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Abstract

The study of diagnostic tests is a hot topic which has direct applications
in biomedical sciences. Despite of the relevance, in a diagnostic process, of
the threshold (or cutoff point) employed on the decision taken by the physi-
cian, the study and comparison of the accuracy among different diagnostic
criterions has been the main field of study. In this paper, the authors are
interested in the study of the involved cutoff point estimation in diagnos-
tic tests with weighted errors. With this goal, a nonparametric smoothed
utility function estimator is considered. The bootstrap and the asymptotic
distributions for the related M -estimator are derived. Finally, the obtained
results are applied to study the Procalcitonin level which determines whether
a child within the Pediatric Intensive Care Unit (UCIP) has a virical sepsis.

Key words: Kernel density estimator, Sensitivity, Specificity, Threshold,
Utility function.

Resumen

El estudio de tests diagnósticos es un tema candente con aplicaciones
directas en las ciencias biomédicas. Aunque en la práctica, a la hora de tomar
una decisión, los clínicos deben fijar un valor umbral (o punto de corte) a
pesar de la relevancia que este valor tiene, el estudio y la comparación de
la calidad entre diferentes criterios diagnósticos ha sido el principal campo
de estudio. En este trabajo, los autores están interesados en el estudio
de la estimación del punto de corte involucrado en un test diagnóstico con
errores ponderados. Con este objetivo, se considera un estimador suavizado
para una función de utilidad. Se estudian las distribuciones bootstrap y
asintóticas del M -estimador resultante. Finalmente, los resultados obtenidos
son aplicados al estudio de los niveles de Procalcitonina que determinan si
un niño ingresado en la Unidad de Cuidados Intensivos Pediátricos (UCIP)
tiene infección vírica.

Palabras clave: especificadas, estimador núcleo para la densidad, función
de utilidad, sensibilidad, umbral.
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1. Introduction

Diagnostic methods play an important role in the medical attention. The esti-
mation and comparison of the accuracy among different methods are the focus of a
wide variety of studies (see, for example, Zhou, Obuchowski & McClish (2002) and
references therein). The main goal in a diagnostic test is to determine whether one
individual is ill (positive). With this purpose, usually, some physiologic measure,
T , is taken (as a marker) on a patient; the patient is classified as positive (with the
illness) if this measure is upper (or lower) than a previously fixed threshold. This
classification process has associated two possible mistakes –to classify a healthy
individual in the positive group and to classify an unhealthy individual in the
negative group. Of course, to determine the diagnostic test accuracy, these errors
are basic. The proportion of positives which are correctly identified is known as
sensitivity (SE) and the proportion of negatives which are correctly identified is
known as specificity (SP ).

The Receiver Operating Characteristic (ROC) curve (Green & Swets 1966) is a
popular graphical method of displaying the discriminatory accuracy of a diagnostic
test (based on a marker) for distinguishing between two populations. It is a plot
of true-positive fraction (SE) against the false-positive fraction (1 − SP ) over all
possible threshold values of the considered marker. Although alternative indices
have been discussed (see, for example, Lee & Hsiao (1998) or more recently Hand
(2009)), the area under ROC curve (AUC) is, probably, the most commonly used
index for diagnostic global accuracy. The ROC curve and the AUC index have
been studied from different approaches (see Rodríguez-Álvarez, Tahoces, Cadarso-
Suárez & Lado (2011) and Airola, Pahikkala, Waegeman, De Baets & Salakoski
(2011) for some recent references). They have also been involved in the solu-
tion of different practical problems; for instance, recently, López-de Ulibarri, Cao,
Cadarso-Suárez & Lado (2008) used a smooth estimation of the conditional ROC
curve and the AUC on task discriminations and Martínez-Camblor & Yáñez-Juan
(2009) developed a test to compare the equality of the diagnostic effectiveness of
one measure with respect differents features based on the respective AUC values.

