Riemann equations
(3.3), using Stokes’s theorem. To see this, write

dx1 ≡ dx, dx2 ≡ −1

2
dx+

√
3

2
dy, dx3 ≡ −1

2
dx−

√
3

2
dy.

Then

3∑

k=1

∂khj dxk =
3

2
[∂xhj dx+ ∂yhj dy] =

3

2
dh,

3∑

k=1

ζk−1 dxk =
3

2
[dx+ i dy] =

3

2
dz.

Thus, for a contour C = ∂U , Stokes’s theorem implies

∮

C

hj dz =
4

9

∫

U

(
3∑

k=1

∂khj dxk

)
∧
(

3∑

k=1

ζk−1dxk

)
.
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Applying the Cauchy-Riemann equations (3.3) then gives

∮

C

hj dz =
4

9

∫

U

(
3∑

k=1

∂k+1hj+1 dxk

)
∧
(

3∑

k=1

ζk−1dxk

)

=
1

ζ
· 4
9

∫

U

(
3∑

k=1

∂khj+1 dxk−1

)
∧
(

3∑

k=1

ζk−1 dxk−1

)
=

1

ζ

∮

C

hi+1 dz,

the same relation derived above.
We will now prove a discrete analogue of this relation for certain contours; the

proof will be a discrete version of the Stokes’ theorem computation above. We
will say that a discrete triangular contour is a contour which is a triangular
path. For a triangular contour C oriented counterclockwise in Dδ, we define the
discrete contour integral

∮ d

C

sδj(z) dz =
∑

e∈C

sδj(z(e))(e
+ − e−),

where z(e) is the vertex of H immediately to the left of the edge e = (e−, e+).

Proposition 3.10. In the setting of Thm. 3.5, if C is a discrete triangular
contour in Dδ of length L, then

∮ d

C

sδj+1(z) dz − ζ

∮ d

C

sδj(z) dz = O(δλL)

where λ is as in Thm. 3.7.

Proof. Let C◦ denote the points of δH inside C, and use 1+ ζ+ ζ2 = 0 to write
∮ d

C

sδj(z) dz = i
√
3
∑

w∈C◦

∑

z∼w,z /∈C◦

sδj(w)(z−w) = i
√
3
∑

w∈C◦

∑

z∼w,z∈C◦

sδj(w)(w−z).

This can be rewritten as
∑

{w,z}

(z − w)[sδj(z)− sδj(w)] =
∑

{w,z}

(z − w)[dzs
δ
j(w) − dws

δ
j(z)]

=
∑

w∈C◦

∑

z∼w

dzs
δ
j(w)(z − w) −

∑

w∈C◦

∑

z∼w,z /∈C◦

dzs
δ
j(w)(z − w) ≡ Sj − Ej .

Propn. 3.8 implies Sj+1 = ζSj while Ej = O(δλL), which proves the result.

3.4. Completing the proof

We can easily extend sδj to all of δH by setting sδj(z), z /∈ Dδ, to equal sδj(z
′)

where z′ is one of the hexagonal vertices inside Dδ closest to z. Let gδj denote
the extension to the closure of D by linear interpolation. We will prove Thm. 3.5
by showing that the gδj converge uniformly to the triple characterized by the
following lemma, due to Beffara:



178 N. Sun

Lemma 3.11 (Beffara [10]). Let D3 be a three-marked domain. There is unique
triple of continuous real-valued functions (h1, h2, h3) defined on the closure of
D satisfying the following two conditions:

(i) For any triangular contour C in D,
∮
C hj+1(z) dz = ζ

∮
C hj(z) dz.

(ii) For any z ∈ Aj, hj(z) = 0 and hj+1(z) + hj+2(z) = 1.

Moreover these functions are harmonic, hence a conformal invariant of D3.

Proof. Property (i) and Morera’s theorem give that f = h1 + ζh2 + ζ2h3 and
h = h1+h2+h3 are holomorphic, hence the hj are harmonic. Property (ii) and
the maximum principle then gives h ≡ 1.

On the arc Aj , property (ii) implies that f is a convex combination of ζj

and ζj+1. Thus, as z travels along ∂D, f(z) winds around ∂∆ where ∆ is the
equilateral triangle with marked vertices 1, ζ, ζ2. It follows from the argument
principle (see e.g. [113, Thm. 4.1]) that f is unique conformal equivalence of D3

with ∆. The result follows since the hj are uniquely determined by (f, h).

Proof of Thm. 3.5. It is clear that the gδj are uniformly bounded, and uniform
equicontinuity follows from the bound on the discrete derivatives (Propn. 3.8), so
the gδj have subsequential uniform limits by the Arzelà-Ascoli theorem. We must
show that any subsequential limit satisfies the characterization of Lem. 3.11.
Indeed, property (i) follows from Propn. 3.10 by approximating C with discrete
triangular contours, using uniform convergence to the limit and the uniform
equicontinuity of the gδj . Property (ii) is intuitively clear, and is easy to prove
rigorously using Thm. 3.7.

It follows that Φδ(Dδ
4) = gδ2(P

δ
4 ) converges to Φ(D4) = h2(P4), which is a

conformal invariant of D4 by Lem. 3.11. This concludes the proof of Smirnov’s
theorem.

Carleson noted that Cardy’s formula takes a particularly simple form when
the domain is an equilateral triangle. A consequence of the above proof is the
verification of this formula for critical percolation on T :

Cardy’s formula in Carleson’s form (Smirnov [105, 108], Beffara [10]). Let
D3 denote the three-marked domain obtained from D4 by forgetting P4, and f
the conformal equivalence D3 → ∆. Then Φ(D4) = x(D4) where x ≡ x(D4) is
defined by

f(P4) = xζ2 + (1− x).

Proof. For x ∈ A3(∆) write ∆x ≡ (∆; 1, ζ, ζ2, x): Thm. 3.5 implies

Φ(D4) = Φ(∆f(P4)) = h2(f(P4))

where (h1, h2, h3) is the triple on ∆ given by Lem. 3.11. But h1+ζh2+ζ
2h3 must

simply be the identity on ∆, so h2 is linear on A3(∆) and the result follows.

In forthcoming work Mendelson, Nachmias, Sheffield and Watson prove an
O(δǫ) bound on the rate of convergence to Cardy’s formula [83].

For two more percolation formulas of a similar nature see [40, 95, 104].
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3.5. The percolation exploration path

Let Dδ
2 ≡ (Dδ; aδ, bδ) be a two-marked domain, and suppose A+

1 , A
+
2 are colored

yellow, blue respectively. The percolation exploration path γδ is the portion
of the blue-yellow interface traveling from aδ to bδ. The purpose of the remainder
of this article is to prove the following:

Theorem 3.12 (Schramm [94], Smirnov [105, 108], Camia and Newman [31]).
Let γδ denote the percolation exploration path in the discrete domain Dδ

2. If
Dδ

2 converges uniformly to the two-marked bounded Jordan domain D2, then γ
δ

converges weakly to chordal SLE6 in D2.

Remark 3.13. For random variables on a separable metric space, there are
several equivalent ways to define convergence in law (weak convergence, con-
vergence in distribution): in our setting, a natural formulation is via the Sko-
rohod coupling theorem (more precisely, the generalization due to Dudley
[42]) which states that random variables converge in law if and only if they can
be defined on a joint probability space in which they converge almost surely.

In §4 we define SLE and give some characterizations of SLE6. §5 shows that
the γδ have subsequential weak limits. Finally, §6 shows that all subsequential
limits coincide with chordal SLE6, concluding the proof.

4. Schramm-Loewner evolutions

In this chapter we derive the chordal Loewner differential equation

ġt(z) =
2

gt(z)− ut
, g0(z) = z, ut = gt(γ(t))

for a self-avoiding (see Defn. 4.8 below) curve traveling from 0 to ∞ in H. We
then show that the SLE axioms imply that ut is a Brownian motion. We conclude
with a characterization of SLE6 which will be used in the proof of Thm. 3.12.
A fully rigorous treatment of SLE is beyond the scope of this article, but we
attempt to highlight the main points.

