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Abstract

A martingale estimator for the expected discounted warranty cost process
of a minimally repaired coherent system under its component level observa-
tion is proposed. Its asymptotic properties are also presented using the
Martingale Central Limit Theorem.
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Resumen

En este trabajo modelamos los costos de garantía descontados para un
sistema coherente reparado mínimamente a nivel de sus componentes y pro-
ponemos un estimador martingalas para el costo esperado para un período
de garantía fijo, también probamos sus propiedades asintóticas mediante el
Teorema del Limite Central para Martingalas.

Palabras clave: confiabilidad, costo esperado, proceso puntual estocástico,
semi-martingalas, sistema reparable, teorema de límite central para martin-
galas.

1. Introduction

Warranties for durable consumer products are common in the market place.
Its primary role is to offer a post sale remedy for consumers when a product fails
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to fulfill its intended performance during the warranty period and generally, they
also limit the manufacturer’s liability for out-of-warranty product failure.

Manufacturers offer many types of warranties which have become an important
promotional tool for their products. A discussion about various issues related to
warranty policies can be found in Murthy (1990), Blischke & Murthy (1992a),
Blischke & Murthy (1992b), Blischke & Murthy (1992c), Mitra & Patankar (1993),
Blischke & Murthy (1994), Blischke & Murthy (1996).

Although warranties are used by manufacturers as a competitive strategy to
boost their market share, profitability and image, they may cost a substantial
amount of money and, from a manufacturer’s perspective, the cost of a warranty
program should be analyzed and estimated accurately.

A discounted warranty cost policy incorporates the time and provides an ad-
equate measure for warranties because, in general, warranty costs can be treated
as random cash flows in the future. Warranty issuers do not have to spend all
the money at the stage of warranty planning, instead, they can allocate it along
the life cycle of warranted products. Another reason why one should consider
the time value is for the purpose of determining the warranty reserve, a fund set
up specifically to meet future warranty claims. It is well known that the present
value of warranty liabilities or rebates to be paid in the future are less than the
face value and it is desirable to determine the warranty reserve according to the
present value of the total warranty liability. Related issues to discounted war-
ranty costs and warranty reserves have been studied by Mamer (1969), Mamer
(1987), Patankar & Mitra (1995) and Thomas (1989), from both manufacturer
and customer’s perspectives for single-component products, either repairable or
nonrepairable.

More recently, Jain & Maheshwari (2006) proposed a hybrid warranty model for
renewing pro-rata warranties assuming constant failure rate and constant prod-
ucts maintenance and replacement costs. They derive the expected total dis-
counted warranty costs for different lifetime distributions and determine the op-
timal number and optimal period for preventive maintenance after the expiry of
the warranty; Jack & Murthy (2007) consider the costs for extended warranties
offered after a base warranty and investigate optimal pricing strategies and op-
timal maintenance/replacement strategies; Hong-Zhong, Zhie-Jie, Yanfeng, Yu &
Liping (2008) consider the cash flows of warranty reserve costs during the product
lifecycle and estimate the expected warranty cost for reparable and non repara-
ble products with both, the free replacement warranty and the pro-rata warranty
policy. They also consider the case where the item has a heterogeneous usage
intensity over the lifecicle and its usage is intermitent; Chattopadhyay & Rahman
(2008) study lifetime warranties where the warranty coverage period depends on
the lifetime of the product, they develop lifetime warranty policies and models
for predicting failures and estimating costs; Jung, Park & Park (2010) consider
optimal system maintenance policies during the post warranty period under the
renewing warranty policy with maintenance costs dependent on life cycle.

In practice, most products are composed of several components. If warranties
are offered for each component separately, then warranty models for single-component
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products can be applied directly. However, sometimes warranty terms are defined
upon an entire system. For such warranties, it is necessary to consider the system
structure as well as the component level warranty service cost (Thomas 1989).
Warranty analysis for multi-component systems based on the system structure
has been addressed in a few papers: Ritchken (1986) provides an example of a
two-component parallel system under a two-dimensional warranty; Chukova &
Dimitrov (1996) derive the expected warranty cost for two-component series sys-
tem and parallel system under a free-replacement warranty; Hussain & Murthy
(1998) also discuss warranty cost estimation for parallel systems under the setting
that uncertain quality of new products may be a concern for the design of war-
ranty programs; Bai & Pham (2006) obtained the first two centered moments of
the warranty cost of renewable full-services warranties for complex systems with
series-parallel and parallel-series structures. A Markovian approach to the analy-
sis of warranty cost for a three-component system can be found in Balachandran,
Maschmeyer & Livingstone (1981); Ja, Kulkarni, Mitra & Patankar (2002) study
the properties of the discounted warranty cost and total warranty program costs
for non renewable warranty policy with non stationary processes.

There are many ways to model the impact of repair actions on system fail-
ure times. For complex systems, repair is often assumed to be minimal, which
restores its failure rate. For a review about modeling failure and maintenance
data from repairable systems, see Li & Shaked (2003) and Lindqvist (2006). For
a generalization of minimal repair to heterogeneous populations, i.e., when the
lifetime distribution is a mixture of distributions, see Finkelstein (2004). Nguyen
& Murthy (1984) present a general warranty cost model for single-component re-
pairable products considering as-good-as-new-repair, minimal repair and imperfect
repair, but the value of time is not addressed. In Ja et al. (2002), several warranty
reserve models for single-component products are derived for non stationary sale
processes. Ja, Kulkarni, Mitra & Patankar (2001) analyze a warranty cost model
on minimally repaired single-component systems with time dependent costs. Bai
& Pham (2004) consider the free-repair warranty and the pro-rata warranty poli-
cies to derive some properties of a discounted warranty cost for a series system
of repairable and independent components using a non homogeneous Poisson pro-
cess. Recently, Duchesne & Marri (2009) consider, the same problem by analyzing
some distributional properties (mean, variance, characteristic function) of the cor-
responding discounted warranty cost and using a general competing risk model
to approach system reliability; Sheu & Yu (2005) propose a repair-replacement
warranty policy which splits the warranty period into two intervals where only
minimal repair can be undertaken and a middle interval in which no more than
one replacement is allowed. Their model applies to products with bathtub failure
rate considering random minimal repair costs. Other work about repair strategies,
including imperfect and minimal repair, which consider their effects on warranty
costs, can be found in Yun, Murthy & Jack (2008), Chien (2008), Yeo & Yuan
(2009) and Samatliy-Pac & Taner (2009).

For a series system with components which do not have common failures, sys-
tem failures coincide with component failures and warranty models for single-
component products can be applied directly. In this paper, we consider a dis-
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counted warranty cost policy of a repairable coherent system under a minimal
repair process on its component level. In this case, the system is set up as a series
system with its components that survive to their critical levels, that is, the time
from which a failure of a component would lead to system failure and, therefore,
it is seen as a series system. We use the Martingale Central Limit Theorem to
approximate the warranty cost distribution for a fixed warranty period of length
w, and to estimate the warranty cost through the component failure/repair point
processes.

In the Introduction of this paper we survey the recent developments in warranty
models. In Section 2, we consider the dependent components lifetimes, as they
appear in time through a filtration and use the martingale theory, a natural tool to
consider the stochastic dependence and the increasing information in time. In Sec-
tion 3, we consider independent copies of a coherent system, and its components,
as given in Section 2 and develop a statistical model for the discounted warranty
cost. Also, in this Section, we give an example. The paper is self contained but
a mathematical basis of stochastic processes applied to reliability theory can be
found in Aven & Jensen (1999). The extended proofs are in the Appendix.

2. The Warranty Discounted Cost Model of a

Coherent System on its Component Level

We consider the vector S = (S1, S2, . . . , Sm) representing component lifetimes
of a coherent system, with lifetime T , which are positive random variables in
a complete probability space (Ω,F , P ). The components can be dependent but
simultaneous failures are ruled out, that is, for all i, j with i 6= j, P (Si = Sj) = 0.
We observe the system on its component level throughout a filtration, a family of
sub σ-algebras of F , (Ft)t≥0

Ft = σ{1{T>s}, 1{Si>s} : s ≤ t, 1 ≤ i ≤ m},

which is increasing, right-continuous and complete. Clearly, the Si, 1 ≤ i ≤ n
are (P,Ft)-stopping time.

