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Abstract

During the disease-recovery process of many diseases, such as in Heart
Failure (HF), often more than one type of event plays a role. Some clinical
trials use the combined endpoint of death and a secondary event; for instance,
HF-related hospitalizations. This is often analyzed with time-to-first-event
survival analysis which ignores possible subsequent events, such as several
HF-related hospitalizations. Accounting for multiple events provides more
detailed information on the disease-control process, and allows a more precise
understanding of the prognosis of patients.

In this paper we explore and illustrate several modelling strategies to
study time to repeated events of disease-related hospitalizations and death
per subject. Marginal models are revised in order to account for intra-subject
correlation and competing risks. Finally, we recommend a Multi-state model
which allows a flexible modelling strategy that incorporates important fea-
tures in the analysis of HF-related hospitalizations and death, and at the
same time extends relevant characteristics of the Andersen & Gill (1982),
Wei et al. (1989) and Prentice et al. (1981) models.

Key words: Survival analysis, Competing risks, Correlated observations,
Marginal models.

Resumen

Algunos ensayos clínicos para estudiar el efecto de nuevos tratamientos
en pacientes con insuficiencia cardiaca (IC) se basan en la evaluación de
hospitalizaciones relacionadas con IC y muerte. Frecuentemente el análi-
sis se enfoca en el tiempo a la primera ocurrencia de alguno de estos dos
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desenlaces. Este tipo de análisis ignora importantes eventos como nuevas
hospitalizaciones relacionadas con IC, que permiten una mejor descripción y
compresión del proceso de recuperación de estos pacientes.

En este trabajo se describen y exploran varias estrategias para el análi-
sis de tiempo a repetidas hospitalizaciones relacionadas con IC y tiempo a
la muerte. Se estudian modelos marginales para incorporar la correlación
intra-sujeto y riesgos competitivos propios de este tipo de ensayos clínicos.
Finalmente, se recomienda un modelo multi-estado como una estrategia sen-
cilla y flexible que incorpora elementos importantes en el análisis de hospi-
talizaciones relacionadas con IC y muerte, y a la vez extiende características
relevantes de los modelos de Andersen & Gill (1982), Wei et al. (1989) and
Prentice et al. (1981).

Palabras clave: análisis de sobrevida, riesgos competitivos, observaciones
correlacionadas, modelos marginales.

1. Introduction

Some clinical trials use combined endpoints to evaluate the effect of new thera-
pies. For instance, in the treatment of Heart Failure (HF) patients, a common com-
bined endpoint is death and HF-related hospitalizations (Gheorghiade et al. 2005),
and this is often analyzed with a time-to-first-event analysis. In the case of a first
event being a hospitalization, this analytical approach ignores subsequent hospi-
talizations or death. Despite the simplicity of time-to-first-event analysis, this
strategy has a severe drawback: the waste of information.

As discussed by Gheorghiade et al. (2005) and Solomon et al. (2007), subse-
quent events provide detailed information on the disease-control process and are
worth modelling to get a more precise understanding of patients’ prognoses. The
objective of this paper is to explore and formulate a simple and flexible modelling
strategy for the joint analysis of survival and time to disease-related hospital-
izations. Several marginal models are explored in order to illustrate statistical
methods that account for intra-subject correlation. Finally, we propose a multi-
state model as a flexible modelling strategy for the combined analysis of survival
and time to disease-related hospitalizations.

Statistical methods for repeated events survival analysis are illustrated using a
HF-dataset derived from the PROSPECT study (Predictors of Response to Car-
diac Resynchronization Therapy, study described by Yu et al. 2005) and results
published by Chung et al. (2008). The HF-dataset incorporates relevant features
and information on HF-related hospitalizations and death for 426 patients, ran-
domly assigned to two treatment groups (G1 and G2).

Figure 1 displays the repeated events nature of the dataset. In 18 patients (7 in
G1 and 11 in G2) the first event was death, and for 73 patients (33 in G1 and 40 in
G2) the first event was hospitalization. Twenty seven patients presented a second
hospitalization (15 in G1 and 12 in G2) and only 6 had a third hospitalization (3
in each group). Ten (3 in G1 and 7 in G2), six (3 in each group) and two (1 in each
group) patients died after the first, second and third hospitalization, respectively.
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Figure 1: Multiple events for 66 patients in the HF-dataset.

