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Abstract: We discuss a family of random fields indexed by a parameter
s ∈ R which we call the fractional Gaussian fields, given by

FGFs(Rd) = (−Δ)−s/2W,

where W is a white noise on Rd and (−Δ)−s/2 is the fractional Lapla-
cian. These fields can also be parameterized by their Hurst parameter
H = s− d/2. In one dimension, examples of FGFs processes include Brow-
nian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2).
Examples in arbitrary dimension include white noise (s = 0), the Gaussian
free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated
Gaussian field (s = d/2), Lévy’s Brownian motion (s = d/2+1/2), and mul-
tidimensional fractional Brownian motion (d/2 < s < d/2+1). These fields
have applications to statistical physics, early-universe cosmology, finance,
quantum field theory, image processing, and other disciplines.

We present an overview of fractional Gaussian fields including covari-
ance formulas, Gibbs properties, spherical coordinate decompositions, re-
strictions to linear subspaces, local set theorems, and other basic results.
We also define a discrete fractional Gaussian field and explain how the
FGFs with s ∈ (0, 1) can be understood as a long range Gaussian free field
in which the potential theory of Brownian motion is replaced by that of an
isotropic 2s-stable Lévy process.
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1. Introduction

The d-dimensional fractional Gaussian field h on Rd with index s ∈ R (ab-
breviated as FGFs(Rd)) is given by

h := (−Δ)−s/2W, (1.1)

where W is a real white noise on Rd and (−Δ)−s/2 is the fractional Laplacian
on Rd. In Sections 2 and 3, we will review classical and recent literature on the
fractional Laplacian (see, e.g., [LD72, Sil07, CSS08, CG11]) and show how to
assign rigorous meaning to (1.1).

Our goal is to provide a mathematically rigorous, unified, and accessible
account of the FGFs(Rd) processes, treating the full range of values s ∈ R
and d ∈ N. This paper is fundamentally a survey, but we also present several
basic facts that we have not found articulated elsewhere in the literature. Many
of these are generalizations of classical results that had previously only been
formulated for specific d and s values.
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Fig 1.1. Surface plots of discrete fractional Gaussian fields as defined on a bounded domain
D = [0, 1]2 ⊂ R2 with zero boundary conditions, where s = 0, 1, 2, and 3 respectively.
These discrete random functions are defined on a 500 × 500 grid and linearly interpolated.
The corresponding continuum limit, FGFs([0, 1]2), is not a function when s = 0 or s = 1,
is α-Hölder continuous for all α < 1 when s = 2, and has α-Hölder continuous first-order
derivatives for all α < 1 when s = 3.

We hope that this survey will increase the circulation of basic information
about fractional Gaussian fields in the mathematical community. For example,
the vocabulary and content of the following statements should arguably be well
known to probabilists, but the authors were unaware of much of it until recently:

• In dimension 3, the Gaussian field with logarithmic correlations has been
used as an approximate model for the gravitational potential of the early
universe; its Laplacian is a FGF−1/2(R

3) and has been used to model
the perturbation from uniformity of the mass/energy density of the early
universe1.

• In dimension 4, the so-called bi-Laplacian field has logarithmic correla-
tions, and its Laplacian is white noise.

1An overview of this story appears in the reference text [Dod03] and a few additional notes
and references appear in [DRSV].
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Fig 1.2. When H < 0 (grey shaded region) the FGF is defined as a random tempered distri-
bution, not a function. When H ∈ (0, 1), the FGF is defined as a random continuous function
modulo a global additive constant. Generally, for integers k > 0 and H ∈ (k, k+1), the FGF
is a translation invariant random k-times-differentiable function defined modulo polynomials
of degree k. For integer H = k ≥ 0, the FGF is a random (k−1)-times-differentiable function
(or distribution if k = 0) defined modulo polynomials of degree k.

• In any dimension, Lévy Brownian motion can be defined as a random
continuous function whose restriction to any line has the law of a Brownian
motion (modulo additive constant). In dimension 5, the Laplacian of Lévy
Brownian motion is the Gaussian free field.

We also hope that this text will be a useful reference for experts in the study of
Gaussian fields; to this end, we provide a robust account of the regularity of FGF
fields, the long and short range correlation formulae, conditional expectations
given field values outside of fixed domains, the Fourier transforms and spherical
coordinate decompositions of the FGF, and various bounded-domain definitions
of the FGF.

The family of fractional Gaussian fields includes several well-known Gaussian
fields such as Brownian motion (d = 1 and s = 1), white noise (s = 0), the
Gaussian free field (s = 1), and the log-correlated Gaussian field (s = d

2 ).
Given s ∈ R and d ≥ 1, the Hurst parameter H is defined by

H := s− d

2
. (1.2)

The Hurst parameter describes a scaling relation satisfied by h ∼ FGFs(Rd):
for a > 0, the field x �→ h(ax) has the same law as x �→ aHh(x).2 Fields
satisfying such a relation are said to be self-similar, and they arise naturally
in the study of statistical physics models [New80]. The FGFs belong to a more

2When s and d are such that h is a random tempered distribution, but not a random
function, we interpret x �→ h(ax) as a distribution via (x �→ h(ax), φ) = a−d(h, x �→ φ(x/a)).
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general class of translation-invariant self-similar Gaussian random fields which
were investigated and classified in [Dob79]. When d = 1 and H ∈ (0, 1), the
FGFs(Rd) process is commonly known as fractional Brownian motion with
Hurst parameter H, and is the subject of an extensive literature (see the
survey [CI13]). Brownian motion itself corresponds to H = 1/2 and s = 1.

The law of a Brownian motion or fractional Brownian motion Bt, indexed by
t ∈ R and defined so that B0 = 0, is not translation invariant. However, the law
of Brownian motion is translation invariant if we consider Brownian motion as a
random process defined only modulo a global additive constant. In other words,
Brownian motion has stationary increments. Similarly, the indefinite integral
of a Brownian motion can be interpreted, in a translation invariant way, as a
random function defined modulo the space of linear functions. We generally
interpret all of the FGFs processes as translation invariant random distribu-
tions, but in some cases they are defined modulo a space of polynomials. More
precisely, when H < 0, FGFs(Rd) is a translation invariant random tempered
distribution (that is, a generalized function) on Rd. When H > 0, FGFs(Rd)
is a translation invariant random element of the space C�H�−1(Rd) modulo the
space of polynomials on Rd of degree no greater than �H�. This means that h
is defined as a linear functional on the subspace of test functions φ satisfying∫
Rd φ(x)L(x)dx = 0 for all polynomials L of degree �H�. Alternatively, at the

cost of breaking translation invariance, we may define FGFs(Rd) as a random
element of C�H�−1(Rd) by fixing the derivatives of h at 0 up to order 	H
 − 1.
The FGF covariance structure is described by the Hurst parameter H. When
H is a positive non-integer, we have

Cov[(h, φ1), (h, φ2)] = C(s, d)

∫
Rd

∫
Rd

|x− y|2Hφ1(x)φ2(y)dxdy,

for some constant C(s, d). A variant of this statement applies for negative and
integer values of H (see Theorem 3.3).

Note that H is an affine function of s and can be used instead of s to pa-
rameterize the family of FGFs. We use the parameter s in part to highlight the
connection to the fractional Laplacian and white noise. With our convention,
white noise is FGF0(Rd) and the Gaussian free field is FGF1(Rd). However, in
many of our formulas and theorems H will be the more natural parameter to
use; thus, we fix the relationship (1.2) and reference both H and s throughout
the paper. We note that the fields {FGFs(Rd) : s ∈ R} may be coupled with
the same white noise so that (1.1) holds for all s ∈ R (Proposition 6.3).

1.1. Examples

The simplest example of a fractional Gaussian field is FGF0(Rd), which is white
noise. We denote by S(Rd) the space of Schwartz functions on Rd, and we
let S ′(Rd) be its dual, the space of tempered distributions (see Section 2 for
details). If h ∈ S ′(Rd) and φ ∈ S(Rd), we use the notation (h, φ) for h evaluated
at φ. White noise (surveyed in [Kuo96]) is a random element of S ′(Rd) with the
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property that for φ1, φ2 ∈ S(Rd), the random variables (h, φ1) and (h, φ2) are
centered Gaussians with covariance

Cov[(h, φ1), (h, φ2)] =

∫
Rd

φ1(x)φ2(x) dx.

Taking d = 1 and s = 1, we see that (−Δ)−s/2 is the antiderivative operator.
It follows that FGF1(R) is the antiderivative of one dimensional white noise,
which is a Brownian motion interpreted as a real-valued function modulo con-
stant. If we fix the constant by setting the value at 0, we get ordinary Brownian
motion.

If s = 1 and d ∈ N, then FGF1(Rd) is a d-dimensional generalization of
Brownian motion called the Gaussian free field (GFF). As surveyed in [She07],
the GFF is a random tempered distribution on Rd (defined modulo additive
constant if d = 2) with covariance given by

Cov[(h, φ1), (h, φ2)] =

∫
Rd

∫
Rd

Φ(x− y)φ1(x)φ2(y) dx dy,

where Φ is the fundamental solution of the Laplace equation in Rd. The two-
dimensional GFF (which is the same as FGF1(R2)) has been studied in a wide
range of contexts in recent years. It can be obtained as a scaling limit of random
discrete models, such as domino tilings [Ken01], as well as continuum models,
such as those arising in random matrix theory [RV06]. It is central to confor-
mal field theory and Liouville quantum gravity [She10, DS11] and has many
connections to the Schramm Loewner evolution [Dub09, SS10, MS12a, MS12b,
MS, MS13]. The 2D GFF is also known in the geostatistics literature as the de
Wijs process or the logarithmic variogram model, where it was introduced in the
early 1950s to describe ore deposits [dW51, dW53, Mon15, CD09]. More recently,
variations in crop yields have been modeled using the GFF [McC02, MC06].

For all d ∈ N, the d-dimensional GFF exhibits a certain Markov property:
For each fixed domain D ⊂ Rd, if we are given the restriction a GFF h to
Rd \D, then the conditional law of h restricted to D is given by a conditionally
deterministic function (the harmonic extension of the field from ∂D to D)3 plus
an independent zero-boundary GFF defined on D.

In Section 5 we will establish an analogous property that applies when h
is an FGFs(Rd) with s ≥ 0. Namely, if we are given the restriction of h to
Rd \D, then the conditional law of h restricted to D is given by a conditionally
deterministic function (the so-called s-harmonic extension of the field from
Rd \D to D) plus a random function (the so-called zero-boundary-condition
FGFs on D). If s ∈ N, then the conditionally deterministic function depends on
the restriction to ∂D of h and its derivatives up to a certain order. This follows
from the fact that (−Δ)s is a local operator when s ∈ N.

As previously mentioned, another generalization of Brownian motion is the
fractional Brownian motion (FBM). Fractional Brownian motion appears to

3Since the GFF is not defined pointwise, some care is needed to define the harmonic
extension of the values of the GFF on Rd \D. Nevertheless, this can be made rigorous [SS10].
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have been first introduced by Kolmogorov in 1940 [Kol40], and the term “frac-
tional Brownian motion” was introduced by Mandelbrot and Van Ness in 1968
[MVN68]. As motivation, Mandelbrot and Van Ness discuss various empirical
studies of real world processes (the price of wheat, water flowing through the
Nile, etc.) that had been made by Hurst, who found different scaling exponents
in different settings4.

The definition of fractional Brownian motion can be extended to describe a
random function modulo additive constant on Rd when d > 1. Given H ∈ (0, 1)
we define the FBM (also called the fractional Brownian field) on Rd as a mean-
zero Gaussian process (BH

t )t∈R with covariance

Cov(BH
t BH

s ) =
1

2
(|t|2H + |s|2H − |t− s|2H),

where H is the Hurst parameter of the field. We will prove in Section 6 that the
multidimensional fractional Brownian motion defined this way is equivalent to
FGFs(Rd), where H = s− d

2 ∈ (0, 1).
In the case H = 1/2, this multidimensional process was introduced by Lévy

in 1940 and is known as Lévy Brownian motion [Lév40]. General processes in-
cluding multidimensional fractional Brownian motion are discussed in Yaglom
in 1957 and by Gangolli in 1967 [Yag57, Gan67]. (Gangolli gives general an-
alytic arguments for positive definiteness of covariance kernels that apply in
this case.) Fractional Brownian motion is studied in more detail in works of
Mandelbrot, as referenced in [Man75]. More detailed and modern discussions
of fractional Brownian motion (including topics such as excursion set theory,
Hausdorff dimension, Hölder regularity, etc.) can be found in [AT07, Adl10].

The log-correlated Gaussian field (LGF) is a random element h of the space
of tempered distributions modulo constants and has covariance given by

Cov[(h, φ1), (h, φ2)] = −
∫
Rd

∫
Rd

log |x− y|φ1(x)φ2(y) dx dy,

In two dimensions, the LGF coincides with the GFF (up to a constant factor).
We will see in Section 3 that the d-dimensional LGF is a multiple of FGFd/2(R

d).
In recent years the log-correlated Gaussian field has enjoyed renewed interest
because of its relationship to Gaussian multiplicative chaos. For a survey article
of Gaussian multiplicative chaos see [RV13]. Furthermore, the LGF in R3 plays
an important role in early universe cosmology, where it approximately describes
the gravitational potential function of the universe at a fixed time shortly after
the big bang; see [DRSV] for more discussion and references.

Another noteworthy subclass of the fractional Gaussian fields is FGF2(Rd),
which is known as the bi-Laplacian Gaussian field. The discrete counterpart
of the bi-Laplacian Gaussian field is called the membrane model in physics
literature; for a mathematical point of view see [Sak03], [Kur07], [Kur09], and
[Sak12]. In dimension at least five, there is a natural discrete field associated
with the uniform spanning forest on Zd whose scaling limit is FGF2(Rd) [SW13].

4FBM is not the only model exhibiting the scaling behavior observed by Hurst. See
[BGW83] for a model which uses drift rather than long-range dependence.
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1.2. Fractional Gaussian fields in one dimension

The FGFs(Rd) processes are easiest to classify and explain when d = 1. We first
consider H = s− d

2 ∈ (0, 1) (so that s ∈ (1/2, 3/2)), in which case the FGFs(R)
is a Gaussian random function h : R → R which we interpret as being defined
modulo an additive constant. This means that while the quantity h(t) is not
a well-defined random variable for t ∈ R, the quantity h(t1) − h(t2) is a well-
defined random variable for t1, t2 ∈ R. When H ∈ (0, 1), the FGFs(R) is the
stationary-increment form of the fractional Brownian motion with Hurst
parameter H. The law of the fractional Brownian motion is determined by the
variance formula

Var
(
h(t1)− h(t2)

)
= |t1 − t2|H .

When H = 0, so that s = 1/2, the FGFs(R) is the log-correlated Gaussian field
(LGF), which is defined as a random tempered distribution modulo additive
constant.

When d = 1 the weak derivative of an FGFs(R) is an FGFs−1(R). Thus all
FGFs(R) processes may be obtained by either integrating or differentiating frac-
tional Brownian motion (with s ∈ (1/2, 3/2)) or the LGF (s = 1/2) an integral
number of times. From this, it is clear that if an FGFs(R), for s ∈ (1/2, 3/2],
is defined modulo additive constant in a translation invariant way, then the
distributional derivatives FGFs−1(R), FGFs−2(R), etc. are defined without an
additive constant. Thus the FGFs(R) is defined as a random tempered distri-
bution without an additive constant when s ≤ 1/2. Similarly, if the FGFs(R),
for s ∈ (1/2, 3/2] is defined modulo additive constant (in a translation invariant
way), then the indefinite integrals FGFs+1(R), FGFs+2(R), etc. are respectively
defined modulo linear polynomials, quadratic polynomials, etc.

The following proposition, rephrased and proved as Theorem 7.1 in Section 7,
is one reason that the one-dimensional case is significant.

Proposition 1.1. If H ≥ 0, then the restriction of the d-dimensional FGF with
Hurst parameter H (i.e., with s = H + d

2 ) to any fixed k-dimensional subspace
(with 1 ≤ k < d) is a k-dimensional FGF with Hurst parameter H (up to
multiplicative constant).

1.3. Interpretation as a long range GFF

The Gaussian free field FGF1(Rd) can be approximated by the discrete Gaussian
free field, which only has nearest neighbor interactions. This discrete Markov
property gives rise to the domain Markov property of the Gaussian free field
in the limit [She07]. In Section 12, we construct a discrete version of FGFs for
s ∈ (0, 1) by introducing a discrete fractional gradient to play the role of the
discrete gradient in the definition of the discrete GFF. The fractional gradient
involves long range interactions, which may be viewed as the reason that the
Markov property fails for FGFs when s is not an integer.

The comparison between the short range FGFs(Rd) (when s ∈ Z) and the
long range FGFs(Rd) (when s /∈ Z) may also be seen from the point of view
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of the corresponding potential theories. As an illustration, consider GFF and
FGFs for 0 < s < 1. The covariance kernel for the Gaussian free field is given
by the solution of the ordinary Laplace equation −Δf = φ. As we will see,
the counterpart for FGFs with 0 < s < 1 is the fractional Laplacian equation
(−Δ)sf = φ. The Laplacian is a local differential operator, while (−Δ)s for
s ∈ (0, 1) is a non-local pseudo-differential operator and (−Δ)sf(x) depends on
the values of f(x) for all x ∈ Rd. Another way to see the distinction between the
s = 1 and s ∈ (0, 1) cases is to recall that the Green’s function for the Dirichlet
Laplacian is given by the density of the occupation measure of a Brownian mo-
tion (see [MP10], for example), which is continuous. The corresponding process
when s ∈ (0, 1) is an isotropic 2s-stable Lévy motion, which is a jump process.