An extended and positive random variable τ is an (P,Ft)-stopping time if,
and only if, {τ ≤ t} ∈ ℑt, for all t ≥ 0; an (P,Ft)-stopping time τ is called
predictable if an increasing sequence (τn)n≥0 of (P,Ft)-stopping time, τn < τ ,
exists such that limn→∞ τn = τ ; an (P,Ft)-stopping time τ is totally inaccessible
if P (τ = σ < ∞) = 0 for all predictable (P,Ft)-stopping time σ.

In what follows, to simplify the notation, we assume that relations such as
⊂,=,≤, <, 6= between random variables and measurable sets, respectively, always
hold “P-almost surely”, i.e., with probability one, which means that the term P -
a.s., is suppressed.
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2.1. Component Minimal Repair

For each i, 1 ≤ i ≤ m, we consider the simple counting process N i
t = 1{Si≤t},

i.e., the counting process corresponding to the simple point process (Si,n)n≥1 with
Si = Si,1 and Si,n = ∞, for n ≥ 2. We use the Doob-Meyer decomposition

N i
t = Ai

t +M i
t , M i ∈ M2

0, i = 1, . . . ,m, (1)

where M2
0 represents the class of mean zero and square integrable (P,Ft)-martingales

which are right-continuous with left-hand limits. Ai
t is a unique nondecreasing right

continuous (P,Ft)-predictable process with Ai
0 = 0, called the (P,Ft)-compensator

of N i
t .

We assume that the component lifetime Si, 1 ≤ i ≤ m is a totally inaccessible
(P,Ft)-stopping time, which is a sufficient condition for the absolutely continuity
of Ai

t. It follows that

Ai
t =

∫ t

0

1{Si>s}λ
i(s)ds < ∞, i = 1, . . . ,m, (2)

where λi(t) is the (P,Ft)-failure rate of component i, a deterministic function
of t.

Initially, consider the minimal repair process of component i. If we do a mini-
mal repair at each failure of component i, the corresponding minimal repair count-

ing process in (0, t] is a non homogeneous Poisson process Ñ i
t =

∞∑
n=1

1{Si,n≤t}, with

Doob-Meyer decomposition given by,

Ñ i
t =

∫ t

0

λi(s)ds+ M̃ i
t , M̃ i ∈ M2

0, (3)

and therefore the expected number of minimal repairs of component i is E[Ñ i
t ] =∫ t

0 λ
i(s) ds.

Let Hi(t) be a deterministic, continuous (predictable) bounded and integrable
function in (0, t], corresponding to the minimal repair discounted cost of compo-

nent i at time t, such that
∫ t

0
Hi(s)λ

i(s)ds < ∞, 0 ≤ t < ∞.

The minimal repair cost process of component i is B̂i
t =

Ñi
t∑

j=1

Hi(Sij) =

∫ t

0 Hi(s)dÑ
i
s, where Sij is the j-th minimal repair time of component i and Si1 =

Si.

Since Hi(s) is predictable, the process
∫ t

0
Hi(s)dM̃

i
s is a mean zero and square

integrable (P,Ft)-martingale and therefore, the (P,Ft)-compensator of B̂i
t is Bi

t

which is given by

Bi
t =

∫ t

0

Hi(s)λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (4)
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Barlow and Proschan (1981) define the system lifetime T

T = Φ(S) = min
1≤j≤k

max
i∈Kj

Si

where Kj , 1 ≤ j ≤ k are minimal cut sets, that is, a minimal set of components
whose joint failure causes the system to fail. Aven & Jensen (1999) define the
critical level of component i as the (P,Ft)-stopping time Yi, 1 ≤ i ≤ m which
describes the time when component i becomes critical for the system, i.e., the
time from which the failure of component i leads to system failure. If either the
system or component i fail before the latter becomes critical (T ≤ Yi or Si ≤ Yi)
we assume that Yi = ∞. Therefore, as in Aven & Jensen (1999) we can write

T = min
i:Yi<∞

Si (5)

Therefore, concerning the system minimal repairs at the component level, it
is sufficient to consider the component minimal repairs after its critical levels. In
what follows we consider the set C i = {ω ∈ Ω : Si(ω) > Yi(ω)}, where Yi is the
critical level of component i, and the minimal repair point process restricted to
C i, that is, the process N i∗

t , defined as

N i∗
t = 1C iN i

t (6)

which counts the failures of component i when it is critical, implying system
failure.

Theorem 1. (González 2009) The (P,Ft)−compensator process of the indicator
process N i

t = 1{Si≤t} in C i is

Ai∗
t =

∫ t

Yi

1{Si>s}λ
i(s)ds =

∫ t

0

1{Si>s}1{Yi<s}λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (7)

Note 1. Note that

E[N i
t |Si > Yi] = E[Ai∗

t |Si > Yi] = E
[∫ t

Yi

1{Si>s}λ
i(s)ds

∣∣∣Si > Yi

]
(8)

From Theorem 1 the next Corollary follows easily.

Corollary 1. Let Ñ i
t be the minimal repair counting process for the component

i. Let Hi(t) be a deterministic, continuous (predictable), bounded and integrable
function in [0, t], corresponding to the discounted warranty cost of component i at

time t, such that
∫ t

0
Hi(s)λ

i(s)ds < ∞, 0 ≤ t < ∞. In C i we have

i. The (P,Ft)-compensator of Ñ i
t is the process

Ãi∗
t =

∫ t

Yi

λi(s)ds =

∫ t

0

1{Yi<s}λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (9)
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ii. The (P,Ft)-compensator of the minimal repair cost process of component i,

B̂i
t =

Ñi
t∑

j=1

Hi(Sij) is the process

Bi∗
t =

∫ t

Yi

Hi(s)λ
i(s)ds =

∫ t

0

1{Yi<s}Hi(s)λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (10)

Note 2. For each i = 1, . . . ,m and ω ∈ C i, the process Bi
t(ω) given in (4), is

equal to the process Bi∗
t (ω).

2.2. Coherent System Minimal Repair

Now we are going to define the minimal repair counting process and its corre-
sponding coherent system cost process.

Let Nt = 1{T≤t} be the system failure simple counting process and its (P,Ft)-
compensator process At, with decomposition

Nt = At +Mt, M ∈ M2
0 (11)

and

At =

∫ t

0

1{T>s}λs ds < ∞ (12)

where the process (λt)t≥0 is the coherent system (P,Ft)-failure rate process.

Since we do not have simultaneous failures the system will failure at time t
when the first critical component for the system at t− failures at t.