In Section 2 several methods and analysis strategies are defined, among them,
time to first event Cox proportional hazards model; marginal models for multiple
events: Andersen & Gill (1982), Wei et al. (1989) and Prentice et al. (1981) models;
and the multi-state model (Andersen & Gill 1982). In Section 3 the pros and
cons of these modelling strategies are illustrated using the HF-dataset, analyzing
the time to death and/or disease-related hospitalizations. Finally, in Section 4 a
discussion is presented and the use of a multi-state model is recommended for the
analysis of the HF-dataset. These methods are described next (the descriptions
of the Cox and marginal models are based primarily on Therneau & Grambsch
(2000)).

2. Methods

Statistical methods for survival analysis, such as the Kaplan-Meier estimator,
log-rank test and Cox regression model, can be rewritten as stochastic integrals
with respect to counting processes and martingale theory. The counting processes
approach is used in this section for the presentation of the different methods (for
instance in the description of the Cox model) and the reason for this, as explained
by Fleming & Harrington (1991), Therneau & Grambsch (2000) and Andersen
et al. (1993), is that counting processes provide a single, elegant, solid basis for
survival analysis, which allows flexible ways of modelling (allowing for extensions of
the basic survival analysis models to more general multi-state models applicable for
event history data) and lead to a unified framework for studying both small sample
and asymptotic properties of survival analysis statistics. A complete discussion on
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counting processes can be found in the books by Fleming & Harrington (1991)
and Andersen et al. (1993).

2.1. The Cox Model

Let Xij(t) be the jth covariate of the ith subject, where i = 1, . . . , n and
j = 1, . . . , p and Xi denotes the covariate vector for subject i. The hazard for
individual i is specified as λi(t) = λ0(t)e

Xi(t)β, where λ0 is an unspecified nonneg-
ative function (the baseline hazard), and β is a vector of coefficients. For untied
failure time data, Cox (1972) proposed the estimation of β based on the partial
likelihood function:

PL(β) =
n∏

i=1

∏

t≥0

{
Yi(t)ri(β, t)∑
j Yj(t)rj(β, t)

}dNi(t)

where Yi(t) is the indicator function that subject i is still under observation at
time t, Ni(t) is the number of observed failures for subject i and dNi(t) denotes
the increment in Ni(t) over the infinitesimal time interval [t, t + dt). ri(β, t) is
the risk score for subject i, ri(β, t) = exp[Xi(t)β] ≡ ri(t). The product integral is
defined such that only time points where patient i is at risk (Yi(t) = 1) generate
a contribution. Therefore, it is convenient to write the partial likelihood function
as:

PL(β) =

n∏

i=1

∏

t:Yi(t)=1

{
ri(β, t)∑

j Yj(t)rj(β, t)

}dNi(t)

The log partial likelihood is:

l(β) =

n∑

i=1

∫

t:Yi(t)=1

[
log(ri(β, t)) − log

(
∑

j

Yj(t)rj(β, t)

)]
dNi(t)

=

n∑

i=1

∫ ∞

0

Yi(t)

[
Xi(t)β − log

(
∑

j

Yj(t)rj(t)

)]
dNi(t)

After differentiating the log partial likelihood with respect to β, the p×1 score
vector, U(β) is:

U(β) =
n∑

i=1

∫ ∞

0

[Xi(s) − x(β, s)]dNi(s)

where x(β, s) is a weighted mean of X , over those observations still at risk at time
s,

x(β, s) =

∑
Yi(s)ri(s)Xi(s)∑

Yi(s)ri(s)

β̂ is found by solving the partial likelihood equation U
(
β̂
)

= 0, and is consistent

and asymptotically normally distributed with mean β, and variance I−1
(
β̂
)
, the

inverse of the observed information matrix.
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2.2. Multiple events per subject

A major issue in extending proportional hazards regression models to multiple
events per subject is the intra-subject correlation (Therneau & Grambsch 2000).
A simple approach that sidesteps this is to take time to first event. Time to first
event is simple and easy to interpret, but important information on the disease-
recovery process is lost. Other more appropriate approaches are marginal models
and multi-state models (with competing risk component). These methods are
described below.

2.2.1. Marginal Models

Marginal models offer flexibility in the formation of strata and risk sets, def-
inition of the time scale, and have a well-developed estimator of the variance.
Marginal models allow for population average estimation of treatment effect. Th-
erneau & Grambsch (2000) summarize the analysis with these models in three
steps:

• Decide on a model (issues such as covariate selection, inclusion of strata,
etc.) and structure the data set accordingly.