2. Preliminaries

In this section we remind the reader of some definitions and facts regarding
tempered distributions and homogeneous Sobolev spaces. Some of the following
notation and ideas are from [Tri83], to which we refer the reader for more dis-
cussion on homogeneous spaces. We will introduce and construct several linear
spaces. To aid the reader in keeping track of the various definitions, we include
a glossary of these definitions in the appendix on page 51.

2.1. Tempered distributions and Sobolev spaces

Fix a positive integer d, and denote by S(Rd) the real Schwartz space, defined
to be the set of real-valued functions on Rd whose derivatives of all orders exist
and decay faster than any polynomial at infinity. A multi-index β = (β1, . . . , βd)
is an ordered d-tuple of nonnegative integers, and the order of β is defined to
be |β| :=

∑d
j=1 βj . We equip S(Rd) with the topology generated by the family

of seminorms{
‖f‖n,β := sup

x∈Rd

|x|n|∂βf(x)| : n ≥ 0, β is a multi-index
}
.

The space S ′(Rd) of tempered distributions is defined to be the space of con-
tinuous linear functionals on S(Rd) .

We take the convention that the Fourier transform F acting on a Schwartz
function φ on Rd is the function

F [φ](ξ) =
1

(2π)d/2

∫
Rd

φ(x)e−iξ·x dx

which we will often abbreviate as φ̂(ξ). The complex Schwartz space (the space
of functions whose real and imaginary parts are in S(Rd)) is closed under the
operation of taking the Fourier transform [Tao10, Section 1.13], so the inverse
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Fourier transform F−1 is well-defined on the complex Schwartz space and sat-
isfies the formula

F−1[φ](x) =
1

(2π)d/2

∫
Rd

φ(ξ)eix·ξ dξ.

We define the Fourier transform f̂ of a tempered distribution f by setting
(f̂ , φ) := (f, φ̂), so that F and F−1 may be interpreted as operators from
S ′(Rd) to S ′(Rd). Regarding φ ∈ S(Rd) as a tempered distribution via φ(ψ) :=∫
Rd φ(x)ψ(x) dx, we have the continuous, dense inclusion S(Rd) ⊂ S ′(Rd). For
the fundamentals of the theory of distributions, we refer the reader to [Lax02,
Appendix B] or [Tao10]. For a more detailed introduction to distribution theory
we refer to [FJ98] and [Hör03].

For r ∈ R, define Sr(Rd) ⊂ S(Rd) to be the set of Schwartz functions φ such

that (∂αφ̂)(0) = 0 (or, equivalently,
∫
Rd x

αφ(x) dx = 0) for all multi-indices α

such that |α| ≤ r . We equip Sr(Rd) with the subspace topology inherited from
S(Rd) and denote by S ′

r(R
d) the topological dual of Sr(Rd). Observe that S ′

r(R
d)

is canonically isomorphic to S ′(Rd)/Tr(Rd), where Tr(Rd) denotes the space of
polynomials of degree at most r on Rd. Observe also that Sr(Rd) = S(Rd)
whenever r is negative, and that S0(Rd) = {φ ∈ S(Rd) :

∫
Rd φ(x) dx = 0}.

Given r ∈ R, we also consider the space

S̃r(R
d) = {φ ∈ S(Rd) : (∂αφ)(0) = 0 for all |α| ≤ r},

which is equal to the image of Sr(Rd) under the inverse Fourier transform op-
erator. We define the Fourier transform of an element of S ′

r(R
d) as an element

of S̃ ′
r(R

d) via (f̂ , φ) := (f, φ̂) whenever f ∈ S ′
r(R

d) and φ ∈ S̃r(Rd).
Define the space

H̊s(Rd) :=
{
f ∈ S(Rd) : ξ �→ |ξ|sf̂(ξ) ∈ L2(Rd)

}
and equip H̊s(Rd) with the inner product

(f, g)Ḣs(Rd) :=
(
ξ �→ |ξ|sf̂(ξ), ξ �→ |ξ|sĝ(ξ)

)
L2(Rd)

.

We define the Sobolev space Ḣs(Rd) to be the Hilbert space completion of
H̊s(Rd), which we continuously embed in S ′

H(Rd) as follows. If {fn}n≥1 is a

Cauchy sequence in H̊s(Rd) and φ ∈ SH(Rd), then by Plancherel and Cauchy-
Schwarz we have

|(fm − fn, φ)L2(Rd)| ≤ (2.1)(∫
|f̂m(ξ)− f̂n(ξ)|2|ξ|2s dξ

)1/2 (∫
|φ̂(ξ)||ξ|−2s dξ

)1/2

.

The first factor on the right-hand side tends to 0 as min(m,n) → ∞ and the
second factor is finite since φ ∈ SH(Rd). It follows that (fm − fn, φ)L2(Rd) is
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Cauchy in R, which implies that we can define a linear map f : SH(Rd) → R by
(f, φ) := limn→∞(fn, φ) for all φ ∈ SH(Rd). Observing that φk → 0 in SH(Rd)
implies

lim sup
k→∞

|(f, φk)|2 ≤

lim sup
k→∞

lim sup
n→∞

∫
|f̂n(ξ)|2|ξ|2s dξ ×

∫
|φ̂k(ξ)|2|ξ|−2s dξ = 0,

we conclude that f is a continuous functional on SH(Rd). Therefore, we may
realize Ḣs(Rd) as a subset of S ′

H(Rd) by identifying each Cauchy sequence
{fn}n≥1 with its Ḣs(Rd)-limit f ∈ S ′

H(Rd).

We can characterize Ḣs(Rd) in another way which will be useful for the fol-
lowing section. Note that if (φn)n∈N is an Ḣs(Rd)-Cauchy sequence of Schwartz

functions converging to f in S ′
H(Rd), then (φ̂n)n∈N is Cauchy in L2(Rd, |ξ|2s dξ),

where |ξ|2s dξ denotes the measure whose density with respect to Lebesgue mea-

sure is ξ �→ |ξ|2s. Therefore, there exists g ∈ L2(Rd, |ξ|2s dξ) to which φ̂n con-
verges with respect to the L2(Rd, |ξ|2s dξ) norm. Furthermore, it is straight-

forward to verify using the Cauchy-Schwarz inequality that g = f̂ ∈ S̃ ′
H(Rd).

Therefore,

Ḣs(Rd) =
{
f ∈ S ′

H(Rd) : f̂ ∈ L2(|ξ|2s dξ)
}
,

where f̂ ∈ L2(|ξ|2s dξ) means that there exists g ∈ L2(|ξ|2s dξ) such that (f̂ , φ) =∫
Rd g(x)φ(x) dx for all φ ∈ S̃H(Rd).

2.2. The fractional Laplacian

The fractional Laplacian generalizes the notion of a power (−Δ)s of the Lapla-
cian from nonnegative integer values of s, for which it is defined as a local
operator by iterating the Laplacian, to all real values of s. A standard refer-
ence for the fractional Laplacian is [LD72]. Here we use ideas from Section 2 of
[Sil07]. Let k ∈ {−1, 0, 1, 2, . . .}, and let φ ∈ Sk(Rd). If s > −1

2 (d+ k + 1), then
we set

(−Δ)sφ := F−1
[
ξ �→ |ξ|2sφ̂(ξ)

]
, (2.2)

which is well-defined because ξ �→ |ξ|2sφ̂(ξ) is in L1(Rd). Note that (2.2) agrees
with the local definition of −Δ when s = 1. Because of the singularity at the
origin in its Fourier transform, (−Δ)sφ is not necessarily Schwartz. However, it
is real-valued, smooth, and has polynomial decay at infinity:

Proposition 2.1. Let k ∈ {−1, 0, 1, 2, . . .}, φ ∈ Sk(Rd), and s > −1
2 (d+k+1).

If α is a multi-index, then there exists a constant C such that φ ∈ Sk(Rd) implies

sup
x∈Rd

(1 + |x|d+2s+k+1)|∂α(−Δ)sφ(x)| ≤ C sup
|β|≤max(k+1,|α|)

‖∂βφ‖L∞(Rd). (2.3)

Furthermore, (−Δ)sφ is real-valued and smooth.
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Proof. The proof of smoothness is routine: we write the inverse Fourier trans-
form using its definition and differentiate under the integral sign. To show that
(−Δ)sφ is real-valued, we note that a function ψ ∈ L1(Rd) is the Fourier trans-
form of a real-valued function in L1(Rd) if and only if ψ(−ξ) and ψ(ξ) are

complex conjugates for all ξ ∈ Rd. The function ξ �→ |ξ|−2sφ̂(ξ) has this prop-

erty whenever φ̂ does, so we may conclude that (−Δ)sφ is real-valued.
To prove (2.3), let {f1, f2} be a partition of unity subordinate to the open

cover {Rd \ B(0, 1
|x| ), B(0, 2

|x| )} of Rd, and define φi(ξ) = fi(ξ)φ̂(ξ)/|ξ|k+1 for

i ∈ {1, 2}. We calculate

∂α(−Δ)sφ(x) = C

∫
Rd

eix·ξξα|ξ|2s+k+1φ̂(ξ)/|ξ|k+1 dξ

= C

∫
Rd\B(0,1/|x|)

eix·ξξα|ξ|2s+k+1φ1(ξ) dξ+

C

∫
B(0,2/|x|)

eix·ξξα|ξ|2s+k+1φ2(ξ) dξ,

where C is some constant. To obtain the desired bound for the first integral, we
write the integral in spherical form and apply integration-by-parts with respect
to the radial coordinate. For the second integral, we bound φ2(x) by a constant
times sup|β|=k+1 |∂βφ(0)||ξ|−k−1 near the origin, using Taylor’s theorem.

For s > −d/2, we define5 the space Us(Rd) to be the space of all functions
φ ∈ C∞(Rd) such that

x �→ (1 + |x|d+2s)(∂αf)(x)

is bounded for all multi-indices α. These spaces interpolate between C∞(Rd) and
S(Rd), as the derivatives of their elements decay polynomially at a rate indexed
by s. In particular, S(Rd) ⊂ Us(Rd) ⊂ Us′(Rd) whenever s > s′. We equip
Us(Rd) with the topology induced by the family of seminorms f �→ supx∈Rd |(1+
|x|d+2s)(∂αf)(x)|. By Proposition 2.1, (−Δ)s is a continuous map from Sk(Rd)
to Us+(k+1)/2(R

d) . Furthermore, (−Δ)sφ = 0 for φ ∈ Sk(Rd) implies that

φ̂ vanishes except possibly at the origin. This implies that φ is a polynomial,
which in turn implies that φ = 0. Therefore, (−Δ)s is injective. For all f in the
topological dual of the image (−Δ)sSk(Rd) ⊂ Us+(k+1)/2, we define (−Δ)sf ∈
S ′
k(R

d) by
((−Δ)sf, φ) = (f, (−Δ)sφ),

It is straightforward to verify that this definition agrees with (2.2) when f ∈
S(Rd). Observe that (−Δ)s1(−Δ)s2 = (−Δ)s1+s2 for all s1, s2 ∈ R. We will
consider two important examples of elements of ((−Δ)sSk(Rd))′:

(i) Elements of homogeneous Sobolev spaces. Let s ∈ R and H = s − d/2.
It is straightforward to verify that f ∈ Ḣs(Rd) determines an element of

((−Δ)sSH(Rd))′ via (f, φ) := (f̂ , φ̂). Furthermore, the definition of (−Δ)sf

5These spaces are denoted Ss(Rd) in [Sil07].
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arising from this correspondence satisfies ̂(−Δ)sf(ξ) = |ξ|2sf̂(ξ). It follows that
(−Δ)s is an isometric isomorphism from Ḣs0(Rd) to Ḣs0−2s(Rd).

(ii) Measurable functions f : Rd → C satisfying∫
Rd

|f(x)|(1 + |x|d+2s+k+1)−1 dx < ∞. (2.4)

Interpreting f as a linear functional on (−Δ)sSk(Rd) by integration against
a test function, the continuity of f with respect the Us+(k+1)/2(R

d) topology
follows from Proposition 2.1.

The following proposition gives an alternative representation of the fractional
Laplacian in the case 0 < s < 1.

Proposition 2.2. For all f ∈ S(Rd), x ∈ Rd, and s ∈ (0, 1), we have

(−Δ)sf(x) = −1

2
C(d, s)

∫
Rd

f(x+ y)− 2f(x) + f(x− y)

|y|d+2s
dy,

where 1/C(d, s) =
∫
Rd(1− cosx1)|x|−d−2s dx.

Proof. Combine Lemma 3.2 and Proposition 3.3 in [DNPV].

When s ∈ {0, 1, 2, . . .}, the fractional Laplacian (−Δ)s coincides with the
poly-Laplacian, a fundamental example of a higher order elliptic operator, ob-
tained by iterating the Laplacian operator. For s ∈ (0, 1), (−Δ)s is a classical
example of a non-local pseudo-differential operator. These two classes generate
all the operators of the form (−Δ)s for s ≥ 0 in the sense that (−Δ)s can be
written as a composition of (−Δ)s−�s� and (−Δ)�s�.

For the properties of the poly-Laplacian, we refer the reader to [GGS10] and
references therein. For more properties of (−Δ)s where s ∈ (0, 1), see [Sil07]
and reference therein.

2.3. White noise

On a finite dimensional Hilbert space H with inner product (·, ·)H, one charac-
terization of standard Gaussian h on H is that h is a standard Gaussian in H if
and only if for all v ∈ H, (h, v)H is a centered Gaussian variable with variance
(v, v)H. If H is infinite dimensional, then it is not possible to define a random
element of H that satisfies this condition [Jan97, She07]. Nevertheless, we can
still say that a random functional (which we will denote by (h, ·)H) is a standard
Gaussian on H if for all v ∈ H, (h, v)H is a centered Gaussian variable with vari-
ance (v, v)H. Note that such a functional cannot be almost surely continuous
with respect to ‖ · ‖H.

White noise on Rd can be regarded as a standard Gaussian on L2(Rd). We
will define W to be a random generalized function such that (W, f) is a centered
Gaussian with variance ‖f‖2L2(Rd) for all f ∈ S(Rd). However, it is not obvious

that there exists a measure on S ′(Rd) satisfying these conditions. Since we will
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rigorously construct the FGF in Section 3.1 in the same manner, we will review
a construction of white noise following [Sim79].

We say that a complex-valued function Φ on S(Rd) is the characteristic func-
tion of a probability measure ν on S ′(Rd) if

Φ(φ) =

∫
S′(Rd)

ei(x,φ) dν(x), for all φ ∈ S(Rd). (2.5)

Theorem 2.3 (Bochner-Minlos theorem for S ′(Rd)). A complex-valued function
Φ on S(Rd) is the characteristic function of a probability measure ν on S ′(Rd)
if and only if Φ(0) = 1, Φ is continuous, and Φ is positive definite, that is,

n∑
j,k=1

zjzkΦ(φj − φk) ≥ 0,

for all φ1, . . . , φn ∈ S(Rd), and z1, . . . , zn ∈ C. Furthermore, Φ determines ν
uniquely.

Proof. We briefly sketch the proof given in [Sim79, Theorem 2.3] for the case
d = 1; the case d > 1 may be proved similarly. We introduce coordinates to
the space S(R) by writing each function φ ∈ S(R) as φ =

∑∞
n=1(φ, φn)L2(R)φn,

where {φn}∞n=0 is the Hermite basis of L2(R) defined by

φn(x) =
(−1)ne

x2

2
dn

dxn [e
−x2

]

π1/4
√
2nn!

.

Identifying φ ∈ S(R) with {(φ, φn)L2(R)}∞n=0 and using the fact that φn is an

eigenfunction of − d2

dx2 + x2, we find that S(R) is isomorphic to the sequence
space

s =
⋂
m∈Z

{
x ∈ RN0 :

∑
n

(1 + n2)m|xn| =: ‖x‖m < ∞
}
,

and the topology of S(R) is equivalent to the one induced by the family of
seminorms ‖ · ‖m. Furthermore, S ′(Rd) is isomorphic to

s′ =
⋃
m∈Z

{
x ∈ RN0 : ‖x‖m < ∞

}
if we interpret a sequence x as a linear functional Lx via Lx(y) =

∑∞
n=0 xnyn.

Bochner’s theorem states that characteristic functions of Rn-valued random
variables are in one-to-one correspondence with normalized, continuous, positive
definite functions on Rn. Using Bochner’s theorem, we conclude for all n ∈ N0,
there is a measure μn on span(φ1, . . . , φn) such that

Φ(φ) =

∫
ei(x,φ) dμn(x) for all φ ∈ span(φ1, . . . , φn).
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By the uniqueness part of Bochner’s theorem, these measure are consistent. By
the Kolmogorov extension theorem, there exists a measure μ on RN0 such that
(2.5) holds for all φ in the linear span of {φn}∞n=0 (that is, when at most finitely
many of φ’s coordinates are nonzero). It may be shown using the continuity of
Φ that μ(s′) = 1 (see [Sim79] for details), which allows us to restrict μ to obtain
a probability measure on s′ and conclude that (2.5) holds for all φ ∈ S(R).