4.1. Normalizing the conformal maps

By conformal invariance it suffices to define chordal SLE for a single two-marked
domain, and it turns out a convenient choice is H2 ≡ (H; 0,∞). In this section
only, we take C with the spherical metric, so that H is a bounded domain
with compact closure H = H ∪ R. We will begin by describing the Loewner slit
mapping theorem for a simple curve γ traveling chordally in H2, and extend to
more general curves afterwards.

Recall that conformal automorphisms of a simply connected domain are de-
termined up to three real degrees of freedom, for example, the group of conformal
automorphisms of H is the group of Möbius transforms, AutH ∼= SL2 R (see e.g.
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[113, Thm. 2.4]). Thus conformal equivalences between two-marked domains are
not uniquely determined, so we must choose an appropriate normalization for
the maps gt.

From now on we write f . g if f/g is bounded by a (universal) constant, and
f ≍ g if both f . g and g . f .

4.1.1. Boundary behavior

We begin with a caution that while conformal maps are as nice as possible in
the interiors of domains, their good behavior does not necessarily continue up to
the boundary. The results of this section may be found in [90] which has much
more information on this subject.

Carathéodory’s theorem. Let f : D → D be a conformal map. The function
f has a continuous extension to D, which restricts to a bijection of C = ∂D with
∂D, if and only if ∂D is a Jordan curve.

Unfortunately, Carathéodory’s theorem does not apply in our main case of
interest, where D is a “slit” domain of the form H\γ[0, t]. We do, however, have
the following result:

Definition 4.1. The closed set A ⊆ C is called locally connected if for all
ǫ > 0 there exists δ > 0 such that, for any two points a, b ∈ A with |a− b| < δ,
we can find a continuum7 B ⊆ A with a, b ∈ B and diamB < ǫ.

Continuity theorem. Let f : D → D be a conformal map. The following are
equivalent:

(i) The function f has a continuous extension to D;
(ii) ∂D is a curve;
(iii) ∂D is locally connected;
(iv) C \D is locally connected.

This tells us that the maps are well-behaved at least in one direction, and
in the other direction more care is needed. In particular, the driving function
“ut = gt(γ(t))” is not a priori well-defined.

4.1.2. Half-plane capacity

We define a compact H-hull to be a bounded subset A ⊂ H with A closed in
H and H \ A simply connected (A itself is not required to be connected). The
radius of A, denoted radA, is the radius of the smallest closed disc centered at
the origin which contains A. Let Q denote the collection of compact H-hulls.

We will normalize a conformal map gA : H \ A → H by the requirement
that it behave “like the identity” near ∞. The following proposition makes this
precise:

7A nonempty compact connected subset of C.
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Proposition 4.2. For A ∈ Q, there is a unique conformal transformation
gA : H \A→ H such that

lim
z→∞

[gA(z)− z] = 0.

We say that gA has the hydrodynamic normalization.

Proof. The inversion map j : z 7→ −1/z is an element of AutH. D = j(H \A) ⊆
H is simply connected and contains the intersection of H with some neighbor-
hood of 0. By the Riemann mapping theorem and Carathéodory’s theorem,
there exists a conformal map φ : D → H with φ(0) = 0, extending continuously
to the boundary of D near 0. By Schwarz reflection (see [1, §4.6.5]) φ has a
power series expansion

φ(z) = a1z + a2z
2 + a3z

3 + · · ·

around 0 with a1 > 0 and ak ∈ R for all k, since φ maps the real line near 0 to
the real line. The map φ is determined up to composition with any element of
AutH ∼= SL2 R fixing 0, and a simple calculation shows that φ is fully determined
by the choice of a1 > 0, a2 ∈ R. Define gA(z) ≡ j ◦φ◦ j(z); its expansion around
∞ is

gA(z) ≡
−1

φ(−1/z)
=

z

a1
+
a2
a21

+

(
a22
a31

− a3
a21

)
1

z
+ · · · ≡ b−1z + b0 +

b1
z

+ · · · .

The result follows by choosing a1 = 1, a2 = 0.

Definition 4.3. If A is a compact H-hull, the half-plane capacity (from ∞)
of A is

hcapA = lim
z→∞

z [gA(z)− z] .

In the notation of the proof of Propn. 4.2, hcapA = b1 and

gA(z) = z +
hcapA

z
+O

(
1

|z|2
)

as z → ∞.

If r > 0 then grA(z) = rgA(z/r) so hcap(rA) = r2 hcapA, and if x ∈ R then
gA+x = gA(z − x) + x so hcap(A + x) = hcapA. If A,B ∈ Q with A ⊆ B then
gB = ggA(B\A) ◦ gA, and expanding gives

hcapB = hcapA+ hcap(gA(B \A)). (4.1)

This suggests that the half-plane capacity is a measure of the size of A, but
we have not yet shown that hcap is positive. The following result proves this
and gives a more precise characterization of the capacity in terms of Brownian
motion.

Proposition 4.4. Let A ∈ Q, Wt a Brownian motion started at z ∈ H \A, and
τ ≡ τH\A the leaving time of H \A. Then Im[z − gA(z)] = Ez(ImWτ ).
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Proof. By the hydrodynamic normalization, φ(z) = Im[z − gA(z)] is a bounded
harmonic function on H \A, and can be extended continuously to the boundary
by setting φ(z) = Im z for z ∈ ∂(H \A). Therefore φ(Wt∧τ ) is a martingale, and
the optional sampling theorem gives

φ(z) = Ezφ(Wτ ) = Ez[ImWτ ],

proving the result.

An immediate consequence is that

hcapA = lim
y→∞

yEiy [ImWτ ], (4.2)

which proves that hcap is positive. For example, g
D∩H

(z) = z+ z−1 so hcap(D∩
H) = 1, implying the general bound hcapA ≤ (radA)2. For more geometric
interpretations of hcap see [68].

We now state two results which will be used in the LDE derivation; the
proofs are deferred to §4.4. The first result is a uniform estimate on higher-
order remainder terms in the Laurent expansion of gA(z):

Proposition 4.5. There exists a constant c <∞ such that

∣∣∣∣gA(z)− z − hcapA

z

∣∣∣∣ ≤ c
(radA)(hcapA)

|z|2 (4.3)

for all |z| ≥ 2 radA.

The next result is a bound on the distortion of size under the maps gA.

Proposition 4.6. For A ∈ Q and B ⊂ H such that A ∪B ∈ Q,

diam gA(B) . [(diamB)(sup{Im z : z ∈ B})]1/2.

Assuming these results, in the next section we derive the LDE and use it to
define the Schramm-Loewner evolutions.

4.2. The Loewner differential equation and SLE

Returning to the original problem, let γ be a simple curve traveling from 0 to
∞ in H. Let

gt ≡ gγ(0,t], b(t) ≡ hcap γ(0, t].

Let gs,t ≡ ggs(γ(s,t]) so that gt = gs,t ◦ gs. The following is a consequence of
Propn. 4.6:

Corollary 4.7. The map gt can be extended continuously to ut ≡ gt(γ(t)) which
is real-valued and continuous in t with u0 = 0.
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Proof. Note that

‖gs − gt‖∞ = sup
z

|gs,t(z)− z| . diam gs(γ(s, t]), (4.4)

and Propn. 4.6 implies

diam gs(γ(s, t]) . [(diam γ[s, t])(diam γ[0, t])]1/2 (4.5)

Let wt ≡ lims↑t gs(γ(t)); (4.4) and (4.5) imply that w is well-defined and con-
tinuous in t. Given ǫ > 0, since γ is simple, there exists 0 < δ < ǫ such that if
0 ≤ s < t ≤ t0 and |γ(s)− γ(t)| < δ, then t − s < ǫ and diam γ[s, t] < ǫ. Let
B = Bδ(γ(t)) ∩ (H \ γ[0, t]): for any z ∈ B, there exists a simple curve γ̃ in B
of diameter < δ joining z to some γ(t′) ∈ Bδ(γ(t)) with t

′ < t, hence t− t′ < ǫ
and diam γ[t′, t] < ǫ. Then

|gt(z)− wt| ≤ |gt(z)− gt′(z)|+ |gt′(z)− gt′(γ(t))|+ |gt′(γ(t))− wt|
≤ ‖gt − gt′‖∞ + diam gt′(γ̃) + lim sup

s↑t
‖gt′ − gs‖∞,

which by (4.4) and (4.5) can be made arbitrarily small by taking ǫ ↓ 0. Therefore
ut = wt is continuous in t.