• Fit the data as an ordinary Cox model, ignoring the possible intra-subject
correlation (i.e. treating multiple events from a subject as independent).

• Replace the standard variance estimate with one which is corrected for the
possible correlations.

Robust Variance. When a given subject may contribute multiple events, the
assumption of independent observations in the standard Cox model does not hold.
Lipsitz et al. (1990) showed that marginal models can overcome this assumption

for the estimation of the variance of β̂ by an appropriate correction based on a
grouped jackknife estimate.

Grouped-jackknife values are defined as Ji = β̂ − β̂(i), where β̂(i) is the result
of the fit that includes all of the individuals except individual i. It is denominated
as grouped because in the multiple event case, one individual contributes several
observations, and removing a subject implies removing a group of observations.
Therneau & Grambsch (2000) describe a way to compute the grouped-jackknife
values directly at the Newton-Raphson iteration. The change in the estimated
coefficient vector can be expressed in the following way, ∆β = 1′(UI−1) ≡ 1′D,

where U is the matrix of score residuals. Thus, the change in β̂ at each iteration
is the column sum of a matrix D, defined as the score residual scaled by I−1 (the

variance of β̂).

This grouped jackknife can be used to derive a robust estimate of the variance
for the Cox model. If J is the matrix of grouped-jackknife values (i.e. the ith

row of J is β̂ − β̂(i)), then the grouped jackknife estimate of the variance can be

written as the matrix product VJ = n−1
n

(
J − J

)′(
J − J

)
, where J is the matrix
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of column means of J . A natural approximation that is preferred is D′D, the
matrix product of the approximate jackknife variances (ignoring the n−1

n
term).

Writing D′D = I−1(U ′U)I−1, this variance can be viewed as a sandwich estimator
ABA, where A is the usual variance and B a correction term. Sandwich estimates
are familiar from robust variance estimation in generalized estimating equations
(GEE) proposed by Liang & Zeger (1986). Although unbiased, this grouped-
jackknife estimate is typically more variable than the ordinary variance of the
Cox model, but it is a robust variance that adequately addresses repeat event
correlation, and it is expected to be reported when fitting marginal models.

Ordered events. One important issue is to distinguish between data sets where
the multiple events have a distinct ordering and those where they do not. In
the particular case of the HF-dataset, the outcomes hospitalizations and death
are correlated and ordered. Death can happen either as the first event or after
hospitalization; there is a specific ordering in this case, obviously after the event of
a death it is not possible to have a hospitalization. The most common approaches
for correlated ordered outcomes are: the independent increments (Andersen &
Gill 1982), marginal (Wei et al. 1989), or PWP (Prentice et al. 1981) models.

All three are “marginal” regression models in that β̂ is determined from a fit that
ignores the correlation between the events followed by a correction of the variance,
but differ considerably in their creation of the risk sets.

Andersen and Gill (AG) model. This method is the simplest, but makes
the strongest assumptions. Each subject is represented as a series of observations
(rows of data) with time intervals as: (entry time, first event], (first event, second
event],. . ., (mth event, last follow up]. The intensity process for subject i is:

Yi(t)λ0(t) exp(Xi(t)β)

The difference with the standard Cox model lies in the definition of the at-
risk indicator Yi(t). For survival data, the individual ceases to be at risk when
an event occurs and Yi(t) takes value zero, but for the AG model for recurrent
events, Yi(t) remains one as events occur. Of course the at-risk indicator does not
remain one if the event observed is Death. No extra strata or strata by covariate
interaction terms are introduced for the multiple events (Therneau & Grambsch
2000). The Andersen-Gill formulation of the Cox proportional hazards model has
a number of advantages, including the ability to accommodate left-censored data,
time-varying covariates, multiple events, and discontinuous intervals of risks. Some
of these practical advantages are discussed in an applied framework by Johnson
et al. (2004).