The Youden Index (Youden 1950) is also frequently used as accuracy measure.
It is defined as J = maxt∈R{SE(t)+SP (t)−1} and ranges between 0 and 1. Chin-
Ying, Tian & Schisterman (2011) derived a procedure to build exact confidence
interval estimations for the Youden index and its corresponding optimal cut-point.
A vast study about the Youden Index and its associated cut-point estimations
have been conducted by Fluss, Faraggi & Reiser (2005). They concluded that,
in the estimation of the Youden Index the kernel is generally the best (among
four considered estimators) unless the data can be well transformed to achieve
normality whereas in estimation of the optimal threshold value results are more
variable.

Most considered indices assume that the sensitivity and the specificity have
the same relevance. However, to understand that there exist situations in which
the impact of the two possible mistakes is quite different is easy. Taking into
acount these differences and, for each λ ∈ (0, 1), we introduce the following linear
utility function (although in other context, it has been previously considered by
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Krzanowski & Hand 2009)

Uλ(t) = λSE(t) + (1 − λ)SP (t) (1)

Because the λ value (weight) determines the final impact of the sensitivity and
specificity, its election is really important and, usually, depends on the costs of
the different decisions and the prevalence of the illness which is being studied.
Obviously, for each particular problem, its real value will be previously fixed by
the specialist who must taking into count the different misclassification effects.
Note that, if for 0 ≤ λ ≤ 1 it is considered the optimum reachable utility, i.e.

Jλ = max
t∈R

{Uλ(t)} λ ∈ (0, 1) (2)

then J = 2(J1/2 − 1/2). Therefore, Jλ generalizes J when the mistakes in the
classification process have different weights.

In this paper, smoothed estimators for the coefficient Jλ and its associated
threshold are studied. In Section 2, the asymptotic and the bootstrap approxima-
tions for the cutoff point smoothed estimator are derived. Finally, in Section 3, we
apply the proposed methods on the data set which motivated this research. On
this data set, we study the procalcitonin (PCT) level which determines whether a
child into the Pediatric Intensive Care Unit (UCIP) has a virical sepsis.

2. Nonparametric Cutoff Point Estimation

Let T be a continuous marker, we can assume (without loss of generality)
that an individual is classified within group E (positives) if T > t and within
group E (E denotes the complementary set of E) if T ≤ t. Let FN and fN be
the distribution and the density functions, respectively, of NT (T in the negative
population; without the characteristic), and let FP and fP be the distribution and
the density functions, respectively, of PT (T in the positive population; with the
characteristic), we have the equalities

SE(t) =P {T > t | E} = 1 − FP (t) (3)

SP (t) =P
{
T ≤ t | E

}
= FN (t) (4)

As usual, to estimate SE and SP we must estimate the distribution functions
involved in the above definitions. Following the conclusions obtained by Fluss et al.
(2005), we employ the kernel estimator and put the respective Smoothed Empirical
Cummulative Distribution Functions (SECDF) instead of the theoretical ones to
estimate the sensitivity and the specificity. Let X = {x1, . . . , xn} be a random
sample from a continuous distribution F , the SECDF introduced by Nadaraya
(1962) is defined as

F̃n(X, t) =
1

n

n∑

i=1

K̃

(
t − xi

hn

)
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where K̃ is a kernel function, usually taken to be a continuous probability function,
with continuous and symmetrical about zero first derivative and {hn}n∈N is a
sequence of deterministic bandwidths. The properties of the kernel estimator
and its related curves have been widely studied and there exists a vast literature
about this topic (see, for example, Mugdadi & Ghebregiorgis (2005) or Liu &
Yang (2008) and references therein). Under some regularity conditions over the
theoretical distribution and the used kernel function (it is enough, although not
necessary, that both functions have three bounded and continuous derivatives),
the mean (E) and the variance (V) for the SECDF are

E[F̃n(X, t)] =F (t) + (1/2)f ′(t)h2
n + O(h3

n) (5)

nV[F̃n(X, t)] =F (t)(1 − F (t)) − 2hnf(t)

∫
vK̃ ′(v)K̃(v)dv + O(h2

n) (6)

Let XP = {xP1
, . . . , xPn

} and XN = {xN1
, . . . , xNm

} be two random samples
from the positive and the negative populations, respectively, the natural smoothed
estimators for SP and SN are

