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Abstract: To interpret interacting particle system style models as social
dynamics, suppose each pair {i, j} of individuals in a finite population
meet at random times of arbitrary specified rates νij , and update their
states according to some specified rule. The averaging process has real-
valued states and the rule: upon meeting, the values Xi(t−), Xj(t−) are

replaced by 1

2
(Xi(t−) + Xj(t−)), 1

2
(Xi(t−) + Xj(t−)). It is curious this

simple process has not been studied very systematically. We provide an
expository account of basic facts and open problems.
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1. Introduction

The models in the field known to mathematical probabilists as interacting parti-
cle systems (IPS) are often exemplified, under the continuing influence of Liggett
[9], by the voter model, contact process, exclusion process, and Glauber dynam-
ics for the Ising model, all on the infinite d-dimensional lattice, and a major
motivation for the original development of the field was as rigorous study of
phase transitions in the discipline of statistical physics. Models with similar
mathematical structure have long been used as toy models in many other dis-
ciplines, in particular in social dynamics, as models for the spread of opinions,
behaviors or knowledge between individuals in a society. In this context the
nearest neighbor lattice model for contacts between individuals is hardly plausi-
ble, and because one has a finite number of individuals, the finite-time behavior
is often more relevant than time-asymptotics. So the context is loosely analogous
to the study of mixing times for finite Markov chains (Levin-Peres-Wilmer [8]).
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A general mathematical framework for this viewpoint, outlined below, was ex-
plored in a Spring 2011 course by the first author, available as informal beamer
slides [2]. In this expository article (based on two lectures from that course) we
treat a simple model where the “states” of an individual are continuous.

1.1. The general framework and the averaging process

Consider n agents (interpret as individuals) and a nonnegative array (νij), in-
dexed by unordered pairs {i, j}, which is irreducible (i.e. the graph of edges
corresponding to strictly positive entries is connected). Interpret νij as the
“strength of relationship” between agents i and j. Assume

• Each unordered pair i, j of agents with νij > 0 meets at the times of a
rate-νij Poisson process, independent for different pairs.

Call this collection of Poisson processes the meeting process. In the general
framework, each agent i is in some state Xi(t) at time t, and the state can
only change when agent i meets some other agent j, at which time the two
agents’ states are updated according to some rule (deterministic or random)
which depends only on the pre-meeting states Xi(t−), Xj(t−). In the averaging
process the states are the real numbers R and the rule is

(Xi(t+), Xj(t+)) = (12 (Xi(t−) +Xj(t−)), 1
2 (Xi(t−) +Xj(t−))).

A natural interpretation of the state Xi(t) is as the amount of money agent i
has at time t; the model says that when agents meet they share their money
equally.

A mathematician’s reaction to this model might be “obviously the individual
values Xi(t) converge to the average of initial values, so what is there to say?”,
and this reaction may explain the comparative lack of mathematical literature
on the model. Here’s what we will say.

• If the initial configuration is a probability distribution (i.e. unit money
split unevenly between individuals) then the vector of expectations in the
averaging process evolves precisely as the probability distribution of an
associated (continuous-time) Markov chain with that initial distribution
(Lemma 1).

• There is an explicit bound on the closeness of the time-t configuration to
the limit constant configuration (Proposition 2).

• Complementary to this global bound there is a “universal” (i.e. not de-
pending on the meeting rates) bound for an appropriately defined local
roughness of the time-t configuration (Propostion 4).

• There is a duality relationship with coupled Markov chains (section 2.4).

To an expert in IPS these four observations will be more or less obvious, and
three are at least implicit in the literature, so we are not claiming any essential
novelty. Instead, our purpose is to suggest using this model as an expository
introduction to the topic of these social dynamics models for an audience not
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previously familiar with IPS but familiar with the theory of finite-state Markov
chains (which will always mean continuous time chains). This “suggested course
material” occupies section 2. In a course one could then continue to the voter
model (which has rather analogous structure) and comment on similarities and
differences in mathematical structure and behavior for models based on other
rules. We include some such “comments for students” here.

As a side benefit of the averaging process being simple but little-studied and
analogous to the well-studied voter model, one can easily suggest small research
projects for students to work on. Some projects are given as open problems in
section 3, and the solution to one (obtaining a bound on entropy distance from
the limit) is written out in section 3.4.