We will use Theorem 2.3 in conjunction with the following proposition, which
gives sufficient conditions for a functional to be positive definite.

Proposition 2.4. Let (S, (·, ·)) be an inner product space. Then the functional
Φ : S → R defined by Φ(v) := exp(−1

2 (v, v)) is positive definite.

Proof. Let v1, . . . vn be elements of S, and choose an orthonormal basis e1, . . . , em
of the span of {v1, . . . vn}. Let Z = (Z1, . . . , Zm) be a vector of independent
standard normal real random variables, and note that for all u ∈ Rm, we have

Φ

⎛⎝ m∑
j=1

ujej

⎞⎠ = exp

(
−1

2

m∑
i=1

u2
i

)
= E[eiu·Z ],

which implies that

n∑
j,k=1

zjzkΦ(vj − vk) =

n∑
j,k=1

zjzkE[e
i(vj−vk)·Z ] = E

∣∣∣∣∣∣
n∑

j=1

zje
ivj ·Z

∣∣∣∣∣∣
2

≥ 0,

as desired.

We will apply Theorem 2.3 to construct a measure μ on S ′(Rd) which we will
refer to as white noise W . Recall that S(Rd) is a nuclear space and let us define
the functional

Φ0(φ) = exp

(
−1

2
‖φ‖2L2(Rd)

)
, for all φ ∈ S(Rd).

By Proposition 2.4, this functional is positive definite. Since it is also continuous
and satisfies Φ0(0) = 1, Theorem 2.3 implies that there is a unique probability
measure on S ′(R) having Φ0 as its characteristic function, which we define as
white noise W . In particular we have the relation∫

S′(Rd)

ei(x,φ) dμ(x) = exp

(
−1

2
‖φ‖2L2(Rd)

)
, φ ∈ S(Rd),

which implies for every f ∈ S(Rd) the random variable (W, f) is a centered
Gaussian with variance ‖f‖2L2(Rd).

An alternative to the preceding view of white noise as a random tempered
distribution is to regard white noise as a collection of random variables {(W, f) :
f ∈ S(Rd)}. The advantage of this perspective is that we may extend this
collection so that (W, f) is a well-defined random variable for all f ∈ L2(Rd).
However, in this construction f �→ (W, f) is no longer almost surely continuous.
Recall the following definition from [Jan97] or [She07].
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Definition 2.5. A Gaussian Hilbert space is a collection of Gaussian ran-
dom variables on a common probability space (Ω,F , μ) which is equipped with
the L2(Ω,F , μ) inner product and is closed with respect to the norm of the
L2(Ω,F , μ) inner product.

To define a Gaussian Hilbert space {(W, f) : f ∈ L2(Rd)} where W is a
white noise, we consider the map from S(Rd) to L2(Ω) which sends φ ∈ S(Rd)
to the random variable (W,φ) (here Ω denotes the underlying probability space).
Since E[(W,φ)2] = ‖φ‖2L2(Rd), this map is an isometry. Since L2(Ω) is complete,

we may extend this isometry to an operator from L2(Rd) to L2(Ω) by defining
(W, f) := limn→∞(W,φn) where φn ∈ S(Rd) and φn → f in L2(Rd) as n → ∞.
Since E[eiξ(h,φn)] → E[eiξ(h,φ)] by the bounded convergence theorem, we have
(W, f) ∼ N (0, ‖f‖2L2(Rd)) for all f ∈ L2(Rd). We call {(W, f) : f ∈ L2(Rd)} a

white noise Gaussian Hilbert space. Given f, g ∈ L2(Rd) we may apply this fact
to (W, f + g) to see that

Cov[(W, f), (W, g)] = (f, g)L2(Rd),

so if f and g are orthogonal with respect to the L2(Rd) inner product, then
(W, f) and (W, g) are independent. We may rewrite the above expression as

Cov[(W, f), (W, g)] =

∫
Rd

∫
Rd

δ(x− y)f(x)g(y) dx dy,

and say that W has covariance kernel δ(x− y) (here δ(x) dx is notation for the
Dirac measure which assigns unit mass to the origin). In Section 3.2, we will
compute the covariance kernel of the FGFs(Rd) for general s and d.

3. The FGF on Rd

We provide the construction of FGFs(Rd) following the same procedure as used
in Section 2.3 for white noise. We also compute the covariance kernel for the
FGFs(Rd).

3.1. Definition of FGFs(Rd)

We begin with some heuristic motivation for the rigorous construction that
follows. We want to define h to be a standard Gaussian on Ḣs(Rd). As a first
guess, we might try to define a random element h of Ḣs(Rd) so that for all
f ∈ Ḣs(Rd), we have

(h, f)Ḣs(Rd) ∼ N
(
0, ‖f‖2

Ḣs(Rd)

)
. (3.1)

However, since Ḣs(Rd) is infinite dimensional, no such random element exists
[Jan97, She07]. However, we note that when h, f ∈ SH(Rd), we have

(h, f)Ḣs(Rd) = (h, (−Δ)sf)L2(Rd). (3.2)
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Therefore, substituting (3.2) into (3.1) and defining φ := (−Δ)sf , we find that
it is reasonable to change the desired relation from (3.1) to

E
[
(h, φ)2L2(Rd)

]
= E

[
(h, (−Δ)sf)2

Ḣs(Rd)

]
= ‖(−Δ)−sf‖2

Ḣs(Rd)
. (3.3)

The advantage of this formulation is that we may reinterpret it by replacing the
inner product (h, φ)2L2(Rd) with the evaluation of a continuous linear functional

(h, ·) at φ ∈ SH(Rd). The norm on the right-hand side can be rewritten as

‖(−Δ)−sφ‖2
Ḣs(Rd)

=

∫
Rd

|ξ|2s|ξ|−4s|φ̂(ξ)|2 dξ = ‖φ‖2
Ḣ−s(Rd)

.

So, if h is a random element of S ′
H(Rd) with the property that

(h, φ) ∼ N
(
0, ‖φ‖2

Ḣ−s(Rd)

)
for all φ ∈ SH(Rd), (3.4)

then we say that h is a fractional Gaussian field with parameter s on Rd

and write h ∼ FGFs(Rd); note that by abuse of notation we refer to either h or
its law as FGFs(Rd). We note that when h ∼ FGFs(Rd) and a > 0, the scaling
relation

x �→ h(ax)
d
= as−d/2h

follows from (3.4) (here we are interpreting x �→ h(ax) as a distribution via
(x �→ h(ax), φ) = a−d(h, x �→ φ(x/a))). For more discussion of FGF scaling
and its relationship to the scaling properties of statistical physics models, see
[New80, Dob79].

We now provide a construction establishing the existence of fractional Gaus-
sian fields. We would like to apply the Bochner-Minlos theorem with the func-
tional φ �→ exp(−1

2‖φ‖2H−s(Rd)), but this functional is only finite when φ ∈
SH(Rd), not for all φ ∈ S(Rd). Therefore, we define a functional (3.5) which is
finite for all Schwartz functions and which reduces to φ �→ exp(−1

2‖φ‖2H−s(Rd))

whenever φ ∈ SH(Rd).
Let {φα : α is a multi-index} be a collection Schwartz functions such that∫

Rd x
αφβ(x) dx = 1{α=β}. Such a collection may be obtained via a Gram-

Schmidt procedure. Define the functional Cs : SH(Rd) → R by

Cs(φ) = exp

⎛⎜⎝−1

2

∥∥∥∥∥∥φ−
∑

|α|≤�H�
φα

∫
Rd

xαφ(x) dx

∥∥∥∥∥∥
2

Ḣ−s(Rd)

⎞⎟⎠ . (3.5)

By Proposition 2.4, Cs is positive definite. Since Cs is also continuous and
satisfies Cs(0) = 1, we may apply the Bochner-Minlos theorem to conclude that
there is a random tempered distribution h such that E[ei(h,φ)] = Cs(φ) for all
φ ∈ S(Rd). Considering h as a random element of S ′

H(Rd) by restricting its
domain to SH(Rd), we obtain a random element of S ′

H(Rd) which satisfies (3.4)
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(note that this restriction is necessary so that the definition does not depend on
the arbitrary choice of functions φα).

As we did for white noise (see page 15), we may define a Gaussian Hilbert
space {(h, φ) : φ ∈ Ts(Rd)} for a class Ts(Rd) of test functions larger than
SH(Rd). In particular, we define Ts(Rd) to be the closure of SH(Rd) in Ḣ−s(Rd).
Consider the isometry from Ts(Rd) to L2(Ω) which sends φ ∈ SH(Rd) to the
random variable (h, φ); we extend this isometry to an operator from Ts(Rd) to
L2(Ω). Writing φ ∈ Ts(Rd) as a limit of functions in SH(Rd) and considering
the limit of the corresponding characteristic functions, we conclude that

(h, φ) ∼ N
(
0, ‖φ‖2

Ḣ−s(Rd)

)
for all φ ∈ Ts(R

d).

We call {(h, φ) : φ ∈ Ts(Rd)} an FGFs(Rd) Gaussian Hilbert space.
We now make sense of the expression h = (−Δ)−s/2W (see (1.1)). Let

W be a white noise on Rd. Observe that (−Δ)−s/2φ ∈ L2(Rd) for all φ ∈
Ts(Rd). Therefore, we may define for all φ ∈ Ts(Rd) the random variable
(h, φ) = (W, (−Δ)−s/2φ). In this way, we have constructed a coupling between
an FGFs(Rd) Gaussian Hilbert space {(h, φ) : φ ∈ Ts(Rd)} and a white noise
Gaussian Hilbert space {(W,φ) : φ ∈ L2(Rd)} so that (h, φ) = (W, (−Δ)−s/2φ).
In this sense we can say that h = (−Δ)−s/2W . For a coupling in which this
equation holds almost surely, see Proposition 6.3.

Remark 3.1. Computing ||φ||2
Ḣ−s(Rd)

amounts to computing the covariance ker-

nel of the FGFs(Rd), which will be done in Section 3.2.

Remark 3.2. Since C∞
c (Rd) is dense in S(Rd), the FGFs(Rd) is uniquely de-

termined by the random variables {(h, φn)}n≥1 where φn is a dense (in S(Rd))
sequence of C∞

c (Rd) functions.

3.2. The FGF covariance kernel

Given h ∼ FGFs(Rd) with Hurst parameter H = s − d/2, let Gs(x, y) be a
function (or generalized function) such that for φ1, φ2 ∈ C∞

c (Rd) ∩ Ts(Rd) we
have

Cov[(h, φ1), (h, φ2)] = (φ1, φ2)Ḣ−s(Rd) =

∫
Rd

∫
Rd

Gs(x, y)φ1(x)φ2(y) dx dy.

(3.6)
We call Gs(x, y) a covariance kernel of the FGFs(Rd). We point out that
there can be more than one function Gs satisfying (3.6). For example, if H ≥ 0
and Gs(x, y) satisfies (3.6), then so does Gs(x, y) + g(x, y) for any polynomial
g in x or in y of degree no greater than �H�.

In this section we compute covariance kernels for the fractional Gaussian fields
on Rd. For most positive values of s, we find that Gs(x, y) = C(s, d)|x − y|2H
for some constant C(s, d). When s < 0 the formula is similar but involves some
derivatives of the delta function, and when H is a nonnegative integer there is a
logarithmic correction. The constant C(s, d), and therefore also the correlation
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of FGFs(Rd), is positive when s ∈ (0, d/2), is (−1)�s� when s is a negative non-
integer, and is (−1)1+�H� when H is a positive non-integer. The statement and
proof of the following theorem are adapted from [LD72, Chapter 1, §1].
Theorem 3.3. Each of the following holds.

(i) If H ∈ (−d
2 ,∞) (that is, s > 0) and H is not a nonnegative integer, then

Gs(x, y) = C(s, d)|x− y|2H

satisfies (3.6), where

C(s, d) =
2−2sπ−d/2Γ

(
d
2 − s

)
Γ(s)

.

(ii) If s < 0 (that is, H < −d/2) and s ∈ (−k−1,−k) where k is a nonnegative
integer, then Cov[(h, φ1), (h, φ2)] is given by

∫
Rd

∫
Rd

C(s, d)|x− y|2H
⎡⎣φ1(x)φ2(y)−

k∑
j=0

φ1(x)HjΔ
jφ2(x)|x− y|2j

⎤⎦ ,

where

Hj =
Ωd

2jj!d(d+ 2) · · · (d+ 2j − 2)
,

and Ωd = 2πd/2

Γ(d/2) is the surface area of the unit sphere in Rd.

(iii) If s = −k where k is a nonnegative integer, then Cov[(h, φ1), (h, φ2)] is
given by ∫

Rd

φ1(x)(−Δ)kφ2(x) dx.

(iv) If H is a nonnegative integer k, then

Gs(x, y) = 2 c
( d
2+k)

−1 |x− y|2H log |x− y|,

satisfies (3.6), where c
( d
2+k)

−1 is the residue at d
2 + k of s �→ C(s, d):

c
( d
2+k)

−1 =
(−1)k+12−2k−dπ−d/2

k! Γ(d2 + k)
.

Remark 3.4. In case (ii) above, we can also write

Gs(x, y) = C(s, d)|x− y|2H
⎡⎣1− k∑

j=0

|x− y|2jHjΔ
jδ(x− y)

⎤⎦ ,

Similarly, in case (iii),

Gs(x, y) = (−Δ)kδ(x− y).
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Proof of Theorem 3.3. (i) We first assume H ∈ (−d
2 , 0) and let h ∼ FGFs(Rd).

Let φ1, φ2 ∈ S(Rd). Then we may compute the covariance:

Cov[(h, φ1), (h, φ2)] =

∫
Rd

|ξ|−2sφ̂1(ξ)φ̂2(ξ) dξ,

= (|ξ|−2sφ̂1, φ̂2)L2(Rd),

=
(
F−1(|ξ|−2s) ∗ φ1, φ2

)
L2(Rd)

,

=

∫
Rd

∫
Rd

C(s, d)|x− y|2Hφ1(x)φ2(y) dx dy,

where in the third line we used the Plancherel theorem, and in the last line we
used the following Fourier transform formula given in [LD72, Chapter 1, §1]:

F
[
C(s, d)|x|2H

]
= |ξ|−2s. (3.7)

It is important to note that (3.7) is only valid for 0 < s < d/2 when the class of
test functions is taken to be S(Rd). Indeed, |ξ|−2s is not a tempered distribution
when s ≥ d/2 (due to the singularity at the origin), and C(s, d)|x|2H is not a
tempered distribution when s ≤ 0. Therefore, we extend the Fourier transform
formula (3.7) outside of the region H ∈ (−d

2 , 0). Now for H ≥ 0 and non-
integral, since φ2(y) ∈ SH(Rd) it follows that for all N ≥ 0, φ2(y) = O(|y|−N )
as |y| → ∞, thus

ψ(x, s) := C(s, d)

∫
Rd

|x− y|2Hφ2(y) dy

is a smooth function of x and an analytic function of s for all H in the range
under consideration [LD72, p. 48]. Furthermore, as |x| → ∞ we have ψ(x, s) =
O(|x|2H) so that φ1(x)ψ(x, s) is integrable in x and analytic in s for all H in the
range under consideration. By an analytic continuation argument as in [LD72,
Chapter 1, §1], (i) follows.

Formulas (ii) and (iii) follow directly from equation (1.1.10) in [LD72]:

ψ(x, s) = C(s, d)

∫
Rd

⎡⎣φ2(y)−
k∑

j=0

HjΔ
jφ2(x)|x− y|2j

⎤⎦ |x− y|2H dy,

where ψ(x, s) is an analytic continuation from 0 < s < d/2 to s ∈ (−k− 1,−k].
The result for (iii) follows from the equality

ψ(x,−k) = (−1)kΔkφ2(x).

Finally, to obtain (iv) we will take a limit as t → s of both sides of

‖φ‖2
Ḣ−t(Rd)

=

∫
Rd

∫
Rd

C(t, d)|x− y|2t−dφ(x)φ(y) dx dy; (3.8)

see [LD72, p. 50] for more details. Since φ1 and φ2 are in Sk(Rd), we have∫
Rd x

jφ1(x) dx =
∫
Rd y

jφ2(y) dy = 0 for all 0 ≤ j ≤ k. This implies
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Rd

∫
Rd

|x− y|2t−dφ1(x)φ2(y) dx dy =∫
Rd

∫
Rd

(|x− y|2t−d − |x− y|2s−d)φ1(x)φ2(y) dx dy.

We use Taylor’s theorem to write

|x− y|2t−d − |x− y|2s−d

= 2(t− s)|x− y|2k ln |x− y|+O
((

(t− s)|x− y|2k ln |x− y|
)2)

,

and substitute into (3.8). Taking t → s and using limt→s(t − s)C(t, d) =

Rest=s C(t, d), we obtain (iv). The formula for c
( d
2+k)

−1 follows from the fact
that the residue of Γ at a negative integer −n is (−1)n/n!.

4. The FGF on a domain

4.1. The space Ḣs
0(D)

Let s ≥ 0, and let D ⊂ Rd be a domain. Recall that C∞
c (D) denotes the set

of smooth functions supported on a compact subset of D. We have C∞
c (D) ⊂

Ḣs(Rd) from the definition of Ḣs(Rd) and the closure of the complex Schwartz
functions under the Fourier transform (see Section 2.1). We may therefore define
the set Ḣs

0(D) to be the closure of C∞
c (D) in Ḣs(Rd) and equip it with the

Ḣs(Rd) inner product.