Under the above conditions Arjas (1981) proves that the (P,Ft)-compensator
of Nt is

At =

m∑

i=1

[
Ai

t∧T −Ai
Yi

]+
(13)

and from (2) and (13) we get

At =

m∑

i=1

∫ t

0

1{Si>s}1{Yi<s<T}λ
i(s) ds =

∫ t

0

1{T>s}

m∑

i=1

1{Yi<s}λ
i(s) ds (14)

From compensator unicity, it becomes clear that the (P,Ft)-failure rate process
of system is given by

λt =

m∑

i=1

1{Yi<t}λ
i(t) (15)

If the system is minimally repaired on its component level, its (P,Ft)-failure
rate process λt is restored at its condition immediately before failure and therefore
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the critical component that fails at the system failure time is minimally repaired.
Therefore, the number of minimal repairs of the system on its component level, is

Ñt =
∞∑
n=1

1{Tn≤t}, with Doob-Meyer decomposition given by

Ñt =

∫ t

0

λsds+ M̃t =

m∑

i=1

∫ t

0

1{Yi<s}λ
i(s)ds+ M̃t. M̃ ∈ M2

0

Definition 1. For a fixed ω ∈ Ω let CΦ(ω) = {i ∈ {1, . . . ,m} : Si(ω) > Yi(ω)}
be the set of components surviving its corresponding critical levels. For each
i = 1, . . . ,m, let Ci be the indicator variable

Ci(ω) =

{
1 if i ∈ CΦ(ω)

0 otherwise
(16)

Then, the minimal repair counting process of the coherent system is

Ñt(ω) =
∑

i∈CΦ(ω)

Ñ i
t (ω) =

m∑

i=1

Ci(ω)Ñ i
t (ω) (17)

with corresponding cost process

B̂t(ω) =
∑

i∈CΦ(ω)

B̂i
t(ω) =

m∑

i=1

Ci(ω)B̂i
t(ω) (18)

Note 3. Note that Ci(ω) = 1 ⇔ ω ∈ C i and in each realization ω ∈ Ω, the indi-
cator variables Ci(ω), i = 1, . . . ,m, are constant in [0, t]. Therefore, if Ci(ω) = 0,

then B̂i
s = 0, ∀ 0 ≤ s ≤ t. It means that in each realization of the system re-

pair/failure process, we only observe the repair/cost processes of components which
fail after their corresponding critical levels. Therefore, in each realization, the re-
pair/cost process for the system with structure Φ is equivalent to the repair/cost
process for a series system of components which are critical for the initial system
in such realization.

2.3. Martingale Estimator of the Warranty Cost

In the following results and definitions, for each realization w, the minimal
repair costs of a coherent system is the sum of the minimal repair costs of its
critical components in a given realization ω.

Suppose
m∑

i=1

∫ t

0

Hi(s)λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (19)
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For a fixed ω ∈ Ω, let Bt(ω) be the process

Bt(ω) =
∑

i∈CΦ(ω)

Bi
t(ω) =

m∑

i=1

Ci(ω)Bi
t(ω) (20)

Following Karr (1986), for each i = 1, . . . ,m, i ∈ C i, the (P,Ft)-martingale
estimator for the process Bi

t , is the process

B̂i
t(ω) =

∫ t

0

Hi(s)dÑ
i
s(ω), in C

i (21)

respectively.

Definition 2. For each ω ∈ Ω, the process B̂t(ω) given in (18) is the (P,Ft)-
martingale estimator for the process Bt given in (20).

Proposition 1. Let Hi(t), i = 1, . . . ,m, be a bounded and continuous functions
in [0, t], such that

m∑

i=1

∫ t

0

H2
i (s)λ

i(s)ds < ∞, ∀ 0 ≤ t < ∞ (22)

Then, for each realization ω and each i ∈ CΦ(ω), the processes (B̂i−Bi)t≥0, are
orthogonal, mean zero, and square integrable (P,Ft)martingales with predictable

variation processes (〈B̂i −Bi〉)t≥0 given by

〈B̂i −Bi∗〉t =
∫ t

Yi

H2
i (s)λ

i(s)ds =

∫ t

0

H2
i (s)1{Yi<s}λ

i(s)ds (23)

respectively.

Proof . Note that ∀ i ∈ CΦ(ω) we have ω ∈ C i. Therefore, from Corollary

1, the (P,Ft)-compensator of B̂i
t =

Ñi
t∑

j=1

Hi(Sij) =
∫ t

0
Hi(s)dÑ

i
s is the process

Bi∗
t =

∫ t

Yi
Hi(s)λ

i(s)ds =
∫ t

0
Hi(s)1{Yi<s}λ

i(s)ds which represents Bi
t in C i (see

Note 2).

So, for all i ∈ CΦ(ω), the predictable variation process of the martingale

(B̂i
t −Bi

t) is the predictable variation process of the martingale (B̂i
t −Bi∗

t ),

〈B̂i −Bi∗〉t =
∫ t

0

H2
i (s)d〈M̃ i∗〉s =

∫ t

0

H2
i (s)1{Yi<s}λ

i(s) ds

Otherwise, since P (Si = Sj) = 0 P-a.s. for all i, j with i 6= j, the processes

N i
t and N j

t do not have simultaneous jumps and so are Ñ i
t and Ñ j

t . Then, for

all i,∈ CΦ(ω), the (P,Ft)-martingales M̃∗i
t and M̃∗j

t are orthogonal and square

integrable, so that for i 6= j, the martingales (B̂i
t − Bi∗

t ) and (B̂j
t − Bj∗

t ) are also
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orthogonal and square integrable. It follows that, for all i ∈ CΦ(ω), the predictable
covariation process

〈B̂i −Bi, B̂j −Bj〉t = 〈B̂i −Bi∗, B̂j −Bj∗〉t = 0

that is, for all i ∈ CΦ(ω), (B̂i−Bi)(B̂j−Bj) is a mean zero (P,Ft)-martingale.

Corollary 2. Let Hi(t), i, 1 ≤ i ≤ m be bounded and continuous functions in [0, t]

satisfying the condition in (22), and the processes (B̂t)t≥0, (Bt)t≥0 as were given
in (18) and (20), respectively. Then, for a realization ω ∈ Ω and the corresponding

set CΦ(ω), the process (B̂ − B)t≥0 is a mean zero and square integrable (P,Ft)-

martingale with predictable variation process (〈B̂ −B〉)t≥0 given by

〈B̂ −B〉t =
∑

i∈CΦ(ω)

∫ t

Yi

H2
i (s)λ

i(s)ds =

m∑

i=1

Ci(ω)

∫ t

0

H2
i (s)1{Yi<s}λ

i(s) ds (24)

Proof . For all i ∈ CΦ(ω) and from Proposition 1, the processes (B̂i − Bi)t≥0 =

(B̂i − Bi∗)t≥0, 1 ≤ i ≤ m, are orthogonal, mean zero, and square integrable

(P,Ft)−martingales with predictable variation processes given by 〈B̂i − Bi∗〉t =∫ t

0
H2

i (s)1{Yi<s}λ
i(s)ds, respectively. Therefore,

B̂t(ω)−Bt(ω) =
∑

i∈CΦ(ω)

(B̂i
t(ω)−Bi

t(ω))

=
∑

i∈CΦ(ω)

∫ t

0

Hi(s)M̃
i∗
s (ω) ∈ M2

0

(25)

and 〈B̂i −Bi, B̂j − Bj〉 = 0, ∀ i 6= j . From (23) we have

〈B̂ −B〉t =
∑

i∈CΦ(ω)

〈B̂i −Bi∗〉t =
m∑

i=1

Ci(ω)

∫ t

0

H2
i (s)1{Yi<s}λ

i(s) ds

Note 4. From (24) we have that the expected value of the predictable variation
process of the system warranty cost process is

E[〈B̂ −B〉t] =
m∑

i=1

P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
(26)

3. Statistical Model

3.1. Preliminary

We intend to estimate the expected minimal repair cost E[B̂t], over the inter-
val [0, t]. First, we need asymptotic results for the estimator of each component
expected warranty costs.
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From Definitions 1, 2 and Corollary 2 we have

E[B̂t] = E
[ ∑

i∈CΦ(ω)

Bi
t

]
=

m∑

i=1

P (Si > Yi)E
[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]

= E[Bt]

(27)

where P (Si > Yi)E[
∫ t

Yi
Hi(s)λ

i(s)|Si > Yi] corresponds to the system minimal
repairs expected cost related to the component i.

We consider the sequences (B̂
i(j)
t , Ci(j), i = 1, . . . ,m)t≥0, 1 ≤ j ≤ n, of n inde-

pendent and identically distributed copies of the m−variate process (B̂i
t , C

i, i =
1, . . . ,m)t≥0.