1.2. Related literature

The techniques we use have been known in IPS for a very long time, so it is
curious that the only literature we know that deals explicitly with models like
the averaging process is comparatively recent. Three such lines of research are
mentioned below, and are suggested further reading for students. Because more
complicated IPS models have been studied for a very long time, we strongly
suspect that the results here are at least implicit in older work. But the authors
do not claim authoritative knowledge of IPS.

Shah [12] provides a survey of gossip algorithms. His Theorems 4.1 and 5.1 are
stated very differently, but upon inspection the central idea of the proof is the
discrete-time analog of our Proposition 2, proved in the same way. Olshevsky and
Tsitsiklis [11] study that topic under the name distributed consensus algorithms,
emphasizing worst-case graph behavior and time-varying graphs.

The Deffuant model is a variant where the averaging only occurs if the two
values differ by less than a specified threshold. Originating in sociology, this
model has attracted substantial interest amongst statistical physicists (see e.g.
Ben-Naim et al. [4] and citations thereof) and very recently has been studied as
rigorous mathematics in Häggström [6] and in Lanchier [7].

Acemoglu et al [1] treat a model where some agents have fixed (quantitative)
opinions and the other agents update according to an averaging process. They
appeal to the duality argument in our section 2.4, as well as a “coupling from
the past” argument, to study the asymptotic behavior.

2. Basic properties of the averaging process

Write I = {i, j . . .} for the set of agents and n ≥ 2 for the number of agents.
Recall that the array of non-negative meeting rates ν{i,j} for unordered pairs
{i, j} is assumed to be irreducible. We can rewrite the array as the symmetric
matrix N = (νij) in which

νij = ν{i,j}, j 6= i; νii = −
∑

j 6=i

νij . (2.1)
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Then N is the generator of the Markov chain with transition rates νij ; call this
the associated Markov chain. The chain is reversible with uniform stationary
distribution.

Comment for students. The associated Markov chain is also relevant to the
analysis of various social dynamics models other than the averaging process.

Throughout, we writeX(t) = (Xi(t), i ∈ I) for the averaging process run from
some non-random initial configuration x(0). Of course the sum is conserved:
∑

i Xi(t) =
∑

i xi(0).

2.1. Relation with the associated Markov chain

We note first a simple relation with the associated Markov chain. Write 1i for
the initial configuration (1(j=i), j ∈ I), that is agent i has unit money and
other agents have none, and write pij(t) for the transition probabilities of the
associated Markov chain.

Lemma 1. For the averaging process with initial configuration 1i we have
EXj(t) = pij(t/2). More generally, from any deterministic initial configuration
x(0), the expectations x(t) := EX(t) evolve exactly as the dynamical system

d

dt
x(t) = 1

2x(t)N .

The time-t distribution p(t) of the associatedMarkov chain evolves as d
dtp(t) =

p(t)N . So if x(0) is a probability distribution over agents, then the expectation
of the averaging process evolves as the distribution of the associated Markov
chain started with distribution x(0) and slowed down by factor 1/2. But keep in
mind that the averaging process has more structure than this associated chain.

Proof. The key point is that we can rephrase the dynamics of the averaging
process as

when two agents meet, each gives half their money to the other.
In informal language, this implies that the motion of a random penny - which
at a meeting of its owner agent is given to the other agent with probability 1/2
– is as the associated Markov chain at half speed, that is with transition rates
νij/2.

To say this in symbols, we augment a random partition X = (Xi) of unit
money over agents i by also recording the position U of the “random penny”,
required to satisfy

P(U = i | X) = Xi.

Given a configuration x and an edge e, write xe for the configuration of the
averaging process after a meeting of the agents comprising edge e. So we can
define the augmented averaging process to have transitions

(x, u) → (xe, u) rate νe, if u 6∈ e
(x, u) → (xe, u) rate νe/2, if u ∈ e
(x, u) → (xe, u′) rate νe/2, if u ∈ e = (u, u′).
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This defines a process (X(t), U(t)) consistent with the averaging process and
(intuitively at least – see below) satisfying

P(U(t) = i | X(t)) = Xi(t). (2.2)

The latter implies EXi(t) = P(U(t) = i), and clearly U(t) evolves as the as-
sociated Markov chain slowed down by factor 1/2. This establishes the first
assertion of the lemma. The case of a general initial configuration follows via
the following linearity property of the averaging process. Writing X(y, t) for the
averaging process with initial configuration y, one can couple these processes as
y varies by using the same realization of the underlying meeting process. Then
clearly

y → X(y, t) is linear.