By (4.1) and (4.5), the set A = gs(γ(s, t])− us has half-plane capacity b(t)−
b(s) and radius rs,t which both approach zero as t− s ↓ 0. By reparametrizing,
suppose b is continuously differentiable. Propn. 4.5 gives

gt(z)− us = ggs(γ(s,t])−us
(gs(z)− us)

= [gs(z)− us] +
b(t)− b(s)

gs(z)− us
+O

(
rs,t[b(t)− b(s)]

|gs(z)− us|2
)
,

where the final term tends to zero faster than t − s as t − s ↓ 0. Rearranging
and taking t− s ↓ 0 gives

ġt(z) =
ḃ(t)

gt(z)− ut
, g0(z) = z.

The standard parametrization8 then sets b(t) = 2t, so that

ġt(z) =
2

gt(z)− ut
, g0(z) = z. (4.6)

This is the (chordal) Loewner differential equation (LDE) with driving
function ut.

In fact, the only place in the derivation where we used that γ was simple was
in the proof of Cor. 4.7. In fact, using Propn. 4.6 one can see that the LDE applies
to any continuously increasing hull process: a strictly increasing process
Kt ∈ Q with b(t) = hcapKt continuously differentiable, such that gt(Kt+δ)
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Fig 8: Vector field 2/[gD(z)− 2] around D

decreases to a single point ut ∈ R as δ ↓ 0 and ut is continuous in t. Fig. 8 shows
the vector field 2/[gD(z)− 2] (corresponding to Kt = D and ut = 2).

Conversely, given a continuous function ut : [0,∞) → R with u0 = 0, the
LDE with driving function ut is simply an ODE, so we can solve this ODE to
recover the increasing hull process: gt(z) is well-defined up to the first time Tz
that limt↑Tz

[gt(z) − ut] = 0. Consequently Kt = {z ∈ H : Tz ≤ t}, the set of
points “swallowed” by time t — note that multiple points can be swallowed at
once.

Definition 4.8. Let γ be any curve (not necessarily simple) traveling from 0
to ∞ in H. The filling of γ[0, t] is the set Kt ∈ Q of all z ∈ H not belonging to
the unbounded component of H \γ[0, t]. We call Kt the hull process generated
by γ, and say that γ is self-avoiding if Kt is continuously increasing.

By abuse of notation we write hcap γ[0, t] ≡ hcapKt: if γ is self-avoiding
then it has a parametrization with hcap γ[0, t] = 2t, in which case we say γ is
“parametrized by its half-plane capacity.” If a curve travels for a non-trivial time
interval into its past hull or along the domain boundary, its half-plane capacity
remains constant during this time so it is not parametrized by hcap. There are
also curves which may be parametrized by hcap but which do not generate a
continuously increasing hull process, specifically curves with transversal self-
crossings.

If the (hypothetical) random curve γ is to satisfy the SLE axioms, its driving
function must be a continuous process of stationary independent increments. By

8For a discussion of parametrization of SLE see [78].
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Lévy’s characterization of Brownian motion this implies ut = µt +
√
κWt, for

Wt a standard Brownian motion. If further the model has left-right symmetry
then µ = 0.

Definition 4.9. The Schramm-Loewner evolution on H2 with parameter κ
is the continuously increasing hull process given by the Loewner evolution (4.6)
with random driving function ut =

√
κWt.

The SLEκ on an arbitrary two-marked domain D2 is the image of SLEκ on
H2 under a conformal equivalence f : H2 → D2 (and hence is defined only up
to a linear time change). More generally, the SLEκ,ρ processes are generated by
Brownian motion with drift; see [39, 71, 100].

Unfortunately, there are continuously increasing hull process Kt not gener-
ated by any curve (see e.g. [72, §4.4]). That the hull process corresponding to
ut =

√
κWt is almost surely generated by a curve was proved for κ = 8 in [77]

and for κ 6= 8 in [92] (see [72, Ch. 7]). We do not need this fact because we will
show that the percolation exploration path converges in law to a conformally
invariant random curve satisfying a property which uniquely characterizes SLE6

among the SLEκ (hull) processes. This implies a fortiori that SLE6 is generated
by a curve.

4.3. Characterization of SLE6

We now present the characterization of SLE6 used by Camia and Newman in
identifying the scaling limit of the exploration path.

First, the following result, noted by Schramm in [94, §1] and proved in [73],
indicates why SLE6 is the natural candidate. Let N = H ∩N0 for N0 an open
neighborhood of 0, and let Φ be a locally real conformal map of N into H

(that is, in some neighborhood of 0, Φ has a power series expansion with real
coefficients). Consider running an SLEκ process γ until the first time τ that it
leaves N : the process is said to have the locality property if Φγ (before time
τ) again has the law of SLEκ up to a time change.

Theorem 4.10 (Lawler, Schramm, Werner [71, 73]). The only SLEκ with the
locality property is SLE6.

Proof. We follow the proof of [72]. For γ an SLEκ process, let Kt denote the
filling of γ[0, t], and letN∗ = ΦN , γ∗ = Φγ,K∗

t = ΦKt, b
∗(t) = hcap γ∗[0, t]. Let

g∗t denote the conformal mapH\K∗
t → H with the hydrodynamic normalization,

and let Φt ≡ g∗t ◦ Φ ◦ g−1
t , so that

ġ∗t (z) =
ḃ∗(t)

g∗t (z)− u∗t
, g∗0(z) = z,

with u∗t = Φt(ut).
We leave it to the reader to verify that ḃ∗(t) = 2Φ′

t(ut)
2. Therefore, we can

easily calculate that for z ∈ H,

Φ̇t(z) = 2

[
Φ′

t(ut)
2

Φt(z)− u∗t
− Φ′

t(z)

z − ut

]
.
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Letting z → ut, we find Φ̇t(ut) = −3Φ′′(ut). Thus, by Itō’s lemma,

du∗t = Φ̇t(ut) dt+ Φ′
t(ut) dut +

1

2
Φ′′

t (ut)κ dt

=
[
−3 +

κ

2

]
Φ′′

t (ut) dt+Φ′
t(ut)dut,

which is a martingale if and only if κ = 6. In this case it follows that γ∗ is again
an SLE6 process.

Any scaling limit of the percolation exploration path is certainly expected
to have the locality property, so (heuristically) Thm. 4.10 already distinguishes
SLE6 as the only possible candidate for the scaling limit of the exploration path.

To rigorously identify the scaling limit with SLE6 we take a slightly different
approach: recall §2.2 where we noted that from the conformal invariance of
the Brownian hitting distribution, one can deduce the conformal invariance of
the entire Brownian trajectory (up to reparametrization) by taking polygonal
approximations.We now apply this idea to give a characterization of SLE6 which
we will then verify in the percolation scaling limit.

By conformal invariance it suffices to characterize SLE6 in H2. For γ any
self-avoiding curve traveling chordally in H2 and parametrized by hcap, define

τ(γ, ǫ) ≡ inf{t ≥ 0 : γ(t) /∈ Bǫ};

note τ(γ, ǫ) ≤ ǫ/2. Let τ0 = 0, and for j ≥ 1 let

τj = τj−1 + τ(ḡτj−1
γ, ǫ), ḡt(z) ≡ gt(z)− ut.