S̃E(t) =1 − F̃n(XP , t) (7)

S̃P (t) =F̃m(XN , t) (8)

In the same way, replacing the sensitivity and the specificity by the above
estimators, it is obtained the smoothed estimator for the utility function defined
in (1),

Ũλ(t) = λS̃E(t) + (1 − λ)S̃P (t) λ ∈ (0, 1) (9)

Finally, the estimator for the associated cutoff point which is one of focus of
this research, is the M -statistic

θ̃λ = min{argmaxt∈R{Ũλ(t)}} λ ∈ (0, 1) (10)

The following result proves the asymptotic normality for the statistic θ̃λ un-
der quite general conditions on the theoretical underlying distribution and on the
parameters involved in the estimator definition (kernel function and used band-
width).

Theorem 1. Let XN and XP be two independent random samples (both independi-

ent and identically distributed, iid) with size n and m, respectively. Let F̃n(XN , t)

be and F̃m(XP , t) the respective Smoothed Empirical Cummulative Distribution
Functions (SECDF). Under the following assumptions

A1. The real distribution function have three bounded and continuous derivatives.

A2. Used kernel, K̃, is a symmetrical about zero function with three bounded and
continuous derivatives and

∫
x2dK̃(x) = 1.

A3. ∃ limn

√
nhn/mhm = limn αn = α < ∞.

A4. U ′′
λ (θλ) 6= 0.
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then,
√

nhn
θ̃λ − θλ

Vλ

L−→n N(0, 1) (11)

with

V 2
λ =

R(K)
(
λ2fP (θλ) + (1 − λ)2α2fN (θλ)

)

(λf ′
P (θλ) + (1 − λ)f ′

N (θλ))
2 (12)

where for each real function, g, R(g) =
∫

g2(x) dx.

As usual, the variance of the statistic θ̃λ depends on several theoretical and un-
known parameters, in particular, on the density functions (and its first derivative)
in the positive and negative populations evaluated at the real optimal cutoff point,
θλ. These theoretical (unknown) parameters are replaced by their natural estima-
tors (the smoothed ones in the present study) to compute confidence intervals for
θ̃λ (plug-in method) or for conducting inference on the parameter.

The Kernel density estimator, introduced by Rosenblatt (1956), is the most
popular and commonly used density function estimator. Let X = {x1, . . . , xn} be
a random sample (iid), it is defined as

f̃n(X, t) =
1

nhn

n∑

i=1

K

(
t − xi

hn

)
(13)

where K = K̃ ′ = (∂K̃(t)/∂t) is a kernel function and {hn}n∈N is a sequence
of deterministic bandwidths. In this setting, the natural estimator for the first
density function derivative is

f̃ ′
n(X, t) =

1

nh2
n

n∑

i=1

K ′

(
t − xi

hn

)
(14)

The bandwidth selection for the kernel estimators was a very hot topic in the
80s and early 90s (and it is still the focus of several recent papers). Their optimal
convergence rates were widely studied. Cao (1990), looking for the bandwidth
which minimizes the mean integrated square error (MISE), proved that the opti-
mum convergence ratio for the SECDF is O(n−1/3), O(n−1/5) for kernel density
function estimator and O(n−1/7) for its first derivative.

Silverman (1978) proved that if the real density function, f , is continuous, the
used kernel is a variation bounded function and the bandwidth, hn, is such that
nhn →n ∞ and hn →n 0, the kernel density estimator, f̃n converges uniformly
almost surely to the real density function, i.e. supt∈R |f̃n(X, t) − f(t)| → 0 a.s.
(almost surely). This result allows deriving the following theorem

Theorem 2. Under the assumptions in Theorem 1 and if it is also satisfied that

A5. Ũ ′′
λ (θ̃λ) 6= 0.