How one writes down a careful proof of (2.2) depends on one’s taste for details.
We can explicitly construct U(t) in terms of “keep or give” events at each
meeting, and pass to the embedded jump chain of the meeting process, in which
time m is the time of the m’th meeting and Fm its natural filtration. Then on
the event that the m’th meeting involves i and j,

P(U(m) = i | Fm) = 1
2P(U(m− 1) = i | Fm−1) +

1
2P(U(m− 1) = j | Fm−1)

Xi(m) = 1
2Xi(m− 1) + 1

2Xj(m− 1)

and so inductively we have

P(U(m) = i | Fm) = Xi(m)

as required.

For a configuration x, write x for the “equalized” configuration in which each
agent has the average n−1

∑

i xi. Lemma 1, and convergence in distribution of
the associated Markov chain to its (uniform) stationary distribution, immedi-
ately imply EX(t) → x(0) as t → ∞. Amongst several ways one might proceed
to argue that X(t) itself converges to x(0), the next leads to a natural explicit
quantitative bound.

2.2. The global convergence theorem

A function f : I → R has (with respect to the uniform distribution) average f ,
variance var f and L2 norm ‖f‖2 defined by

f := n−1
∑

i

fi

‖f‖22 := n−1
∑

i

f2
i

var f := ‖f‖22 − (f)2.

The L2 norm will be used in several different ways. For a possible time-t config-
uration x(t) of the averaging process, the quantity ‖x(t)‖2 is a number, and so
the quantity ||X(t)||2 appearing in the proposition below is a random variable.
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Proposition 2 (Global convergence theorem). From an initial configuration
x(0) = (xi) with average zero, the time-t configuration X(t) of the averaging
process satisfies

E||X(t)||2 ≤ ||x(0)||2 exp(−λt/4), 0 ≤ t < ∞ (2.3)

where λ is the spectral gap of the associated MC.

Before starting the proof let us recall some background facts about reversible
chains, here specialized to the case of uniform stationary distribution (that is,
νij = νji) and in the continuous-time setting. See Chapter 3 of Aldous-Fill [3]
for the theory surrounding (2.4) and Lemma 3.

The associated Markov chain, with generator N at (2.1), has Dirichlet form

E(f, f) := 1
2n

−1
∑

i

∑

j 6=i

(fi − fj)
2νij = n−1

∑

{i,j}

(fi − fj)
2νij

where
∑

{i,j} indicates summation over unordered pairs. The spectral gap of the
chain, defined as the gap between eigenvalue 0 and the second eigenvalue of N ,
is characterized as

λ = inf
f

{E(f, f)
var(f)

: var(f) 6= 0

}

. (2.4)

Writing π for the uniform distribution on I, one can define a distance from
uniformity for probability measures ρ to be the L2 norm of the function i →
ρi−πi

πi
, and we write this distance in the equivalent form

d2(ρ, π) =

(

−1 + n
∑

i

ρ2i

)1/2

.

Lemma 3 (L2 contraction lemma). The time-t distributions ρ(t) of the asso-
ciated Markov chain satisfy

d2(ρ(t), π) ≤ e−λtd2(ρ(0), π).

This is optimal, in the sense that the rate of convergence really is Θ(e−λt).

A few words about notation for process dynamics. We will write

E(dZ(t) | F(t)) = [≤] Y (t)dt

to mean

Z(t)− Z(0)−
∫ t

0

Y (s)ds is a martingale [supermartingale],

because we find the former “differential” notation much more intuitive than the
integral notation. In the context of a social dynamics process we typically want
to choose a functional Φ and study the process Φ(X(t)), and we write

E(dΦ(X(t)) | X(t) = x) = φ(x)dt (2.5)



96 D. Aldous and D. Lanoue

so that E(dΦ(X(t)) | F(t)) = φ(X(t))dt. We can immediately write down the
expression for φ in terms of Φ and the dynamics of the particular process; for
the averaging process,

φ(x) =
∑

{i,j}

νij(Φ(x
ij)− Φ(x)) (2.6)

where xij is the configuration obtained from x after agents i and j meet and
average. This is just saying that agents i, j meet during [t, t + dt] with chance
νijdt and such a meeting changes Φ(X(t)) by the amount Φ(xij)− Φ(x).