Define the polygonal approximation γǫ by setting γǫ(τj) = γ(τj) and interpolat-
ing linearly in between. Since γ is continuous on [0,∞] it is uniformly continuous,
and since τj − τj−1 ≤ ǫ/2 for all j it follows that γǫ → γ uniformly as ǫ ↓ 0.
Thus a deterministic γ is characterized by its polygonal approximations γǫ, and
a random γ is characterized by the laws of these approximations.

For fixed ǫ > 0, call K̃j ≡ ḡτj−1
Kτj (j ≥ 1) the ǫ-filling sequence for

γ. Then ḡτj−1
γǫ(τj) is the unique point of intersection of K̃j with Cǫ, and by

composition of conformal mappings γǫ is determined by the ǫ-filling sequence.
But if γ is a random SLE curve, the domain Markov property implies that its
ǫ-filling sequence is i.i.d., characterized by the law of K̃1.

SLE6 is the unique SLEκ for which this law is given by Cardy’s formula,
another fact noted in [94, §1] and proved in [73]. We will formulate this result
as follows: in a 2-marked domain D2 ≡ (D; a, b) let J be a simple curve joining
c ∈ ab, d ∈ ba. We refer to J as a crosscut; it separates D into subdomains D0

(incident to a) and D∞ (incident to b), and we consider running a self-avoiding
curve from a until it exits D0, resulting in a hull K(D2, J). Let αc be a simple
curve traveling from αc0 ∈ ac to αc1 ∈ J , and let αd be a simple curve traveling
from αd0 ∈ da to αd1 ∈ J , with αc ∩ αd = ∅. Let Dα

0 denote the connected
component of D0 \ (αc∪αd) between αc and αd. (See Fig. 9.) Specifying the law
of the hull K is equivalent to specifying the law of its boundary, regarded as an
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Fig 9: Crosscut and hull distribution

element of CD. Excluding events of probability zero, the σ-algebra is generated
by the events

Eα ≡ {K : K ⊆ Dα
0 }.

Theorem 4.11 (Lawler, Schramm, Werner [73, Thm. 3.2]). For the setting
described above, SLE6 is the unique SLEκ for which the law of K(D2, J) is
determined by Cardy’s formula:

P
SLE6(Eα) = Φ(Dα

0 ; a, αc0, αc1, αd0)− Φ(Dα
0 ; a, αc0, αc1, αd0). (4.7)

We omit the proof and refer the reader to [73] and [72, §6.7]. The proof for the
equilateral triangle (which is sufficient for our purposes) is particularly simple
and may be found in [72, §6.8] or [117, §3.8].

The main consequence of this discussion is the following result which will be
used in §6 to identify the scaling limit of the exploration path.

Proposition 4.12. If γ is a self-avoiding curve such that for all ǫ > 0 the
ǫ-filling sequence is i.i.d. with law given by Cardy’s formula (4.7), then γ is
SLE6.

4.4. Capacity estimates for the LDE

In this section we prove Propn. 4.5 and Propn. 4.6, completing the derivation
of the LDE. We place both results under the heading of “capacity estimates”
because they are proved by estimating hitting probabilities of Brownian motion.
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Lemma 4.13. Let D ≡ H \ D, and let Wt be Brownian motion started in D
and stopped at τ ≡ τD. If p(z, w) denotes the density of Wτ on ∂D with respect
to Lebesgue measure, then

p(z, eiθ) =
2

π

Im z

|z|2 sin θ(1 +O(|z|−1)). (4.8)

Consequently, if radA ≤ 1 then

hcapA =
2

π

∫ π

0

Eeiθ [ImWτH\A
] sin θ dθ. (4.9)

Proof. Recall the Poisson integral formula for H given in (2.2). If f is a bounded
continuous function on ∂D with f = 0 outside of ∂D, then

Ez[f(Wτ )] = PDf(z) = PH(f ◦ ϕ−1)(ϕ(z)),

where ϕ(z) = z + 1/z maps D conformally onto H. In particular ϕ maps eiθ to
2 cos θ ∈ [−2, 2], so

Ez[f(Wτ )] =
1

π

∫ 2

−2

QImϕ(z)(t− Reϕ(z))f ◦ φ−1(t) dt

=
2

π

∫ π

0

QImϕ(z)(2 cos θ − Reϕ(z))f(eiθ) sin θ dθ.

(4.8) then follows since Reϕ(z) = (1+|z|−2)Re z and Imϕ(z) = (1−|z|−2) Im z.
Next, by Propn. 4.4 and the strong Markov property for Brownian motion, if
radA ≤ 1 and |z| > 1 then

Im[z − gA(z)] =
2

π

Im z

|z|2
∫ π

0

Eeiθ [ImWτH\A
] sin θ(1 +O(|z|−2)) dθ. (4.10)

Taking z = iy and taking y ↑ ∞ gives (4.9).

Proof of Propn. 4.5. By scaling we may assume radA = 1. For z ∈ H \ A, let
h(z) ≡ gA(z)− z − hcapA/z and consider

v(z) ≡ Imh(z) = Im[gA(z)− z] + hcapA
Im z

|z|2 .

By (4.9) and (4.10), there exists a constant c <∞ such that

|v(z)| ≤ c
Im z

|z|3 hcapA.

On the other hand, if Br(z) ⊂ H \A, the Poisson integral formula (2.1) for the
disc gives

v(w) =
1

2π

∫ 2π

0

Re

(
R+ (w − z)

R− (w − z)

)
v(z +Reiϕ) dϕ, w ∈ Br(z),
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and differentiating we find that for z sufficiently far away from A (say |z| ≥ 2),

∣∣∣∣
∂v

∂x
(z)

∣∣∣∣,
∣∣∣∣
∂v

∂y
(z)

∣∣∣∣ ≤ c
hcapA

|z|3 .

It follows by the Cauchy-Riemann equations that |h′(z)| ≤ c(hcapA)/|z|3, and
since limr→∞ h(reiθ) = 0 we can integrate from ∞ to bound h(reiθ):

|h(reiθ)| =
∣∣∣∣
∫ ∞

y

h′(teiθ) dt

∣∣∣∣ ≤ c
hcapA

r2
,

which concludes the proof.

It remains to prove Propn. 4.6, which is done by relating the size of sets to
hitting probabilities of Brownian motion. For B a subset of H and A ∈ Q, define
the capacity of B relative to A by

capH(B;A) ≡ lim
y→∞

yPiy(W [0, τH\A] ∩B 6= ∅).

We call capH(B) ≡ capH(B;∅) the capacity of B. This capacity scales as
capH rB = r capHB, and has the following invariance property: for B′ ⊆ H, let
gA(B

′) denote the pre-image of B′ under the continuation of g−1
A to H. Then:

Lemma 4.14. For A ∈ Q, capHA = capH Â = π−1 len Â where Â = gA(A) is
an interval in R.

Proof. Let σ ≡ τH. If Â is any interval in R, the Poisson integral formula (2.2)
for H gives

yPiy(Wσ ∈ Â) =
1

π

∫

Â

y2

(t− x)2 + y2
dt,

which tends to π−1 len Â as y → ∞. For A ∈ Q, by the conformal invariance of
Brownian motion, capHA = limy→∞ yPgA(iy)(Wσ ∈ Â). By the hydrodynamic
normalization gA(iy) = uA(iy) + ivA(iy) = iy +O(y−1), therefore

capH A = lim
y→∞

yPvA(iy)(Wσ ∈ Â− uA(iy)) = lim
y→∞

yPiy(Wσ ∈ Â) = capH Â,

which concludes the proof.

An immediate consequence is that capHA ≍ diamA, so to prove Propn. 4.6
it suffices to estimate the capacity of gs(γ(s, t]). To this end, here is a simple
consequence of Lem. 4.14:

Corollary 4.15. Let A ∈ Q, B ⊂ H such that A′ ≡ (A ∪ B) ∩ H ∈ Q. Then
capH(B;A) = capH gA(B).