A6. All the used bandwidth have the previously written optimal convergence rates
(i.e. O(n−1/3) for SECDF; O(n−1/5) for density estimator and O(n−1/7)
for its first derivative).
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then
√

nhn
θ̃λ − θλ

Vn,λ

L−→n N(0, 1) (15)

with

V 2
n,λ =

R(K)
(
λ2f̃n(XP , θ̃λ) + (1 − λ)2α2f̃m(XN , θ̃λ)

)

(
λf̃ ′

n(XP , θ̃λ) + (1 − λ)f̃ ′
m(XN , θ̃λ)

)2 (16)

The main disadvantage of the previous result lies on the variance denominator
estimator. Kernel estimators depend on the bandwidth selection which must be
made by the investigator. There exist several automatic methods with this goal
but does not exist an optimal solution (in adittion, the optimal bandwidth usual
changes with each particular problem: density estimation, inference, etc.) For
some discussion about this topic see Martínez-Camblor & De Uña-Álvarez (2009).
The involved parameters on the denominator of the variance can be close to zero
and, hence, small changes in their estimations can produce big changes on the
final result. Trying to avoid these problems, as usual, we propose to use a re-
sampling plan. Because the studied marker, T , is continuous and the expressions
of the studied estimators depend on local properties (derivability), the Smoothed
Bootstrap procedure (Hall, DiCiccio & Romano 1989) seems the most appropriate.
The proposed algorithm is:

B1. From positive (XP ) and negative (XN ) samples, and for a fixed, or a grid of λ
values (λ ∈ (0, 1)), compute the SECDF and estimate: sensitivity, specificity
and utility functions. Also compute the optimal cutoff point (threshold),
θ̃λ(XP , XN) = θ̃λ.

B2. Run B pairs of bootstrap samples (Xb
P , Xb

N for 1 ≤ b ≤ B) with the same
sample sizes than the original ones from the respective SECDFs. On each
bootstrap sample, compute and estimate functions which appear in B1. Also
obtain the values for θ̃b

λ = θ̃b
λ(Xb

P , Xb
N ) with 1 ≤ b ≤ B.

B3. The distribution of θ̃λ (and the other involved statistics) is approximated by
{θ̃1

λ, . . . , θ̃B
λ }.

Since the differences among the different resampling methods to make con-
fidence intervals are, generally, negligible, we used the simplest and, probably,
the most often used one; the percentile method (Efron & Tibshirani 1993). This
method assumes that for a unknown monotone increasing transformation for the
studied parameter, h(θλ) (in the present case, λ ∈ (0, 1)), it is hold that

h(θ̃λ) − h(θλ) ∼ N(0, σ2
h(θ̃λ)

)

From this approach, a simple approximation for a (1 − α) confidence interval

can be found as (θ̃
(α/2)
λ , θ̃

(1−α/2)
λ ), where θ̃b

λ (b ∈ 1, . . . , B) is obtained from the
algorithm above.
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The main goal of this algorithm is to approximate the θ̃λ distribution but,
analogously, it can also be used to approximate the distribution for the other
involved parameters (sensitivity, specificity and utility functions).

Despite of the AUC is widely used to summarize the global classification accu-
racy of a diagnostic rule, it is fundamentally incoherent in terms of misclassification
costs (Hand 2009). The Jλ index defined in (2) provides a oportunity to define a
global index for the diagnostic test accuracy which takes into count the different
misclassification cost. With this goal, for each measure µ, it is define, by

AUJ =

∫ 1

0

Jλdµ(λ) (17)

Note that AUJ index ranges between 0 and µ([0, 1]). If the chosen weight, µ,
is the traditional Lebesgue measure, the AUJ stands for the area under Jλ curve
and it means that all possible values of the weights are considered to be equally
plausible.

3. Real Data Analysis

Bacterial sepsis is an important cause of mortality and morbidity in critically
ill child. A delayed diagnosis of this condition is associated with worse prognosis.
However, early detection of bacterial sepsis is difficult because the first signs of this
disease may be minimal or non specific. Moreover, critically ill children present
signs of sepsis such as fever, tachycardia, hyperventilation, and leukocytosis even
in the absence of infection.

The availability of a laboratory test to accurately and rapidly identify critically
ill children with sepsis would be of great value to improve the outcome of these
patients. Early detection of the absence of infection would decrease the number of
children started on antibiotics, shorten the length of hospital stay, and lessen the
potential for emergent of resistant bacteria.