Wei, Lin and Weissfeld (WLW) model. In this model, the ordered outcome
dataset is treated as if it were an unordered competing risk case. The number of
strata in the analysis will be equal to the maximum number of events a patient
reports in the study. Every subject will have one observation in each stratum.
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The hazard function for the jth event for subject i is:

Yij(t)λ0j(t) exp(Xi(t)βj)

Unlike the AG model, this model allows a separate underlying hazard for each
event and for strata by covariate interactions, as shown by the notation βj . In
the WLW model the at-risk indicator for the jth event, Yij(t), is one until the oc-
currence of the jth event, unless, of course, some external event causes censoring.
When either of those occurs, it becomes zero, indicating that subject is no longer
at risk after the last given event (Therneau & Grambsch 2000, Wei et al. 1989). A
frequently raised concern is the method’s risk set, where each individual is consid-
ered to be at risk of all recurrent events from the start of the observation period,
and often this method gives estimates that exceed those provided by alternative
approaches. By simulation studies, Metcalfe & Thompson (2007) have shown that
the WLW model infringes on the proportional hazards assumption when applied
to recurrent events data, but the bias this may cause is not behind the distinctive
effect estimates. Metcalfe & Thompson (2007) discuss that the analyses of medical
data indicate that the infringement of the proportional hazards assumption is not
necessarily greater than that experienced with other applications of proportional
hazards regression and need not prohibit the application of WLW’s method to
recurrent events data.

Prentice, Williams and Peterson (PWP) models. This model clearly de-
fines the order of the events. A subject is not at risk for the kth event until he/she
has experienced event k−1st. Like in the AG model, time intervals are defined as:
(entry time, first event], (first event, second event],. . ., (mth event, last follow up],
but each event is assigned to a separate stratum (Prentice et al. 1981). The use of
time-depending strata means that the underlying hazard function may vary from
event to event, unlike the AG model, which assumes that all events are identical.
The hazard function for the jth event for subject i is:

Yij(t)λ0j(t) exp(Xi(t)βj)

The primary difference between the WLW and PWP models is in the definition
of the at-risk indicator and the definition of the strata in the analysis. In the PWP
model the at-risk indicator, Yij(t), is defined as zero until the j−1st event and only
then becomes one. Once the jth event occurs, Yij(t) becomes 0 again. The PWP
model can be seen as a stratified AG model with event-specific baseline hazards
and a restricted risk set. By means of a simulation study, Kelly & Lim (2000) have
illustrated that the naive and robust standard errors for the PWP model appear
to be similar regardless of the within-subject correlation.

The AG model and the PWP model can be used in the analysis of repeated
failure outcomes of the same type, while the approach by the WLW model can be
applied to both multiple events of the same type and multiple events of different
types as long as there is not a predetermined ordering. The WLW model has
a semi-restricted risk set that allows subjects to be at risk for as many events
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as the maximum number of events reported per subject in the study, even if
most of the subjects only had one event, which (as reported by Kelly & Lim
(2000)) leads to overestimation of the treatment effect. For all models, except
the PWP model, the robust standard errors become inflated when within-subject
events are not independent (Kelly & Lim 2000). When the model is correctly
specified (no important covariates are omitted) the PWP model and the AG model
estimate unbiased treatment effect and require similar sample size to obtain the
same precision in the estimation, while the WLW model estimates biased treatment
effect and requires a larger sample size. The PWP model and the AG model are
considered to be more efficient than the WLW model, and require less sample size
than the time to first event model (Therneau & Grambsch 2000). As noted by
Wei & Glidden (1997), the appropriate modelling strategy should be chosen based
on the type and nature of the multiple events structure.

2.2.2. Multi-state models

Several of the ideas presented in this section on multi-state models can be found
in the 2002 (11) issue of Statistical Methods in Medical Research, entirely devoted
to multi-state models. In particular, in the paper by Andersen & Keiding (2002),
a multi-state process is defined as a stochastic process (X(t), t ∈ T) with a finite
state space S = {1, . . . , p} and with right-continuous sample paths: X(t+) = X(t).
Here T = [0, τ ] or [0, τ) with τ ≤ +∞. The process has initial distribution
πh(0) =Prob(X(0) = h), h ∈ S. A multi-state process X(·) generates a history
consisting of the observation of the process in the interval [0, t]. Relative to this
history, transition probabilities may be defined by:

Phj(s, t) = Prob(X(t) = j | X(s) = h)

for h, j ∈ S, and s, t ∈ T, s ≤ t and transition intensities by the derivatives

αhj(t) = lim
∆t→0

Phj(t, t + ∆t)

∆t

Graphically, multi-state models may be illustrated using diagrams with boxes
representing the states and with arrows between the states representing the possi-
ble transitions. A state h ∈ S is absorbing if for all t ∈ T, j ∈ S, j 6= h, αhj(t) = 0;
otherwise h is transient. The most simple multi-state model is the two-state model
for survival data, which is represented in Figure 2. This model has p = 2 states
and only one possible transition from state 0 to state 1 (state 0: alive and state 1:
dead). The corresponding transition intensity α01(t) is given by the hazard rate
function α(t), while α10(t) = 0 for all t, that is, state 1 is absorbing. Covariates
may be entered into the model using a regression model for α(·). A throughout
description of the counting process representation of the multi-state model can be
found in the paper by Andersen & Keiding (2002).