Comment for students. In proofs we refer to (2.5, 2.6) as “the dynamics of the
averaging process”. Everybody actually does the calculations this way, though
some authors manage to disguise it in their writing.

Proof of Proposition 2. A configuration x changes when some pair {xi, xj} is

replaced by the pair {xi+xj

2 ,
xi+xj

2 }, which preserves the average and reduces

||x||22 by exactly
(xj−xi)

2

2n . So, writing Q(t) := ||X(t)||22,

E(dQ(t) | X(t) = x) = −
∑

{i,j}

νij · n−1(xj − xi)
2/2 dt

= −E(x,x)/2 dt (2.7)

≤ −λ||x||22/2 dt.

The first equality is by the dynamics of the averaging process, the middle equal-
ity is just the definition of E for the averaging process, and the final inequality
is the extremal characterization

λ = inf{E(g, g)/||g||22 : g = 0, var(g) 6= 0}.

So we have shown

E(dQ(t) | F(t)) ≤ −λQ(t) dt/2.

The rest is routine. Take expectation:

d

dt
EQ(t) ≤ −λEQ(t)/2

and then solve to get

EQ(t) ≤ EQ(0) exp(−λt/2)

in other words

E||X(t)||22 ≤ ||x(0)||22 exp(−λt/2), 0 ≤ t < ∞.

Finally take the square root.
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2.3. A local smoothness property

Thinking heuristically of the agents who agent i most frequently meets as the
“local” agents for i, it is natural to guess that the configuration of the averag-
ing process might become “locally smooth” faster than the “global smoothness”
rate implied by Proposition 2. In this context we may regard the Dirichlet form
E(f, f) as measuring the “local smoothness”, more accurately the local rough-
ness, of a function f , relative to the local structure of the particular meeting pro-
cess. The next result implicitly bounds EE(X(t),X(t)) at finite times by giving
an explicit bound for the integral over 0 ≤ t < ∞. Note that, from the fact that
the spectral gap is strictly positive, we can see directly that EE(X(t),X(t)) → 0
exponentially fast as t → ∞; Proposition 4 is a complementary result.

Proposition 4. For the averaging process with arbitrary initial configuration
x(0),

E

∫ ∞

0

E(X(t),X(t)) dt = 2varx(0).

This looks slightly magical because the bound does not depend on the par-
ticular rate matrix N , but of course the definition of E involves N .

Proof. By linearity we may assume x(0) = 0. As in the proof of Proposition 2
consider Q(t) := ||X(t)||22. Using (2.7)

d

dt
EQ(t) = −EE(X(t),X(t))/2

and hence

E

∫ ∞

0

E(X(t),X(t)) dt = 2(Q(0)−Q(∞)) = 2||x(0)||22 (2.8)

because Q(∞) = 0 by Proposition 2.

2.4. Duality with coupled Markov chains

Comment for students. Notions of duality are one of the interesting and useful
tools in classical IPS, and equally so in the social dynamics models we are
studying. The duality between the voter model and coalescing chains is the
simplest and most striking example. The relationship we develop here for the
averaging model is less simple but perhaps more representative of the general
style of duality relationships.

The technique we use is to extend the “random penny” (augmented process)
argument used in Lemma 1. Now there are two pennies, and at any meet-
ing there are independent decisions to hold or pass each penny. The positions
(Z1(t), Z2(t)) of the two pennies behave as the following MC on product space,
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which is a particular coupling of two copies of the (half-speed) associated MC.
Here i, j, k denote distinct agents.

(i, j) → (i, k) : rate 1
2νjk

(i, j) → (k, j) : rate 1
2νik

(i, j) → (i, i) : rate 1
4νij

(i, j) → (j, j) : rate 1
4νij

(i, j) → (j, i) : rate 1
4νij

(i, i) → (i, j) : rate 1
4νij

(i, i) → (j, i) : rate 1
4νij

(i, i) → (j, j) : rate 1
4νij .