Proof. Let σ ≡ τH. By the conformal invariance of Brownian motion,

capH(B;A) = lim
y→∞

yPgA′(iy)(Wσ ∈ gA′(B)) = lim
y→∞

yPiy(Wσ ∈ gA′(B)),
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where the second identity follows from the calculation of Lem. 4.14. Since gA′ =
g̃ ◦ gA where g̃ = ggA(A′\A), it follows similarly that

capH gA(B) = lim
y→∞

yPg̃(iy)(Wσ ∈ g̃ ◦ gA(B)) = lim
y→∞

yPiy(Wσ ∈ gA′(B)),

which proves capH(B;A) = capH gA(B).

The intersection probabilities of Brownian motion can be estimated by the
following very useful result:

Theorem 4.16 (Beurling estimate). Suppose 0 < r1 < r2 <∞ and γ : [0, 1] →
C is a curve from Cr1 to Cr2 . Then

Pz(W [0, τBr2
] ∩ γ = ∅) . (r1/r2)

1/2, |z| ≤ r1,

Pz(W [0, τ
C\Br1

] ∩ γ = ∅) . (r1/r2)
1/2, |z| ≥ r2.

For a proof see [72, §3.8]. This estimate allows us to prove the main lemma:

Proof of Propn. 4.6. Write d ≡ diam γ and r ≡ sup{Im z : z ∈ B}: by scaling it
suffices to show capH gA(B) . d1/2 when r = 1, d < 1/2 (say). By Cor. 4.15,

capH gA(B) = capH(B;A) = lim
y→∞

yPiy(W [0, τ ] ∩B 6= ∅), τ ≡ τH\A.

Fix z0 ∈ B. For large y, Piy(W [0, τ ] ∩ B1(z0) 6= ∅) . c/y (e.g. by Lem. 4.14).
Once the Brownian motion enters B1(z0), the probability that it intersects B
before leaving H \A is bounded above by the probability that it enters B2d(z0)
before leaving H \A. This is . d1/2 by Thm. 4.16 so the result follows.

The results of this section concerned the hypothetical scaling limits of random
curves arising in discrete physical models such as LERW and percolation. We
return in the next two sections to the proof of Thm. 3.12.

5. Scaling limits

In this section we present a result of Aizenman and Burchard [5] which guar-
antees the existence of subsequential weak limits for the percolation exploration
paths γδ in discrete domains Dδ

2 converging to a limit D2. The next section
presents the work of Smirnov and Camia and Newman which pins down the
limit to be SLE6. Throughout this section we assume that D is a bounded
domain in Rd; without loss diamD ≤ 1.

5.1. Systems of random curves

Recall Defn. 3.3 of the space of curves C with the uniform metric dU ; this is a
complete separable metric space. Given a bounded domain D, let CD denote the
subspace of C of curves traveling in the closure of D. To formalize the notion of
a “discrete curve,” let Cδ

D denote the subspace of CD of polygonal curves of step
size δ.
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Definition 5.1. A curve configuration is a closed subset of CD; it is a δ-
curve configuration if it is contained entirely in Cδ

D. Denote the space of
curve configurations by ΩD and the space of δ-curve configurations by Ωδ

D.

A metric on ΩD is given by the Hausdorff metric induced by the metric dU
on CD: for F, F ′ ∈ ΩD, the Hausdorff distance dH(F, F ′) between them is the
smallest ǫ > 0 such that each is contained in the ǫ-neighborhood of the other
(with respect to dU). With this metric, the completeness and separability of CD
is passed on to ΩD.

In this section we study (random) systems of configurations, collections
F = (F δ)0<δ≤δ0 of random variables where the law Pδ of F δ is a probability
measure on ΩD (with the Borel σ-algebra) with support contained in Ωδ

D.
The aim is to specify a regularity condition, verifiable in the percolation

setting, which implies precompactness of {Pδ} in the weak topology: this means
that along any sequence δ → 0 we can extract a subsequence δn with P

δn

converging weakly to a limiting measure on ΩD. In view of Thm. 3.7, it is
natural to seek a regularity condition formulated in terms of crossings of annuli.
Let A (x; r, R) ≡ BR(x) \Br(x).

Definition 5.2. Let k ∈ N, 0 < r < 1, η > 0, x ∈ D. A curve γ ∈ CD has a
k-fold crossing of power η and scale r (for short, a (k, η, r)-crossing) at x
if the annulus A

(
x; r1+η , r

)
is traversed by k separate segments of γ.

Let E(k, η, r) denote the set of F ∈ ΩD exhibiting a (k, η, r)-crossing (i.e.,
such that some γ ∈ F has a (k, η, r)-crossing).

Definition 5.3. Let (F δ)0<δ≤δ0 be a system of configurations specified by laws
(Pδ)0<δ≤δ0 . We say the system has uniform crossing exponents if for all k ∈
N there exist constants ck, λk <∞ with λk → ∞ such that for any 0 < r < 1,

P
δ[E(k, η, r)] ≤ ckr

−λkη.

Theorem 5.4 (Aizenman, Burchard [5]). Let (F δ)0<δ≤δ0 be a system of con-
figurations specified by laws (Pδ)0<δ≤δ0 . If the system has uniform crossing ex-
ponents, then the family {Pδ} is precompact.

Here is the application to our problem of interest: let F δ be the percola-
tion configuration on the discrete domain Dδ

2, regarded as the collection of all
interface curves not including the domain boundary.

Corollary 5.5. Let Dδ
2 be discrete domains converging uniformly to the two-

marked domain D2 (with the spherical metric). If Pδ is the law of the percolation
configuration F δ then the family {Pδ} is precompact.

Proof. Thm. 3.7 implies the existence of a 1-arm crossing exponent λ1, and
the BK inequality implies the k-arm crossing exponent λk = kλ1, so the result
follows from Thm. 5.4.

Each F δ has a distinguished curve γδ (the exploration path), and by applying
Thm. 5.4 again we can extract a further subsequence along which γδ converges
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weakly to a limit curve γ. Consequently, to prove Thm. 3.12 it remains to identify
any such limit γ as an SLE6 curve. This will be done in the next section using
the characterization of Propn. 4.12.

We turn now to the proof of Thm. 5.4. By Prohorov’s theorem (see e.g. [18])
it suffices to show that the family is tight, i.e. that for all ǫ > 0 there exists
K ⊂ ΩD compact such that Pδ(K) ≥ 1− ǫ for all δ. Compactness in ΩD can be
characterized as follows:

Lemma 5.6. If K is a closed subset of ΩD such that the union of all K ∈ K is
contained in some K0 ⊂ CD compact, then K is compact.

Proof. By elementary topology, if (S, d) is a compact metric space then the
space H(S) of closed subsets of S taken with the Hausdorff metric dH is also
compact (see e.g. [88, p. 280]). Under the hypothesis, K is a closed subset of the
compact space (H(K0), dH) and hence is compact.

Compactness in CD is in turn characterized by the Arzelà-Ascoli theorem, so
to prove tightness it suffices to prove an equicontinuity bound which holds with
probability ≥ 1 − ǫ under each P

δ. Towards this end, the next section relates
Hölder continuity to annuli crossings.

5.2. Hölder, tortuosity, and dimension bounds

The optimal Hölder exponent of a curve γ, denoted α(γ), is the supremum
of all α > 0 such that γ admits a parametrization which is Hölder continuous
with exponent α — i.e., such that

|γ(s)− γ(t)| ≤ cα|s− t|α ∀s, t ∈ [0, 1]

for some constant cα <∞. Inverting this relation gives the equivalent condition

|s− t| ≥ c′α|γ(s)− γ(t)|1/α ∀s, t ∈ [0, 1]. (5.1)

That is, if two points on the curve are a certain distance apart, Hölder continuity
puts a lower bound on their time difference. Motivated by this observation, let
Mr(γ) denote the minimal n such that γ can be partitioned into n segments
of diameter ≤ r; this is a measure of the curve’s “tortuosity.” The tortuosity
exponent of γ is defined as

τ(γ) ≡ inf

{
s > 0 : lim

r↓0
rsMr(γ) = 0

}

Proposition 5.7. For γ ∈ CD, α(γ) = 1/τ(γ).