In multi-state models, an individual moves from one state to another through
time. It is clear that intermediate events, such as disease-related hospitalizations,
provide more detailed information on the disease-recovery process and allow for
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State 0 State 1

Figure 2: The two-state model for survival data.

more precision in predicting the prognosis of patients. These hospitalizations be-
come intermediate events worth modelling in their natural form. These non-fatal
events during the course of the disease can be seen as transitions from one state
to another. The time origin is characterized by a transition into an initial tran-
sient state, such as the start of treatment (entry). Instead of survival data or
time-to-event data, data on the history of events is available. Multi-state models
provide a framework that allows for the analysis of such event history data (Putter
et al. 2007).

If it is assumed that the future depends on the history only through the present,
then the process is assumed to be Markovian. In our particular case, given the
present state and the event history of a patient, the next state to be visited and the
time at which this will occur will only depend on the present state. As explained
by Putter et al. (2007), the counting process style of data input with time intervals
of (entry time, first event], (first event, second event],. . ., (mth event, last follow
up] can be used by a Markov model.

Andersen & Keiding (2002), Klein & Shu (2002) and Cook & Lawless (2002),
discuss the use of multi-state models when the observation plan has been that of
cohorts of individuals observed continuously over time. Commenges (2002) treats
the situation where individuals are not observed continuously, but only at discrete
time points.

3. Statistical Analysis and Results

In this section, each model description indicates how group effect is modelled
and what other options are supported by each model. Special attention is given
to model assumptions and practical implications for setting up of the dataset.

3.1. Time to first event

The dataset illustrated in Figure 1 was analyzed by a usual “time to first
event” analysis. As a first approximation, both outcomes, “hospitalization” and
“death”, are treated as the same event. The dataset for this analysis has one
observation per subject including: Patient identification (ID), time to event in
years (TIME), status (event=1 or censoring=0) (STATUS), and the covariates:
treatment group (1 or 2)(GROUP), age at enrolment (AGE), and left ventricular
ejection fraction (LVEF). Ejection fraction is the percentage of blood pumped out
of the left ventricle with each heartbeat. Adamson et al. (2004) have reported
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ventricular ejection fraction as a prognostic factor for HF. For patients with ID
numbers 35, 36, 37 and 47, the dataset would look as presented in Table 1.

Table 1: Dataset for time to first event analysis (patients with ID 35, 36, 37 and 47).

ID TIME STATUS GROUP AGE LVEF

35 0.3723 1 2 63 15

36 2.2735 1 2 50 20

37 1.0322 0 1 52 30

47 0.0010 1 1 79 25

Despite the convenient simplicity of this analysis, there are two important
drawbacks. The first one is that information is being wasted-only the first event is
considered; the second one is the identical treatment of hospitalization and death,
which clinically should be treated as different events.

A more appropriate alternative is an analysis of time to first event, where event
can be either hospitalization or death. Since the baseline hazards for the two event
types are not expected to be the same, the analysis is stratified by type of event.
The dataset for the combined analysis must allow accommodation for competing
risks. In this case, the dataset contains one stratum for each outcome type, with
each patient appearing in each stratum. The rows in the dataset for patients with
ID numbers 35, 36, 37 and 47 are presented in Table 2.

Table 2: Dataset for time to first event analysis with competing risks.

ID TIME STATUS OUTCOME GROUP AGE LVEF

35 0.3723 0 Death 2 63 15

35 0.3723 1 Hospitalization 2 63 15

36 2.2735 0 Death 2 50 20

36 2.2735 1 Hospitalization 2 50 20

37 1.0322 0 Death 1 52 30

37 1.0322 0 Hospitalization 1 52 30

47 0.0010 1 Death 1 79 25

47 0.0010 0 Hospitalization 1 79 25

Note that the first event for patients with ID numbers 35 and 36 is hospi-
talization, which removes the individuals from being at risk for the first event,
Death (therefore, for the first event, Death, Status appears as censor). The lost
to follow up of patient with ID=37 makes the status for this individual as cen-
sored for both Death and Hospitalization. Finally, the patient with ID=47 has the
event Death, therefore removing the patient from being at risk for the first event:
Hospitalization.