For j = 1, . . . , n let C Φ(j) = {i ∈ {1, . . . ,m} : S
(j)
i > Y

(j)
i } be the set of critical

components for the j−th observed system, where S
(j)
i is the first failure time of

component i and Y
(j)
i its critical level. Then, the minimal repairs expected cost

for the j−th system is

B̂
(j)
t =

∑

i∈CΦ(j)

B̂
i(j)
t =

m∑

i=1

Ci(j)B̂
i(j)
t (28)

and its compensator process is (from Corollary 2)

B
(j)
t =

∑

i∈CΦ(j)

B
i(j)
t =

m∑

i=1

Ci(j)

∫ t

Y
(j)
i

Hi(s)λ
i(s) ds (29)

For n copies we consider the mean processes

B̂
(n)

t =
1

n

n∑

j=1

B̂
(j)
t =

1

n

n∑

j=1

m∑

i=1

Ci(j)

∫ t

0

Hi(s)dÑ
i(j)
s (30)

B
(n)

t =
1

n

n∑

j=1

B
(j)
t =

1

n

n∑

j=1

m∑

i=1

Ci(j)

∫ t

Y
(j)
i

Hi(s)λ
i(s) ds (31)

Let

B̂
i(n)

t =
1

n

n∑

j=1

Ci(j)B̂
i(j)
t and B

i(n)

t =
1

n

n∑

j=1

Ci(j)B
i(j)
t (32)

Then, from (30) and (31), we also have

B̂
(n)

t =
m∑

i=1

B̂
i(n)

t and B
(n)

t =
m∑

i=1

B
i(n)

t (33)

For each i = 1, . . . ,m we propose B̂
i(n)

t as the estimator for the system minimal
repairs expected cost related to the component i.
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Theorem 2. For each i = 1, . . . ,m let Bi∗(t) be

Bi∗(t) = P (Si > Yi)E
[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]
(34)

Then, under conditions in Proposition 1, B̂
i(n)

t is a consistent and unbiased
estimator for the minimal repairs expected cost related to component i, Bi∗(t).

Proof . See Appendix A.

3.2. The Central Limit Theorem

In what follows we prove that the m-variate error process of the proposed

estimators, (B̂
i(n)

t − Bi∗(t), i = 1, . . . ,m), conveniently standardized, satisfies the
Martingale Central Limit Theorem, as in Karr (1986).

Theorem 3. (Karr 1986, Theorem 5.11). For fixed m and for each n, n ≥ 1, let

(M
i(n)
t , i = 1, . . . ,m) be a sequence of orthogonal, mean zero and square integrable

martingales with jumps,at time t, ∆M
i(n)
t = M

i(n)
t − M

i(n)−
t , where M

i(n)−
t =

lim
h↓0

M
i(n)
t−h . For each i, i = 1, . . . ,m let Vi(t) be a continuous and non decreasing

function with Vi(0) = 0. If

(a) ∀ t ≥ 0 and i = 1, . . . ,m

〈M i(n)〉t D−−−−→
n→∞

Vi(t) (35)

(b) There is a sequence (cn)n≥1, such that cn −−−−→
n→∞

0 and

P (sup
s≤t

| △M i(n)
s | ≤ cn) −−−−→

n→∞
1 (36)

Then exist an m-variate Gaussian continuous process, M = (M i, i = 1, . . . ,m)
where M i is a martingale with

〈M i,Mk〉t = 1{i=k}Vi(t) (37)

such that M(n) = (M1(n), . . . ,Mm(n))
D−−−−→

n→∞
M = (M1, . . . ,Mm) in D[0, t]m

Note 5. In the above theorem the conditions (a) and (b) are sufficient to prove the
convergence of the finite-dimensional distributions and tightness of the sequence
M

(n) in the m-dimensional space D[0, t]m of the right-continuous functions with
left limits, in [0, t] (Karr 1986).
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Corollary 3. Suppose that for each i, i = 1, . . . ,m,
∫ t

0
H2

i (s)λ
i(s)ds < ∞ and let

V ∗
i (t) be the function

V ∗
i (t) = P (Si > Yi)E

[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
(38)

Let B̂
(n)

t =

(
B̂

1(n)

t , . . . , B̂
m(n)

t

)
and B

(n)

t =
(
B

1(n)

t , . . . , B
m(n)

t

)
be m-variate

processes. Then, the process M(n) =
√
n(B̂

(n)

−B
(n)

)
D−−−−→

n→∞
M in D[0, t]m, where

M is an m-variate Gaussian continuous process with martingales components.

Proof . We establish the conditions (a) and (b) of Theorem 3. Denote M
i(n)
t =

√
n

(
B̂

i(n)

t −B
i(n)

t

)
, i = 1, . . . ,m. As P (Si = Sj) = 0 for all i, j with i 6= j, from

Proposition 1
(
B̂

i(n)

t −B
i(n)

t

)
=

1

n

n∑

j=1

Ci(j)
(
B̂

i(j)
t −B

i(j)
t

)
, 1 ≤ i ≤ m,

are orthogonal, mean zero and square integrable (P,Ft)-martingales, for each
n ≥ 1.

Therefore, for all n ≥ 1 and i 6= j, 〈M i(n),M j(n)〉t = 0, from the Strong Law
of Large Numbers and (60), for all i, 1 ≤ i ≤ m

〈M i(n)〉t = n
n∑

j=1

Ci(j)
[ 1

n2

∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]
=

1

n

n∑

j=1

Ci(j)
[∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]

−−−−→
n→∞

P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s) ds
∣∣∣Si > Yi

]
= V ∗

i (t) < ∞ (39)

and we have 〈M i(n)〉t D−−−−→
n→∞

V ∗
i (t), for all t ≥ 0.

Furthermore, the jumps of M i(n) arise only from
√
nB̂

i(n)

t and they are of size

△M
i(n)
t =

Hi(t)√
n

. By hypothesis, Hi(t) is continuous and bounded in [0, t], say by

a constant Γ < ∞. Taking cn = Γn− 1
4 , the condition (b) of Theorem 3 is satisfied.

Therefore, M(n) D−−−−→
n→∞

M, where M is an m-variate Gaussian continuous process,

M = (M i, i = 1, . . . ,m), with martingale components M i, i = 1, . . . ,m such that
〈M i,Mk〉t = 1{i=k}V

∗
i (t).

Proposition 2. Let Z
(n)
t be the m-variate process Z

(n)
t =

(
Z

1(n)
t , . . . , Z

m(n)
t

)

where Z
i(n)
t =

√
n(B

i(n)

t − Bi∗(t)), i = 1, . . . ,m and suppose that for all i, 1 ≤
i ≤ m and t ≥ 0,

σ2i∗(t) = Var[CiBi
t ] = E

[
Ci
(∫ t

Yi

Hi(s)λ
i(s)ds

)2]
− (Bi∗(t))2 < ∞. (40)
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Then Z
(n)
t

D−−−−→
n→∞

Zt, where Zt is an m-variate Normal random vector with

mean zero and covariance matrix Σ(t) such that Σij(t) = 1{i=j}σ
2i∗(t).

Proof . See Appendix B.

Theorem 4. Let µ(t) = (B1∗(t), . . . , Bm∗(t)), δ2i∗(t) = Var[CiB̂i
t ] < ∞, i =

1, . . . ,m and suppose that the conditions of Corollary 3 and Proposition 2 holds.

Then, the process E
(n)
t =

√
n(B̂

(n)

t − µ(t))
D−−−−→

n→∞
Wt in D[0, t]m, where Wt =

(W 1
t , . . . ,W

m
t ) is an m-variate Gaussian process with mean zero and covariance

matrix U(t) with Uij(t) = 1{i=j}δ
2i∗(t).

Proof . See Appendix C.

Note 6. In order to apply Theorem 4 we must estimate for fixed t, the variances
δ2i∗(t), i = 1, . . . ,m, which can be done through the sample estimator of the
variance.

For t ≥ 0 we consider n independent and identically distributed copies of the
m−variate process ((B̂i

t , C
i), i = 1, . . . ,m), with covariance matrix given by

U(t) =




δ21∗(t) 0 0 · · · 0

0 δ22∗(t) 0 · · · 0
...

. . .
...