Proof. If ψ is an increasing homeomorphism of [0, 1] such that ψ(|γ(t1)−γ(t2)|) ≤
|t1 − t2| whenever |γ(t1) − γ(t2)| ≤ 1, then certainly Mr(γ) ≤ ⌈1/ψ(r)⌉ for all
0 < r ≤ 1, and it follows that τ(γ) ≤ α(γ)−1.
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Suppose conversely that Mr(γ) ≤ 1/ψ(r) for 0 < r ≤ 1. For a curve η ∈ CD,
define

t̃(γ) ≡
∑

n≥0

ψ(rn)Mrn(γ)

(n+ 1)2
, rn ≡ 2−n.

Take an auxiliary parametrization γ0 for γ, and consider

t(u) ≡ t̃(γu)

t̃(γ)
, 0 ≤ u ≤ 1.

(Notice t̃(γ) ≤ 2 by the assumed bound on Mr(γ)). Then t : [0, 1] → [0, 1]
is a strictly increasing right-continuous function. Its generalized inverse u is
continuous, so we may reparametrize γ(t) = γ0(u(t)). Let r = |γ(s)− γ(t)| for
s < t: then Mrn(γt)−Mrn(γs) ≥ 1 for all rn ≤ r, i.e. for all n ≥ log2(1/r), so

t− s ≥ ψ(r)

2(log2(1/r) + 1)2
.

This implies α(γ) ≥ τ(γ)−1 which concludes the proof.

Tortuosity in general is difficult to compute or estimate, but under regularity
conditionsMr(γ) can be bounded by quantities which depend only on the curve’s
trace, the set {γ(t) : t ∈ [0, 1]}. For example, let Nr(γ) denote the minimal n
such that the trace of γ can be covered by n sets of diameter r. The upper box
dimension or Minkowski dimension of the curve is

dimB(γ) ≡ inf

{
s > 0 : lim

r↓0
rsNr(γ) = 0

}
.

Trivially Nr(γ) ≤ Mr(γ) so dimB ≤ τ . Further it is easy to see that if r′ < r
then

Nr′(γ) ≤ Nr(γ)⌈r/r′⌉d,
so dimB ≤ d while τ is unbounded.

Recall Defn. 5.2 of a (k, η, r)-crossing. Let us say that a curve γ has the
tempered crossing property if for all 0 < η < η0 there exist k, r0 (both
depending on η) such that γ exhibits no (k, η, r)-crossings.

Proposition 5.8. If γ ∈ CD exhibits no (k, η, r)-crossings then

M2r(γ) ≤ kNr1+η(γ). (5.2)

Consequently, if γ has the tempered crossing property then dimB(γ) = τ(γ).

Proof. We already noted dimB ≤ τ so it remains to prove the reverse inequality.
Fix η > 0 and let k, r be as given by the tempered crossing property. Partition
the curve as follows: set t0 = 0, and for j > 0 let

tj = inf{t > tj−1 : |γ(t)− γ(tj−1)|} ≥ 2r,
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provided this time is well-defined. If γ does not leave B2r(γ(tj−1)), terminate
by setting tj = 1.

The number of segments is an upper bound forM2r(γ). Consider any covering
of γ by balls of radius r1+η: since γ has no (k, η, r)-crossings and |γ(tj)− γ(tj−1)| ≥
2r, each ball can contain at most k of the points γ(tj). This implies (5.2), and
so τ(γ) ≤ (1 + η)dimB(γ). The result for a curve with the tempered crossing
property follows by taking η ↓ 0.

5.3. Proof of tightness

We now prove Thm. 5.4. Recall (F δ)0<δ≤δ0 is a system of configurations specified
by laws (Pδ)0<δ≤δ0 .

Lemma 5.9. Under the hypotheses of Thm. 5.4, for all ǫ, η > 0 there exist k, r0
such that

P
δ[F δ ∈ E(k, η, r) for some r ≤ r0] < ǫ

for all 0 < δ ≤ δ0.

Proof. Suppose F δ has a (k, η, r)-crossing at x0 ∈ D for r ≤ 4−1/η. If x is any
point in Br1+η/2(x0), then F δ exhibits a k-fold crossing of A

(
x; 2r1+η, r/2

)
,

hence also of A
(
x; 2r1+η

n , rn+1/2
)
where rn+1 < r ≤ rn (rn ≡ 2−n). Applying

the crossing exponent hypothesis for shells A
(
x; 2r1+η

n , rn+1/2
)
centered at an

r1+η
n /2-net of points x ∈ D gives

P
δ[F δ ∈ E(k, η, r) for some rn+1 < r ≤ rn] ≤ c′k

rηλk

r(1+η)d
.

Choose k large enough (depending on η) so that the exponent on r is positive,
and sum over scales rn ≤ r0 to conclude the result.

Define the random variables

N δ(r, R) ≡ sup{Nr(γ) : γ ∈ F δ, diam γ ≥ R}.

For each δ, N δ(r, R) is nonincreasing in r, R.

Lemma 5.10. Under the hypotheses of Thm. 5.4, the random variables

Xδ ≡ sup
R

sup
r≤R

N δ(r, R)rd

(r/R)λ
ℓ(r),

where λ ≡ λ1 and ℓ is a polylogarithmic factor, are stochastically bounded.

Proof. Since D is a bounded domain, it suffices to obtain a bound over all
scales 0 < r ≤ R ≤ 1. For r > 0 let Πr denote the standard grid partition of Rd

into rectangles of diameter r. For r ≤ R let Ñ δ(r, R) denote the number of sets

B ∈ Πr meeting some curve in F δ of diameter ≥ R; clearlyN δ(r, R) ≤ Ñ δ(r, R).
For each B ∈ Πr let xB be a point such that B ⊆ Br/2(xB). If B ∈ Πℓ

meets a curve of diameter ≥ R, we must have a crossing of the spherical shell
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A (xB ; r/2, R/2), which by hypothesis occurs with probability≤ c1(r/R)
λ. Sum-

ming over the ≍ r−d sets in Πr gives

Eδ[Ñ
δ(r, R)] ≤ cr−d(r/R)λ.

To obtain a bound over all scales, let

U δ ≡
∑

m≥0

1

(m+ 1)2

∑

n≥m

1

(n+ 1)2
Ñ δ

rn,Rm

E[Ñ δ
rn,Rm

]
, rn ≡ 2−n, Rm ≡ 2−m.

Eδ[U
δ] = 1 so the U δ are stochastically bounded by Markov’s inequality. If

Rm ≤ R < Rm−1 and rn ≤ r < rn−1 then

Ñ δ(r, R) ≤ Ñ δ(rn, Rm) ≤ U δ(n+ 1)4E[Ñ δ(rn, Rm)]

≤ U δ[log2(1/r) + 2]4r−d(r/R)λ.

This bound holds simultaneously for all r ≤ R so the result follows.

Proof of Thm. 5.4. We can always decrease the λk, so assume without loss that
λ < d. Let ǫ, η > 0, and let k, r0 be as given by Lem. 5.9, so that the bound
(5.2) holds with Pδ-probability > 1 − ǫ for all 0 < δ ≤ δ0. Then by Lem. 5.10
there exists C <∞ such that

Mr(γ) ≤
C

(diam γ)λ
ℓ(r1+η)

r(1+η)(d−λ)
∀r ≤ diam γ, ∀γ ∈ F δ

holds with Pδ-probability ≥ 1 − 2ǫ for all 0 < δ ≤ δ0. Inverting this (as in the
proof of Propn. 5.7) gives the Hölder bound

|γ(s)− γ(t)| ≤ Cℓ(r)g(diam γ)|s− t|1/[(1+η)(d−λ)], (5.3)

where ℓ is a (different) polylogarithmic factor and g(R) ≡ R−λ/[(1+η)(d−λ)].
Interpolating between this and the trivial bound |γ(s)− γ(t)| ≤ diamγ gives

|γ(s)− γ(t)| ≤ Cℓ(r)|s − t|1/[(1+η)(d−λ)+λ].