For comparison, for two independent chains the transitions (i, j) → (j, i) and
(i, i) → (j, j) are impossible (because of the continuous time setting) and in
the other transitions above, all the 1/4 terms become 1/2. Intuitively, in the
coupling the pennies move independently except for moves involving an edge
between them, in which case the asynchronous dynamics are partly replaced by
synchronous ones.

Repeating the argument around (2.2) – an exercise for the dedicated student
– gives the following result. Write Xa(t) = (Xa

i (t)) for the averaging process
started from configuration 1a.

Lemma 5 (The duality relation). For each choice of a, b, i, j, not requiring
distinctness,

E(Xa
i (t)X

b
j (t)) = P(Za,b

1 (t) = i, Za,b
2 (t) = j)

where (Za,b
1 (t), Za,b

2 (t)) denotes the coupled process started from (a, b).

By linearity the duality relation implies the following – apply
∑

a

∑

b xa(0)xb(0)
to both sides.

Corollary 6 (Cross-products in the averaging model). For the averaging model
X(t) started from a configuration x(0) which is a probability distribution over
agents,

E(Xi(t)Xj(t)) = P(Z1(t) = i, Z2(t) = j)

where (Z1(t), Z2(t)) denotes the coupled process started from random agents
(Z1(0), Z2(0)) chosen independently from x(0).

3. Projects and open problems

The material in section 2 is our suggestion for what to say in a lecture course.
It provides an introduction to some general techniques, and one can then move
on to more interesting models. In teaching advanced graduate courses it is often
hard to find “projects” – from homework problems to open problems whose
solution might be worth a research paper – to engage students, but here it is
quite easy to invent projects.
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3.1. Foundational issues

There are several “foundational” issues, or details of rigor, we have skipped over,
and to students who are sufficiently detail-oriented to notice we suggest they
investigate the issue themselves.
(i) Give a formal construction of the averaging process consistent with the pro-
cess dynamics described in section 2.2.
(ii) Relate this notation of duality to the abstract setup in Liggett [9] section 2.3.
(iii) Give a careful proof of Lemma 5.

3.2. Homework-style problems

(i) From the definition of the averaging process, give a convincing one sentence
outline argument for Xi(t) → x(0) a.s. for each i.
(ii) Averaging process with noise. This variant model can be described as

dXi(t) = σdWi(t) + (dynamics of averaging model)

where the “noise” processes Wi(t) are defined as follows. First take n indepen-
dent standard Normals conditioned on their sum equalling zero – call them
(Wi(1), 1 ≤ i ≤ n). Now take W(t) to be the n-dimensional Brownian motion
associated with the time-1 distribution W(1) = (Wi(1), 1 ≤ i ≤ n). By modify-
ing the proof of Proposition 2, show this process has a limit distribution X(∞)
such that

E||X(∞)||22 ≤ 2σ2(n− 1)

λn
.

(iii) Give an example to show that EE(X(t),X(t)) is not necessarily a decreasing
function of t.

Answers to (ii,iii) are outlined in [2].

3.3. Open problems

(i) Can you obtain any improvement on Proposition 4? In particular, assuming
a lower bound on meeting rates:

∑

j 6=i

νij ≥ 1 for all i

is it true that
EE(X(t),X(t)) ≤ φ(t) var(x(0))

for some universal function φ(t) ↓ 0 as t ↑ ∞?
(ii) One can define the averaging process on the integers – that is, νi,i+1 =
1,−∞ < i < ∞ – started from the configuration with unit total mass, all at the
origin. By Lemma 1 we have

EXj(t) = pj(t)
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where the right side is the time-t distribution of a continuous-time simple
symmetric random walk, which of course we understand very well. What can
you say about the second-order behavior of this averaging process? That is,
how does var(Xj(t)) behave and what is the distributional limit of (Xj(t) −
pj(t))/

√

var(Xj(t)) ? Note that duality gives an expression for the variance in
terms of the coupled random walks, but the issue is how to analyze its asymp-
totics explicitly.
(iii) The discrete cube {0, 1}d graph is a standard test bench for Markov chain
related problems, and in particular its log-Sobolev constant is known [5]. Can
you get stronger results for the averaging process on this cube than are implied
by our general results?