0 0 0 · · · δ2m∗(t)


 (41)

We propose as estimator of U(t) to the sample covariance matrix, S
(n)(t),

where S
(n)
ij (t) = 1{i=j}S

2i(n)
t , that is

S
(n)(t) =




S
21(n)
t 0 0 · · · 0

0 S
22(n)
t 0 · · · 0

...
. . .

...

0 0 0 · · · S
2m(n)
t




(42)

with

S
2i(n)
t =

( n

n− 1

)[ 1
n

n∑

j=1

(
Ci(j)B̂

i(j)
t −Bi∗(t)

)2 −
(
B̂

i(n)

t −Bi∗(t)
)2]

(43)

Therefore, for each i, 1 ≤ i ≤ m and fixed t ≥ 0 , we calculate the corresponding

sample estimator of variance, S
2i(n)
t , which satisfies the properties enunciated in

the following proposition.

Proposition 3. For each i, 1 ≤ i ≤ m, S
2i(n)
t is an unbiased and uniformly

consistent estimator for δ2i∗(t) and therefore, S
(n)(t) and

m∑
i=1

S
2i(n)
t are unbiased

and uniformly consistent estimator for U(t) and
m∑
i=1

δ2i∗(t), respectively.
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Proof . For each i, 1 ≤ i ≤ m and t ≥ 0 we have E[CiB̂i
t ] = E[B̂

i(n)

t ] = Bi∗(t)

and δ2i∗(t) = E[(CiB̂i
t −Bi∗(t))2]. As the copies are independent and identically

distributed from (43) we get

E[S
2i(n)
t ] =

( n

n− 1

)[
δ2i∗(t)− 1

n
δ2i∗(t)

]
= δ2i∗(t), and therefore,

E[S(n)(t)] = U(t) and E
[ m∑

i=1

S
2i(n)
t

]
=

m∑

i=1

δ2i∗(t) (44)

Also, we apply the Strong Law of Large Number to obtain, for all t ≥ 0,

1

n

n∑

j=1

(
Ci(j)B̂

i(j)
t −Bi∗(t)

)2 −−−→
n↑∞

δ2i∗(t)

From the Strong Law of Large Number and the Continuous Mapping Theorem
(See, Billingsley 1968), we have,

(
B̂

i(n)

t −Bi∗(t)
)2 −−−→

n↑∞
0

and
(

n
n−1

)
−−−→
n↑∞

1. From the above results and (43), for all i, 1 ≤ i ≤ m we

conclude
S
2i(n)
t −−−→

n↑∞
δ2i∗(t), ∀ t ≥ 0

Then
S2i(n)
s −−−→

n↑∞
δ2i∗(s), ∀ s ≤ t, sup

s≤t
|S2i(n)

s − δ2i∗(s)| −−−→
n↑∞

0

and therefore,

sup
s≤t

(
S2i(n)
s − δ2i∗(s)

)2 −−−→
n↑∞

0

It follows from the above results that

E
[
sup
s≤t

(
S2i(n)
s − δ2i∗(s)

)2] −−−→
n↑∞

0 (45)

This result gives the uniformly consistence of the estimators S
2i(n)
t and

m∑
i=1

S
2i(n)
t ,

which also warranties the consistence of the estimator S
(n)(t) given in (42).

3.3. Estimation of the Expected Warranty Cost for a Fixed

Warranty Period of Length w

From (27) and (34), the expected warranty cost for a fixed period of length w

is B∗(w) = E[B̂w] =
m∑
i=1

Bi∗(w) = E[Bw]. In this section we obtain a (1−α)100%

confidence interval from results in Section 2.3 to Section 3.2.

Revista Colombiana de Estadística 34 (2011) 513–543



528 Nelfi Gertrudis González & Vanderlei Bueno

Let 1m = (1, 1, . . . , 1) be the m-dimensional unit vector and (A)t the transpose
of corresponding vector or matrix A. From (33) and Theorem 2 an estimator of

B∗(w) is B̂∗(w) = B̂
(n)

w
, which can be write as

B̂
(n)

w
=

m∑

i=1

B̂
i(n)

w
= 1m

(
B̂

(n)

w

)t
= B̂

(n)

w

(
1m

)t
(46)

where B̂

(n)

w
= (B̂

1(n)

w
, . . . , B̂

m(n)

w
) Also, we can write the expected warranty cost

B∗(w) as

B∗(w) =
m∑

i=1

Bi∗(w) = 1m

(
µ(w)

)t
= µ(w)

(
1m

)t
(47)

with µ(w) = (B1∗(w), . . . , Bm∗(w)) as defined in Theorem 4.

Theorem 5.

i. B̂
(n)

w
is a consistent and unbiased estimator for B∗(w).

ii. A consistent and unbiased estimator for Var[B̂
(n)

w
] is V̂ar[B̂

(n)

w
] = 1

n

m∑
i=1

S
2i(n)
w .

iii. An approximate (1− α)100% confidence interval for B∗(w), is

B̂
(n)

w
± Z1−α/2

√√√√ 1

n

m∑

i=1

S
2i(n)
w (48)

where Zγ is the γ-quantile of the standard normal distribution.

Proof .

i. For each i, 1 ≤ i ≤ m, from Theorem 2, B̂
i(n)

w
is a consistent and unbiased esti-

mator for Bi∗(w). Then, B̂
(n)

w
=

m∑
i=1

B̂
i(n)

w
is a consistent and unbiased estimator

for B∗(w).

ii. Since for i 6= j the processes B̂i
w

and B̂j
w

do not have simultaneous jumps,
we have

Var[B̂
(n)

w
] =

1

n

m∑

i=1

δ2i∗(w) =
1

n
1mU(w)

(
1m

)t
=

1

n
Var[

(
B̂1

w
, . . . , B̂m

w

)(
1m

)t
]

Therefore, from Proposition 3, (42) and (44), an unbiased and consistent esti-

mator for Var[B̂
(n)

w
] is

V̂ar[B̂
(n)

w
] =

1

n

m∑

i=1

S2i(n)
w

=
1

n
1mS

(n)(w)
(
1m

)t
(49)
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iii. As a consequence of Theorem 4, and the Crámer-Wold procedure (See,
Fleming & Harrington 1991, Lemma 5.2.1) we have

1m

(
E

(n)
w

)t
= E

(n)
w

(
1m

)t
=

m∑

i=1

Ei(n)
w

D−−−−→
n→∞

1m

(
Ww

)t
= Ww

(
1m)t ∼ N(0,1mU(w)

(
1m

)t
) = N

(
0,

m∑

i=1

δ2i∗(w)

)

then
m∑
i=1

E
i(n)
w

√
m∑
i=1

δ2i∗(w)

D−−−−→
n→∞

N(0, 1) (50)

From Proposition 3 and the Slutzky Theorem,

m∑
i=1

E
i(n)
w

√
m∑
i=1

S
2i(n)
w

=

√
n

m∑
i=1

(B̂
i(n)

w
−Bi∗(w))

√
m∑
i=1

S
2i(n)
w

=

√
n(B̂

(n)

w
−B∗(w))√

m∑
i=1

S
2i(n)
w

D−−−−→
n→∞

N(0, 1)

(51)

From the last equation we get

lim
n→∞

P





√
n|B̂

(n)

w
−B∗(w)|√

m∑
i=1

S
2i(n)
w

≤ Z1−α/2





≥ P
{
|Z| ≤ Z1−α/2

}
= 1− α

and a (1− α)100% approximate pointwise confidence interval for B∗(w), is

B̂
(n)

w
± Z1−α/2

√√√√ 1

n

m∑

i=1

S
2i(n)
w

The confidence interval for B∗(w) given in (48) can have negative values and
it is not acceptable. We propose to build a confidence interval through a con-
venient bijective transformation g(x) such that d

dxg(x)
∣∣
x=B∗(w)

6= 0, which does

not contain negative values. Conveniently, we consider g(x) = log x, x > 0 with
d
dxg(x) = 1/x, x > 0.
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Corollary 4. Suppose that for a fixed w > 0, B∗(w) > 0 and B̂
(n)

w
> 0. Then

B̂
(n)

w
× exp



±Z1−α/2

√√√√
m∑

i=1

S
2i(n)
w

/
n
[
B̂

(n)

w

]2


 (52)

is an approximate (1− α)100% confidence interval for B∗(w).