Several models can be analyzed. However, the interest has been to evaluate
the treatment effect adjusted by AGE and LVEF. In the above two model ap-
proaches (first one ignoring type of event and second one with competing risks),
the estimated treatment effect is not significant (p-value>0.6).
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3.2. Ordered multiple events

The first alternative to account for multiple events is the AG model. This
model treats the two events, hospitalization and death, as if they were the same.
Subjects can re-enter the same state multiple times (Figure 3).

Entry   Hospitalization & Death 

Figure 3: Schematic for the AG model approach.

We have the following history of events for patients with ID numbers from
35 to 39 (All patients start at time=0, Table 3). The first event for patient 35 is
Hospitalization at 0.372 years after entry; after this the patient has the event Death
at time 0.565 years. The first event for the patient with ID=36 is Hospitalization
at 2.273 years; after this the patient is loss to follow up at 2.387 years. Patients
with ID=37 and 38 do not have any event, they present censoring at times 1.032
and 1.516 years, respectively. Finally, for the patient with ID=39, the first event
is hospitalization at 1.117 years after entry, the second event is hospitalization at
1.188 years, and later censoring at time 1.202. Table 3 shows the dataset for the
AG model.

Table 3: Dataset for multiple events analysis with the AG model (columns: ID, Time1,
Time2, Status, Group, Age and LVEF). To adjust a PWP model it is only
necessary to add the last column (EventNumber).

ID TIME1 TIME2 STATUS GROUP AGE LVEF EventNumber

35 0 0.3723 1 2 63 15 1

35 0.3723 0.5651 1 2 63 15 2

36 0 2.2735 1 2 50 20 1

36 2.2735 2.3874 0 2 50 20 2

37 0 1.0322 0 1 52 30 1

38 0 1.5168 0 1 70 20 1

39 0 1.1170 1 1 80 15 1

39 1.1170 1.1882 1 1 80 15 2

39 1.1882 1.2019 0 1 80 15 3

Note that “type of event” is ignored as one of the assumptions in the AG model.
Table 4 shows the parameter estimates for the AG model formulation. As expected
in marginal models, robust standard errors (S.E.) are generally larger than model
based S.E.

Table 4: Parameter estimates for the AG model formulation.

Effect Parameter
estimate

Model based
S.E.

Robust
S.E.

p-value

GROUP −0.2787 0.1784 0.2405 0.250

AGE 0.0048 0.0075 0.0089 0.590

LVEF −0.0562 0.0120 0.0169 0.001
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The AG model assumes that all events are identical, which may be too strong an
assumption. Figure 4 presents the cumulative hazards for the consecutive events.
It clearly suggests that the risk of a new event does not remain constant; on the
contrary, it shows that the risk of an event depends on previous events.

Table 5: Parameter estimates for the conditional PWP model formulation.

Effect Parameter
estimate

Model based
S.E.

Robust
S.E.

p-value

GROUP −0.3720 0.1809 0.1843 0.044

AGE 0.0028 0.0073 0.0061 0.640

LVEF −0.0412 0.0121 0.0129 0.001
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Figure 4: Cumulative hazard for consecutive events.

There is a pre-specified order in the events in HF-patients. A model that
encompasses this feature is the PWP model. This model was fitted to incorporate
the use of time-depending strata, which means that the underlying hazard function
may vary from event to event. The dataset needed to fit a PWP model is the same
one used for the AG model, the only difference being that it includes an extra
variable, the number of the event (column: EventNumber in Table 3), which is
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used for stratification. Table 5 shows the parameter estimates for the conditional
PWP model formulation.

The following R code could be used to fit the AG and PWP models.

> library(survival)

# AG model #

> coxph(Surv(time1, time2, status) ∼ factor(group) + age + lvef

+ cluster(id) , data=data1)

# PWP model #

> coxph(Surv(time1, time2, status) ∼ factor(group) + age + lvef

+ cluster(id) + strata(EventNumber), data=data1)

3.3. Multi-state models

Two of the characteristics of the HF-dataset are captured by the conditional
PWP model presented above, which is able to detect a significant difference be-
tween the two treatment groups after controlling for AGE and LVEF (Table 5).
First, a patient is not at risk for the kth event until he/she has experienced event
k − 1st. Second, the underlying hazard function may vary from event to event.
Unfortunately, the conditional PWP model does not capture the distinction be-
tween the two types of events. A very important feature is that Hospitalization
and Death, in practice (clinically), cannot be considered equal due to their nature
and severity.