Definition 4.1. We call a domain D ⊂ Rd allowable for all φ ∈ S(Rd) there
exists C = C(D, d, φ) < ∞ such that for all g ∈ C∞

c (D), we have

|(φ, g)L2(Rd)| ≤ C‖g‖Ḣs(Rd).

We will construct a fractional Gaussian field FGFs(D) for all allowable do-
mains D ⊂ Rd (see Remark 4.3). The following lemma gives sufficient conditions
for a domain to be allowable.

Lemma 4.2. Let s ≥ 0. If H = s−d/2 is not a nonnegative integer, then every
proper subdomain of Rd is allowable. If H = s − d/2 is a nonnegative integer,
then a domain D is allowable if Rd \D contains an open set.

Proof. Let D ⊂ Rd be a domain, and let φ ∈ S(Rd) and g ∈ C∞
c (D). We have

|(φ, g)L2(Rd)| =
∣∣∣∣∫

Rd

|ξ|−sφ̂(ξ)|ξ|sĝ(ξ) dξ
∣∣∣∣

≤ ‖φ‖Ḣ−s(Rd) ‖g‖Ḣs(Rd) ,

by the Plancherel formula and Cauchy-Schwarz. If 0 ≤ s < d/2, we conclude
that ‖φ‖Ḣ−s(Rd) is finite and therefore that D is allowable.
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If H = s − d/2 ∈ {0, 1, . . .} and Rd \D contains an open set, then let B be
a ball contained in Rd \D, and let η ∈ C∞

c (Rd) be supported on B and satisfy∫
Rd η(x)x

α dx =
∫
Rd φ(x)x

α dx for every multi-index α satisfying |α| ≤ H (such
a function may be constructed via a Gram-Schmidt procedure). Since ηg = 0,
we have

(φ, g)L2(Rd) = (φ− η, g)L2(Rd) ≤ ‖φ− η‖Ḣ−s(Rd) ‖g‖Ḣs(Rd)

By our choice of η, the Fourier transform of φ − η vanishes to order H at the
origin, so ‖φ− η‖Ḣ−s(Rd) is finite. Therefore D is allowable.

Suppose that s − d/2 > 0 is not an integer and that D � Rd. Without
loss of generality, we may assume D does not contain the origin. Let Pφ be
the unique polynomial of degree �H� such that all the derivatives up to order
�H� of F(φ − Pφ(D)δ) are zero, where P (D) denotes the differential operator
corresponding to a polynomial P and δ denotes a unit Dirac mass at 0. Then

|(φ, g)L2(Rd)| = |(φ− Pφ(D)δ, g)L2(Rd)| ≤
∥∥φ− Pφ(D)δ

∥∥
Ḣ−s(Rd)

‖g‖Ḣs(Rd) .

The expression ‖φ− Pφ(D)δ‖Ḣ−s(Rd) is finite since F(φ− Pφ(D)δ) is bounded

by a constant times |ξ|�H�+1 near the origin and by a constant times |ξ|�H� as
ξ → ∞.

Let φ ∈ S(Rd), and let D be an allowable domain. By the definition of
allowability, (φ, ·)L2(Rd) is a continuous linear functional on Ḣs

0(D). Therefore,
by the Riesz representation theorem for Hilbert spaces, there exists a unique
f ∈ Ḣs

0(D) such that (φ, g)L2(Rd) = (f, g)Ḣs(Rd) for all g ∈ Ḣs
0(D). Writing out

the definition of (f, g)Ḣs(Rd) and using the Plancherel formula, we see that this
implies that f is the unique solution of the distributional equation

(−Δ)sf = φ, f ∈ Ḣs
0(D). (4.1)

For s > 0, we define the semi-norm ||φ||Ḣ−s(D) := ‖f‖Ḣs(Rd), where f is deter-

mined by φ via (4.1).
Denote by S(D) the space of functions on D which can be realized as the

restriction of a Schwartz function to D. Then d(φ, ψ) := ||φ−ψ||Ḣ−s(D) defines

a metric on S(D). Taking the completion under this metric as we did at the
end of Section 2.1, we get a Hilbert space Ts(D) ⊂ S ′(Rd) which will serve as a
space of test functions for FGFs(D).

4.2. The zero-boundary FGF in a domain

Let D � Rd be an allowable domain, let s ≥ 0, and define the functional

CD, s(φ) := exp

(
−1

2
‖φ‖2

Ḣ−s(D)

)
for φ ∈ S(Rd). Since CD,s is continuous by the definition of allowability, we may
use Proposition 2.4 and the Bochner-Minlos Theorem to CD, s to conclude that
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there is a unique random element hD of S ′(Rd) such that (hD, φ) is a mean-
zero Gaussian with variance ||φ||2

Ḣ−s(D)
. Since E[(hD, φ)2] = 0 whenever φ is

supported in Rd \ D, the support of hD is almost surely contained in D. We
call6 hD the zero-boundary FGF on D, abbreviated as FGFs(D).

Remark 4.3. We construct hD ∼ FGFs(D) only when D is allowable because
we want to ensure that hD is a tempered distribution (rather than a tempered
distribution modulo a space of polynomials).

We can also define a Gaussian Hilbert space version of FGFs(D), following
the corresponding discussion FGFs(Rd) in Section 3.1. In this way we obtain
a collection of random variables {(hD, f) : f ∈ Ts(D)} so that (hD, f) is a
centered Gaussian with variance ‖f ||2

Ḣ−s(D)
.

If s is an even positive integer, then ‖f‖Ḣs
0 (D) = ‖(−Δ)

s
2 f‖L2(Rd) for all

f ∈ C∞
0 (D). If s is an odd positive integer, then

‖f‖Ḣs
0 (D) = ‖(−Δ)

s−1
2 f‖Ḣ1

0 (D)

for all f ∈ C∞
0 (D). Therefore, if s = 0 then hD is white noise on D, and if s = 1

then hD is the GFF on D. Thus FGFs(D) generalizes the domain versions of
white noise and the Gaussian free field.

4.3. Covariance kernel for the FGF on the unit ball

Let s ≥ 0, and let D be an allowable domain. As usual, we say that a function
Gs

D : D ×D → R is the FGFs(D) covariance kernel if it satisfies

Cov[(hD, φ1), (hD, φ2)] =

∫
Rd

∫
Rd

Gs
D(x, y)φ1(x)φ2(y) dx dy. (4.2)

for hD ∼ FGFs(D) and for all φ1, φ2 ∈ C∞
c (D). We treat each of the cases

(i) s is an integer,
(ii) s ∈ (0, 1), and
(iii) s is a non-integer greater than 1.

Suppose that s is a positive integer, and let φ ∈ S(B). By (2.65) in Chapter
2 of [GGS10], the unique solution of (4.1) is f(x) =

∫
Gs

B(x, y)φ(y)dy, where

Gs
B(x, y) = ks,d|x− y|2H

∫ ||x|y− x
|x| |

|x−y|

1

(v2 − 1)s−1v1−ddv, x, y ∈ B (4.3)

and

ks,d =
Γ(1 + d/2)

dπd/24d−1((s− 1)!)2
.

6We use the word boundary instead of complement for consistency with the GFF terminol-
ogy. Note, however, that due to the nonlocal nature of the fractional Laplacian, the relevant
boundary data include the values on Rd \D.
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It follows that for all φ ∈ C∞
c (D), we have

E[(hD, φ)2] = ‖φ‖2
Ḣ−s(D)

= ‖f‖2
Ḣs

0 (D)
=

∫∫
GB(x, y)φ(x)φ(y) dx dy, (4.4)

which shows that Gs
B is the FGFs(D) covariance kernel.

Suppose that 0 < s < 1. Let Xt denote a 2s-stable symmetric Lévy process,
and let τB be the first timeX exitsB. Recall the definition of the constant Cd,s in
Theorem 3.3, and define u(x, y) = (2/π)2sCd,s|x−y|2H . By the potential theory
of 2s-symmetric stable processes, (see, for example, [CS98]), the function

Gs
B(x, y) = u(x, y)− Ex[u(XτB , y)]

is the FGFs(D) covariance kernel. The following explicit formula for GB
s is given

as Corollary 4 in [BGR61]:

Gs
B(x, y) = k̃s,d|x− y|2H

∫ (1−|x|2)(1−|y|2)

|x−y|2

0

(v + 1)−d/2vs−1dv, x, y ∈ B, (4.5)

where

k̃s,d =
Γ(d/2)

4sπd/2Γ(s)2
.

Suppose that s > 1 is not an integer and φ ∈ S(Rd). We claim thatGs
B(x, y) =∫

B
G�s�(x, u)Gs−�s�(u, y)du is the covariance kernel for FGFs(D). Indeed, we

may write (−Δ)s = (−Δ)�s�(−Δ)s−�s� and calculate

(−Δ)s
∫∫

G
s−�s�
B (x, u)G

�s�
B (u, y)φ(y) dy

= (−Δ)�s�
∫

G
�s�
B (u, y)φ(y) dy

= φ(x),

which implies that Gs
B is the FGFs(D) covariance kernel by (4.4).

Remark 4.4. Similar results may be obtained for a more general class of domains
D. The ingredients are the corresponding potential theory of the poly-Laplacian
and fractional Laplacian for s ∈ (0, 1).

5. Projections of the FGF

Given a domain D ⊂ Rd and a distribution f defined on Rd \D, if a distribution
g : Rd → R satisfies the condition

f |Rd\D = g|Rd\D

((−Δ)sg)|D = 0,

then we call g the s-harmonic extension of f . In this section we decompose
h ∼ FGFs(Rd) as a sum of two random fields, one of which is supported on D
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and the other of which may be interpreted as the s-harmonic extension of the
values of h on Rd \D.

Let s > 0, let D � Rd be an allowable domain, and define

Hars(D) = {f ∈ Ḣs(Rd) : ((−Δ)sf)|D = 0}.

Proposition 5.1. Ḣs(Rd) = Hars(D)⊕ Ḣs
0(D).

Proof. If f ∈ Hars(D) and g ∈ Ḣs
0(D), then (f, g)Ḣs(Rd) = ((−Δ)sf, g) = 0.

Therefore, Hars(D) and Ḣs
0(D) are orthogonal subspaces of Ḣs(Rd).

Let f ∈ Ḣs(Rd). Since D is allowable, ((−Δ)sf, ·)L2(Rd) is a continuous

functional on Ḣs
0(D). Therefore, there exists fD ∈ Ḣs

0(D) such that for all
g ∈ Ḣs

0(D), we have (f, g)Ḣs(Rd) = (fD, g)Ḣs(Rd). In particular, this implies

that ((−Δ)s(f − fD), g) = 0 for all g ∈ C∞
c (D), which means that

(−Δ)s(f − fD)|D = 0.

Thus we can write f as a sum of elements of Har(D) and Ḣs
0(D) as f = (f −

fD) + fD.

Observe that Proposition 5.1 implies that Hars(D) is a closed subspace of
Ḣs(Rd). We define the projection operators PDf = fD and PHar

D f = f − fD.
We will make sense of PDh and PHar

D h almost surely, although these are defined
a priori only for h ∈ Ḣs(Rd) and not for arbitrary elements of S ′

H(Rd).
We begin by observing that the solution f of (4.1) is given by f =PD(−Δ)−sφ.

Indeed, PD(−Δ)−sφ ∈ Ḣs
0(R

d), and

(PD(−Δ)−sφ, g)Ḣs(Rd) = ((−Δ)−sφ, g)Ḣs(Rd) = (φ, g)L2(Rd),

since (PHar
D (−Δ)−sφ, g) = 0 for all g ∈ C∞

c (D). Therefore, we may apply the
Bochner-Minlos theorem to the functional

Φ(φ) = exp

(
−1

2
‖P (−Δ)−sφ‖2

Ḣs(Rd)

)
for P = PD and for P = PHar

D to obtain random tempered distributions hD

and hHar
D , respectively. We call hHar

D the s-harmonic extension of h restricted to
Rd \D. In Section 8, we will show that hHar

D is smooth in D almost surely.

Remark 5.2. Like the fractional Gaussian field in Rd, hHar
D is a random element

of S ′
H(Rd). But hD is a random element of S ′(Rd), as mentioned in Remark 4.3.

Now sample hHar
D and hD independently and define h = hHar

D + hD. By
the uniqueness part of the Bochner-Minlos theorem, h is an FGFs(Rd). For
all f ∈ Ḣs

0(D), we have (h, f)Ḣs(Rd) = (hD, f)Ḣs(Rd) almost surely. Therefore,

hD is almost surely determined by h. Thus hHar
D = h− hD is also almost surely

determined by h. So we can define measurable maps PD and PHar
D on S ′

H(Rd)
such that hD = PDh ∼ FGFs(Rd) and hHar

D = PHar
D h is the harmonic extension

of h restricted to Rd \D.
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Remark 5.3. We will sometimes describe the relationship between hD and hHar
D

by saying that hHar
D is the conditional expectation of h ∼ FGFs(Rd) given the

values of h on Rd \D.

Because (−Δ) commutes with PD and PHar
D , by the Bochner-Minlos theorem,

we have
(−Δ)hs

D
d
= hs−2

D and (−Δ)hD,s
Har

d
= hD,s−2

Har (5.1)

where
d
= denotes equality in distribution.

Suppose U ⊂ D is another allowable domain. Since projection operators in
Ḣs(Rd) commute,

PUPDh = PDPUh = PUh,

hD = PDh = PD(PHar
U h+ PUh) = PHar

U hD + PUh

almost surely. Moreover, PU
HarhD and PUh are independent. As discussed above,

hU and PHar
U hD are determined by hD almost surely. Thus we have the following

proposition.

Proposition 5.4. Given allowable domains U and D such that U ⊂ D, there
is a coupling (hD, hHar

U,D, hU ) such that

(i) hD = hHar
U,D + hU ,

(ii) hD is a zero boundary FGF on D,
(iii) hU is zero boundary FGF on U , and
(iv) hHar

U,D and hU are independent and both determined by hD almost surely.

We call hHar
U,D the harmonic extension of hD given its values on D/U .

By the definition of hHar
D , given φ ∈ C∞

c (D) ∩ SH(Rd) and f = (−Δ)−sφ ∈
Ḣs(Rd), we have (hHar

D , φ) = (h, (−Δ)sfHar
D ). Since supp((−Δ)sfHar

D )) ⊂ Rd\D,
we can say that the value of hD

Har on D modulo a polynomial of degree at most
�H� is determined by values of h on Rd \D. More precisely, the random variable
hHar
D |D is determined by {(h, φ) : φ ∈ Ts(Rd), supp(φ) ⊂ Rd \D}.
When s is a positive integer, the operator (−Δ)s is local, in that case we have

a stronger result: hHar
D |D is measurable with respect to the σ-algebra generated

by the intersection of the value of h on every neighborhood of the boundary
(that is, the action of h on test functions supported on a neighborhood of the
boundary). This is a generalization of the corresponding Markov property for
the Gaussian free field [She07].

6. Fractional Brownian motion and the FGF

The d-dimensional fractional Brownian motion B with Hurst parameter H > 0
is defined to be the centered Gaussian process on Rd with

E[B(x)B(y)] = |x− y|2H − |x|2H − |y|2H for all x, y ∈ Rd. (6.1)

The existence of such a process is guaranteed by the general theory of Gaussian
processes (for example, see Theorem 12.1.3 in [Dud02]), because the right-hand
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side of (6.1) is positive definite [OW89]. The special case H = 1
2 is called Lévy

Brownian motion [Lév40], [Lév45].

Proposition 6.1. If s ∈ (d/2, d/2+1) (that is, H ∈ (0, 1)) and h ∼ FGFs(Rd),

then the process defined by h̃(x) = (h, δx − δ0) has the same distribution as
the fractional Brownian motion with Hurst parameter H (up to multiplicative
constant).

Proof. Let x ∈ Rd. Since the Fourier transform of δx is ξ �→ e2πix·ξ, one may
verify from the definition of the Ḣ−s(Rd) norm that δx − δ0 is an element of
Ḣ−s(Rd) and therefore an element of Ts(Rd). So if h ∼ FGFs(Rd), then we may

define h̃(x) = (h, δx − δ0). Then by Theorem 3.3(i) we have

E[h̃(x)h̃(y)] = Gs(x, y)−Gs(0, y)−Gs(x, 0), (6.2)

where Gs(x, y) = C(s, d)|x − y|2H . Combining (6.1) and (6.2), we see that

C(s, d)B and h̃ have the same covariance structure. Since both are centered
Gaussian processes, this implies that they have the same law.

Since (6.1) and (6.2) show that h̃(0) = B(0) = 0 almost surely, Proposi-
tion 6.1 establishes that the FGFs(Rd) can be identified as (a constant multiple
of) the fractional Brownian motion by fixing its value to be zero at the origin.

Denote by Ck,α(Rd) the space of functions on Rd all of whose derivatives of
order up to k exist and are α-Hölder continuous. Note that the differentiability
and Hölder continuity of a function-modulo-polynomials is well-defined, because
adding a polynomial to a function does not affect its regularity properties.

Proposition 6.2. Let h be an FGF on Rd with Hurst parameter H > 0, and
define k = 	H
− 1. Then h ∈ Ck,α(Rd) almost surely for all 0 < α < H −	H
.