Proof . Using the Delta Method (See, Lehmann 1999, Section 2.5) and formula
(50) we get

√
n[log(B̂

(n)

w
)− log(B∗(w))]

D−−−−→
n→∞

N
(
0, [B∗(w)]−2

m∑

i=1

δ2i∗(w)
)

(53)

From literal i in Theorem 5, Proposition 3, and the Continuous Mapping The-
orem (Billingsley 1968),

B̂
(n)

w√
m∑
i=1

S
2i(n)
w

−−−−→
n→∞

B∗(w)√
m∑
i=1

δ2i∗(w)

, (54)

Therefore, for fixed w, from (53), (54) and using Slutsky Theorem, we have

√
nB̂

(n)

w√
m∑
i=1

S
2i(n)
w

[log(B̂
(n)

w
)− log(B∗(w))]

D−−−−→
n→∞

N(0, 1) (55)

From the last equation, an approximate (1 − α)100% confidence interval for
log(B∗(w)) is

log(B̂
(n)

w
)± Z1−α/2

√√√√
m∑

i=1

S
2i(n)
w

/
n
[
B̂

(n)

w

]2
(56)

from which, applying the inverse transformation, that is, exp(x), we obtain
(52).

3.4. Example

To illustrate the results we simulated the minimal repair warranty cost pro-
cess for a parallel system of three independent components with lifetimes Si ∼
Weibull(θi, βi), i = 1, 2, 3, respectively, where θi is the scale parameter and βi is

the shape parameter, that is, with survival function F
i
(t) = exp[−(t/θi)

βi ] and

hazard rate function λi(t) = (βi/θ
βi

i )tβi−1, t > 0.
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We use two possible cost functions: the first one is Hi(t) = Cie
−δt and the

second one is Hi(t) = Ci

(
1− t

w

)
e−δt, 0 ≤ t ≤ w, with δ = 1 in both cases.

Clearly they are bounded and continuous functions in [0, t]. The parameter values
are indicated in Table 1, w = 5 is the fixed warranty period and the sample sizes
are n = 30, 50, 100, 500, 1000, 2000, 5000, 10000.

The critical levels of the components for the system under minimal repair are

Yi =




max
j 6=i

Sj if max
j 6=i

Sj < Si,

∞ if max
j 6=i

Sj ≥ Si,
i = 1, 2, 3 (57)

Therefore, if the component failure times are observed in order S2, S3, S1, then
T = max{S1, S2, S3} = min

{Yi<∞}
Si = S1, and, in this case, component 1, is the only

one critical for the system. Therefore, after the second component failure time,
S3, the system is reduced to component 1, which is minimally repaired in each
observed failure over the warranty period.

Table 1: Parameter values.

i θi βi Ci

1 1 1.5 3

2 1 1.5 3

3 2 2.0 5

The simulation results considering the cost function as Hi(t) = Cie
−δt are:

In Table 2, the limits correspond to the confidence interval defined in (52), with
confidence level of α = 0.05. In Figure 1, we show the 95% approximate pointwise
confidence intervals for sample size of n = 100 and w ∈ (0, 5].

Table 2: Estimations for some sample sizes, Hi(t) = Cie
−δt, w = 5, α = 0.05.

n B̂∗(w)
3∑

i=1
S
2i(n)
w

3∑
i=1

S
2i(n)
w /n Lower limit Upper limit

30 1.90 2.30 0.07654 1.430 2.529

50 1.89 2.96 0.05921 1.471 2.435

100 1.85 2.95 0.02954 1.543 2.221

500 1.83 2.84 0.00568 1.685 1.980

1000 1.81 2.76 0.00276 1.712 1.918

2000 1.85 2.84 0.00142 1.780 1.928

5000 1.84 2.83 0.00057 1.794 1.887

10000 1.86 2.90 0.00029 1.825 1.891

Table 3, presents the theoretical values for the expected cost for a warranty
period of length w = 5, where E[Bi

w
] =

∫
w

0 Hi(s)λ
i(s) ds (that is, when the com-

ponent i is minimally repaired at each observed failure) and E[Bi
w

| Si > Yi] =

E
[∫

w

Yi
Hi(s)λ

i(s)ds | Si > Yi

]
. Based on these results, we can conclude that for

the considered system, the estimated values are closer to the expected values for
sample sizes greater than n = 50.
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Figure 1: 95% Approximate pointwise confidence intervals using limits in (52) with
simulated samples and Hi(t) = Cie

−δt.

Table 3: Expected costs, Hi(t) = Cie
−δt, w = 5.

i E[Bi
w
] E[Bi

w
| Si > Yi] P (Si > Yi) P (Si > Yi)E[Bi

w
| Si > Yi]

1 3.9138 2.14648 0.1620753 0.348

2 3.9138 2.14648 0.1620753 0.348

3 2.3989 1.70345 0.6758494 1.151

System cost 1.847

The following results correspond to the Monte Carlo simulations in which we
got the mean cost for w = 5 and 1000 samples of size n = 100 and n = 200,
respectively. Table 4, presents several statistics and the Shapiro Wilk normality
test. In Figure 2, we show the histograms of mean costs.

Table 4: Statistics of Monte Carlo simulation, Hi(t) = Cie
−δt, w = 5.

n Xn S2
n X̃n P2.5 P25 P75 P97.5 S.Wilk P-value

100 1.848 0.01574 1.848 1.612 1.761 1.936 2.091 0.9990 0.8576

200 1.843 0.00851 1.841 1.666 1.782 1.905 2.036 0.9987 0.7200

From results in Tables 2 to 4, and Figures 1 and 2, we observe that the mean
cost is approximately 1.85 for a warranty period of length w = 5. Also, the sample
variance and the 2.5th and 97.5th sample percentiles for the mean costs from
samples of size n = 100 showed in Table 4. They are close to the corresponding

values in Table 2 for
3∑

i=1

S
2i(n)
w /n and the confidence limits, respectively, and it

becomes clear that, in this case, the normal approximation is already achieved
with samples of size 100.
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Figure 2: Histograms of mean costs, Hi(t) = Cie
−δt, n = 100, 200.

The results related to the minimal repair costs with functions given by Hi(t) =
Ci

(
1− t

w

)
e−δt are showed in Tables 5, 6 and 7 and Figures 3 and 4. The conclu-

sions are similar to the previous case.

Table 5: Estimations for different sample sizes, Hi(t) = Ci

(

1− t

w

)

e−δt, w = 5, α =
0.05.

n B̂∗(w)
3∑

i=1
S
2i(n)
w

3∑
i=1

S
2i(n)
w

/n Lower limit Upper limit

30 1.16 1.35 0.04516 0.811 1.662

50 1.10 1.27 0.02544 0.827 1.460

100 1.04 1.23 0.01232 0.847 1.286

500 1.08 1.30 0.00259 0.985 1.185

1000 1.02 1.22 0.00122 0.953 1.090

2000 1.03 1.25 0.00063 0.978 1.076

5000 1.04 1.27 0.00025 1.007 1.069

10000 1.04 1.26 0.00013 1.014 1.058

Table 6: Expected costs, Hi(t) = Ci

(

1− t

w

)

e−δt, w = 5.
i E[Bi

w
] E[Bi

w
| Si > Yi] P (Si > Yi) P (Si > Yi)E[Bi

w
| Si > Yi]

1 2.8076 1.26053 0.1620753 0.204

2 2.8076 1.26053 0.1620753 0.204

3 1.5236 0.93862 0.6758494 0.634

System cost 1.043

Table 7: Statistics of Monte Carlo simulation, Hi(t) = Ci

(

1− t

w

)

e−δt, w = 5.

n X̂n S2
n X̃n P2.5 P25 P75 P97.5 S.Wilk P-value

100 1.038 0.00925 1.037 0.846 0.973 1.100 1.227 0.9987 0.6595

200 1.042 0.00418 1.040 0.917 0.996 1.085 1.171 0.9985 0.5533
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Figure 3: 95% Approximate pointwise confidence intervals using limits in (52) with
simulated samples and Hi(t) = Ci

(

1− t

w

)

e−δt.
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Figure 4: Histograms of mean costs, Hi(t) = Ci

(

1− t
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)

e−δt, n = 100, 200.