3.4. Quantifying convergence via entropy

Parallel to Lemma 3 are quantifications of reversible Markov chain convergence
in terms of the log-Sobolev constant of the chain, defined (cf. (2.4)) as

α = inf
f

{E(f, f)
L(f)

: L(f) 6= 0

}

. (3.1)

where
L(f) = n−1

∑

i

f2
i log(f2

i /‖f‖22).

See Montenegro and Tetali [10] for an overview, and Diaconis and Saloff-Coste
[5] for more details of the theory, which we do not need here. One problem posed
in the Spring 2011 course was to seek a parallel of Proposition 2 in which one
quantifies closeness of X(t) to uniformity via entropy, anticipating a bound in
terms of the log-Sobolev constant of the associated Markov chain in place of the
spectral gap. Here is one solution to that problem.

For a configuration x which is a probability distribution write

Ent(x) := −
∑

i

xi log xi

for the entropy of the configuration (note [5] writes “entropy” to mean relative
entropy w.r.t. the stationary measure). Consider the averaging process where the
initial configuration is a probability distribution. By concavity of the function
−x log x it is clear that in the averaging process Ent(X(t)) can only increase,
and hence Ent(X(t)) ↑ logn a.s. (recall logn is the entropy of the uniform
distribution). So we want to bound E(logn−Ent(X(t))). For this purpose note
that, for a configuration x which is a probability distribution,

nL(
√
x) = logn− Ent(x). (3.2)

Proposition 7. For the averaging process whose initial configuration is a prob-
ability distribution x(0),

E(log n− Ent(X(t))) ≤ (log n− Ent(x(0))) exp(−αt/2)

where α is the log-Sobolev constant of the associated Markov chain.
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Proof. For 0 < t < 1 define

a(t) := 1
2 −

√

t(1 − t) ≥ 0

b(t) := log 2 + t log t+ (1 − t) log(1− t) ≥ 0.

The key inequality is
a(t) ≤ 1

2 (2t− 1)2 ≤ b(t). (3.3)

For the left inequality note that for |z| ≤ 1 we have
√
1− z2 ≥ 1− z2 and so

a(t) = 1
2 (1 −

√

1− (2t− 1)2) ≤ 1
2 (2t− 1)2.

For the right inequality first consider, for −1 ≤ z ≤ 1,

g(z) := (1 + z) log(1 + z) + (1− z) log(1− z)− z2.

Then g(0) = 0, g(−z) = g(z) and g′′(z) = 2
1−z2 − 2 ≥ 0, implying g(z) ≥ 0

throughout −1 ≤ z ≤ 1. So
1
2g(2t− 1) ≥ 0

and upon expansion this is the right inequality of (3.3).
So for x1, x2 > 0 we have from (3.3) that

(x1 + x2)b(
x1

x1+x2

) ≥ (x1 + x2)a(
x1

x1+x2

)

and this inequality rearranges to

x1 log x1 + x2 log x2 − (x1 + x2) log(
x1+x2

2 ) ≥ (x1+x2

2 −√
x1x2). (3.4)

For the rest of the proof we can closely follow the format of the proof of
Proposition 2. A configuration x changes when some pair {xi, xj} is replaced

by the pair {xi+xj

2 ,
xi+xj

2 }, which increases the entropy of the configuration

by − (xi+xj) log(xi+xj)
2 + xi log xi + xj log xj . So the dynamics of the averaging

process give the first equality below.

E(dEnt(X(t)) | X(t) = x)

=
∑

{i,j}

νij · (−(xi + xj) log(xi + xj)/2 + xi log xi + xj log xj) dt

≥
∑

{i,j}

νij · (xi+xj

2 −√
xixj) dt by (3.4)

=
∑

{i,j}

νij ·
(
√
xi −√

xj)
2

2
dt

=
n

2
E(√x,

√
x) dt (definition of E)

≥ αn

2
L(

√
x) dt (definition of α)

=
α

2
(logn− Ent(x)) dt by (3.2).
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So D(t) := logn− Ent(X(t)) satisfies

E(dD(t) | F(t)) ≤ −α

2
D(t) dt.

The rest of the proof exactly follows Proposition 2.
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