Proof. We consider several cases:

(i) Suppose that 0 < H < 1. By Theorem 8.3.2 in [Adl10], fractional Brown-
ian motion is α-Hölder continuous for all α < H. The result then follows from
Proposition 6.1.

(ii) Suppose that 1 < H < 2, and let s = d/2 +H. As in the case H ∈ (0, 1),
it is straightforward to verify that ∂αδx − ∂αδ0 ∈ Ts(Rd) when |α| ≤ 1 and
x ∈ Rd. Therefore, if h ∼ FGFs(Rd), we may fix all derivatives of h of order up
to 1 to vanish at the origin. In this way we obtain a scale-invariant function h0

whose restriction to S1(Rd) coincides with h. Since |h0(x)| has the same law as
|x|Hh0(1) by scale invariance, we have E|h0(x)| = c|x|H for all x ∈ Rd, where
c = E[|h0(1)|]. Thus

E

[∫
|x|>1

|h0(x)|
|x|d+2

dx

]
=

∫
|x|>1

E|h0(x)|
|x|d+2

dx =

∫
|x|>1

c

|x|d+2−H
< ∞,

which implies that h0 satisfies condition (2.4) with s = 1/2 almost surely (see

Section 2.2). Therefore, h̃ := (−Δ)1/2h0 is well-defined as a random element of
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S ′
0(R

d). Furthermore, since

(h̃, φ) = (h, (−Δ)1/2φ) ∼ N
(
0, ‖(−Δ)1/2φ‖Ḣ−s(Rd)

)
= N

(
0, ‖φ‖Ḣ−(s−1)(Rd)

)
for all φ ∈ S0(Rd), we see that h̃ ∼ FGFs−1(Rd). Thus h̃ is α-Hölder continuous
for all α < s−1 by the preceding case. By the proof7 of [Sil07, Proposition 2.8],
h is almost surely in C1,α(Rd).

(iii) If H = 1, we may apply the same argument with (−Δ)(1−α)/2 in place

of (−Δ)1/2, which means that h̃ ∼ FGF(1+α)/2(R
d).

(iv) If H = 2, then we may apply the same reasoning we applied in case (ii),
leveraging the H = 1 case.

(v) For H > 2, we note that f ∈ Ck+2,α(Rd) whenever Δf ∈ Ck,α(Rd)
[Fol99, Theorem 2.28]. Therefore, the result follows from the case H ∈ (0, 2] by
induction.

As an application of the ideas presented in this section, we construct a cou-
pling of all the fractional Gaussian fields on Rd.

Proposition 6.3. There exists a coupling of the random fields {hs : s ∈ R}
such that hs ∼ FGFs(Rd) and hs = (−Δ)

s′−s
2 hs′ for all s, s′ ∈ R. Furthermore,

in this coupling hs determines hs′ for all s, s′ ∈ R.

Proof. We will start with an FGF with Hurst parameter 2 and apply the frac-
tional Laplacian to obtain FGFs with Hurst parameters in (0, 2). The remaining
FGFs are then obtained by applying integer powers of the Laplacian to FGFs
with Hurst parameter in (0, 2].

Let h2+d/2 ∼ FGF2+d/2(R
d). As discussed in the proof of Proposition 6.2

case (ii), we can fix the values and first-order derivatives of h to vanish at the
origin to obtain a scale-invariant random function h0 whose restriction to S1(Rd)
agrees with h. Furthermore, we have

E

[∫
|x|>1

|h0(x)|
|x|d+2s+k+1

dx

]
=

∫
|x|>1

E|h0(x)|
|x|d+2s+k+1

dx =

∫
|x|>1

c|x|2
|x|d+2s+k+1

< ∞,

whenever s ∈ (0, 1/2] and k = 1 or when s ∈ (1/2, 1) and k = 0. Therefore, we
may define hs′+d/2 = (−Δ)1−s′/2h2+d/2 for all s′ ∈ (0, 2). If s′+d/2 ∈ R\ (0, 2],
define hs′+d/2 = (−Δ)

s−s′
2 hs+d/2, where s is the unique real number in (0, 2] for

which s− s′ is an even integer.
It follows from the construction that hs ∼ FGFs(Rd) for all s ∈ R and that

hs = (−Δ)
s′−s

2 hs′ for all s, s
′ ∈ R, which in turn implies that hs determines hs′

for all s, s′ ∈ R.

7Proposition 2.8 in [Sil07] includes a boundedness hypothesis which does not hold here.
However, that hypothesis is only used for a norm bound also given in the proposition state-
ment. The regularity assertion follows from the other hypotheses.
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7. Restricting FGFs

In this section we study how fractional Gaussian fields behave when restricted
to a lower dimensional subspace.

We regard Rd−1 as a subspace of Rd by associating (x1, . . . , xd−1) ∈ Rd−1

with (x1, . . . , xd−1, 0) ∈ Rd. For all φ ∈ SH(Rd−1), we define φ↑ ∈ S ′(Rd) by

(φ↑, f) :=

∫
Rd−1

f(x)φ(x) dx

for all f ∈ S(Rd).

Theorem 7.1. Fix s > 1
2 , suppose hd ∼ FGFs(Rd). Then φ↑ ∈ Ts(Rd) for

all φ ∈ SH(Rd−1), which means that (h, φ↑) is a well-defined random variable
almost surely (see Section 3.1). Moreover, hd almost surely determines a random
distribution hd−1 ∼ FGFs−1/2(R

d−1) such that for all φ ∈ C∞
c (Rd−1)∩SH(Rd)

fixed, the relation
(hd, φ↑) = C(hd−1, φ), (7.1)

holds almost surely, where C is a constant depending only on d and s.

We refer to hd−1 as the restriction of hd to Rd−1.

Proof. Let {ηk}k∈N be an approximation to the identity, which means that

(i) ηk is smooth for all k ∈ N,
(ii) ηk ≥ 0,
(iii) supp(ηk) ⊂ B(0, 1/k), and
(iv)

∫
Rd ηk(x) dx = 1.

Then φ↑
k := ηk ∗ φ↑ ∈ SH(Rd), because applying the definition of a convolution

and making a substitution w = x− y yields

∫
Rd

xα(ηk ∗ φ↑)(x) dx =

∫
Rd

ηk(w)

0︷ ︸︸ ︷∫
Rd−1

(w + y)αφ(y) dy dw = 0,

since
∫
xαφ(x) dx = 0 whenever |α| ≤ H. Moreover we can use Theorem 3.3 to

check that {φ↑
k}k∈N is a Cauchy sequence in Ḣ−s(Rd). Since φ↑

k → φ↑ in S ′(Rd),

we have φk → φ↑ in Ḣ−s(Rd) and therefore φ↑ ∈ Ts(Rd).

Since φ↑
k → φ↑ in Ḣ−s(Rd), we have Var[(hd, φ)] = limk→∞ ‖φk‖2Ḣ−s(Rd)

. By

definition of {ηk}, Var[(hd, φ)] satisfies the formula in Theorem 3.3 where we
replace Rd by Rd−1 and set φ1 = φ2 = φ. This is the covariance structure of FGF
on Rd−1 with the same Hurst parameter as hd, up multiplicative constant. In
other words, there is a constant C so that if we define (hd−1, φ) := C−1(hd, φ↑)
for all φ in a countable dense subset Φ ⊂ C∞

c (Rd), then hd−1 has the law
of an FGFs−1/2(R

d−1) restricted to Φ. Therefore, hd−1 extends uniquely to a

tempered distribution on Rd−1, and it satisfies (7.1) for all φ ∈ C∞
c (Rd)∩SH(Rd)

by continuity.
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Since hd−1 is a function of hd almost surely, we can define a measurable
function R on S ′ such that hd−1 = Rhd. We call R the restriction operator.
We can see that R maps an FGF to a lower dimensional FGF with the same
Hurst parameter. By applying R repeatedly, we can restrict an FGF(Rd) to an
FGF(Rd′

) with the same Hurst parameter, as long as d′ > −2H.
When the Hurst parameter is positive, FGFs(Rd) is a pointwise-defined ran-

dom function, so R agrees with the usual restriction of functions. In particular,
we note that the restriction of a multidimensional fractional Brownian motion
with Hurst parameter H to a line through the origin is a linear fractional Brow-
nian motion with Hurst parameter H.

8. Regularity of FGF(D)

Let s ≥ 0, and let h ∼ FGFs(Rd) be coupled with hD ∼ FGFs(D) and hHar
D

as in Section 5, so that h = hD + hHar
D . In this section, we will show that hHar

D

is smooth in D almost surely. First, we record some results on the fractional
Laplacian following Section 2 of [Sil07].

Lemma 8.1. If s is a positive integer and g is a distribution on D such that
(−Δ)sg is smooth on D, then g is smooth on D.

Proof. Let s = 1; the case s > 1 follows by induction. If Δg = 0, the desired
result is Weyl’s lemma (see Appendix B of [Lax02]). If Δg is not zero, suppose
that U ⊂ D is an arbitrary ball, and let g1 be a function which is smooth on U
such that (−Δ)g1|U = (−Δ)g|U [Fol99, Corollary 2.20]. Applying the result for
the case Δg = 0, we see that g − g1 is smooth on U , and hence so is g. Since U
was arbitrary, g is smooth on D.

Lemma 8.2. Let 0 < s < 1, and let B ⊂ Rd be an open ball. If (−Δ)sf is
smooth in B, then f is smooth in B.

Proof. By [LD72, (1.6.11), p. 121] (see also Section 5.1 in [Sil07]) the solution
u to (−Δ)su|B = 0 and f |Rd\B = f |Rd\B is given by the convolution u(y) =∫
Rd\B f(x)P (x, y) dy where P (x, y), the Poisson kernel of (−Δ)s, is proportional
to

(1− |x|2)s
(|y|2 − 1)s|x− y|d .

Since P is smooth, we see that

g is smooth in B whenever (−Δ)sg = 0 in B. (8.1)

By convolving with the Green’s function (4.5) for the fractional Laplacian on
B, we see that there exists a continuous solution g of the equation (−Δ)sg =
(−Δ)sf on B and g = 0 on Rd \ B which is smooth in B. Since f − g is also
smooth in B by (8.1), we conclude that f is smooth in B.

We can now prove the main result in this section.
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Theorem 8.3. If D � Rd is an allowable domain, then hHar
D is smooth on D

almost surely. If U ⊂ D is a domain, then hHar
U,D is smooth on U almost surely.

Proof. We consider several cases:
(i) We first suppose d is even, 0 < H < 1, and D is a ball. The ar-

gument in case (ii) of Proposition 6.2 shows that h satisfies condition (2.4)
with s = H almost surely. Since hHar

D = h − hD and hD is supported in
D, we see that hHar

D also satisfies (2.4) with k = −1. Therefore, (−Δ)HhHar
D

is tempered distribution. By the definition of hHar
D as a random field with

(h, φ) ∼ N (0, ‖PHar
D (−Δ)−sφ‖Ḣs(Rd)), we have for all φ ∈ C∞

c (D),

((−Δ)
d
2 (−Δ)HhHar

D , φ) = ((−Δ)shHar
D , φ) = 0

almost surely. Considering a countable dense subset of C∞
c (D), we conclude

that (−Δ)
d
2 (−Δ)HhHar

D |D = 0 almost surely. Thus by Lemma 8.1, (−Δ)HhHar
D

is smooth in D almost surely. By Lemma 8.2, hHar
D is smooth in D almost surely.

(ii) Suppose that d is even, 1 < H < 2 and D is a ball whose closure does
not contain the origin. By the scale invariance of h, there exists c > 0 so that
have E|∇h(x)| = c|x|H−1 for all x ∈ Rd. Thus

E

[∫
|x|>1

|∇h(x)|
|x|d+2H−2

dx

]
=

∫
|x|>1

E|∇h(x)|
|x|d+2H−2

dx < ∞,

which implies that |∇h| satisfies condition (2.4) with s = H − 1 almost surely.
Since h ∈ C1(Rd) and hD ∈ C1(Rd), we have hHar

D ∈ C1(Rd). Therefore, |∇hHar
D |

satisfies (2.4) almost surely. By the same argument as in Case (i) above, ∂xih
Har
D

is smooth in D for all 1 ≤ i ≤ d. Therefore hHar
D is smooth in D.

(iii) If d is even, H ∈ {0, 1} and D is a ball, then s is an integer. So hHar
D is

smooth by Lemma 8.1.
(iv) If D � Rd is allowable, suppose that U ⊂ D is an arbitrary ball. Since

E[h2
D(x)] ≤ E[h2(x)] and E[(hD(x)2]

(E|hD(x)|)2 = E[(h(x))2]
(E|h(x)|)2 , the arguments for the preceding

cases imply that hHar
U,D is smooth on U . By the formula

hHar
U = PU

Har(hD + hHar
D ) = hHar

U,D + hHar
D ,

we see that hHar
D is also smooth on U . Since U is arbitrary ball contained in D,

this implies that hHar
D is smooth in D. If U is an arbitrary allowable domain in

D, again by hHar
U = hHar

U,D + hHar
D , we see that hHar

U,D is smooth on U .
(v) Suppose that d is even and s > 0. In the preceding cases we have

established the result for H ∈ [0, 2). Since (−Δ)hHar
D

d
= h̃Har

D when s > 2,

h ∼ FGFs(D), and h̃ ∼ FGFs−2(D), Lemma 8.1 establishes the result for all
s > 0.

(vi) Suppose that d is odd, H > 0, and H is not an even integer. Suppose D
is an allowable domain in Rd and regard Rd as a subspace of Rd+1 by mapping
x ∈ Rd−1 to (x1, x2, . . . , xd−1, 0). Since h = hD + hHar

D where hD and hHar
D are

independent, hHar
D is the conditional expectation of h given h on Rd \D. So if
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we regard Rd \D as a closed set in Rd+1, the restriction of hHar
Rd+1\(Rd\D) has the

same law as hHar
D on Rd. Since the restriction of a smooth function is smooth,

we conclude that hHar
D is a smooth function in D almost surely.

(vii) If d is odd and s > 0, we apply the argument in Case (v) to the result
from Case (vi).

Since h = hD + hHar
D and hHar

D is smooth in D, the regularity of FGFs(D)
is the same as the regularity of FGFs(Rd). In other words, hD is has α-Hölder
derivatives of order up to k, where k = 	H
 − 1 and α < H − 	H
 (Proposi-
tion 6.2).

9. The eigenfunction FGF

Let D ⊂ Rd be a bounded domain, and let s ∈ (0, 1). In this section we dis-
cuss an different notion of a fractional Gaussian field on D, which we call the
eigenfunction FGF and denote EFGFs(D).

The eigenfunction FGF is based on the following definition of a fractional
Laplacian operator on D. Following Section 2.3 in [She07], we let {fn}n∈N be
an orthonormal basis of eigenfunctions of the Dirichlet Laplacian onD, arranged
in increasing order of their corresponding eigenvalues λn > 0. We define for all
φ =

∑
(fn, φ)L2(Rd)fn ∈ L2(D) the formal sum

(−Δ)sDφ =
∑
n∈N

λs
n(φ, fn)L2(D)fn,

which converges if φ ∈ C∞
c (D) [She07]. We call (−Δ)sD the eigenfunction frac-

tional Laplacian operator on D. This fractional Laplacian operator determines
a Hilbert space, analogous to Ḣs

0(D), with inner product given by∑
n∈N

λs
n(φ1, fn)L2(D)(φ2, fn)L2(D).

Note that {λ−s/2
n fn}n∈N defines an orthonormal basis with respect to this inner

product. We define EFGFs(D) to be a standard Gaussian on this space; more
precisely, let {Zn}n∈N be an i.i.d. sequence of standard normal random variables
and set for all φ ∈ C∞

c (D),

(h, φ) :=
∑
n∈N

Znλ
−s/2
n (fn, φ).

By Weyl’s law, λn = Θ(n2/d) as n → ∞, so the sum on the right-hand side
converges almost surely for each φ. Furthermore, the functional h defined this
way is a continuous functional by the same argument given for the GFF case in
[She07]. We define EFGFs(D) to be the law of h.

Both the fractional Laplacian and the eigenfunction fractional Laplacian can
be understood in terms of a local operator in d + 1 dimensions. In [CS07],
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the fractional Laplacian is realized as a boundary derivative for an exten-
sion problem in Rd × [0,∞). A corresponding analysis for the eigenfunction
Laplacian is developed in [CT10] and [CDDS11] by considering a similar ex-
tension problem in D× [0,∞). We carry out an analogous comparison between
FGFs(Rd), FGFs(D), and EFGFs(D) by realizing each as a restriction of a
higher-dimensional random field that can be understood as a Gaussian free field
with spatially varying resistance (see Propositions 9.1, 9.2 and 9.3 below).

Let s ∈ (0, 1), and define α = 1−2s
1−s ∈ (−∞, 1). For simplicity, we will assume

d ≥ 2. We introduce the coordinates (x1, . . . , xd, z) for Rd+1, and we define the
following variant of the gradient operator. For φ ∈ S(Rd+1), we set

∇αφ :=

(
∂φ

∂x1
,
∂φ

∂x2
, . . . ,

∂φ

∂xd
, |z|α/2 ∂φ

∂z

)
.