4. Conclusions

A martingale estimator for the expected discounted warranty cost process of
a minimally repaired coherent system under its component level observation was
proposed. Its asymptotic properties were also presented using the Martingale
Central Limit Theorem.
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Appendix A. Proof of Theorem 2

If i ∈ CΦ(ω), from Proposition 1 and the martingale property we have

E[B̂i
t |Si > Yi] = E

[∫ t

0

Hi(s)dÑ
i
s

∣∣∣Si > Yi

]
= E

[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]

Since the sequences (B̂
i(j)
t , Ci(j), 1 ≤ i ≤ m), 1 ≤ j ≤ n, are independent and

identically distributed copies of the m-variate process (B̂i
t , C

i, 1 ≤ i ≤ m), from
(32) we have

E[B̂
i(n)

t ] =
1

n

n∑

j=1

P (Si > Yi)E
[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]

and therefore, E[B̂
i(n)

t ] = 1
n

n∑
j=1

Bi∗(t) = Bi∗(t) = E[B̂
i(n)
t ].

To set the consistency of proposed estimator we have to prove that

E[sup
s≤t

(B̂
i(n)

s −Bi∗(s))2] −−−→
n↑∞

0 (58)

First, from (32) and Proposition 1 and for fixed n we have

B̂
i(n)

t −B
i(n)

t =
1

n

n∑

j=1

Ci(j)(B̂
i(j)
t −B

i(j)
t ) =

1

n

n∑

j=1

Ci(j)(B̂
i(j)
t −B

i∗(j)
t ) (59)

is a mean zero and square integrable (P,Ft)-martingale. Furthermore, from the
independence conditions and (23) we have

〈B̂
i(n)

− B̂i(n)〉t =
1

n
×
[ 1
n

n∑

j=1

Ci(j)

∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]

(60)

By hypothesis, for each i = 1, . . . ,m

E
[
Ci

∫ t

Yi

H2
i (s)λ

i(s)ds
]
= P (Si > Yi)E

[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
< ∞ (61)

and, therefore, using the Strong Law of Large Numbers we have

1

n

n∑

j=1

Ci(j)

∫ t

Y
(j)
i

H2
i λ

i(s)ds −−−→
n↑∞

P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
(62)

Using (60) and (62) we conclude that

〈B̂
i(n)

−B
i(n)〉t −−−−→

n→∞
0× P (Si > Yi)E

[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
= 0 (63)
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Furthermore, we have (Lipster & Shiryaev 2001, Theorem 2.4)

E[sup
s≤t

(B̂
i(n)

s − B̂i(n)
s )2] ≤ 4E[(B̂

i(n)

t −B
i(n)

t )2] = 4E[〈B̂
i(n)

−B
i(n)〉t] (64)

where the last equality is because (B̂
i(n)

t −B
i(n)

t ) is a mean zero and square inte-
grable (P,Ft)-martingale. From (63) and (64), we have

E[sup
s≤t

(B̂
i(n)

s −B
i(n)

s )2] −−−→
n↑∞

0 (65)

Also, from the Strong Law of Large Numbers and continuity in t, we get

(B
i(n)

s −Bi∗(s)) −−−−→
n→∞

0, ∀s ≤ t and therefore, sup
s≤t

|Bi(n)

s −Bi∗(s)| −−−−→
n→∞

0

then, we conclude

sup
s≤t

(B
i(n)

s −Bi∗(s))2 −−−−→
n→∞

0

and
E[sup

s≤t
(B

i(n)

s −Bi∗(s))2] −−−−→
n→∞

0 (66)

Furthermore, we have

E[sup
s≤t

(B̂
i(n)

s −Bi∗(s))2] ≤ E[sup
s≤t

(B̂
i(n)

s −B
i(n)

s )2] + E[sup
s≤t

(B
i(n)

s −Bi∗(s))2]

and taking limits in the above inequality, from (65) and (66) we get

lim
n→∞

E[sup
s≤t

(B̂
i(n)

s −Bi∗(s))2] = 0 (67)

and (58) is proved.

Appendix B. Proof of Proposition 2

First, as the sequences (B̂
i(j)
t , Ci(j), 1 ≤ j ≤ n) are independent and identically

distributed copies of (B̂i
t , C

i), we have that, for all t ≥ 0 and i = 1, . . . ,m,

E[B
i(n)

t ] =
1

n

n∑

j=1

P (Si > Yi)E

[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]
= Bi∗(t)

and B
i(n)

t is an unbiased estimator for Bi∗(t).

Furthermore, from the Strong Law of Large Numbers, B
i(n)

t converges almost
surely to Bi∗(t).
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Otherwise, as (Z
(n)
t )n≥1 is a sequence of independent and identically distributed

random vectors and the components do not have simultaneous failures, the pro-

cesses B
i(n)

t and B
j(n)

t are uncorrelated in [0, t], for all i, j, i 6= j, all n and

COV [Z
i(n)
t , Z

j(n)
t ] = COV [

√
n B

i(n)

t ,
√
n B

j(n)

t ] = COV [CiBi
t, C

jBj
t ] = 0 (68)

Consequently

Var[Z
i(n)
t ] = Var[

√
n B

i(n)

t ] = Var[CiBi
t ] = σ2i∗(t) (69)

Therefore, applying the Central Limit Theorem for a sequence of independent
and identically distributed random vectors with mean µ(t) = (B1∗(t), . . . , Bm∗(t))
and finite covariance matrix Σ(t), where Σij(t) = 1{i=j}σ

2i∗(t), we obtain that

Z
(n)
t

D−−−−→
n→∞

Zt, where Zt is an m-variate Normal random vector with mean zero

and covariance matrix Σ(t). In what follows we prove the convergence of the
finite-dimensional distributions of the process Z

(n). For that we consider:

(a) Since ∀ t ≥ 0, n ≥ 1, i 6= j, COV [Z
i(n)
t , Z

j(n)
t ] = COV [CiBi

t , C
jBj

t ] = 0, we

have ∀ tk ≤ tl, tk, tl ∈ [0, t], COV [Z
i(n)
tk , Z

j(n)
tl ] = COV [CiBi

tk , C
jBj

tl ] = 0;

(b) From the above, we can prove the convergence of the finite-dimensional dis-
tributions of the process Z

(n) using the Crámer-Wold procedure: proving
the convergence for each component Zi(n), for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t,
we prove that ∀ ail arbitrary constants,

m∑

i=1

k−1∑

l=1

ail(Z
i(n)
tl+1

− Z
i(n)
tl

)
D−−−−→

n→∞

m∑

i=1

k−1∑

l=1

ail(Z
i
tl+1

− Zi
tl
) (70)

which, using the Cramer-Wold procedure, is equivalent to

(Z
(n)
t1 ,Z

(n)
t2 , . . . ,Z

(n)
tk )

D−−−−→
n→∞

(Zt1 ,Zt2 , . . . ,Ztk)

Now, for each i, 1 ≤ i ≤ m and t1 ≤ t2 ∈ [0, t], consider n independent and
identically distributed copies of (CiBi

t1 , C
iBi

t2). Then, for each n and i = 1, . . . ,m

we get the random vector (Z
i(n)
t1 , Z

i(n)
t2 ). Therefore

E(Z
i(n)
t1 , Z

i(n)
t2 ) = (0, 0), ∀ n ≥ 1, i = 1, . . . ,m.