Body response to bacterial sepsis involves the release of several mediators. Re-
cently, PCT, one of these mediators, has been proposed as an earlier marker of
bacterial sepsis in children. Moreover, PCT levels are related to the severity of
infection, presenting higher levels among patients with more severe sepsis. How-
ever, there is still some debate about the best cutoff levels to differentiate a patient
with sepsis from a patient without sepsis (Rey, Los Arcos, Concha, Medina, Prieto,
Martínez-Camblor & Prieto 2007). To define PCT cutoff levels with the optimum
sensitivity and specifity to diagnose a critically ill child with sepsis can be very
useful. Our goal is to study the cutoff point for the procalcitonin levels which
determine that a child has a sepsis. With this objective we used the previous
results for different λ values. We used information from patients admitted to the
Pediatric Intensive Care Unit at the Hospital Universitario Central de Asturias
(HUCA) from August 2002 until September 2004.

The descriptive statistics showed in Table 1 suggests a strongly asymmetry
in the distribution of the PCT levels in both positive and negative considerated
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groups. We know (see, for example, Silverman 1986) that the performance of
the smoothed estimators is better for symmetrical distributions. To improve the
estimations, we make a logarithmic transformation on the PCT levels. Kernel
density estimations for the logarithmic of the PCT levels and for the function
maxt∈R{Ũλ(t)} (λ ∈ (0, 1)) are shown in Figure 1.

Table 1: Descriptive statistics (mean, standard deviation (SD), minimum (Min), per-
centiles 25 (P25), 50 (P50), 75 (P75), maximum (Max) and sample size (N))
for the Procalcitonin levels in the different considerated groups.

Mean SD Min P25 P50 P75 Max N

Positive Group 22.89 39.83 0.11 2.81 10.64 27.53 347.10 125

Negative Group 1.48 3.98 0.01 0.12 0.30 1.00 39.01 232

Totals 8.98 25.83 0.01 0.18 0.95 5.73 347.10 357
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Figure 1: Kernel density estimations (left) for the logarithmic of the PCT levels in
the positive (dotted line) and negative (continuous line) populations and the

function Jλ = maxt∈R{Ũλ(t)} with a 95% bootstrap confidence band (right).

Table 2 shows the obtained estimations for θ̃λ, Ũλ(θ̃λ), S̃E(θ̃λ), S̃P (θ̃λ) and
the square root for the asymptotic (SD(θ̃λ)) and the bootstrap (SDB(θ̃λ)) (based
on 10 000 Monte Carlo simulations) variance (SD) for θ̃λ for several λ values. For
this data set, the asymptotic variance is, smaller than the bootstrap one. This
fact suggests a slow speed for the asymptotic convergence. The value for the AUJ
index when µ is the Lebesgue measure is 0.894 (really, the AUJ value represents
the global utility of the particular diagnostic test when all the possible values of
the weights are chosen to be equally plausible).

Figure 2 depicts 95% asymptotic and bootstrap confidence intervals (upper).
In the lower plots, utility functions at the extremes of these confidence intervals
are shown. The difference among the values is always quite small, which suggests
robustness with respect to the chosen threshold.
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Table 2: Values for θ̃λ, Ũλ(θ̃λ), S̃E(θ̃λ), S̃P (θ̃λ), square root for asymptotic variance of

θ̃λ (SD(θ̃λ)) and bootstrap variance of θ̃λ (SDB(θ̃λ)) based on 10 000 Monte
Carlo simulations for several λ values.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ̃λ 12.67 9.02 2.34 1.65 1.25 1.03 0.85 0.69 0.52
Ũλ(θ̃λ) 0.92 0.88 0.84 0.83 0.84 0.85 0.87 0.89 0.92
S̃E(θ̃λ) 0.44 0.53 0.77 0.34 0.88 0.91 0.93 0.94 0.95
S̃P (θ̃λ) 0.98 0.96 0.87 0.83 0.80 0.76 0.72 0.69 0.63
SD(θ̃λ) 8.69 3.37 0.73 0.26 0.12 0.09 0.08 0.07 0.05
SDB(θ̃λ) 9.39 2.28 2.11 0.66 0.26 0.18 0.13 0.11 0.19
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Figure 2: Upper, asymptotic (left) and bootstrap (right) 95% confidence intervals for
the associated cutoff point estimation. Lower, utility function evaluated at
the optimal estimated cutoff point (continuous lines) and at the extremes
of the previous confidence intervals, asymptotic (left) and bootstrap (right)
upper bound (grey dashed lines) and lower bound (grey dotted lines).