We will use

Ssym(R
d+1) := {φ ∈ S0(R

d+1) : φ(x, z) = φ(x,−z) for all x, z}

as a space of test functions. Integrating by parts (see [Bas98, Chapter 7] for
more details), we find that for all φ ∈ Ssym(Rd), we have∫

Rd+1

|∇αφ|2 = −
∫
Rd+1

φ(Lαφ),

where the operator Lα is defined by

Lα =
∂2

∂x2
1

+
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

+
∂

∂z

(
|z|α ∂

∂z

)
.

By the Bochner-Minlos theorem, we can define a random tempered distribu-
tion hα for which

E[exp(i(hα, φ))] = exp

(
−1

2

∫
Rd+1

φ̃(−Lα)
−1φ̃

)
(9.1)

= exp

(
−1

2

∫
Rd+1

|∇α(−Lα)
−1φ̃|2

)
,

where
φ̃(x, z) = 1

2 (φ(x, z) + φ(x,−z)),

and (−Lα)
−1φ satisfies −Lα(−Lα)

−1φ = φ and vanishes at infinity—see the
proof of Proposition 9.1 for the existence of such a function. We then restrict
the domain of hα to Ssym(Rd+1), so that (9.1) holds with φ in place of φ̃.

Since the right-hand side of (9.1) reduces when α = 0 to the GFF char-

acteristic function evaluated at φ̃, we may think of h as a symmetrized and
re-weighted8 version of the Gaussian free field on Rd+1. We define restriction of
hα to Rd × {0} by

(hα|Rd×{0} , φ) := (hα, (x, z) �→ φ(x)δ0(z)) for φ ∈ S(Rd),

8We are using the term weight here in sense described for the disrete GFF in Section 4 of
[She07].
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where δ0 denotes the unit Dirac mass at z = 0. See the proof of Theorem 7.1
for an explanation of why the random variable on the right-hand side is well-
defined. More precisely, we will show that the covariance kernel of hα|Rd×{0} is

that of an FGFs(Rd). It follows from continuity of FGFs(Rd) (as a functional
on S(Rd)) that this restriction can be defined on a countable dense subset of
S(Rd) and continuously extended to obtain a random tempered distribution.

Proposition 9.1. The restriction of hα to Rd × {0} is an FGFs(Rd), up to
multiplicative constant.

Proof. Let (Xt)t≥0 be a diffusion in Rd+1 with a standard Brownian motion B

in the first d coordinates and the process Zt := (
√
2
δ Yt)

δ in the last coordinate,
where δ = 2(1−s) and Y is δ-dimensional Bessel process reflected symmetrically
at 0. An application of Itō’s formula reveals that Lα is the generator of X. We
define the Green’s function

Gα(x1, x2) := lim
ε→0

(2ε)−d−1Ex1

[∫ ∞

0

1{Xt∈Q(x2,ε)} dt

]
, x1, x2 ∈ Rd+1,

where Q(x, ε) := {y ∈ Rd+1 : |xk−yk| < ε for all 1 ≤ k ≤ d+1}. Since d+1 ≥ 3
implies that X is transient, the limit on the right-hand side is well-defined—the
proof is similar to the proof for the case α = 0 [MP10, Section 3.3]. Since Lα is
the generator of X, we have

((−Lα)
−1φ)(x1) =

∫
Rd+1

Gα(x1, x2)φ(x2) dx2

for all φ ∈ Ssym(Rd+1) (see Chapter II in [Bas98]). Therefore,

E[(hα, φ)
2] =

∫
Rd+1

∫
Rd+1

Gα(x1, x2)φ(x1)φ(x2) dx1 dx2.

We denote by (�s)s≥0 the local time of Z at 0 and by (τt)t≥0 the inverse function
of � [RY99]. Then (Xτt)t≥0 is a 2s-stable Lévy process in Rd, and the integral∫ s

0
1
2ε1{Zu∈(−ε,ε)} du converges almost surely to �s as ε → 0 [MO69]. Therefore,

the Green’s function of the a 2s-stable Lévy process in Rd evaluated at x1, x2 ∈
Rd × {0} equals

lim
ε→0

(2ε)−dEx1

[∫ ∞

0

1{Bτt∈Q(x2,ε)} dt

]
= lim

ε→0
(2ε)−dEx1

[∫ ∞

0

1{Bs∈Q(x2,ε)}
d�s
ds

ds

]
= lim

ε→0
(2ε)−d−1Ex1

[∫ ∞

0

1{Bs∈Q(x2,ε)}1{Zs∈Q(0,ε)}ds

]
= Gα(x1, x2).

In other words, the restriction to {z = 0} of the Green’s function of X is equal
to the Green’s function of a 2s-stable Lévy process in Rd. The latter is pro-
portional to |x1 − x2|2s−d [CS98, (1.1)], and the covariance kernel of FGFs(Rd)
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Fig 9.1. Propositions 9.2 and 9.3 describe the relationship between FGFs(D) and EFGFs(D).
We obtain an FGFs(D) by subtracting from hα its conditional expectation given its values
on (Rd \ D) × {0} and restricting to D × {0}, and we obtain an EFGFs(D) by subtracting
from hα its conditional expectation given its values on ∂D × R and restricting to D × {0}.

is also proportional to |x1 − x2|2s−d by Theorem 3.3. Since the law of a cen-
tered Gaussian process is determined by its covariance kernel, this concludes
the proof.

In Propositions 9.2 and 9.3 below, we discuss projections of hα onto certain
subdomains of Rd+1. These projections are analogous to those discussed for the
FGF in Section 5. We state these propositions using terminology described in
Remark 5.3, to which we refer the reader for a rigorous interpretation.

Proposition 9.2. Let D ⊂ Rd and define hD to be the restriction to D×{0} of
hα minus the conditional expectation of hα given its values on (Rd \D)× {0}.
Then hD ∼ FGFs(D), up to multiplicative constant.

Proof. This result follows immediately from Proposition 9.1 and the fact that
h ∼ FGFs(Rd) minus its conditional expectation given its values on Rd \D has
the law of an FGFs(D).

Proposition 9.3. Let D ⊂ Rd and define h̃D to be the restriction to D × {0}
of hα minus the conditional expectation of hα given its values on ∂D×R. Then
h̃D ∼ EFGFs(D), up to multiplicative constant.

Proof. By the definition of the eigenfunction FGF, it suffices to show that if
f1 and f2 are L2(D)-normalized eigenfunctions of the Dirichlet Laplacian on D
with eigenvalues λ1 and λ2, then

E[(h̃D, f1)(h̃D, f2)] = Cλ−s
1 1{λ1=λ2}

for some constant C. (We will use C to denote a generic constant whose value
may change throughout the proof.)



36 A. Lodhia et al.

It is straightforward to verify that hα minus the conditional expectation
of hα given its values on ∂D × R is equal in law to the field hcyl

α whose co-
variance kernel is given by the Green’s function of the diffusion X defined
in the proof of Proposition 9.1 stopped upon hitting the cylinder ∂D × R.
Equivalently, the covariances of hcyl

α are given in terms of the inverse L−1
α of

the operator Lα with zero boundary conditions on ∂D × R via E[(hcyl
α , φ)2] =∫

D×R
φL̃−1

α φ.
Let wλ(z) be the function on R which satisfies wλ(0) = 1, wλ(∞) = 0,

−λwλ(z) +
∂

∂z

(
zα

∂wλ

∂z

)
= 0 for all z ∈ (0,∞),

and wλ(z) = wλ(−z) for all z ∈ R. A symbolic ODE solver may be used
to express wλ in terms of the modified Bessel function of the second kind
Ks as

wλ(z) = Cλs/2zs/(2−2s)Ks

(
2(1− s)z

1
2−2s

√
λ
)
.

We define the operator Lα,λ = −λ+ ∂
∂z (z

α ∂
∂z ). Integration by parts reveals that

for all φ ∈ C∞
c (R), we have

(−Lα,λwλ, φ) := (wλ,−Lα,λφ) = lim
z→0

zαw′
λ(z)φ(z) = Cλsφ(0) (9.2)

for some constant C, where in the last step we have used the expansion

Ks(t) = 2s−1Γ(s)t−s + 2−s−1Γ(−s)ts − 2s−3Γ(s)t2−s

s− 1
+O(t2+s)

as t → 0+. We may restate (9.2) by writing δ0 = Cλ−s(−Lα,λ)wλ, where δ0
denotes the unit Dirac mass at the origin. Therefore, using the relation

(h̃D, φ) := lim
k→∞

(hcyl
α , (x, z) �→ ψ(x)ηk(z)),

where {ηk}n∈N is an approximation to the identity, we have

E[(h̃D, f1)(h̃D, f2)]

= Cλ−s
1 λ−s

2

∫
D×R

f1(x)(Lα,λ1wλ1)(z)(−Lα)
−1[f2(x)Lα,λ2wλ2(z)] dx dz

= Cλ−s
1 λ−s

2

∫
D×R

f1(x)(Lα,λ1wλ1)(z)f2(x)wλ2(z) dx dz

= Cλ−s
1 λ−s

2

(∫
D

f1(x)f2(x)dx

) (∫
R

(Lα,λ1wλ1)(z)wλ2(z)dz

)
= C 1{λ1=λ2

}λ−2s
1 λs

1 = C 1{λ1=λ2}λ
−s
1 ,

as desired.
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10. FGF local sets

10.1. FGF with boundary values

In Section 4, we defined the FGF on a domain with zero boundary conditions. It
is also natural to consider other boundary conditions to give rigorous meaning
to the idea that the conditional law of the FGF in D given the values of h
outside D is an FGF on D with boundary value h|Rd\D. For simplicity, we only
consider the case where D is bounded and the boundary values are Schwartz.

Definition 10.1. Given a bounded domain D and a Schwartz function f which
is s-harmonic in D, the random distribution f + hD is called the FGF on D
with boundary values f |Rd\D.

10.2. Local Sets of the FGF on a bounded domain

The concept of a local set of the Gaussian free field is developed in [SS10]. It
turns out to be an important concept and tool in the study of couplings between
the GFF and random closed sets such as SLE ([SS10], [MS12a], [MS12b], [MS],
[MS13]). The theory of local sets of the Gaussian free field carries over to the
FGF setting with minimal modification.

Let ΓD be the space of all closed non-empty subsets of D. We endow Γ with
the Hausdorff metric induced by Euclidean distance: the distance between sets
S1, S2 ∈ Γ is

dHaus(S1, S2) := max
{
sup
x∈S1

dist(x, S2), sup
y∈S2

dist(y, S1)
}
,

where dist(x, S) := infy∈S |x − y|. Note that Γ is naturally equipped with the
Borel σ-algebra induced by this metric. Furthermore, ΓD is a compact metric
space [Mun99, pp. 280-281]. Note that the elements of Γ are themselves compact.

Given A ⊂ Γ, let Aδ denote the closed set containing all points in Γ whose
distance from A is at most δ. Let Aδ be the smallest σ-algebra in which A and
the restriction of h (as a distribution) to the interior of Aδ are measurable. Let
A =

⋂
δ∈Q,δ>0 Aδ. Intuitively, this is the smallest σ-algebra in which A and the

values of h in an infinitesimal neighbourhood of A are measurable.
Given a random closed set A ⊂ D and deterministic open subset B ⊂ D, we

define the event S = {A ∩ B = ∅} and the random set Ã := A if S occurs and
∅ otherwise.

Lemma 10.2. Let D be a bounded domain, suppose that (h,A) is a random
variable which is a coupling of an instance h of the FGF with a random element
A of Γ. Then the following are equivalent:

(i) For each deterministic open B ⊂ D, the event A ∩B = ∅ is conditionally
independent, given the projection of h onto Hars(B), of the projection of
h onto Ḣs

0(B). In other words, the conditional probability that A ∩B = ∅
given h is a measurable function of the projection of h onto Hars(B).
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(ii) For each deterministic open B ⊂ D, we have that given the projection of
h onto Hars(B), the pair (S, Ã) is independent of the projection of h onto
Ḣs

0(B).
(iii) Conditioned on A, (a regular version of) the conditional law of h is that of

h1+h2 where h2 is a zero boundary FGF on D\A (extended to all of D by
setting h1|A = 0) and h1 is an A-measurable random distribution (i.e., as
a distribution-valued function on the space of distribution-set pairs (h,A),
h1 is A-measurable) which is almost surely s-harmonic on D \A.

(iv) A sample with the law of (h,A) can be produced as follows. First choose the
pair (h1, A) according to some law where h1 is almost surely s-harmonic
on D \ A. Then sample an instance h2 of zero boundary FGF on D \ A
and set h = h1 + h2.

Lemma 10.2 may be proved by making minor modifications to the proof of
Lemma 3.9 in [SS10] to generalize from the setting s = 1, d = 2 to arbitrary
s ∈ R and d ≥ 1.

We say a random closed set A coupled with an instance h of the FGF, is
local if one of the equivalent conditions in Lemma 10.2 holds. For any coupling
of A and h, we use the notation CA to describe the conditional expectation of
the distribution h given A. When A is local, CA is the distribution h1 described
in (iii) above.

Given two distinct random sets A1 and A2 (each coupled with a FGF h),
we can construct a coupling (h,A1, A2) such that the marginal law of (h,Ai)
(for i ∈ {1, 2}) is the given one, and conditioned on h, the sets A1 and A2 are
independent of one another. This can be done by first sampling h and then
sampling A1 and A2 independently from the regular conditional probabilities.
The union of A1 and A2 is then a new random set coupled with h. We denote
this new random set by A1∪̌A2 and refer to it as the conditionally independent
union of A1 and A2. The following lemma is analogous to [SS10, Lemma 3.6],

Lemma 10.3. If A1 and A2 are local sets coupled with the GFF h on D, then
their conditionally independent union A = A1∪̌A2 is also local. Moreover, given
A and the pair (A1, A2), the conditional law of h is given by CA plus an instance
of the FGF on D \A.

10.3. An example of a local set

Certain level lines of the Gaussian free field are studied in [SS10] and shown to
be local sets. We will show that certain level sets of fractional Gaussian fields
with positive Hurst parameter are also local sets.

Let c1, c2 > 0, let s > d/2 and let h be the FGFs on the unit ball B in Rd

with boundary values c1 on the upper hemisphere, −c2 on the lower hemisphere,
and zero outside a compact set. Then there is a unique surface whose boundary
equals between the boundary of the upper hemisphere and on which h = 0. This
surface separates a region where h is positive and a region where h is negative.
We call this interface the level set of h and denote it by L. To see that L is
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a local set, fix δ > 0 and let Lδ be the intersection of D with the union of all
closed boxes of the grid δZd that intersect L. For each fixed closed set C, the
event {Lδ = C} is determined by h|C . Given a deterministic open set U∩C = ∅,
the projection of h to Ḣs

0(U) is independent of h|C . Thus Lδ is local. Letting
δ → 0, we see that L is local.

11. Spherical decomposition

Since the fractional Gaussian field on Rd is isotropic (that is, invariant under
rotations), it is natural to consider its decomposition under spherical coordi-
nates. There is a general theorem [Won70, Chapter 7] decomposing any isotropic
Gaussian random field into a countable number of mutually uncorrelated single-
parameter stochastic processes. However, since the FGF is a tempered distribu-
tion modulo a space of polynomials (rather than a tempered distribution) and
since it has a special form, we will give the spherical decomposition directly.

11.1. FGF spherical average processes

Let Sd−1 denote the unit sphere in Rd, and define Ωd to be the area of Sd−1. If f
is a continuous function on Rd, then we define the spherical average process f :
(0,∞) → R by f(r) = 1

Ωd

∫
Sd−1 f(rσ) dσ, where dσ denotes (d− 1)-dimensional

Lebesgue measure on Sd−1. We calculate that for all φ ∈ C∞
c ((0,∞)),∫ ∞

0

f(r)φ(r) dr =
1

Ωd

∫
Rd

f(x)
φ(|x|)
|x|d−1

dx. (11.1)

Let s ≥ 0, and let h ∼ FGFs(Rd). Motivated by (11.1), we define the spherical
average process h of h by

(h, φ) :=
1

Ωd

(
h, x �→ φ(|x|)

|x|d−1

)
for all φ ∈ C∞

c ((0,∞)) ∩ SH(R).

Note that if φ ∈ C∞
c ((0,∞)) ∩ SH(R), then x �→ φ(|x|)/|x|d−1 is in SH(Rd), so

this definition makes sense.
The sphere average process of an FGF is a random distribution, since h is a

random tempered distribution and φn → 0 in C∞
c ((0,∞)) implies x �→ φn(|x|)

|x|d−1

converges to 0 in S(Rd). To find the covariance kernel of h, we calculate

E[(h, φ)2] =
1

Ω2
d

E

[(
h, x �→ φ(|x|)

|x|d−1

)2
]

=

∫
Rd

∫
Rd

Gs(x, y)
φ(|x|)φ(|y|)

Ω2
d|x|d−1|y|d−1

dx dy

=

∫
R

∫
R

(
1

Ω2
d

∫
Sd−1

∫
Sd−1

Gs(r1ω, r2σ) dωdσ

)
φ(r1)φ(r2) dr1 dr2,
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where Gs is the covariance kernel of h, given in Theorem 3.3. Therefore, the
covariance kernel of h is

G
s
(r1, r2) :=

1

Ω2
d

∫
Sd−1

∫
Sd−1

Gs(r1ω, r2σ) dωdσ.