The maximum number of hospitalizations for a patient in the HF-dataset is 3.
Follow-up after the third hospitalization stops either due to Death or Censoring.
Other patients have one or two hospitalizations and afterwards die. A multi-state
model where patients transit from one state to another, was proposed to include re-
hospitalization and to distinguish the event Death from the event Hospitalization.

Entry

Death 

 Hospitalizations  

1    ����    2   ����  3 

Figure 5: Schematic for the full multi-state model.

The multi-state model displayed in Figure 5 does not fit neatly into any of the
marginal models described above. The first event can be either Death or Hospi-
talization (competing risks), a patient is not at risk for a second Hospitalization
until he/she experiences Hospitalization as a first event (ordered events), and the
underlying risk for the transition from first Hospitalization to Death cannot be as-
sumed to be the same for the transition from the first Hospitalization to a second
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Hospitalization. A similar argument holds for the different risks for patients with
two or three hospitalizations. In the computer model of the data, there will be
seven possible strata-one for each possible transition (Table 6).

Table 6: Strata for the full multi-state model.

Transition Stratum Representation

1 Entry - Hospitalization1 E→H1

2 Hospitalization1 - Hospitalization2 H1→H2

3 Hospitalization2 - Hospitalization3 H2→H3

4 Entry - Death E→D

5 Hospitalization1 - Death H1→D

6 Hospitalization2 - Death H2→D

7 Hospitalization3 - Death H3→D

In setting up the dataset for the multi-state model one must consider the pos-
sible transitions that a patient could have at a particular state. For example, the
patient with ID=26 has no events, only a censoring at time 1.454 years. This pa-
tient has two possible transitions, that is, from Entry to Hospitalization1 (E→H1),
or from Entry to Death (E→D); the status in both cases is censoring (0). For the
patient with ID=27 the first event is Hospitalization at 0.621 years after entry,
his second event is another Hospitalization at time 0.644 years, and finally the
patient presents the event Death at 0.672 years after entry. The dataset structure
for these two patients is presented in Table 7.

Table 7: Dataset for the full multi-state model.

ID TIME1 TIME2 TRANSITION STATUS GROUP AGE LVEF

26 0 1.4543 E→ H1 0 1 73 25

26 0 1.4543 E→D 0 1 73 25

27 0 0.6215 E→H1 1 2 50 20

27 0 0.6215 E→D 0 2 50 20

27 0.6215 0.6439 H1→H2 1 2 50 20

27 0.6215 0.6439 H1→D 0 2 50 20

27 0.6439 0.6720 H2→H3 0 2 50 20

27 0.6439 0.6720 H2→D 1 2 50 20

Note that after the first event (Hospitalization1), the patient with ID=27 has
two possible transitions: from Hospitalization1 to Hospitalization2 (H1→H2), or
from Hospitalization1 to Death (H1→D). Once the second event is Hospitaliza-
tion2, the patient is no longer at risk to present transition (H1→D), therefore, the
status for this transition is a censoring (0). The same mechanism is applied to the
final event.

Table 8 shows parameter estimates for the multi-state model. Due to the
assumption of unequal risk for the different transitions, the analysis is stratified
by transition.

This multi-state model fully describes the characteristics of the multiple events
of the HF-dataset, and is able to detect a significant difference between the two
treatment groups after controlling for AGE and LVEF. Subjects in treatment group
2 have a “rate” of state change that is approximately 67% of the rate of those in
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Table 8: Parameter estimates for the full multi-state model.

Effect Parameter Model based Robust p-value

estimate S.E. S.E.

GROUP −0.3880 0.1815 0.1858 0.037

AGE 0.0036 0.0074 0.0061 0.550

LVEF −0.0414 0.0122 0.0130 0.001

treatment group 1. The assumption for proportional hazards is not rejected (p-
value=0.2308). As proposed by Grambsch & Therneau (1994), this proportional
hazards test can be seen as a test for assessing the correlation of a scatter plot of
the scaled Schoenfeld residuals versus a function of time. This test is implemented
and available in R.