When sensitivity and specificity have the same relevance, both the AUC (0.913)
and the Youden Index (0.680) suggest that the procalcitonin is a very good sepsis
marker for the studied population. If different weights are assigned to SE and SP ,
in spite of the results are still quite goods, when we pay more attention to the
sensitivity, the obtained utility is bigger. On the contrary the lower plots in the
Figure 2 show that the final gain not changes when the cutoff points are within a
reasonable interval.
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4. Main Conclusions

Two important points of diagnostic medicine research, which are usually omit-
ted, are the possible different impact of the two involved errors on the decision
process and the effects on the final results in the variability of the associated cutoff
point estimator. In this paper, we deal with the first problem introducing a lin-
ear utility function (obviously, most complex utility function could be considered
with this goal) which allows study different weights for the sensitivity and the
specificity. These weights must be previously chosen for the specialist which will
take into count the different cost of the possible misclassification. The methods to
cancer diagnostic tests are a special intersting field of application. There are con-
tinuous advance in this field with the aparition of new diagnostic markers (usually
related with genes but which sensitivity and specificity are, generally, not large)
and new (customized) drugs. The cost of the misclassification in this situation is
usually different with great advantages for the early diagnostic.

We studied a nonparametric smoothed estimator for a linear utility function
which allows to weight sensitivity and specificity and the corresponding associ-
ated cutoff point. We also derived its asymptotic distribution. In addition, the
smoothed bootstrap procedure is considered. Because in the case of discrete mark-
ers all possible cutoff points could be studied and the researcher could chose among
all the possibilities, we focus on continuos markers.

The obtained asymptotic variance for the threshold estimator is strongly de-
pending on the first derivative of the density function. Because the convergence
speed of the usual (kernel) estimator for this function is quite slow (see, for ex-
ample, Silverman 1978), the use of the bootstrap approximation is advised when
sample size is not large. To obtain adequate asymptotic conficence intervals, the
required sample size depends on the variability and, in special, on the shape of
the functions but, under simmetry, sizes around 100σ (σ2 denotes the variance
population) are advisables.

The effect that a little change on the used threshold produces on the final
utility function is a specially interesting issue. In our analysis, this change seems
to have a minor effect and the developed methods seem to be robust in this sense.

The AUC is a very widely used measure of performance for classification and
diagnostic rules. It is mainly used in medicine and, recently, its use has been
generalized to measure the accuracy in evaluating learning algorithms (see, for
example, Huang & Ling (2005) and references therein). It has the appealing
property of being objective, requiring no subjective input from the user but it
is incoherent in terms of misclassification costs (Hand 2009). From the Jλ an
coherent alternative (AUJ) to the AUC index (in cost terms) is also defined and
studied.
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Appendix

Proof of the Results

Following, we deal with the proofs for the Theorems 1 and 2. Both demon-
strations, quite similar, are based on the smoothed estimators and M -statistic
properties and on the regularity conditions asked to the involved functions.

Proof. (Theorem 1) Conditions A1 and A2 guarantee the uniformly almost surely
convergence for the kernel density estimator and its two first derivatives (Silverman
1978), therefore we can derive that (Ũλ(θλ) − Uλ(θλ)) →P 0.

θ̃λ = argmax{Ũλ(t)} and θλ = argmax{Uλ(t)}, hence Ũ ′
λ(θ̃λ) = 0 = U ′

λ(θλ).
From the Theorem of the Mean Value, there exists ξλ between θ̃λ and θλ such that

Ũ ′
λ(θλ) − U ′

λ(θλ) = Ũ ′
λ(θλ) − Ũ ′

λ(θ̃λ) = Ũ ′′
λ (ξλ)(θλ − θ̃λ) λ ∈ (0, 1)

therefore (θλ − θ̃λ) →P 0.