Applying spherical symmetries to simplify this integral, we obtain

G
s
(r1, r2) =

2C

∫ π

0

( 12 log(r
2
1 + r22 − 2r1r2 cos θ))

1{H∈Z+}×

(r21 + r22 − 2r1r2 cos θ)
H(sin θ)d−2 dθ,

where C is a constant described in Theorem 3.3 and Z+ is the set of nonnegative
integers. In the caseH /∈ Z+, we make a substitution to obtain an integral in Eu-
ler form whose solution may be expressed in terms of the Gauss hypergeometric
function 2F1(a, b, c; z). In particular, we get

G
s
(r1, r2) = C 2d−1π−1/2Γ

(
d−1
2

)
Γ

(
d
2

)
Γ(d− 1)

×

(r1 + r2)
2H

2F1

(
d− 1

2
,−H, d− 1;

4r1r2
(r1 + r2)2

)
.

The hypergeometric function 2F1(a, b, c; z) satisfies

|2F1(a, b, c; z)− 2F1(a, b, c; 1)| � |z − 1|c−a−b

as z → 1 whenever c − a − b ∈ (0, 1), because the indicial polynomial at z = 1
of the hypergeometric equation satisfied by 2F1 has roots 0 and c − a − b (see
[Kri10] for details). When c− a− b > 1, 2F1(a, b, c; z) is differentiable at z = 1.
Since 4r1r2

(r1+r2)2
= 1 + O(|r1 − r2|2) as r1 → r2, it follows that when s > 1/2, we

have G
s
(r1, r2)−G

s
(r′1, r2) � |r1 − r′1|min(1, 2s−1) as r′1 approaches r1.

When r1 and r2 are far apart, G
s
(r1, r2) is approximately a constant times

(r1 + r2)
2H since 2F1(a, b, c; z) approaches a constant as z → 0. So we see that

long-range covariances of h are determined by H, while local covariances are
dictated by the parameter s − 1/2. In the following proposition, we show that
in fact s− 1/2 also governs the almost-sure regularity of sample paths of h. We
prove such a statement only for s− 1

2 ∈ (0, 1), but we remark that in general the
spherical average process is differentiable 	s− 1

2
−1 times, and those derivatives
are α-Hölder continuous for all α less than the fractional part of s− 1

2 .

Proposition 11.1. When s ∈ (1/2, 3/2), there exists a version of the spherical
average process h which is α-Hölder continuous for all α < s− 1/2.

Proof. Since the spherical average covariance kernel G
s
(r1, r2) is finite for all r1

and r2 when s ∈ (1/2, 3/2), there exists a pointwise defined Gaussian process
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h̃ on (0,∞) which agrees in law with h [Dud02, Theorem 12.1.3]. Furthermore,
the regularity of the covariance kernel implies that for m = 1, we have

E[|h̃(r1)− h̃(r2)|2m] ≤ Cm|r1 − r2|m(2s−1), (11.2)

where C1 is some constant. Since h̃(r1)− h̃(r2) is Gaussian, (11.2) holds for all
m ∈ N, for some constants Cm. Applying the Kolmogorov-Chentsov continuity
theorem with suitably large m, we conclude that h̃, and therefore also h, has a
version which is almost surely α-Hölder continuous for all α < s− 1/2.

11.2. Background on spherical harmonic functions

We write the Laplacian in spherical coordinates as

Δ = r1−d ∂

∂r
rd−1 ∂

∂r
+

1

r2
ΔSd−1 , (11.3)

where ΔSd−1 is the Laplacian on the unit sphere Sd−1 ⊂ Rd. A polynomial
φ ∈ R[x1, x2, · · · , xd] is said to be harmonic if Δφ = 0. Suppose that φ is
harmonic and homogeneous of degree k. Let f = φ|Sd−1 , and note that we have
φ(ru) = f(u)rk for all u ∈ Sd−1 and r ≥ 0. Writing Δφ = 0, using (11.3), and
setting r = 1 yields

ΔSd−1f = −k(k + d− 2)f. (11.4)

In other words, f is an eigenfunction of ΔSd−1 with eigenvalue −k(k + d− 2).
We mention a few basic results about spherical harmonics that appear, for

example, in [SW71, Chapter IV, §2]. Assume d ≥ 2, let Ak be the set of homoge-
neous degree k harmonic polynomials on Rd and let Hk be the space of functions
on Sd−1 obtained by restricting functions in Ak. An important property is that
the spaces Hk are pairwise orthogonal (for the L2(Sd−1) inner product) and
their union is dense in L2(Sd−1). This means that we can define, for each fixed
k, an orthonormal basis {φk,j : 1 ≤ j ≤ dim(Hk)} of Hk which is the restric-
tion of the harmonic polynomials {Pk,j : 1 ≤ j ≤ dim(Hk)} ⊂ Ak, so that the
collection of all φk,j is an orthonormal basis of L2(Sd−1) .

We will need the following important theorem concerning the behaviour of
harmonic polynomials under the Fourier transform [Ste70, pg. 72]. We say that
a function f : Rd → C is radial if f(x) = f(y) whenever |x| = |y|. We occa-
sionally abuse notation and write f(r) where f is radial and r ≥ 0, with the
understanding that we mean f((r, 0, . . . , 0)).

Theorem 11.2. Let Pk(x) be a homogeneous harmonic polynomial of degree
k in Rd. Suppose that f is radial and that Pkf ∈ L2(Rd). Then the Fourier
transform of Pkf is of the form Pkg, where g is a radial function. Moreover,
the induced transform Fd,k(f) := g depends only on d+ 2k. More precisely, we
have Fd,k = ikFd+2k,0.

Remark 11.3. If Pk,jf ∈ Ḣs(Rd), then

F
[
(−Δ)s/2(Pk,jf)

]
(ξ) = |ξ|sikFd+2k,0[f ](ξ)Pk,j(ξ),
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Applying the Fourier transform on both sides (which is the inverse Fourier
transform evaluated at −x) and using the theorem again, we obtain

(−Δ)s/2(Pk,jf) = [(−Δ)
s/2

Rd+2kf ]Pk,j ,

where (−Δ)
s/2

Rd+2kf is the fractional Laplacian on Rd+2k acting on f interpreted

as a function on Rd+2k (that is, we define f(x) for x ∈ Rd+2k to be f(x′) where
x′ is any point in Rd satisfying |x|Rd+2k = |x′|Rd).

Remark 11.4. Let Pk,jf1 and Pk′,j′f2 ∈ Ḣs(Rd). Then

〈Pk,jf1, Pk′,j′f2〉Ḣs(Rd) ={∫ ∞
0

r2s+2k+d−1g1(r)g2(r) dr (k, j) = (k′, j′),

0 (k, j) �= (k′, j′).
(11.5)

by orthonormality of φk,j , where gi = Fd,k[fi] = ikFd+2k,0[fi] for i ∈ {1, 2}.
We see that the right hand side of (11.5) (for (k, j) = (k′, j′)) can be rewrit-

ten as 〈f1, f2〉Ḣs(Rd+2k) (since φ0,1 = Ω
−1/2
d ), where the radial functions fi

are treated as functions defined on Rd+2k (as described in the remark above).
We thus have a unitary correspondence between elements x �→ f(|x|Rd+2k) ∈
Ḣs(Rd+2k) and elements x �→ f(|x|Rd)Pk,j(x) ∈ Ḣs(Rd).

For k ∈ N and 1 ≤ j ≤ dim(Hk), we define the Hilbert space Ḣs
k,j(R

d) to be

the space of all functions of the form Pk,jf where x �→ f(|x|Rd+2k) ∈ Ḣs(Rd+2k)

is radial and Pk,jf ∈ Ḣs(Rd) . By 11.5, we see that Ḣs
k,j(R

d) are orthogonal. In

fact, they also span Ḣs(Rd):

Lemma 11.5. Ḣs
k,j(R

d) are orthogonal subspaces spanning Ḣs(Rd).

Proof. We only need to check the spanning condition. Since S(Rd) is dense
in Ḣs(Rd), it suffices to show that all g ∈ S(Rd) can be written as a linear
combination of terms in Ḣs

k,j(R
d). To do this, we use the stated fact that {ω �→

φk,j(ω) : k ∈ N, 1 ≤ j ≤ dimHk} a basis for L2(Sd−1). We compute for every
sphere of radius |x|:

〈ω �→ g(|x|ω), φk,j〉L2(Sd−1) =

∫
Sd−1

g(|x|ω)φk,j(ω) dω =: ρk,j(|x|),

and see that g(x) =
∑

k,j ρk,j(|x|)φk,j(x/|x|) =
∑

k,j |x|−kρk,j(|x|)Pk,j(x). De-

fine gk,j(x) = |x|−kρk,j(|x|)Pk,j(x) and let χR(x) be the characteristic function
of an annulus of radii 1/R and R, where R > 1. It is clear that gk,j(x)χR(x) is
an element of L2(Rd), since ‖gk,j(x)χR(x)‖L2(Rd) ≤ ‖g‖L2(Rd) (by orthogonality

of φk,j(x/|x|)), thus by Fatou’s Lemma gk,j ∈ L2(Rd). Hence, it follows that the
Fourier transform ĝk,j exists and is in L2(Rd). Following the same reasoning as

above with ξ �→ |ξ|2sĝk,j(ξ), we have that x �→ ρk,j(|x|)Pk,j(x) ∈ Ḣs
k,j(R

d) as
required.
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11.3. Spherical decomposition of the FGF

We now study the spherical decomposition of the FGFs(Rd), which we denote
by hd. From the completeness and orthogonality of Ḣs

k,j(R
d),

hd =
∞∑
k=0

dimHk∑
j=1

hd
k,j , (11.6)

where the hd
k,j are independent standard Gaussians on the space of Ḣs

k,j(R
d)

(this follows from the same reasoning as in Section 5).
We note that Ḣs

k,j(R
d) is unitarily isomorphic to the Hilbert space Rs

d,k

consisting of radial functions f1, f2 ∈ Ḣs(Rd+2k) with inner product given in
(11.5):

〈f1, f2〉Rs
d,k

=

∫ ∞

0

r2s+2k+d−1g1(r)g2(r) dr,

where gi = Fd+2k,0[fi] for i ∈ {1, 2}. Thus, it follows that we can construct a

standard Gaussian on Rs
d,k, which we call h̃d

k,j that corresponds to a standard

Gaussian hd
k,j on Ḣs

k,j(R
d).

The key observation is that the inner product on the Hilbert spaceRs
d,k above

only depends on d+2k (and s). This means that h̃d
k,j has the same distribution

as h̃d+2k
0,1 (equivalently, Rs

d,k is unitarily equivalent to Rs
d+2k,0). Averaging both

sides of (11.6) over Sd−1
r := rSd−1, we have

hd
0,1 =

1

rd−1Ωd

∫
Sd−1
r

hd(x)dx =
1

Ωd

∫
Sd

hd(rθ)dθ.

Note that we have used that P0,1(x) = Ω
−1/2
d , so that Ḣs

0,1(R
d) is the set of

radial functions f ∈ Ḣs(Rd). This implies that hd
0,1 averaged over a sphere is

hd
0,1. By the same observation, we have

h̃d
0,1(r) =

1√
Ωd

∫
Sd−1

hd(rθ)dθ,

a constant multiple of the spherical average of hd. We collect these results in
the following theorem.

Theorem 11.6. In the decompostion of hd = FGFs(Rd) in (11.6), the coeffi-

cient processes h̃d
k,j with respect to the normalized harmonic polynomials {Pk,j}

are independent processes with the same distribution as

r �→ 1√
Ωd+2k

∫
Sd+2k−1

hd+2k(rθ) dθ,

where hd+2k is an FGFs(Rd+2k).
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Remark 11.7. We notice that since h̃d
k,j is the average process of FGFs(Rd+2k),

it is defined modulo degree �s− d
2 −k� polynomials. Since h̃d,k,j is the coefficient

of Pk,j , which is a polynomial of degree k, this is consistent with the fact that
hd itself is defined up to polynomials of degree �s− d

2�.
Remark 11.8. From Theorem 11.6, one can analyze the average process in an
arbitrary dimension by understanding the whole spherical decomposition of the
FGF in dimensions 2 and 3 with the same index s. We remark that the distribu-
tion of the coefficient processes of FGF 3

2
(R2) and FGF2(R3) have been explicitly

computed in [McK63]. Furthermore, [McK63] computes the coefficient processes
for Lévy Brownian motion (FGF with Hurst parameter H = 1/2) in any dimen-
sion and gives the explicit covariance structure for d ∈ {2, 3}. In principle, we
can also represent the covariance kernel for other values of s with an integral
involving a 2- or 3-dimensional harmonic polynomial and the covariance kernel
of FGF. If d = 2, it involves trigonometric functions. If d = 3, it will further
involve associated Legendre polynomials; see Chapter 14 of [Olv10].

When s is a positive integer, we have (−ΔRd+2k)sf = (−Ld,k)
s(f), where

Ld,kf = f ′′ + (d+ 2k− 1)r−1f ′. In this case, the inner product of Rs
d,k is given

by
∫ ∞
0

(−Ld,k)
s(f)(r)g(r) dr. Since this inner product is defined by a differential

operator, h̃d
k,j shares the same kind of Markov property as the FGFs when s is

an integer, which we described at the end of Section 5: given the values of h̃d,k,j

in the interval [0, a], the conditional law of h̃d,k,j on the interval (a,∞) depends

only on {h̃d,k,j(a), h̃
′
d,k,j(a), · · · , h̃

(s−1)
d,k,j (a)}.

12. The discrete fractional Gaussian field

12.1. Fractional gradient

Recall that if f : Rd → R is differentiable, then the gradient ∇f is a vector-
valued function on Rd with the property that for all f, g ∈ S(Rd),∫

Rd

∇f(x) · ∇g(x) dx =

∫
Rd

(−Δf(x))g(x) dx. (12.1)

For 0 < s < 1, we will define the fractional gradient ∇sf so that an analogue
of (12.1) holds with the fractional Laplacian in place of the usual Laplacian.
Rather than a vector-valued function, however, we define ∇sf to be a function-
valued function on Rd. More precisely, if f : Rd → R is measurable, then we
define

∇sf(x) =

(
y �→ f(x+ y)− f(x)

|y| d2+s

)
, (12.2)

where the domain of the function on the right-hand side is Rd \ {0}. We will
establish the following analogue of the integration-by-parts formula (12.1) for
the fractional gradient.
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Proposition 12.1. For all d ≥ 1, s ∈ (0, 1), and f, g ∈ S(Rd),∫
Rd

(∇sf(x),∇sg(x))L2(Rd) dx =

∫
Rd

((−Δ)sf(x))g(x) dx (12.3)

Note that we have replaced the gradient and Laplacian with their fractional
counterparts, and we replaced the dot product with an L2(Rd) inner product.

Proof. Since each side of (12.3) is a bilinear form in f and g, it suffices to show
that the formula holds with f = g. We simplify the left-hand side of (12.3) to
obtain∫

Rd

∫
Rd

|(∇sf(x))(y)|2 dy dx

=

∫
Rd

∫
Rd

|f(x+ y)− f(x)|2
|y|d+2s

dy dx

=

∫
Rd

∫
Rd

f(x)2 − 2f(x)f(x+ y) + f(x+ y)2

|y|d+2s
dy dx

=

∫
Rd

∫
Rd

[2f(x)2 − 2f(x)f(x+ y)] + [f(x+ y)2 − f(x)]

|y|d+2s
dy dx.

Changing variables for x + y in the second square-bracketed expression shows
that the left-hand side of (12.3) is equal to∫

Rd

∫
Rd

f(x)
f(x+ y)− 2f(x) + f(x− y)

|y|d+2s
dy dx,

which equals the right-hand side of (12.3) by Proposition 2.2.

12.2. The discrete fractional Gaussian field

In this section we define a sequence of discrete random distributions converging
in law to the fractional Gaussian field FGFs(D), where s ∈ (0, 1) and D ⊂ Rd

is a sufficiently regular bounded domain. We follow the strategy of [Cap00] and
prove convergence using a random walk representation of the field covariances.
This method was introduced by Dynkin [Dyn80].

Suppose that D ⊂ Rd is a bounded domain and s ∈ (0, 1). For δ > 0,
define V δ := δZd∩D. Recall that the zero-boundary discrete Gaussian free field

(DGFF) is defined to be the mean-zero Gaussian field with density at f ∈ RV δ

proportional to

exp

⎛⎝−1

2

∑
(x,y)∈(δZd)×(δZd)

Cd1|x−y|=δ|f(x)− f(y)|2δd
⎞⎠ , (12.4)

where Cd is a constant and where we interpret the expression in parentheses as
a quadratic form in the variables {f(x) : x ∈ δZd ∩ D} by substituting zero
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for each instance of the variable f(x) for all x /∈ D. Observing that the sum
in (12.4) is a rescaled discretized version of the L2 norm of the gradient of f ,
we define the zero-boundary discrete fractional Gaussian field DFGFs(D) by
replacing this expression with a rescaled discretized L2 norm of the fractional
gradient of f . More precisely, we let

Cd,s =

(∫
Rd

(1− cosx1) |x|−d−2s dx

)−1

, where x = (x1, . . . , xd),

and define hδ ∼ DFGFδ
s(D) to be a Gaussian function hδ with density at f ∈

RV δ

proportional to

exp

⎛⎝−1

2

∑
(x,y)∈(δZd)2, x �=y

Cd,s
|f(x)− f(y)|2
|x− y|d+2s

δd

⎞⎠ ,

where we interpret the expression in parentheses as a quadratic form in the
variables {f(x) : x ∈ δZd ∩ D} (as we did for the DGFF). Observe that
this quadratic form includes long-range interactions, unlike the quadratic form
for the GFF which includes only nearest-neighbor interactions. The constant
Cd,s is chosen so that the discrete FGF converges to the FGF with no further
normalization–see (12.9) below to understand the role that this constant plays
in the calculation.