The following R code could be used to fit the multi-state model and test for
proportional hazards.

> library(survival)

> fit1 <- coxph(Surv(time1, time2, status) ∼ factor(group) + age

+ lvef + cluster(id) + strata(transition) , data=multistate)

> print(cox.zph(fit1))

We can also explore whether treatment affects some transitions more than
others by looking at the GROUP by TRANSITION interaction in Table 9. The
group effect is strongest with respect to transitions after the first hospitalization
(group effect in the H3→D transition is not estimated due to lack of cases in the
data). The group by transition interaction is certainly interesting and has to be
rigorously proven in order to make conclusions.

Table 9: GROUP by TRANSITION interaction in the full multi-state model.

Effect Parameter Exp of parameter

estimate estimate

GROUP,E→H1 −0.11310 0.893

GROUP,E→D −0.18208 0.834

GROUP,H1→H2 −1.03639 0.355

GROUP,H1→D −0.06922 0.933

GROUP,H2→H3 −1.51823 0.219

GROUP,H2→D −1.03254 0.356

A simplification of the multi-state model for the HF-dataset is done by assum-
ing the baseline hazards of the H1→H2 and H2→H3 transitions to be proportional,
i.e. to have only one Hospitalization state that can be visited more than once.
More generally, we may assume a simplification of the multi-state model as shown
in Figure 6. Furthermore, this simplification is assuming that baseline hazards for
transitions H1→D, H2→D and H3→D are proportional.

To assess whether the assumption of proportional hazards for the transitions
is reasonably fulfilled, we explore the estimated cumulative baseline hazards for
the multi-state model described in Figure 5. The cumulative baseline hazards for
transitions H1→D, H2→D and H3→D are shown in Figure 7.
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Entry

Hospitalization 
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Figure 6: Schematic for the simplified multi-state model.
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Figure 7: Cumulative baseline hazard for transitions H1→D, H2→D and H3→D in the
full multi-state model.

The graphical exploration indicates that the baseline hazards are not propor-
tional. This can be checked more rigorously by testing the significance of an
interaction between time, and an indicator distinguishing between the three tran-
sitions; although this should be considered with caution due to the small sample
size. For this case the interaction was significant (p-value <0.01), supporting the
graphical check of disproportionate hazards.

The lack of proportionality between the specific transitions suggests not simpli-
fying the multi-state model. The preferred model for the analysis of the HF-dataset
is the full multi-state model fitted in Table 8.

4. Conclusion and discussion

Survival analysis has been a common and well-accepted strategy to study treat-
ment effect in a population of patients. During the last few years, there has been an
increasing interest in assessing therapy effect not only by using time to Death, but
also time to surrogate events; a good example of which is time to hospitalizations.
The combined endpoint of time to Death and time to disease-related Hospitaliza-
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tions is often analyzed with a time-to-first-event analysis, which has the drawback
of waste of information and indistinct handling of two clinically different events.

The analysis of multiple events per subject cannot be approached by a stan-
dard Cox model, where the assumption of independence of observations is not
valid. In order to account for intra-subject correlation, we have presented the use
of marginal and multi-state models using a counting process approach for the joint
analysis of survival and time to disease-related Hospitalizations. The character-
istics and limitations of the WLW, AG, and PWP models have been illustrated
in the modelling of time to HF-related Hospitalizations and Death. All of these
models allow for population average estimates of treatment effect and are easily
approached using standard statistical software such as SAS, R, and S-Plus. The
AG model assumes that all events are identical and can be revisited, and the WLW
model only accommodates unordered competing risk. Both models make strong
assumptions that are not suitable in the analysis of HF-related Hospitalizations
and Death. The PWP model accounts for pre-specified order in the events and
competing risks, but has the drawback of assuming Hospitalization and Death
as the same type of events, which, given their nature and severity, is clinically
unacceptable.

The most appropriate model should be chosen based on the nature of the data.
For the HF-dataset we recommend a multi-state model as it allows the incorpora-
tion of important features in the analysis of HF-related hospitalizations and death,
such as multiple ordered events per subject, event history data, accommodation of
competing risks, and the distinction between two different clinical events: death
and hospitalization. The proposed simple and flexible multi-state model extends
relevant characteristics of the WLW, AG, and PWP models, while capturing im-
portant features of time to disease-related Hospitalizations and Death in the HF-
dataset, and allows for a more precise understanding of the disease-control process
in this particular group of patients.
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