Furthermore, since the copies Ci(j)B
i(j)
t1 B

i(j)
t2 , j = 1, . . . , n are independent and

identically distributed and as, for independent copies j and k, the random variables

Ci(j)B
i(j)
t1 and Ci(k)B

i(k)
t2 are also independent, we have

COV [Z
i(n)
t1 , Z

i(n)
t2 ] = E[CiBi

t1B
i
t2 ]−Bi∗(t1)B

i∗(t2) = σi∗(t1, t2) < ∞. (71)
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From (69), Var[Z
i(n)
t1 ] = σ2i∗(t1) and Var[Z

i(n)
t2 ] = σ2i∗(t2). Then, from the

Central Limit Theorem for a sequence of independent and identically distributed
random vectors, with finite mean vector and finite covariance matrix, we have

(Z
i(n)
t1 , Z

i(n)
t2 )

D−−−−→
n→∞

(Zi
t1 , Z

i
t2), ∀ t1 ≤ t2 ∈ [0, t] (72)

where (Zi
t1 , Z

i
t2) is a bivariate normal vector with mean zero and covariance matrix

Σ
i(t1, t2),

Σ
i(t1, t2) =

[
σ2i∗(t1) σi∗(t1, t2)

σi∗(t1, t2) σ2i∗(t2)

]
(73)

Using an induction argument we can generalize the above result for all partition
0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t, of the interval [0, t] and we get for all i, 1 ≤ i ≤ m,

(Z
i(n)
t1 , Z

i(n)
t2 , . . . , Z

i(n)
tk

)
D−−−−→

n→∞
(Zi

t1 , Z
i
t2 , . . . , Z

i
tk
)

where (Zi
t1 , Z

i
t2 , . . . , Z

i
tk
) is a k-variate Normal vector with mean zero and finite

covariance matrix.

Finally, we analyze Stone’s tightness condition in D[0, t]m (Fleming & Harrington
1991), that is: If for each i, 1 ≤ i ≤ m and for all ǫ > 0,

lim
δ↓0

lim sup
n↑0

P
{

sup
|s−u|<δ
0≤s,u≤t

∣∣∣Zi(n)
s − Zi(n)

u

∣∣∣ > ǫ
}
= 0 (74)

Since Z
i(n)
s is continuous and monotone in [0, t], we have

P
{

sup
|s−u|<δ
0≤s,u≤t

∣∣∣Zi(n)
s − Zi(n)

u

∣∣∣ ≤ ǫ
}

≤ P
{∣∣∣Zi(n)

s − Zi(n)
u

∣∣∣ ≤ ǫ, for s and u fixed: 0 ≤ s, u ≤ t, |s− u| < δ
}

(75)

From (72) and (73), for all 0 ≤ s ≤ u

(Zi(n)
s −Zi(n)

u )
D−−−−→

n→∞
N(0, γ2(s, u)), γ2(s, u) = σ2i∗(s)+σ2i∗(u)−2σi∗(s, u). (76)

Finally, from (69) and (71) it is clear that lim
δ↓0

γ2(s, u) = 0, |s − u| < δ, 0 ≤
s, u ≤ t. Then, from (75) we have

lim
δ↓0

lim
n→∞

P
{

sup
|s−u|<δ
0≤s,u≤t

∣∣∣Zi(n)
s − Zi(n)

u

∣∣∣ ≤ ǫ
}
≤ lim

δ↓0
2Φ

(
ǫ√

γ2(s, u)

)
− 1

= 2Φ(∞)− 1 = 1 �
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Appendix C. Proof of Theorem 4

From Theorem 2 we have E[E
(n)
t ] = 0 for all n ≥ 1 and t ≥ 0.

Let M
(n)
t =

√
n(B̂

(n)

t −B
(n)

t ) and Z
(n)
t =

√
n(B

(n)

t − µ(t)). Note that

E
(n)
t =

√
n(B̂

(n)

t − µ(t)) = M
(n)
t + Z

(n)
t (77)

Now, for all t ≥ 0 and 1 ≤ i ≤ m we are going to calculate the asymptotic

variance for the processes E
i(n)
t =

√
n(B̂

i(n)

t −Bi∗(t)) = M
i(n)
t + Z

i(n)
t . For fixed

t,

Var[E
i(n)
t ] = Var[M

i(n)
t ] + Var[Z

i(n)
t ] + 2 COV [M

i(n)
t , Z

i(n)
t ] (78)

Since the copies are independent and identically distributed, from Corollary 3

and for all t ≥ 0, we have that Var[M
i(n)
t ] corresponds to

E[〈M i(n)〉t] = E
[ 1
n

n∑

j=1

Ci(j)

∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]
= E[Ci(B̂i

t −Bi
t)

2] = V ∗
i (t);

(79)

and Var[Z
i(n)
t ] is given by (69).

In order to calculate COV [M
i(n)
t , Z

i(n)
t ], we use the covariance definition, the

martingale property, the fact that for independent copies j and l, Ci(j)B̂
i(j)
t and

Ci(l)B
i(l)
t are also independent, concluding

COV [M
i(n)
t , Z

i(n)
t ] = E[CiB̂i

tB
i
t ]− E[Ci(Bi

t)
2] (80)

Therefore, from (69), (79) and (80), we obtain in (78) that, for all n ≥ 1 and t ≥ 0

Var[E
i(n)
t ] = E[Ci(B̂i

t)
2]− (Bi∗(t))2

In addition,we have E[CiB̂i
t ] = Bi∗(t) and then,

Var[E
i(n)
t ] = Var[CiB̂i

t ] = δ2i∗(t) (81)

We also calculate COV [E
i(n)
t , E

j(n)
t ] for n ≥ 1 and i 6= j, and since processes

B̂i
t and B̂j

t do not have simultaneous jumps, we obtain,

COV [E
i(n)
t , E

j(n)
t ] = COV [CiB̂i

t , C
jB̂j

t ] = 0 (82)

From results (81) and (82) we conclude that the asymptotic covariance for the

process E
(n)
t is U(t) where Uij(t) = 1{i=j}δ

2i∗(t). Next, we set the asymptotic

normality of E
(n)
t by considering the results from its asymptotic covariance struc-

ture and the convergence in distribution of the processes M
(n)
t (Corollary 3) and

Z
(n)
t (Proposition 2):
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As the processes M(n) and Z
(n) satisfy the tightness condition in D[0, t]m and

their finite-dimensional distributions converge to Gaussian continuous processes,

such that ∀ tk, tl ∈ [0, t], COV [E
i(n)
tk

, E
j(n)
tl

] = 0, the process E
(n) = M

(n) + Z
(n)

also satisfies the tightness condition.

Also, its finite-dimensional distributions converge to Gaussian continuous pro-
cesses and for all partition 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t, we can prove that,

∀ ail arbitrary constants,

m∑

i=1

k−1∑

l=1

ail(E
i(n)
tl+1

−E
i(n)
tl ) =

m∑

i=1

k−1∑

l=1

ail(M
i(n)
tl+1

−M
i(n)
tl ) +

m∑

i=1

k−1∑

l=1

ail(Z
i(n)
tl+1

−Z
i(n)
tl )

D−−−−→
n→∞

m∑

i=1

k−1∑

l=1

ail(M
i
tl+1

−M i
tl
) +

m∑

i=1

k−1∑

l=1

ail(Z
i
tl+1

− Zi
tl
) =

m∑

i=1

k−1∑

l=1

ail(W
i
tl+1

−W i
tl
) �

which, using the Cramer-Wold procedure, is equivalent to

(E
(n)
t1 ,E

(n)
t2 , . . . ,E

(n)
tk

) = (M
(n)
t1 ,M

(n)
t2 , . . . ,M

(n)
tk

) + (Z
(n)
t1 ,Z

(n)
t2 , . . . ,Z

(n)
tk

)
D−−−−→

n→∞

(Mt1 ,Mt2 , . . . ,Mtk) + (Zt1 ,Zt2 , . . . ,Ztk) = (Wt1 ,Wt2 , . . . ,Wtk)
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