We interpret hδ as a linear functional on C∞
c (D) by setting

(hδ, φ) :=
∑
x∈V δ

hδ(x)φ(x)δd, for all φ ∈ C∞
c (D). (12.5)

To motivate (12.5), we note that the right-hand side is approximately the same
as the integral of an interpolation of hδ against φ. The following theorem is a
rigorous formulation of the idea that the DFGF converges to the FGF as δ → 0
when D is sufficiently regular. The idea of its proof is to compare a random walk
describing the covariance structure of the DFGF to the 2s-stable Lévy process
describing FGF covariances. Recall that D is said to be C1,1 if for every z ∈ ∂D,
there exists r > 0 such that B(z, r) ∩ ∂D is the graph of a function whose first
derivatives are Lipschitz [CS98].

Proposition 12.2. Let D ⊂ Rd be a bounded C1,1 domain, and let s ∈ (0, 1).
The discrete fractional Gaussian field hδ ∼ DFGFs(D) converges to the frac-
tional Gaussian field h ∼ FGFs(D) in the sense that for any finite collection of
test functions φ1, . . . , φn ∈ C∞

c (D), we have

((hδ, φ1), . . . , (h
δ, φn)) → ((h, φ1), . . . , (h, φn)) (12.6)

in distribution as δ → 0.

Proof. Because both sides of (12.6) are multivariate Gaussians and since hδ and
h are linear, it suffices to show that E[(hδ, φ)2] → E[(h, φ)2] for all φ ∈ C∞

c (D).
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From (12.5) we calculate

E
[
(hδ, φ)2

]
=

∑
(x,y)∈V δ×V δ

E[hδ(x)hδ(y)]φ(x)φ(y) δ2d. (12.7)

Define an independent family of exponential clocks indexed by edges

{(w, z) : w ∈ δZd, z ∈ δZd, and w �= z}

such that the intensity of the clock corresponding to (w, z) is Cd,sδ
d|w−z|−d−2s.

Define a continuous-time process (Xδ
t )t≥0 which starts at x ∈ V δ and moves

from its current vertex w to a new vertex z ∈ δZd whenever the clock associated
with (w, z) rings. Then

E[hδ(x)hδ(y)] = E

[∫ T

0

1{Xδ
t =y} dt

]
, (12.8)

where T is the exit time from D [She07, Section 4.1].

We define a discrete-time version (Ỹ δ
n )n≥0 of the process (X

δ
t )t≥0 which tracks

the sequence of vertices visited by Xδ. That is, Ỹ δ
n is the vertex at which Xδ

t is
located after its nth jump. Let

γd,s := C−1
d,s

∑
z∈Zd\{0}

|z|−d−2s.

From Ỹ δ we define the continuous-time process (Y δ
t )t≥0 by Y δ

t = Ỹ δ
�γ−1

d,sδ
−2st�.

Since the minimum of a collection of exponential random variables with intensi-
ties (λi)i∈I is exponential random variable with intensity

∑
i∈I λi, (12.8) implies

that

E[hδ(x)hδ(y)] = Ex[#{n : Ỹ δ
n = y}]

⎛⎝ ∑
z∈δZd

Cd,sδ
d|y − z|−d−2s

⎞⎠−1

= Ex

[∫ ∞

0

1{Y δ
t =y} dt

]
×

δ−2sγ−1
d,sC

−1
d,sδ

−d+d+2s∑
z∈Zd\{0} |z|−d−2s

= Ex

[∫ ∞

0

1{Y δ
t =y} dt

]
,

by our choice of γs,d and Cs,d. If Z is a Markov process, we denote by pt(x, y) dy =
pZt (x, y) dy the density of the law of Zt given Z0 = x (assuming that this law
is absolutely continuous with respect to Lebesgue measure). Recall that the
symmetric 2s-stable process (Yt≥0) is the Lévy process on Rd whose transition
kernel density pt has Fourier transform ξ �→ exp(−t|ξ|2s).

By calculating the characteristic function of the step distribution of Ỹ δ, (see
Remark 5.1 in [Cap00] for details), we see that

Y δ
1

law→ Y1 (12.9)
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By Theorem 2.7 in [Sko57], this implies that (Y δ
t )t≥0 converges in distribution

to (Yt)t≥0 with respect to the Skorokhod J1 metric [Sko56], which is defined as
follows. For an interval I ⊂ [0,∞), we denote by D(I,Rd) the set of functions
from I to Rd which are right-continuous with left limits, and for t > 0 we
denote by Λt the set of increasing homeomorphisms from [0, t] to itself. For
f, g ∈ D([0, t],Rd), we define the metric dJ1(t) by

dJ1(t)(f, g) = inf
λ∈Λt

max (‖f ◦ λ− g‖∞, ‖λ− id‖∞) ,

where id(s) := s. Then we define the metric

dJ1(f, g) =

∫ ∞

0

e−t min(1, dJ1(t)(f, g)) dt

for f, g ∈ D([0,∞),Rd) [MZ13]. A different definition that is equivalent and
is also called the J1 metric is given in [Bil99], where it is also proved that
dJ1(fn, f) → 0 if and only if dJ1(t)(fn|[0,t], f |[0,t]) → 0 for every continuity point
t of f .

Given a stochastic process X started in D, denote by T the exit time of
the process from D. Denote by μX,x the occupation measure μX,x(A) :=

Ex[
∫ T

0
1Xt∈A dt] for all Borel sets A ⊂ D. We have T < ∞ almost surely, and

μX,x is a finite measure—see the proof of Lemma 12.3 where a stronger state-
ment is proved. By Lemma 12.3, μXn,x → μX,x weakly. Since weak convergence
implies convergence of integrals against bounded continuous functions, we have

∑
y∈V δ

Ex

[∫ T

0

1{Y δ
t =y} dt

]
φ(y)δd =

∫
D

φ(y)μYt,x(dy) + o(1), (12.10)

where the quantity denoted o(1) is uniformly bounded as x varies over the sup-
port of φ and tends to 0 as δ → 0 for each fixed x. Substituting (12.10) into
(12.7) and using the convergence of the Riemann integral (as well as dominated
convergence to handle the o(1) term), we obtain

E
[
(hδ, φ)2

]
→

∫
D×D

φ(x)μY,x(dy) dx =

∫
D×D

G(x, y) dx dy (12.11)

as δ → 0, where G is the density of the occupation measure (that is, the Green’s
function) of Y . This Green’s function is in turn equal to Gs

D(x, y) (see (4.2)), the
Green’s function of the fractional Laplacian [CS98]. Therefore, the right-hand
side of (12.11) is equal to E[(h, f)2], as desired.

Lemma 12.3. Let (Xn)n≥1 be a sequence of processes in Rd converging in law
with respect to the J1 metric to a symmetric α-stable process X. Let D ⊂ Rd be
a C1,1 domain. If T is the hitting time of Rd \D, then the occupation measure
of XT

n converges weakly to the occupation measure of XT .
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Proof. For n ≥ 1, denote by μn the occupation measure of XT
n :

μn(A) := E

[∫ T

0

1XT
n (t)∈A dt

]
,

Similarly, define μ to be the occupation measure of XT .
Recall the following definition of the Lévy-Prohorov metric π on the set of

finite measures on Rd. For A ⊂ Rd a Borel set, denote by Aε the ε-neighborhood
of A, defined by

Aε := {x ∈ Rd : ∃ y ∈ A such that |x− y| < ε}.

Define for finite measures μ and ν

π(μ, ν) := inf
ε>0

{μ(A) ≤ ν(Aε) + ε and ν(A) ≤ μ(Aε) + ε for all A Borel}.

Recall that for probability measures, convergence with respect to π is equivalent
to weak convergence [Bil99]. Since weak convergence of a sequence of finite
measures (μn)n≥1 to a nonzero measure μ is equivalent to weak convergence
of the normalized measures μn/μn(Rd) → μ/μ(Rd) along with convergence of
the total mass (that is, μn(Rd) → μ(Rd)), we see that convergence with respect
to π is equivalent to weak convergence for finite measures too. Therefore, it
suffices to show that for all ε > 0 and A ⊂ Rd, we have μn(A) ≤ μ(Aε) + ε and
μ(A) ≤ μn(A

ε) + ε. Since μn(Rd \ D) = μ(Rd \ D) = 0, it suffices to consider
A ⊂ D. For η > 0, define Dη = {x ∈ D : dist(x, ∂D) > η}. For η > 0, define
Bη to be the event that X stopped upon exiting Dη is contained in Dη. By
integrating the upper bound in Theorem 1.5 in [CS98], we conclude that Bη

has probability tending to 0 as η → 0. Furthermore, for each positive integer n,
the event En that |Xn+1 −Xn| is larger than the diameter of D has probability
bounded below. Since the events (En)n≥1 are independent, it follows the amount
of time X spends in D has an exponential tail. Therefore, given ε > 0 we may
choose η ∈ (0, ε/2) such that

E

[∫ T

0

1{X(t)∈A} dt1Bη

]
< ε/2,

by the Cauchy-Schwarz inequality.
Since (D[0,∞), dJ1) is separable [Bil99, Theorem 16.3], we may use Sko-

rokhod’s representation theorem [Bil99, Theorem 6.7] to couple (Xn)n≥1 and X
in such a way that dJ1(Xn, X) → 0 as n → ∞. Choosing n0 large enough that
dJ1(Xn, X) < η/2 whenever n ≥ n0, we have for all n ≥ n0,

E

[∫ T

0

1{Xn(t)∈A} dt

]
= E

[∫ T

0

1{Xn(t)∈A} dt(1Bc
η
+ 1Bη )

]

< E

[(∫ T

0

1{X(t)∈A} dt

)
1Bc

η

]
+

ε

2
.
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By the definition of the J1 metric, the first term is bounded above by

E

[∫ T

0

1{X(t)∈Aε} dt+ ε/2

]
,

which gives μn(A) ≤ μ(Aε) + ε. We conclude by applying the same argument
with the roles of Xn and X reversed.

13. Open questions

In this section, we will ask some questions regarding the FGF. Section 13.1
presents several questions on level lines, and Section 13.2 contains other FGF
questions.

13.1. Questions on level sets

1. In dimension 2, FGF1+ε is a function for all ε > 0. Do the level sets of
FGF1+ε converge to the level sets of the Gaussian free field, as defined in
[SS10]? One may interpret the mode of convergence to be in probability,
with the coupling of Proposition 6.3, or in law.
The Hausdorff dimension of the level sets of FGF1+ε(R2) is 2− ε [Xia13],
while the Hausdorff dimension of SLE4 is 3

2 . Thus if the level sets of
FGF1+ε do converge to the level sets of the Gaussian free field, then the
Hausdorff dimension of these sets is not continuous in ε.

2. Let h be an instance of any FGFs that is defined as a distribution, but
not as a function. One can mollify h with a bump function supported on
an ε-ball in order to obtain a smooth function. Under what circumstances
do the level sets of these mollified functions converge to a continuum limit
as ε → 0?

3. Instead of mollifying, one could instead try to project h onto some sub-
space of piecewise-polynomial functions, like the projection of the two-
dimensional GFF in [SS10] onto the space of functions piecewise affine on
the triangles of a triangular lattice with side length ε. It was shown in
[SS10] that in the case of the two-dimensional GFF, the level sets of these
approximations do converge to a continuum limit as ε → 0. Can anything
similar be obtained for any other dimension or any other value of s?

4. In d dimensions, can one consider a (d − 1)-tuple of independent FGFs
(understood as a map from Rd to Rd−1) and make sense of the scaling
limit of the zero level set as a random curve? Can one understand any
discrete analogs of this problem? For the fractal properties of this curve
when the corresponding FGF is a fractional Brownian motion, we refer to
[Xia13].
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13.2. Other questions

1. Are there any non-trivial local set explorations for FGF fields that are not
defined as functions, as in the Gaussian free field case ([MS12a, MS12b,
MS, MS13])?

2. If we restrict an LGF in R3 to a curved 2D surface, and conformally map
that curved surface to a flat surface, can we pull back the restricted LGF
to the flat surface and obtain a distribution whose law is locally absolutely
continuous with respect to that of an ordinary LGF restricted to the flat
surface?

Notation

We fix the relation H = s− d/2 for the definitions of the following spaces. We
refer the reader to the referenced page numbers for the spaces’ topologies.

Space Description Page

S(Rd) The Schwartz space of real-valued functions on Rd whose
derivatives of all orders exist and decay faster than any
polynomial at infinity.

9

S ′(Rd) The space of continuous linear functionals on S(Rd). Elements
of S ′(Rd) are called tempered distributions.

9

Sk(R
d) For k ∈ {−1, 0, 1, . . .}, denotes the space of Schwartz functions

φ such that (∂αφ̂)(0) = 0 for all multi-indices α such that
|α| ≤ k. Equivalently, Sk(R

d) is the space of Schwartz functions
φ such that

∫
Rd x

αφ(x) dx = 0 whenever |α| ≤ k.

10

Sr(Rd) For r ∈ R, denotes Smax(−1,�r�)(R
d) 10

S ′
k(R

d) For k ∈ {−1, 0, 1, . . .}, denotes the space of continuous linear
functionals on Sk(R

d). Equivalently, S ′
k(R

d) may defined to be
the space S ′(Rd) of tempered distributions modulo polynomials
of degree less than or equal to k.

10

Ḣs(Rd) The subspace of S ′
H(Rd) consisting of functions whose Fourier

transform ξ �→ f̂(ξ) is in L2(|ξ|2s dξ)
10

Us(Rd) The space of all functions φ ∈ C∞(Rd) such that
x �→ (1 + |x|d+2s)(∂αf)(x) is bounded for all multi-indices α

12

(−Δ)sSk(R
d) For k ∈ {−1, 0, 1, 2, . . .} and s > − 1

2
(d+ k+1), this space is the

range of the injective operator (−Δ)s : Sk(R
d) → Us+(k+1)/2.

12

Ts(Rd) The closure of SH(Rd) in Ḣ−s(Rd). This space serves as a test
function space for FGFs(Rd).

18

C∞
c (D) The space of smooth functions supported on a compact subset

of a domain D ⊂ Rd.
21

Ḣs
0(D) The closure of C∞

c (D) in Ḣs(Rd). 21
Ts(D) The closure of the space of restrictions to D of Schwartz

functions under the metric d(φ, ψ) = ‖φ− ψ‖Ḣ−s(D). This

space serves as a test function space for FGFs(Rd).

22

Ck,α(D) For k ∈ {0, 1, 2, . . .}, α ∈ (0, 1), and D ⊂ Rd, denotes the space
of functions f on Rd such that ∂βf is α-Hölder continuous for
all multi-indices β such that |β| ≤ k.

27
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[Hör03] L. Hörmander. The analysis of linear partial differential operators.
I. Distribution theory and Fourier analysis. Reprint of the second
(1990) edition. Springer, Berlin, 2003.

http://www.ams.org/mathscinet-getitem?mr=2367025
http://www.ams.org/mathscinet-getitem?mr=2646117
http://www.arxiv.org/abs/1104.4345
http://www.ams.org/mathscinet-getitem?mr=0515810
http://www.ams.org/mathscinet-getitem?mr=2819163
http://www.ams.org/mathscinet-getitem?mr=2525778
http://www.ams.org/mathscinet-getitem?mr=1932358
http://www.ams.org/mathscinet-getitem?mr=0585179
http://www.ams.org/mathscinet-getitem?mr=1721032
http://www.ams.org/mathscinet-getitem?mr=1681462
http://www.ams.org/mathscinet-getitem?mr=0215331
http://www.ams.org/mathscinet-getitem?mr=2667016


54 A. Lodhia et al.

[Jan97] S. Janson. Gaussian Hilbert spaces, volume 129. Cambridge Univer-
sity Press, 1997. MR1474726

[Ken01] R. Kenyon. Dominos and the Gaussian free field. Annals of Proba-
bility, 1128–1137, 2001. MR1872739

[Kol40] A. N. Kolmogorov. Wienersche spiralen und einige andere interes-
sante kurven im hilbertschen raum. In CR (Dokl.) Acad. Sci. URSS,
volume 26, pages 115–118, 1940. MR0003441

[Kri10] G. Kristensson. Second order differential equations: special func-
tions and their classification. Springer, 2010. MR2682403

[Kuo96] H.-H. Kuo. White noise distribution theory. CRC Press, 1996.
MR1387829

[Kur07] N. Kurt. Entropic repulsion for a class of Gaussian interface mod-
els in high dimensions. Stochastic Processes and Their Applications,
117(1):23–34, 2007. MR2287101

[Kur09] N. Kurt. Maximum and entropic repulsion for a Gaussian membrane
model in the critical dimension. The Annals of Probability, 37(2):687–
725, 2009. MR2510021

[Lax02] P. D. Lax. Functional analysis. John Wiley und Sons, 2002.
MR1892228

[LD72] N. S. Landkof and A. P. Doohovskoy. Foundations of modern
potential theory. Springer-Verlag, Berlin, 1972. MR0350027
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