Thus we have found a Hölder continuity bound holding with Pδ-probability ≥
1−2ǫ for all 0 < δ ≤ δ0, and tightness follows by the Arzelà-Ascoli theorem.

Remark 5.11. Notice that (5.3), Propn. 5.7, and the relation dimB ≤ τ imply
that the limiting curves have Minkowski dimension strictly less than d.

6. Limit of the exploration path

In this final section we present a proof of Thm. 3.12. Our exposition is based on
the work of Binder, Chayes, and Lei [19, 20] and of Camia and Newman [31].

By the results of §5, the set of laws Pδ of the percolation configurations
(regarded as curve configurations) is precompact: from any sequence δ ↓ 0 we
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can extract a further sequence along which Pδ converges weakly, to a limit which
depends a priori on the particular subsequence. It remains therefore to uniquely
identify the weak limits, which will be done in §6.2 using the characterization
of Propn. 4.12. Before doing this, however, we need to address some issues
concerning discrete approximation for k-marked domains which were ignored in
§3 (see Rmk. 3.6): this is the topic of §6.1.
Remark 6.1. Whenever we have a precompact family of probability measures
on a separable space we will assume that we work within a weakly convergent
subsequence, and further, by the Skorohod coupling theorem (see Rmk. 3.13),
that this sequence has an a.s. convergent coupling.

Specifically, by Cor. 5.5 and the subsequent comments, we may assume that
along our subsequence F δ → F with respect to the Hausdorff metric on ΩD,
and that γδ → γ uniformly.

6.1. Admissible domains and discrete approximation

Recall the notation for k-marked domains introduced in Defns. 3.1 and 3.2.
Clearly, even if D2 is restricted to be a Jordan domain, to prove this result one
needs to consider more generally the “slit domains” (D \Kt; γ(t), b), where Kt

is the filling of γ[0, t] (see §4.2). A useful notion here is that of prime end, first
introduced by Carathéodory [32]. We omit a formal definition (see [45, 90]),
but roughly speaking a prime end of D is a “conformal boundary point” — it
may not be a boundary point itself, but it “corresponds” to a boundary point
of D under conformal mappings D → D. For example, if D = D \ [0, 1], the
point 1/2 “splits” into two distinct prime ends: any conformal map D → D has
a continuous extension to the unit circle by Carathéodory’s theorem, and two
distinct points will map to 1/2.

Definition 6.2. A (generalized) k-marked domain means a domain D
whose boundary ∂D is a continuous closed curve η : [0, 1] → C, with marked
prime ends Pi = η(ti) for 0 = t1 ≤ · · · ≤ tk ≤ 1. The domain is admissible if η
is simple on each [ti, ti+1].

A rather more subtle point is that we need in addition a more general notion
of discrete approximation than that of Defn. 3.4. A natural form of convergence
for complex domains is Carathéodory convergence: for complex domains Dn, D
it is said that Dn converges to D in the Carathéodory sense if

(i) z ∈ D implies z ∈ lim inf Dn, and
(ii) zn /∈ Dn, zn → z implies z /∈ D.

Note that a single sequence can have multiple Carathéodory limits, for example
the doubly slit domain C\ ((−∞, 1/n]∪ [1/n,∞)) converges to both H and −H.

Carathéodory kernel theorem. Let Dn, D complex domains. There exist
conformal maps fn : H → Dn, f : H → D with fn → f locally uniformly in H

if and only if Dn → D in the Carathéodory sense.
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However, as noted in [20], Carathéodory convergence is insufficient for the
verification of Cardy’s formula because of boundary issues. This motivates the
following (stronger) definition of domain convergence:

Definition 6.3. Let Dδ
k, Dk be admissible k-marked domains. We say Dδ

k con-
verges conformally to Dk, denoted D

δ
k  Dk, if each A

δ
j converges uniformly

to a curve A⋆
j traveling from Pj to Pj+1 such that

(i) Aj ⊆ A⋆
j ⊂ C \ (D ∪ (

⋃
ℓ 6=j Aℓ)) (as sets), and

(ii) both A⋆
j and its reverse are self-avoiding.9

Conformal convergence is weaker than the uniform convergence of Defn. 3.4
because we only require A⋆

j to agree with Aj from the “perspective” of the do-
main interior; A⋆

j is allowed to make excursions away from ∂D. We leave the
reader to verify that the proof of Thm. 3.5 also implies the following general-
ization:

Theorem 6.4. Let Dδ
4 be discrete four-marked domains converging conformally

to the bounded admissible domain D4. Then

Φ(Dδ
4) → Φ(D4),

where Φ(D4) denotes the evaluation of Cardy’s formula for D4.
10

6.2. Convergence of slit domains

We turn finally to the verification of the conditions of Propn. 4.12, which will be
done in an inductive manner as follows: let Dδ

2 be discrete domains converging
conformally to the bounded admissible domain D2 (again, here D is thought of
as the original domain minus the filling up to some time t). Let J be a crosscut
of D2 joining c ∈ ab to d ∈ ba, and let K ≡ K(D2, J). Take conformal maps
f δ : H2 → Dδ

2, f : H2 → D2 with f
δ → f locally uniformly on H2 as given by the

Carathéodory kernel theorem, and let Jδ ≡ f δ ◦ f−1(J). Consider running the
discrete curve γδ until the first time τδ that it reaches a hexagonal vertex on the
other side of Jδ from the initial point. The discrete filling Kδ ≡ Kδ(Dδ

2, J
δ)

is the smallest simply connected closed set containing the union of all hexagons
explored up to time τδ.

By Rmk. 6.1, we always work along a subsequence with F δ → F in ΩD

and γδ → γ uniformly. In fact, we assume (passing to a further subsequence
as needed) that the discrete filling boundaries ∂Kδ converge uniformly to a
curve η. Note that η need not agree with ∂K — in fact, from our definition of
conformal convergence, it need not even lie entirely in D! The following is the
main content of the inductive step:

9Formally, we mean that there exists a domain D ⊂ D′ ⊂ C \
⋃

ℓ 6=j Aℓ such that both A⋆
j

and its reverse travel chordally in D′, and are self-avoiding in the sense of Defn. 4.8.
10Note that Cardy’s formula still makes sense because we marked prime ends on the

boundary of D4.
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Proposition 6.5. In the setting described above, almost surely γ, η are self-
avoiding, (Dδ \Kδ; γ(τδ), bδ)  (D \K; γ(τ), b), and the law of K is given by
Cardy’s formula.

As a first step, we show that the stopping rules determined by J and Jδ are
consistent:

Lemma 6.6. In the setting of Propn. 6.5, parametrize γ by hcap and parametrize
γδ so that supt |γδ(t)− γ(t)| → 0. Then τδ → τ .

Proof. If τδ fails to converge to τ as δ ↓ 0 this means that the curves γδ approach
arbitrarily closely a point z0 ∈ Jδ without crossing, then travel a constant-order
distance away (so that capacity increases) before eventually crossing Jδ. This
implies that for some ǫ > 0 and for all ǫ′ < ǫ, if we condition on the first time
that γδ comes within distance ǫ′ of Jδ and let zδ0 denote the nearest point on
Jδ, the curve will exit the annulus A

(
zδ0 ; ǫ

′, ǫ
)
without crossing Jδ. For fixed ǫ

this probability decreases to zero as ǫ′ ↓ 0 (e.g. by Thm. 3.7), and taking ǫ ↓ 0
proves τδ → τ .