Applying a three-term Taylor expansion on the first derivative of the utility
function at point θ̃λ, there exists ηλ between θ̃λ and θλ such that

0 =Ũ ′
λ(θ̃λ) = Ũ ′

λ(θλ + θ̃λ − θλ)

=Ũ ′
λ(θλ) + Ũ ′′

λ (θλ)(θ̃λ − θλ) + (1/2)Ũ ′′′
λ (ηλ)(θ̃λ − θλ)2 λ ∈ (0, 1)

then
√

nhn (θ̃λ − θλ) = −
√

nhn Ũ ′
λ(θλ)

Ũ ′′
λ (θλ) + 1

2 Ũ ′′′
λ (ηλ)(θ̃λ − θλ)

The A2 assumption also implies that Ũ ′′′
λ (t) is a bounded function ∀t ∈ R,

therefore Ũ ′′′
λ (ηλ)(θ̃λ − θλ) →P 0 for λ ∈ (0, 1). Kernel estimator convergence

properties (cited at the beginning of the proof) imply (Ũ ′′
λ (θλ) − U ′′

λ (θλ)) →P 0,
and then (√

nhn(θ̃λ − θλ) +

√
nhnU ′

λ(θλ)

U ′′
λ (θλ)

)
P−→ 0

The Central Limit Theorem leads us to the convergence

√
nhn Ũ ′

λ(θλ) =
√

nhn(Ũ ′
λ(θλ) − U ′

λ(θλ))
L−→n N(0, σλ)

with σ2
λ = R(K)

(
λ2fP (θλ) + (1 − λ)2α2fN(θλ)

)
.

The Slutski Lemma allows deducing, inmediately, that
√

nhn (θ̃λ−θλ) is asymp-
totically normal distributed with mean zero and variance

R(K)
(
λ2fP (θλ) + (1 − λ)2α2fN (θλ)

)

(U ′′
λ (θλ))

2 = V 2
λ
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Proof. To prove the Theorem 2 we only need to check that (V 2
n,λ − V 2

λ ) →P 0.
From the regularity assumptions (conditions A1, A2 and A5) and the convergence
rates of the used bandwidth (A6), the already known kernel estimator convergence
properties, we can write for t, s ∈ R,

f̃n(X, t) =f(s) + O(t − s) + OP (n−2/5)

f̃ ′
n(X, t) =f ′(s) + O(t − s) + OP (n−2/7)

Therefore

V 2
n,λ =

R(K)
(
λ2f̃n(XP , θ̃λ) + (1 − λ)2α2

nf̃m(XN , θ̃λ)
)

(
λf̃ ′

n(XP , θ̃λ) + (1 − λ)f̃ ′
m(XN , θ̃λ)

)2

=
R(K)

(
λ2f̃n(XP , θ̃λ) + (1 − λ)2α2

nf̃m(XN , θ̃λ)
)

(λf ′
P (θλ) + (1 − λ)f ′

N (θλ))
2

+ O(θ̃λ − θλ) + OP (n−2/7) + OP (m−2/7)

therefore

(V 2
n,λ − V 2

λ ) =

R(K)[λ2(f̃(XP , θ̃λ) − fP (θλ)) + (1 − λ)2α2
n(f̃(XN , θ̃λ) − fN (θλ))]

(λf ′
P (θλ) + (1 − λ)f ′

N (θλ))
2

+ O(θ̃λ − θλ) + OP (n−2/7) + OP (m−2/7)

=
R(K)[λ2(O(θ̃λ − θλ) + OP (n−2/5))]

(λf ′
P (θλ) + (1 − λ)f ′

N (θλ))2

+
R(K)[(1 − λ)2α2

n(O(θ̃λ − θλ) + OP (m−2/5))]

(λf ′
P (θλ) + (1 − λ)f ′

N (θλ))
2

+ O(θ̃λ − θλ) + OP (n−2/7) + OP (m−2/7) →P 0
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