We now show that curves in the (subsequential) limiting percolation config-
uration are almost surely self-avoiding. The general method for proving such
results (see e.g. [6]) is via a priori estimates on crossing events. By a non-
monochromatic k-arm crossing we mean k disjoint crossings not all of the
same color. Here is the estimate we will use to control the behavior of γ in the
domain interior:

Lemma 6.7 (Kesten, Sidoravicius, Zhang [67, Lem. 5]). The Pδ-probability
of a non-monochromatic five-arm crossing of A (z; r, R) is ≍ (r/R)2 for all
R/r, δ/r ≥ c. Consequently the Pδ-probability of a non-monochromatic six-arm
crossing of A (z; r, R) is . (r/R)2+λ, where λ is as in Thm. 3.7.

For the proof of the five-arm exponent see [67]; the six-arm exponent follows
directly from Thm. 3.7 and the BK inequality. Controlling the behavior of γ at
the domain boundary is more subtle, and the following is the estimate we will
require:

Lemma 6.8 (Lawler, Schramm, Werner [75, Appx. A]). Let Γ be a fixed smooth
closed contour inside D, and let z ∈ ∂D. Then there exists a constant c ≡ c(Γ)
such that the Pδ-probability of a non-monochromatic three-arm crossing from
Br(z) to Γ within D is ≤ cr2.

This is not precisely the estimate which is proved in [75] but we leave the
reader to check that it follows from a slight modification of their argument. We
turn now to the proof of Propn. 6.5.

Proof of Propn. 6.5. Each time γ intersects a previous part of its path or the
boundary of D, a region is “sealed off” (disconnected from b), and to show that
γ is self-avoiding we must show that it does not dive into sealed-off regions.

(1) No triple points in interior. If γ enters a sealed-off region in the interior of
the domain, then γ must have a triple visit at the entry point. This implies
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ǫ
′

ǫ

γ

(a) Triple point without dive

ǫ
′

ǫ

γ

(b) Triple point with dive

Fig 10: Interior triple point and six-arm event

that for some ǫ > 0 and for all ǫ′ < ǫ, γδ has a six-fold crossing of some
annulus A (z; ǫ′, ǫ), z ∈ D, for sufficiently small δ. Fig. 10 shows two topo-
logically distinct ways in which this can occur: although the only situation
which concerns us is that of Fig. 10b, we will eliminate both possibilities.
Since γδ has blue to the left and yellow to the right, in all cases the six-
fold crossing implies a non-monochromatic six-arm crossing of A (z; ǫ′, ǫ).
Moreover the annuli can be taken to lie on a square grid of side length ≍ ǫ′,
so summing over . 1/(ǫ′)2 annuli and applying Lem. 6.7 we find that the
probability of such an event is . (ǫ′)λ/ǫ2+λ. Taking first ǫ′ ↓ 0 and then
ǫ′ ↓ 0 shows that there are no interior triple points.

(2) No double points on boundary. If γ enters a sealed-off region at the domain
boundary, then γ must have a double visit at the entry point, and we claim
this does not occur. Let ϕ be a conformal map D → D and let Γǫ ≡ ϕ(C1−ǫ);
note that dist(Γǫ, ∂D) ↓ 0 as ǫ ↓ 0 by a simple compactness argument. Thus,
arguing similarly as above we see that a boundary double point implies
that for some ǫ > 0 and all ǫ′ < ǫ, there is a non-monochromatic three-
arm crossing from an ǫ′-neighborhood of ∂D to Γǫ for sufficiently small δ.
But ∂D has Minkowski dimension strictly less than two (Rmk. 5.11), so
the claim follows by partitioning ∂D into segments of diameter ≤ ǫ′ and
applying Lem. 6.8 with Γ = Γǫ.

(3) No retracing. We claim γ does not trace any non-trivial segment of the
boundary or of its past hull. Retracing implies lengthwise crossings as δ ↓ 0
of four-marked domains which are conformally equivalent to ǫ′×ǫ rectangles
for fixed ǫ and all ǫ′ < ǫ. The probability of such a crossing is . αǫ/ǫ′ for
some constant α < 1. Summing over . 1/(ǫ′)2 such domains (covering γ
and ∂D) gives the result.

The entire argument above applies equally to η so we find that both γ, η are
self-avoiding. Combining this with the result of Lem. 6.6 gives that (Dδ \
Kδ; γ(τδ), bδ)  (D \ K; γ(τ), b), and the law of K is determined by Cardy’s
formula by Thm. 6.4.
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We now conclude the proof of the main theorem:

Proof of Thm. 3.12. By Propn. 6.5 the limit γ is self-avoiding, so it remains to
show that the ǫ-filling sequence satisfies the characterization of Propn. 4.12.

Let f : H2 → D2, f
δ : H2 → Dδ

2 be as above. Let J1 = f(Cǫ
+) and Jδ

1 =
f δ ◦ f−1(J1). Let x

δ
1 denote the tip of Kδ

1 (the point where γδ crosses Jδ), and
x1 the tip of K1 (its point of intersection with J), and define

Dδ
2(1) ≡ (Dδ

2 \Kδ
1 ;x

δ
1, b

δ), D2(1) ≡ (D2 \K1;x1, b).

By Propn. 6.5, the law of K1 is determined by Cardy’s formula, and further
Dδ

2(1)  D2(1) which means that we can repeat the construction in the new
admissible domain D2(1). Continuing in this way the result is proved.

7. Conclusion

Since the introduction of SLE in [94], a number of discrete interface models have
been shown to have scaling limits which are versions of SLE. We have focused
on a particular model throughout this article, so we conclude with a listing of
other examples. The following results are proved:

• SLE2 is the scaling limit of the loop-erased random walk, and SLE8 is the
scaling limit of the uniform spanning tree Peano path (Lawler, Schramm,
Werner [77, 94]).

• SLE6 is the scaling limit of the percolation exploration path (Smirnov [105,
108], Camia and Newman [31]). The scaling limit of the full configuration
is determined in [30].
The outer boundary of SLE6 is SLE8/3, which is also the outer boundary of
a certain reflected Brownian motion [71]; for a discussion of the connection
see [79].

• SLE4 is the scaling limit of the path of the harmonic explorer and of the
contour lines of the two-dimensional discrete Gaussian free field (GFF)
with certain boundary conditions (Schramm and Sheffield [97, 98], ex-
tended to more general models by Miller [84, 85]). There is also a well-
defined sense in which SLE4 is a contour line of the two-dimensional con-
tinuum GFF, again with certain boundary conditions [99]. In forthcoming
work Miller and Sheffield [86] prove that the collection of all discrete GFF
contours at certain heights converge to CLE4.

• SLE3 is the scaling limit of interfaces in the critical Ising spin model, and
SLE16/3 is the scaling limit of interfaces in the corresponding FK cluster

representation with parameters q = 2, p = 1− e−2βc [36, 37, 59, 107, 109,
111].

The relationship between κ and 16/κ that is evident in this list is a manifestation
of the Duplantier duality; see [39, 41, 119, 120].

The following results are conjectured; for more see [92, §9]:
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• Chordal SLE8/3 is the scaling limit of the self-avoiding walk in a half-plane

δΛ ∩H started at 0 [71]. For recent progress see [43].
• SLE4 is the scaling limit of loops in the double dimer model. Recent sup-
port for this conjecture can be found in [63]. Results on the conformal
invariance of dimers are in [60–62].

• The uniform measure on simple grid paths joining a boundary point to
an interior point (joining two fixed boundary points) converges to radial
(chordal) SLE8 [92, §9].

• SLEκ(q) is the scaling limit of boundaries in the critical FK cluster model
with parameters q and p = p(q) =

√
q/(1 +

√
q), where q ∈ (0, 4) and

κ(q) = 4π/ arccos(−√
q/2) ∈ (4, 8) [92, §9]. (The case q = 2, corresponding

to κ = 16/3, has been solved by Smirnov.)
• SLEκ is the scaling limit of a form of the O(n) loop model for 8/3 ≤ κ ≤ 8,
n = −2 cos(4π/κ) [56, 102].

• Loops in the critical XOR-Ising model (the product of two independent
critical Ising spin configurations), and more generally in the critical Ashkin-
Teller model, converge to a form of SLE4 [55, 118].
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